4解直角三角形

合集下载

解直角三角形应用4湘教版

解直角三角形应用4湘教版

2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作为 一种工具,能在解决各种数学问题时合理运用.
下: 1.沿着水平地面向前300m到达D点,在D点测得山 顶A的仰角为60 °,求山高AB. 2.沿着坡角为30 °的斜坡前进300m到达D点,在D 点测得山顶A的仰角为60 ° ,求山高AB. A
D 30° C
x E x
F B
三、小结
1、解直角三角形的关键是找到与已知和未知相关 联的直角三角形,当图形中没有直角三角形时,要通过作 辅助线构筑直角三角形(作某边上的高是常用的辅助线); 当问题以一个实际问题的形式给出时,要善于读懂题意, 把实际问题化归为直角三角形中的边角关系.
( 返 回 )

d

D
h
铅 垂 线
) 仰角 ) 俯角
水平线

k D d 2 tg
i
h
tg
( 为斜角 )
( 为坡角 )
一、基础题
1、在Rt △ABC中, ∠ C=90°,∠A的正切等 于2,BC=6,则这个三角形的面积等于____________, 斜边AB=_______________ . 2、某人沿着坡角为45 °的斜坡走了310 则此人的垂直高度增加了____________m .
解直角三角形应用
回顾知识要点
1、解直角三角形定义
2、直角三角形中的边角关系 3、在解直角三角形中,经常接触的名称
1、在一个直角三角形中,已知一条边和一 个锐角或者已知两条边,可以求出其他的边 和角,这就是解直角三角形.
2、在 ABC 中 , C 为直角 , 有下列的边角关系
三边的关系

北师大版九年级数学下册4解直角三角形同步练习题

北师大版九年级数学下册4解直角三角形同步练习题

1.4 解直角三角形1.如图,在△ABC 中,∠C=900,AB=5,BC=3,则sinA 的值是( )A.34 B.43C.35D.45第1题图 第3题图 第4题图 2.在Rt △ACB 中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC 的长为( ) A.6 B.7.5 C.8 D.12.53.如图,在△ABC 中,∠C=900,AD 是BC 边上的中线,BD=4,52 AD ,则tan ∠CAD 的值是( )A.2B.2C.3D.5 4.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A.43 B.35 C.34 D.455.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC=6.△ABC 中,∠C=900,AB=8,cosA=43,则BC 的长 7.如图,在△ABC 中,∠A=300,∠B=450,AC=32,则AB 的长为 .第7题图 第8题图8.如图,在Rt △ABC 中,∠ACB=900,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,sinA=35,则DE= . 9.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=450,sinB=13,AD=1.(1)求BC 的长;(2)求tan ∠DAE 的值.10.如图,在Rt △ABC 中,∠C=900,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF ). (1)求证:△ACE ≌△AFE ; (2)求tan ∠CAE 的值.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方2C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-1218.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求:(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)能围成面积为200平方米的鸡场吗?22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O①判断四边形BFDC 的形状,并说明理由;②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。

