基本不等式

合集下载

基本不等式

基本不等式

、柯西不等式等。
优化问题
02
在优化问题中,幂平均不等式可以用于寻找最优解或确定最优
解的范围。
统计学应用
03
在统计学中,幂平均不等式可以用于分析数据的分布和离散程
度。
24
06
排序原理与切比雪夫( Chebyshev)不等式
2024/1/26
25
排序原理简介
2024/1/26
01
排序原理是一种基本的数学原理,用于比较和排列一组数的大 小。
2024/1/26
因式分解法
将一元二次不等式因式分解,然后利用不等式的性质进行求解。
14
一元二次不等式组解法
2024/1/26
分别求解法
分别求出每个不等式的解集,然 后取它们的交集作为不等式组的 解集。
图像法
在同一坐标系中画出每个不等式 的图像,然后找出满足所有不等 式的区域作为不等式组的解集。
15
17
算术平均值-几何平均值(AM-GM)不等式
对于所有非负实数 $a_1, a_2, ldots, a_n$,有
$frac{a_1 + a_2 + cdots + a_n}{n} geq sqrt[n]{a_1a_2cdots a_n}$当且仅当 $a_1 = a_2 = ldots = a_n$ 时取等号。
2024/1/26
加权平均值不等式是AM-GM不等式的推广,具有更广泛的应用范围。
19
柯西-施瓦茨(Cauchy-Schwarz)不等式
对于任意实数 $a_1, a_2, ldots, a_n$ 和 $b_1, b_2, ldots, b_n$,有
2024/1/26
$(a_1^2 + a_2^2 + cdots + a_n^2)(b_1^2 + b_2^2 + cdots + b_n^2) geq (a_1b_1 + a_2b_2 + cdots + a_nb_n)^2$当且仅当 $a_i = kb_i (i = 1, 2, ldots, n)$ 时取等号,其中 $k$ 为常数。

基本不等式

基本不等式

基本不等式一、 基本不等式的依据由于无论x ,y 取何值,都有()20x y -≥成立,则必有222x y xy +≥,显然当x y =时()2x y -有最小值0,于是我们得到:”成立时,“当且仅当==≥+∈∀y x xy y x R y x ,2,,22同样的,当x y ==”成立时,“当且仅当==≥+>>∀b a ab b a b a ,2,0,0,我们称之为基本不等式基本不等式的公示变形:()()210,0,20,0,22a b a b a b a b ab ++⎛⎫>>≥>>≤ ⎪⎝⎭变形变形, ※ 其中2ba +叫做a ,b 的算术平均数,ab 称作a ,b 的几何平均数二、 几何意义如右图所示:显然2a b +DE 的一半DC由