九年级秋季班-第4讲:解直角三角形

九年级秋季班-第4讲:解直角三角形

1 / 17解直角三角形是九年级上学期第二章第二节的内容,通过本节的学习,需要掌握直角三角形中,除直角外其余五个元素之间的关系,并熟练运用锐角三角比的意义解直角三角形,以及解直角三角形的相关应用.重点在于理解仰角、俯角、方向角、坡度、坡角等概念,并能利用其解决实际问题;难点在于,若一个三角形不是直角三角形,要有意识把它化归为解直角三角形的问题.1、 解直角三角形在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形. 在t R ABC ∆中,如果=90C ∠︒,那么它的三条边和两个锐角之间有以下的关系: (1)三边之间的关系:222a b c +=(2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系: sin cos a A B c ==,cos sin bA B c ==tan cot a A B b ==,cot tan b A B a== 解直角三角形内容分析知识结构模块一:解直角三角形知识精讲2 / 17A BO xy ABCDE【例1】 ABC ∆中,90C ∠=︒,已知AB = 6.4,40B ∠=︒,则A ∠=______,AC =______,BC =______.(sin400.64︒≈,sin500.77︒≈,边长精确到0.1)【难度】★ 【答案】 【解析】【例2】 若菱形的周长为8,相邻两内角之比为3 : 1,则菱形的高是______. 【难度】★ 【答案】 【解析】【例3】 如图,OAB ∆中,OA = OB ,125AOB ∠=︒.已知点A 的坐标是(4,0),则点B的坐标是____________.(用锐角三角比表示)【难度】★★ 【答案】 【解析】【例4】 如图,在ABC ∆中,90BAC ∠=︒,AB = AC ,D 为边AC 的中点,DE BC ⊥于点E ,连接BD ,则tan DBC ∠的值为( )A .13B .21-C .23-D .14【难度】★★ 【答案】 【解析】例题解析3/ 17AAB CDEOAB CDAB CAB C 【例5】如图,在矩形ABCD中,对角线AC、BD相交于点O,E是边AD的中点,若AC = 10,DC=5BO=______,EBD∠的度数约为____°____'(参考数据:1tan2634'2︒≈).【难度】★★【答案】【解析】【例6】在锐角ABC∆中,AB = 14,BC = 14,84ABCS∆=,求cot C的值.【难度】★★【答案】【解析】【例7】如图,ABC∆中,23AB=AC = 2,边BC上的高3AD求ABCS∆和BAC∠的大小.【难度】★★【答案】【解析】【例8】如图,在锐角ABC∆,4sin5B=,tan2C=,且40ABCS∆=,求BC的长.【难度】★★【答案】【解析】【例9】如图,ABC∆中,30B∠=︒,45C∠=︒,22AB AC-=BC的长.【难度】★★【答案】【解析】【例10】如图,先将斜边AB长6 cm,30A∠=︒的直角三角板ABC绕点C顺时针方向旋转90°至''A B C∆位置,再沿CB向左平移,使点B落在原三角板ABC位置的斜4/ 17CDFABC DAB CDAB CDENM边AB上,则平移的距离为______.【难度】★★【答案】【解析】【例11】如图,正方形ABCD中,E为边BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若1tan3AEN∠=,DC + CE =10.(1)求ANE∆的面积;(2)求sin ENB∠的值.【难度】★★【答案】【解析】【例12】如图,四边形ABCD中,90A C∠=∠=︒,120B∠=︒,AB = 4,BC = 2,求四边形的面积.【难度】★★★【答案】【解析】【例13】如图,在四边形ABCD中,已知AD = AB = BC,连接AC,且30ACD∠=︒,23tan BAC∠=CD = 3,求AC的长.【难度】★★★【答案】【解析】【例14】小智在学习特殊角的三角比时发现,将如图所示的矩形纸片ABCD沿过B点的直线折叠,使点A落在BC上的点E处,折痕BM.还原后,再沿过点E的直线5 / 17xyO折叠,使点A 落在BC 上的点F 处,折痕EN .利用这种方法,可以求出tan67.5︒的21,试证明之.【难度】★★★ 【答案】 【解析】【例15】在平面直角坐标系内,放置了5个如图所示的正方形(用阴影表示).点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 在x 轴上.已知正方形1111A B C D 的边长为1,1160B C O ∠=︒,11B C //22B C //33B C ,则点3A 到x 轴的距离是( )A 33+ B 31+ C 33+ D 31+【难度】★★★ 【答案】 【解析】6 / 17仰角 视线水平线视线俯角铅垂线北北偏东30°南偏西45° 北偏西70°南偏东50°30° 70° 45° 50°hl1、 仰角与俯角在测量过程中,常常会遇到仰角和俯角.如图,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.2、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.3、 坡度(坡比)、坡角在修路、挖河、开渠等设计图纸上,都需要注明斜坡的倾斜程度.如图,坡面的铅垂高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i ,即h i l=. 坡度通常写成1 : m 的形式,如1:1.5i =. 坡面与水平面的夹角叫做坡角,记作α.坡度i 与坡角α之间的关系:tan hi lα==.模块二:解直角三角形的应用知识精讲7 / 17ABOC ABDABP 北ABC【例16】如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角ABO ∠为α,则树OA 的高度为( )A .30tan αB .30sin αC .30tan αD .30cos α【难度】★ 【答案】 【解析】【例17】如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处.如果海轮沿着正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 的长是( )海里A .2B .2sin 55°C .2cos 55°D .2tan 55°【难度】★ 【答案】 【解析】【例18】如图所示,某公园入口处原有三级台阶,每级台阶高为18厘米,深为30厘米,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i = 1 : 5,那么AC 的长度是______厘米.【难度】★ 【答案】 【解析】【例19】如图,斜面AC 的坡度为1 : 2,AC =35米,坡顶有一旗杆BC ,旗杆顶端B点与A 点有一条彩带相连,若AB = 10米,则旗杆BC 的高度为( )米A .5B .6C .8D .3+5【难度】★★ 【答案】 【解析】【例20】如图,要在宽为22米的大道AB 两边安装路灯,路灯的灯臂CD 长2米,且例题解析8 / 17ABCDOABCDAC PQ与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直.当灯罩的轴线DO 通过公路路面中心线时照明效果最佳.此时,路灯的灯柱BC 的高度应该设计为( )米A .1122-B .1123-C .11322D .1134【难度】★★ 【答案】 【解析】【例21】如图,为测得一栋大厦CD 的高度,一人先在附近一楼房的底端A 点观测大厦顶端C 处的仰角是60°,然后爬到该楼房顶端B 处观测大厦底部D 处的俯角是30°,已知楼房高AB 约是45 m ,根据以上观测数据可求大厦的高CD 是______m .【难度】★★ 【答案】 【解析】【例22】如图,小智在大楼30米高(即PH = 30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°.已知山坡的坡度为3,点P 、H 、B 、C 、A 在同一平面上,点H 、B 、C 在同一直线上,且PH HC ⊥.则山坡上A 、B 两点间的距离为______.【难度】★★ 【答案】 【解析】【例23】某单位拟建造地下停车库,设计师提供了车库入口设计示意图(如图),按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,9 / 17AB CDABA 'B 'O 'O为标明限高,请你计算图中CE 的长.(参考数据:sin180.309︒≈,cos180.951︒≈,tan180.325︒≈,cot18 3.078︒≈,结果精确到0.1 m )【难度】★★ 【答案】 【解析】【例24】小方在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面高'2OO =米.当吊臂顶端由点A 抬升至点'A (吊臂长度不变)时,地面B 处的重物(高度不计)被吊至'B 处,紧绷着的吊缆''A B AB =.AB 垂直地面'O B 于点B ,直线''A B 垂直地面'O B 于点C ,吊臂长度'10OA OA ==米,且3cos 5A =,1sin '2A =.(1)求重物在水平方向移动的距离BC ;(2)求重物在竖直方向提升的高度'B C .【难度】★★ 【答案】 【解析】【例25】如图,是一座人行天桥的示意图,天桥的高度是10米,CB DB ⊥,坡面AC的坡角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为3:3i =.若新坡角下需留3米宽的人行道,问离原坡角(A 点处)10米的建筑物是否需要拆除?(参考数据:2 1.414≈,3 1.732≈)【难度】★★ 【答案】 【解析】【例26】数学兴趣小组准备利用所学的知识测量公路旁某广告牌的高度.如图所示,先在水平面上点A 处测得对广告牌上沿点C 的仰角为30°,然后沿AH 方向前进10米至点B 处,测得对广告牌下沿点D 的仰角为60°.已知矩形广告牌垂直于地面的AB C D E9 m0.5 m10 / 17ABC DP NMQH A BCD O 北东一边CD 高2米.求广告牌的高度GH (结果保留根号).【难度】★★ 【答案】 【解析】【例27】如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C处,测得45CAO ∠=︒.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km /h 和36 km /h .经过0.1 h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得58DBO ∠=︒.此时B 处距离码头O 有多远?(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)【难度】★★ 【答案】 【解析】【例28】如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且30BDN ∠=︒,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为H .如果汽车沿着从M 到N 的方向在MN 上行驶, 当汽车到达点P 处时,噪音开始影响这一排居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这 一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1米,参考数据:3 1.7≈)【难度】★★★ 【答案】 【解析】【例29】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象部门观测,某沿海城市A 正南方向相距220 km 的B 处有一台风中心,中心最大风力为12级,每远离台风中心20 km ,风力就会减弱一ABCD G H广告牌ABC D EFN MP JHABC级.现台风中心正以15 km /h 的速度沿北偏东30°方向移动,如图所示.若城市所受风力达到或超过4级,则称为受台风影响.(1)设台风中心风力不变,该城市是否会受到这次台风的影响?请说明理由. (2)如该城市受台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响时的最大风力为几级?【难度】★★★ 【答案】 【解析】【例30】某水库大坝的横截面积是如图所示的四边形ABCD ,其中AB // CD .瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 的俯角45β=︒.已知MN 所在直线与PC 所在直线垂直,垂足为E ,PE 长为30米.(1)求两渔船M 、N 之间的距离(结果精确到1米)(2)已知坝高24米,坝长100米,背水坡AD 的坡度i = 1 : 0.25.为了提高大坝的防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝顶加宽3米,背水坡FH 的坡度为i = 1 : 1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan310.60︒≈,sin310.52︒≈)【难度】★★★ 【答案】 【解析】A BCDABCDABC DE FG AB CD【习题1】 如图,菱形ABCD 的边长为15,3sin 5BAC ∠=,则对角线AC 的长为______. 【难度】★ 【答案】 【解析】【习题2】 有一个相框的侧面抽象为如图所示的几何图形,已知BC = BD = 15 cm ,40CBD ∠=︒,则点B 到CD 的距离为______cm .(参考数据:sin200.342︒≈,cos200.940︒≈,sin400.642︒≈,cos400.766︒≈,结果精确到0.1 cm )【难度】★ 【答案】 【解析】【习题3】 如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB 为( )A .503米B .51米C .()503+1米D .101米【难度】★★ 【答案】 【解析】【习题4】 如图,ABC ∆中,90C ∠=︒,3sin 5B =.D 是BC 上一点,已知45ADC ∠=︒,DC = 6,求tan BAD ∠的值.【难度】★★ 【答案】 【解析】随堂检测ABCDABCDEFABC30°45° 【习题5】 如图,ABC ∆和ADE ∆都是等边三角形,AB = 2AD ,已知45BAD ∠=︒,AC与DE 相交于点F ,ABC ∆3【难度】★★ 【答案】 【解析】【习题6】 如图,在四边形ABCD 中,45A C ∠=∠=︒,105ADB ABC ∠=∠=︒.(1)若AD = 2,求AB ;(2)若232AB CD +=,求AB . 【难度】★★ 【答案】 【解析】【习题7】 2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度为20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方C 处有生命迹象.在废墟一侧某面上选两探测点A 、B ,点A 、B 相距2米,探测线与该面的夹角分别是30°和45°(如图),试确定生命所在的点C 2 1.414,3 1.732≈)【难度】★★ 【答案】 【解析】【习题8】 利用几何图形,求sin 18°的值. 【难度】★★★ 【答案】 【解析】【习题9】 如图,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°方向上.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离ABCO北北东ABCA 1B 1C 1港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离. 【难度】★★ 【答案】 【解析】 【习题10】 如图所示,已知边长为2的正三角形ABC 沿直线l 顺时针滚动.(1)当ABC ∆滚动一周到111A B C ∆的位置时,A 点所运动的路程约为______;(精确到0.1)(2)设ABC ∆滚动240°,C 点的位置为'C ,当ABC ∆滚动480°时,A 点的位置再'A ,请你利用正切的两角和公式()tan tan tan 1tan tan αβαβαβ++=-,求出''CAC CAA ∠+∠的度数.【难度】★★★ 【答案】 【解析】ABCD EFABC北东ABCDEFABCD【作业1】 如图,将正方形ABCD 的边BC 延长到点E ,使得CE = AC ,AE 与CD 相交于点F ,求E ∠的余切值.【难度】★ 【答案】 【解析】【作业2】 如图,在矩形ABCD 中,AB = 8,BC = 12,E 是BC 的中点,连接AE ,将ABE∆沿AE 折叠,点B 落在点F 处,连接FC ,则sin EFC ∠的值为______.【难度】★★ 【答案】 【解析】【作业3】 如图,AD 是ABC ∆的中线,1tan 3B =,2cosC =,2AC =.求:(1)BC 的长;(2)sin ADC ∠的值.【难度】★★ 【答案】 【解析】【作业4】 如图,轮船从B 处以每小时60海里的速度沿南偏东20°的方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上.轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A .20海里B .40海里C .2033海里D .4033海里【难度】★★ 【答案】 【解析】课后作业ABCDABCDDABC ABNM 【作业5】 如图,在ABC ∆中,45B ∠=︒,56AB =,D 是BC 上一点,AD = 5,CD = 3,求ADC ∠的度数及AC 的长.【难度】★★ 【答案】 【解析】【作业6】 如图,点D 在ABC ∆的边BC 上,C BAD DAC ∠+∠=∠,4tan 7BAD ∠=,65AD =,CD = 13,求线段AC 的长.【难度】★★ 【答案】 【解析】【作业7】 如图,一栋楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC = 17.2米.设太阳光线与水平地面的夹角为α,当60α=︒时,测得楼房在地面上的影长AE = 10米.现有一只小猫睡在台阶的MN 这层上晒太阳.3 1.73) (1)楼房的高度约为多少米?(2)过了一会儿,当45α=︒时,问小猫能否还晒到太阳?请说明理由. 【难度】★★ 【答案】 【解析】【作业8】 如图,CD 是ABC ∆的中线,已知90ACD ∠=︒,3cos 5A =,求tan BCD ∠的值. 【难度】★★★ 【答案】 【解析】【作业9】 如图,在梯形ABCD 中,AD // BC ,AB = 4,BC = 6,DAC B AEF ∠=∠=∠,ABCDEF点E 、F 分别在BC 、AC 上(点E 与B 、C 不重合),设BE = x ,AF = y . (1)求cos B ;(2)求证:ABE ∆∽ECF ∆; (3)求y 关于x 的代数式;(4)当点E 在BC 上移动时,AEF ∆是否有可能是直角三角形?若有可能,请求出BE 的长;若不能,请说明理由.【难度】★★★ 【答案】 【解析】【作业10】 如图(a )所示,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:ADG ∆≌ABE ∆;(2)连接FC ,观察并猜测FCN ∠的度数,并说明理由;(3)如图(b )所示,将图(a )中正方形ABCD 改为矩形ABCD ,AB = a ,BC = b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN ∠的大小是否总保持不变,若FCN ∠的大小不变,请用含a 、b 的代数式表示tan FCN ∠的值;若FCN ∠的大小改变,请举例说明.【难度】★★★ 【答案】 【解析】ABCD E FNM GA BCDEFNM G图(a )图(b )。

4 解直角三角形

4  解直角三角形

∵ tan B b , b 30,
a

a
b tan
B
30 tan 25。
64.
新课讲解
例 4. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形 的其他元素.(长度精确到0.01) 解:已知∠A,可根据∠B=90°-∠A得到∠B的大小.而 已知斜边,必然要用到正弦或余弦函数. ∵∠A=26°44′,∠C=90°, ∴∠B=90°-26°44′=63°16′.
新课讲解
典例分析
分析:紧扣解直角三角形中“知二求三”的特征进行解答 .
解: ①能够求解;②不能求解;③能够求解; ④能够求解;⑤能够求解 .
答案:C
新课讲解
典例分析
例 2. 已知在Rt△ABC中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,且c=5,b=4,求这个三角 形的其他元素.(角度精确到1′)
∴∠ B=90° - ∠ A=60° .
∵ tan A= a ,
b

3= a , 3 12
∴ a= 4 3.
c 2a 8 3.
新课讲解
( 2)在 Rt △ ABC 中,∠ C=90°,∠ A=60°,
∴∠ B=90° - ∠ A=30° .
∵ sin A= a , ∴ 3 = a ,
c
26
∴ a 3 3.
, cos
B
B的邻边 斜边
正切:tan
A
A的对边 A的邻边
,tan
B
B的对边 B的邻边
当堂小练
在Rt△ABC中, ∠C=90° , ∠A,∠B,∠C所对的边分别为a, b, c,根据下列条 件求出直角三角形的其他元素(角度精确 到1° ): (1) 已知 a = 4, b =8;

包头市2015中考复习第4章 第4节 解直角三角形

包头市2015中考复习第4章 第4节 解直角三角形

第4节 解直角三角形锐角三角函数在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,则sin A =________,cos A =________,tan A =________.特殊角的三角函数值解直角三角形1.直角三角形各元素之间的关系:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c. (1)三边之间的关系:______________; (2)锐角之间的关系:______________; (3)边角之间的关系:sin A =______,cos A =______,tan A =______.2.解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.解直角三角形的应用1.仰角、俯角如图①,在测量时,视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.2.坡度(坡比)、坡角如图②,坡面的高度h 和______的比叫做坡度(或坡比),即i =tan α=hl.坡面与水平面的夹角α叫做坡角.3.方位角如图③,指南或指北方向线与目标方向线所成的小于90°的水平角叫做方位角,A 点位于O 点的北偏东30°方向,B 点位于O 点的南偏东60°方向.锐角三角函数【例1】(2014·威海)如图,在网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( D )A.31010B.12C.13D.1010作AC ⊥OB 于点C ,利用勾股定理求AC 和AB ,根据正弦的定义即可求出.解直角三角形 【例2】如图,在△ABC 中,∠A =30°,∠B =45°,AC =23,求AB 的长.解:AB =3+3添加适当的辅助线,建立直角三角形模型,利用直角三角形各元素之间关系求解.解直角三角形的应用【例3】(2014·烟台)小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:(1)延长OA 交BC 于点D.∵AO 的倾斜角是60°,∴∠ODB =60°,∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°,在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米),∴CD =2AD =3(米),又∵∠O =60°,∴△BOD 是等边三角形,∴BD=OD =OA +AD =3+32=4.5(米),∴BC =BD -CD =4.5-3=1.5(米),则浮漂B 与河堤下端C 之间的距离为1.5米延长OA 交BC 于点D ,构造直角三角形,求出CD 长,再证△BOD 是等边三角形,求出BD 长,即可求出BC.真题热身1.(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( C )A .45°B .60°C .75°D .105°2.(2014·滨州)在△ACB 中,∠C =90°,AB =10,sin A =35,cos A =45,tan A =34,则BC 的长为( A )A .6B .7.5C .8D .12.53.(2014·巴中)在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( D )A.1213B.512C.1312D.1254.(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( C )A .20海里B .10 3 海里C .20 2 海里D .30海里,第4题图) ,第5题图)5.(2014·嘉兴)如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7米,则树高BC 为__7tan α__米.(用含α的代数式表示)6.(2014·青岛)如图,小明想测山高和索道的长度,他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80 m 至索道口C 处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度;(小明的身高忽略不计) (2)求索道AC 的长.(结果精确到0.1 m )(参考数据:tan 31°≈35,sin 31°≈12,tan 39°≈911,sin 39°≈711)解:(1)过A 作AD ⊥BE 于D ,设山高AD =x m ,在Rt △ABD 中,BD =AD tan31°=53x ,在Rt △ACD 中,CD =AD tan39°=119x ,∵BC =BD -CD ,∴53x -119x =80,解得x =180,即山高为180 m (2)在Rt △ACD 中,AC =AD sin39°=180711≈282.9(米)第4节 解直角三角形基础过关一、精心选一选1.(2014·天津)cos 60°的值等于( A ) A .12 B .33 C .32D . 3 2.(2014·杭州)在Rt △ABC 中,已知∠C =90°,∠A =40°,BC =3,则AC =( D ) A .3sin 40° B .3sin 50° C .3tan 40° D .3tan 50°3.(2013·昭通)如图,A ,B ,C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tan B ′的值为( B )A .12B .13C .14D .244.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( C )A .12B .34C .32D .45,第4题图) ,第5题图)5.(2014·丽水)如图,河坝横断面迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC =3 m ,则坡面AB 的长度是( B )A .9 mB .6 mC .6 3 mD .3 3 m6.(2013·衢州)如图,小敏同学想测量一棵大树的高度,她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4 m ,测得仰角为60°,已知小敏同学身高(AB)为1.6 m ,则这棵树的高度为( D )(结果精确到0.1 m ,3≈1.73)A .3.5 mB .3.6 mC .4.3 mD .5.1 m 二、细心填一填7.(2014·温州)如图,在△ABC 中,∠C =90°,AC =2,BC =1,则tan A 的值是__12__.,第7题图) ,第9题图)8.(2013·安顺)在Rt △ABC 中,∠C =90°,tan A =43,BC =8,则△ABC 的面积为__24__.9.(2013·荆门)如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC =6,sin A =35,则DE =__154__.10.(2014·抚顺)如图,河流两岸a ,b 互相平行,点A ,B 是河岸a 上的两座建筑物,点C ,D 是河岸b 上的两点,A ,B 的距离约为200米.某人在河岸b 上的点P 处测得∠APC =75°,∠BPD =30°,则河流的宽度约为__100__米.11.(2013·东营)某校研究性学习小组测量学校旗杆AB 的高度,如图,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为__9__米.12.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出__17__个这样的停车位.(2≈1.4)三、用心做一做13.(2014·重庆)如图,在△ABC 中,CD ⊥AB ,垂足为D ,若AB =12,CD =6,tan A =32.求sin B +cos B 的值.解:tan A =CD AD =32=6AD ,∴AD =4,BD =8,BC =62+82=10,∴sin B +cos B =35+45=7514.(2014·南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO =60°;当梯子底端向右滑动1 m (即BD =1 m )到达CD 位置时,它与地面所成的角∠CDO =51°18′,求梯子的长.(参考数据:sin 51°18′≈0.780,cos 51°18′≈0.625,tan 51°18′≈1.248)解:设梯子的长为x m ,在Rt △ABO 中,OB =AB·cos ∠ABO =0.5x ,在Rt △CDO 中,OD =CD·cos ∠CDO =0.625x ,∵BD =OD -OB ,∴0.625x -0.5x =1,解得x =8,即梯子的长是8米15.(2013·天门)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC 的长.解:在Rt △ADC 中,∵AD ∶DC =1∶2.4,AC =13,由AD 2+DC 2=AC 2,得AD 2+(2.4AD)2=132,∴AD =5(舍负),∴DC =12.在Rt △ABD 中,∵AD ∶BD =1∶1.8,∴BD =5×1.8=9,∴BC =DC -BD =12-9=3(米)16.(2014·珠海)如图,一艘渔船位于小岛M 的北偏东45°方向、距离小岛180海里的A 处,渔船从A 处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B 处.(1)求渔船从A 到B 的航行过程中与小岛M 之间的最小距离;(结果用根号表示) (2)若渔船以20海里/小时的速度从B 沿BM 方向行驶,求渔船从B 到达小岛M 的航行时间.(结果精确到0.1小时)(参考数据:2≈1.41,3≈1.73,6≈2.45)解:(1)过M 作MD ⊥AB 于D ,在Rt △AMD 中,MD =AM·cos 45°=902,即最小距离为902海里 (2)在Rt △MOB 中,MB =MDcos 30°=606,航行时间为606÷20=36≈7.35≈7.4(小时)17.(2013·恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:2≈1.414,3≈1.732 )解:过点B 作BE ⊥AD 于点E ,作BF ⊥DN 于点F ,∵∠D =90°,∴四边形BEDF 是矩形,∴BE =DF ,BF =DE.在Rt △ABE 中,AE =AB·cos 30°=110×32=553(米),BE =AB·sin 30°=12×110=55(米).设BF =x 米,则AD =AE +ED =553+x(米),在Rt △BFN中,NF =BF·tan 60°=3x(米),∴DN =DF +NF =55+3x(米).∵∠NAD =45°,∴AD =DN ,即553+x =3x +55,解得x =55,∴DN =55+3x ≈150(米)挑战技能18.(2013·绵阳)如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .103米C .153米D .56米19.(2014·杭州)如图,已知AD ∥BC ,AB ⊥AD ,点E ,F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( A )A .1+tan ∠ADB = 2 B .2BC =5CFC .∠AEB +22°=∠DEFD .4cos ∠AGB = 620.(2013·青岛)如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市.CD 与AB 所在直线互相平行,且都与马路两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°.(1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B ,求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米?(参考数据:sin 67°≈1213,cos 67°≈513,tan 67°≈125,sin 37°≈35,cos 37°≈45,tan 37°≈34)解:(1)设CD 与AB 之间的距离为x ,则在Rt △BCF 和Rt △ADE 中,BF =CF tan 37°=43x ,AE =DE tan 67°=512x ,又∵AB =62,CD =20,∴43x +512x +20=62,解得x =24,故CD 与AB 之间的距离为24米 (2)在Rt △BCF 和Rt △ADE 中,∵BC =CF sin 37°=2435=40,AD =DE sin 67°=241213=26,∴AD +DC +CB -AB =40+20+26-62=24(米),则他沿折线A →D →C→B 到达超市比直接横穿马路多走24米21.(2014·南充)马航MH 370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A ,B 同时收到有关可疑漂浮物的讯息,可疑漂浮物P 在救助船A 的北偏东53.5°方向上,在救助船B 的西北方向上,船B 在船A 正东方向140海里处.(参考数据:sin 36.5°≈0.6,cos 36.5°≈0.8,tan 36.5°≈0.75)(1)求可疑漂浮物P 到A ,B 两船所在直线的距离;(2)若救助船A ,救助船B 分别以40海里/时、30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P 处.解:(1)过点P 作PH ⊥AB 于点H ,则PH 的长是P 到A ,B 两船所在直线的距离.根据题意得∠PAH =90°-53.5°=36.5°,∠PBH =45°,AB =140海里,设PH =x 海里,在Rt △PHB 中,BH =x ,在Rt △PHA 中,AH =x tan 36.5°=43x.∵AB =140,∴43x +x =140,解得x =60,即PH =60,因此可疑漂浮物P 到A ,B 两船所在直线的距离为60海里 (2)在Rt △PHA 中,AH =43×60=80,PA =602+802=100,救助船A 到达P 处的时间t A =100÷40=2.5(小时);在Rt △PHB 中,PB =602+602=602,救助船B 到达P 处的时间t B =602÷30=22(小时),∵2.5<22,∴救助船A 先到达P 处。

解直角三角形的知识点总结

解直角三角形的知识点总结

解直角三角形的知识点总结直角三角形是指其中一个角度为90度的三角形。

解直角三角形需要掌握一些关键知识点,包括勾股定理、三角函数和特殊角度的计算方法。

本文将围绕这些知识进行总结,并提供实例说明。

一、勾股定理勾股定理是解直角三角形中最基本的定理之一,用于计算三角形的边长关系。

根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

表达公式为:c² = a² + b²。

其中,c代表斜边的长度,a和b分别代表两个直角边的长度。

例如,已知一个直角三角形的直角边a=3,b=4,我们可以使用勾股定理计算斜边c的长度:c² = 3² + 4² = 9 + 16 = 25。

因此,c的长度为5。

二、三角函数解直角三角形还要运用三角函数的概念和公式。

三角函数主要包括正弦(sin)、余弦(cos)和正切(tan)三种常见函数。

1. 正弦函数:在直角三角形中,正弦函数的定义为:sinθ = 对边/斜边。

其中,θ代表角度,对边指垂直于斜边的边长,斜边即斜边的长度。

例如,对于一个直角三角形,已知θ=30度,斜边长度为6,我们可以使用正弦函数计算对边的长度:sin30度 = 对边/6。

求解可得对边长度为3。

2. 余弦函数:余弦函数的定义为:cosθ = 临边/斜边。

临边指与角度θ相邻的边的长度。

继续以θ=30度的直角三角形为例,已知斜边长度为6,我们可以使用余弦函数计算临边的长度:cos30度 = 临边/6。

求解可得临边长度为√(6²-3²) = 3√3。

3. 正切函数:正切函数的定义为:tanθ = 对边/临边。

同样以θ=30度的直角三角形为例,已知对边为3,临边为3√3,我们可以使用正切函数计算斜边的长度:tan30度 = 3/(3√3)。

求解可得斜边长度为√3。

三、特殊角度的计算方法解直角三角形时,经常会遇到一些特殊角度,如30度、45度和60度。

2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版

2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版
九年级数学·下 新课标[北师]
第一章 直角三角形的边角关系
4 解直角三角形
学习新知
检测反馈
在日常生活中,我们常常遇到与 直角三角形有关的问题,知道直 角三角形的边可以求出角,知道
角也可以求出相应的边.如图所
示,在Rt△ABC中共有几个元素? 我们如何利用已知元素求出其他 的元素呢?
学习新知
已知两条边解直角三角形
只知道角度是无法求出直角三角形的边长的.
问题2 只给出一条边长这一个条件,可以解直角三角形吗?
只给出一条边长,不能解直角三角形.
解直角三角形需要满足的条件: 在直角三角形的6个元素中,直角是已知元素,如果再知道一 条边和第三个元素,那么这个三角形的所有元素就都可以确定
下来.
1.如图所示的是教学用直角三角板,边
方法1:已知两条边的长度,可以先利用勾股定理 求出第三边,然后利用锐角三角函数求出其中一个 锐角,再根据直角三角形两锐角互余求出另外一个
锐角.
方法2:已知两条边的长度,可以先利用锐角三角函 数求出其中一个锐角,然后根据直角三角形中两锐 角互余求出另外一个锐角,再利用锐角三角函数求
出第三条边.
已知一条边和一个角解直角三角形
解析:根据图形得出点B到AO的距离是指BO的长,根据 锐角三角函数定义得出BO=ABsin 36°,即可判断A,B错误; 过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐 角三角函数定义得出AD=AOsin 36°,AO=AB·sin 54°,所以 AD=sin 36°·sin 54°,即可判断C正确,D错误.故选C.
例2 在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且b=30,∠B=25°.求这个三 角形的其他元素(边长精确到1).

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。

通过本节课的学习,学生能了解直角三角形的性质,掌握解直角三角形的方法,并能运用所学知识解决实际问题。

本节课的内容为后续学习勾股定理和三角函数等知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的性质,了解了三角形的分类。

在此基础上,学生需要进一步掌握直角三角形的性质,并学会解直角三角形。

此外,学生需要具备一定的观察能力、动手操作能力和逻辑思维能力,以便在学习过程中更好地理解和掌握所学知识。

三. 教学目标1.知识与技能目标:学生能掌握直角三角形的性质,了解解直角三角形的方法,并能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生动手操作能力、观察能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:直角三角形的性质,解直角三角形的方法。

2.教学难点:解直角三角形的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过设置情境,引导学生观察、操作、思考,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论、合作探究,培养学生团队合作精神。

3.启发式教学法:教师引导学生发现问题、分析问题、解决问题,培养学生的逻辑思维能力。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画、例题等。

2.教学道具:准备直角三角形模型、三角板等道具,以便进行实物演示。

3.练习题:挑选一些有关直角三角形的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如教室的黑板、楼梯的扶手等,引导学生关注直角三角形。

解直角三角形及其应用--知识讲解

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC是半圆⊙O的直径,D是AC的中点,四边形ABCD的对角线AC、BD交于点E,(1)求证:△ABE∽△DBC;(2)已知BC=52,CD=52sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.【答案与解析】(1)∵AD CD,∴∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=5∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB=52552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵ 5CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)5BE ⎛⎫=- ⎪ ⎪⎝⎭,∴ 35BE =. 在Rt △ABE 中,AB =BEsin ∠AEB =32355452⨯=. 【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例2】【变式】 (2015•河南模拟)如图,在等腰Rt △ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 的长为多少?【答案与解析】解:作DE ⊥AB 于E ,如图, ∵∠C=90°,AC=BC=6,∴△ACB 为等腰直角三角形,AB=AC=6, ∴∠A=45°,在Rt △ADE 中,设AE=x ,则DE=x ,AD=x , 在Rt △BED 中,tan ∠DBE==,∴BE=5x ,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即355FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

解直角三角形五种常见类型

解直角三角形五种常见类型

解直角三角形五种常见类型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础.解直角三角形时,要注意三角函数的选取,避免计算复杂.在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形.类型一、已知两直角边解直角三角形【例1】如图,在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,a=2,b=6,解这个直角三角形.类型二、已知一直角边和斜边解直角三角形【例2】如图,∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC,求sin ∠BAC的值和点B到直线MC的距离.类型三、已知一直角边和一锐角解直角三角形【例3】如图,在△ABC中,∠B=90°,∠C=30°, AB=3.(1)求AC的长;(2)求BC的长类型四、已知斜边和一锐角解直角三角形【例4】如图,在Rt△ABC中,∠C=90°,∠B=45°,a,b,c分别为∠A,∠B,∠C的对边,c=10,解这个直角三角形类型五、已知非直角三角形中的边(或角或三角函数值)解直角三角形题型一:化斜三角形为直角三角形问题(化斜为直法)【例5】如图,在△ABC中,点D是AB的中点,DC⊥AC,1,求∠A的三角函数值.且tan ∠BCD=3题型2:化解四边形问题为解直角三角形问题【例6】【中考·北京】如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22 .求CD的长和四边形ABCD的面积.题型3、化解方程问题为解直角三角形问题【例7】已知a,b,c分别是△ABC中∠A,∠B,∠C的对边,关于x 的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,且3c=a+3b.(1)判断△ABC的形状;(2)求sin A+sin B的值.。

《4.4解直角三角形的应用》作业设计方案-初中数学湘教版12九年级上册

《4.4解直角三角形的应用》作业设计方案-初中数学湘教版12九年级上册

《解直角三角形的应用》作业设计方案(第一课时)一、作业目标本作业旨在帮助学生巩固解直角三角形的基本知识和应用方法,提高解决实际问题的能力,培养学生运用数学知识解决生活问题的意识和兴趣。

二、作业内容作业内容围绕解直角三角形的应用展开,主要包括以下几个方面:1. 理解并掌握直角三角形的定义及其性质,如直角三角形的三边关系、勾股定理等。

2. 学会应用解直角三角形的方法解决实际问题,如利用直角三角形求解高度、距离等。

3. 练习题包括但不限于以下内容:- 判断题目中给出的图形是否为直角三角形,并说明理由。

- 根据已知条件,利用勾股定理求解未知边长。

- 结合实际生活场景,设置应用题,如测量建筑物的高度、计算影子长度等。

4. 拓展延伸:让学生思考解直角三角形的方法在其他领域的应用,如地理、物理等。

三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。

2. 解答过程需清晰明了,步骤完整,答案准确。

3. 对于练习题,学生需根据题目要求,绘制相应的图形,并在图形上标注必要的边长和角度。

4. 作业需按时提交,教师将根据完成情况和正确性进行评价。

四、作业评价1. 教师将根据学生的作业完成情况、解题思路和答案准确性进行评价。

2. 对于解题过程中出现的问题,教师将给予指导和纠正。

3. 鼓励学生在解题过程中提出自己的见解和思考,以培养其创新能力和思维能力。

4. 对优秀作业进行展示和表扬,激励学生积极学习。

五、作业反馈1. 教师将根据作业评价结果,对学生的学习情况进行总结和分析。

2. 对于普遍存在的问题和误区,教师将在课堂上进行讲解和指导。

3. 对于学生的疑问和困惑,教师将及时给予解答和帮助。

4. 通过作业反馈,让学生了解自己的学习状况,明确下一步的学习目标和方向。

六、附加建议1. 学生在完成作业过程中,可与同学进行讨论和交流,互相帮助解决问题。

2. 家长可适当辅导孩子完成作业,但需注意不要代替孩子完成作业。

3. 教师可适当布置拓展性作业,以培养学生的创新思维和实践能力。

4.4解直角三角形的应用课件九年级数学上册

4.4解直角三角形的应用课件九年级数学上册

感悟新知
水平方向飞行 200m 到达点 Q,测得奇楼底端 B 的俯 角为 45° ,求奇楼 AB 的高度.(结果精确到 1m,参 考数据: sin 1 5 ° ≈ 0 . 26,cos 15 ° ≈ 0 . 97, tan15° ≈ 0.27) 解:如图,延长BA交PQ的 延长线于点C,则∠ACQ=90°. 由题意得,BC=225 m,PQ=200 m,
课堂新授
2. 解决实Βιβλιοθήκη 问题时,常见的基本图形及相应的关系式如下 表所示:
图形
关系式
图形
关系式
AC=BC·tanα, AG=AC+BE
BC=DC-BD= AD·(tanα -tanβ )
课堂新授
续表
图形
关系式
AB=DE= AE·tanβ, CD=CE+DE =AE·(tanα+
tanβ)
图形
关系式
感悟新知
(1) 求登山缆车上升的高度 DE; (2)若步行速度为 30m/min,登山缆车的速度为60m/min,
求 从山底 A 处到达山顶 D 处大约需要多少分钟 .(结果 精确到 0.1min,参考数据: sin53° ≈ 0.80, cos53° ≈ 0.60,tan53° ≈ 1.33)
感悟新知
课堂新授
例2
课堂新授
解题秘方:在建立的非直角三角形模型中,用 “化斜为直法”解含公共直角边的 直角三角形.
课堂新授
课堂新授
计算结果必须根据 题目要求进行保留.
课堂新授
方法点拨 解直角三角形的实际应用问题的求解方法: 1. 根据题目中的已知条件,将实际问题抽象为解直角三角
形的数学问题, 画出平面几何图形,弄清已知条件中 各量之间的关系; 2. 若条件中有直角三角形,则直接选择合适的三角函数关 系求解即可;若条件中没有直角三角形,一般需添加辅 助线构造直角三角形,再选用合适的三角函数关系求解.

第1章1.4解直角三角形(教案)2023-2024学年九年级下册数学(教案)(北师大版)

第1章1.4解直角三角形(教案)2023-2024学年九年级下册数学(教案)(北师大版)
五、教学反思
今天我们在课堂上一起探讨了解直角三角形的知识,回顾整个教学过程,我觉得有几个地方值得反思和总结。
首先,我在导入新课环节通过提出与生活相关的问题,激发了学生的兴趣。他们能够积极参与,提出自己在生活中遇到的实际问题,这有助于提高他们对本节课内容的学习兴趣。但在这一过程中,我也发现部分学生对直角三角形的概念理解不够深入,需要在后续教学中加强基础知识的巩固。
3.培养学生的空间想象力和几何直观,通过绘制直角三角形图形,加深对几何图形的理解。
4.激发学生的合作意识和团队精神,通过小组讨论、互动交流,共同解决问题,提升沟通能力。
5.培养学生勇于探索、积极思考的学习态度,形成自主学习、终身学习的观念。
三、教学难点与重点
1.教学重点
-理解并掌握直角三角形的定义和性质,特别是斜边、邻边和对边的关系。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过具体例子和比较来帮助大家理解如何运用这些函数解直角三角形。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用测量工具和三角函数求解未知高度或距离。
3.成果分享:每个小组将选择一名代表来分享他们的讨பைடு நூலகம்成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、锐角三角函数的重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

九下第1章直角三角形的边角关系4解直角三角形作业新版北师大版

九下第1章直角三角形的边角关系4解直角三角形作业新版北师大版

【点拨】 如图,过点 A 作 AH⊥BC 于点 H. ∵△ABC 是等边三角形, ∴AB=AC=BC=6,∠BAC=60°. ∵AH⊥BC, ∴BH=12BC=3,∠BAH=12∠BAC=30°, ∴∠BAD+∠DAH=30°.
∵∠BAC=60°,∠DAE=30°,
∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC, ∴tan∠DAH=tan∠EAC=13. 又∵AH=AB·sin 60°=6× 23=3 3, ∴tan∠DAH=DAHH=3DH3=13, ∴DH= 3,∴BD=BH-DH=3- 3.
【答案】D
10 如图,在△ABC中,∠A=30°,∠B=90°.
(1)在斜边AC上求作线段AO,使AO=BC,连接OB;(要 求:尺规作图并保留作图痕迹,不写作法,标明字母) 【解】如图所示.
(2)若OB=2,求AB的长. 【解】∵∠A=30°,∠ABC=90°,∴AC=2BC. ∵AO=BC,∴AC=2AO, ∴OC=AO,即点 O 为 AC 的中点. ∵OB=2,∴AC=2OB=4, ∴AB=AC·cos A=2 3.
(2)sin ∠ADC的值. 【解】∵AD 是△ABC 的中线,∴CD=12BC=2. ∴DE=CD-CE=1. ∵AE⊥BC,DE=AE=1,∴∠ADC=45°. ∴sin ∠ADC= 22.
【点方法】
∠B和∠C均不在直角三角形中,需要作出BC边 上的高来构造直角三角形,问题便容易解决.
12 (1)[问题呈现]如图①,△ABC和△ADE都是等边三角 形,连接BD,CE.求证:BD=CE. 【证明】∵△ABC和△ADE都是等边三角形, ∴AD=AE,AB=AC,∠DAE=∠BAC=60°. ∴∠DAE-∠BAE=∠BAC-∠BAE. 即∠BAD=∠CAE. ∴△BAD≌△CAE(SAS).∴BD=CE.

题型四 解直角三角形-2021年中考数学二轮复习重点题型专项训练(含解析)

题型四 解直角三角形-2021年中考数学二轮复习重点题型专项训练(含解析)

数学第二轮复习-----题型四解直角三角形1.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A. 11米 B.(36﹣15)米 C. 15米 D. (36﹣10)米2.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC的长度约为______米.(sin70°约等于0.94,sin50°约等于0.77,cos70°约等于0.34,cos50°约等于0.64)第1题图第2题图第3题图第4题图3.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为______米.4.居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)5.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)6.某兴趣小组为了测量大楼CD的高度,先沿着斜坡AB走了52米到达坡顶点B处,然后在点B处测得大楼顶点C的仰角为53°,已知斜坡AB的坡度为i=1:2.4,点A到大楼的距离AD为72米,求大楼的高度CD.(参考数据:sin53°≈,cos53°≈,tan53°≈)7.如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.8.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).9.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E 会不会触碰到汽车货厢顶部.10.某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B 处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米,参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00,≈1.41,≈1.73)11.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.12.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且小岛与航母相距80海里,航母再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.13.在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)14如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?第2页,共6页1.【答案】D【解析】【分析】此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE的长度,难度一般.过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而甲楼高AC=ED=BD-BE.【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD-BE=(36-10)(米).∴甲楼高为(36-10)米.故选:D.2.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.直接利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.3.【答案】【解析】解:在Rt△BCD中,∵tanβ=,∴BD =,在Rt△ACD中,∵tanα==,∴tanα=,解得:CD =,故答案为:.在Rt△BCD中有BD =,在Rt△ACD中,根据tanα==可得tanα=,解之求出CD即可得.本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.4.【答案】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD =,∴AH ===≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【解析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.本题考查了解直角三角形的应用-仰角俯角问题以及等腰直角三角形的判定,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.5.【答案】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.3,答:使用这架梯子最高可以安全攀上5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.【解析】(1)根据正弦的定义求出AC,得到答案;(2)根据余弦的定义求出α,根据题意判断即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡角的概念、熟记锐角三角函数的定义是解题的关键.6.【答案】解:如图,过点B作BE⊥AD于点E,BF⊥CD于点F,∵CD⊥AD,∴易得四边形BEDF是矩形,∴FD=BE,FB=DE,在Rt△ABE中,BE:AE=1:2.4=5:12,设BE=5x,AE=12x,根据勾股定理,得AB=13x,∴13x=52,解得x=4,∴BE=FD=5x=20,AE=12x=48,∴DE=FB=AD-AE=72-48=24,∴在Rt△CBF中,CF=FB×tan∠CBF ≈24×≈32,∴CD=FD+CF=20+32=52(米).答:大楼的高度CD约为52米.【解析】本题考查了解直角三角形的应用-仰角俯角问题和坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.过点B作BE⊥AD于点E,BF⊥CD于点F,可得四边形BEDF是矩形,设BE=5x,AE=12x,根据斜坡AB 的坡度为i=1:2.4,利用勾股定理可得x的值,再根据锐角三角函数即可进一步求大楼的高度CD.7.【答案】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD ==20,∴BE=AD =20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE =20=20,∴ED=CD-CE=60-20=40,∴AB=ED=40(米),答:楼房的高度为40米.【解析】过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,解直角三角形即可得到结论.此题考查了解直角三角形的应用-仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.8.【答案】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6m,EF=AC=35m,∠BEN=∠DFN=90°,EN=AM,NF=MC,第4页,共6页则DF=DC-CF=16.6-1.6=15m,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15m,∴EN=EF-NF=35-15=20m,在Rt△BEN中,∵tan∠BNE =,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6m,∴AB=BE+AE≈28.6+1.6≈30m.答:居民楼AB的高度约为30米.【解析】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义.过点N作EF∥AC交AB于点E,交CD于点F,可得AE=MN=CF=1.6m,EF=AC=35m,再根据锐角三角函数可得BE 的长,进而可得AB的高度.9.【答案】解:∵BH=0.6米,sinα=,∴AB ==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∵EF=FB=AB=1米,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,∴△EFK≌△FBJ≌△ABH,∴EK=FJ=AH,BJ=BH,∴BJ+EK=0.6+0.8=1.4<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.【解析】根据题意作出合适的辅助线,然后利用锐角三角函数求出BM+EN的长度,再与2比较大小即可解答本题.本题考查解直角三角形的应用-坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.10.【答案】解:设楼高CE为x米,∵在Rt△AEC中,∠CAE=45°,∴AE=CE=x米,∵AB=20米,∴BE=(x-20)米,在Rt△CEB中,CE=BE•tan63.4°≈2(x-20)米,∴2(x-20)=x,解得:x=40,在Rt△DAE中,DE=AE·tan30°=40×=米,∴CD=CE-DE =40-≈17(米),答:大楼部分楼体CD的高度约为17米.【解析】此题考查解直角三角形的应用——仰角和俯角,解本题的关键是利用三角函数解答.设楼高CE为x米,于是得到BE=(x-20)米,解直角三角形即可得到结论.11.【答案】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD ==2km,即BD的长是2km.【解析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.12.【答案】解:过点B作BD⊥AC于点D,由题意,得:∠BAD=60°,∠BCD=45°,AB=80,在Rt△ADB中,∠BAD=60°,∴AD =AB=40,BD =AB =40,在Rt△BCD中,∠BCD=45°,∴BD=CD =40,∴BC =BD =40,答:BC的距离是40海里.【解析】过点B作BD⊥AC于点D,根据题意得到∠BAD=60°,∠BCD=45°,AC=80,解直角三角形即可得到结论.本题考查了解直角三角形的应用-方向角问题,作出辅助线构造直角三角形是解题的关键.13.【答案】解:过点B作BF⊥AC于F,BG⊥CD于G ,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE =,∴DE=CD-CE=5.04-3.33=1.71≈1.7,答:小水池的宽DE为1.7米.【解析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.此题考查的知识点是解直角三角形的应用-仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.【答案】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC =60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB-∠MAC=90°-60°=30°,∴CD =AC =30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD-∠NBC=90°-45°=45°,∴BC =CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【解析】此题考查了解直角三角形的应用-方向角,熟练掌握锐角三角函数定义是解本题的关键.过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD 的长,在直角三角形BCD中,利用锐角三角函数定义求出BC的长,进而求出所求时间即可.第6页,共6页。

解直角三角形的边长

解直角三角形的边长

解直角三角形的边长直角三角形是初中数学中非常重要的一个概念,它由一个直角和两条边组成。

在解直角三角形的问题中,我们通常需要求解三个未知量,即两个边的长度和一个角的大小。

在本文中,我将介绍一些解直角三角形边长的方法,并给出一些实际问题的例子。

一、勾股定理勾股定理是解直角三角形问题中最常用的方法之一。

根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

即a² + b² = c²,其中a和b分别表示两个直角边的长度,c表示斜边的长度。

例如,已知直角三角形的一个直角边长为3,斜边长为5,我们可以使用勾股定理求解另一个直角边的长度。

根据勾股定理,3² + b² = 5²,解方程可得b = 4。

二、正弦定理正弦定理是解直角三角形问题中另一个常用的方法。

根据正弦定理,直角三角形中任意一条边的长度与其对应的角的正弦值成比例。

即a/sinA = b/sinB = c/sinC,其中a、b、c分别表示三角形的边长,A、B、C表示对应的角的大小。

例如,已知直角三角形的一个直角边长为4,斜边长为5,我们可以使用正弦定理求解另一个直角边的长度。

根据正弦定理,4/sin90° = b/sinθ,其中θ为直角边对应的角的大小。

由于sin90° = 1,所以4/1 = b/sinθ,解方程可得b = 4sinθ。

三、余弦定理余弦定理也是解直角三角形问题中常用的方法之一。

根据余弦定理,直角三角形中任意一条边的长度与其对应的角的余弦值成反比。

即c² = a² + b² - 2abcosC,其中a、b、c分别表示三角形的边长,C表示对应的角的大小。

例如,已知直角三角形的一个直角边长为3,斜边长为5,我们可以使用余弦定理求解另一个直角边的长度。

根据余弦定理,5² = 3² + b² - 2(3)(b)cos90°,解方程可得b = 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35°
55°b a C
20
解:∠A=90°-∠B =90°-35° =55° b ∵tanB= a b 20 ∴ a=tanB = tan35° ≈ 28.6
b ∵sinB= c b 20 ∴ c=sinB = sin35° ≈ 34.9
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形: (1)a= 6 ,c= 2 3
两个锐角: ∠Βιβλιοθήκη 、 ∠B思考:①三边之间有何关系? a2+b2=c2 ②两锐角之间有何关系? ∠A+∠B=90° ③边角之间有何关系? b a cosA= sinA= c c a b cosB= sinB= c c
a tanA= b b tanB= a
B c a
A C b Rt△ABC,除∠C是已知直角外,共有五个元素,
分别是:三条边: a、b、 c
两个锐角: ∠A、 ∠B
思考:④知道5个元素中的几个,就可求出其余元素? ①两个锐角 × ①一条边 × 一个 两个 ②两条边 √ ②一个角 × ③一边一角 √ 知道5个元素中的两个元素(至少有一个是边),就可求出其余元素 像刚才那样,由直角三角形中除直角外的已知元素, 求出其余未知元素的过程,叫做解直角三角形。
1、如图,在Rt△ABC中,∠C=90°,AC= 2 ,BC= 6 , 解这个直角三角形. A
2
60°
2 2
C
30°
6
B
解:AB= AC 2+CB2= 2 6= 8=2 2
6 ∵tanA= = 3 2
∴∠A=60° ∠B=30°
2、如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20, 解这个直角三角形(结果保留小数点后一位). A c B
(2)∠B=60°,b= 2 3
(3)a= 5 ,b= 15
你对本节课所学的内容存在疑问吗?
1、用勤奋弥补先天不足,让拼搏开辟后天之路。 2、每天积累一点,就离成功近一点。
张磊
1、理解直角三角形中五个元素的关系及什么是解直角三角形。 2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角 函数解直角三角形。
B c a
A C b Rt△ABC,除∠C是已知直角外,共有五个元素,
分别是:三条边: a、b、 c
相关文档
最新文档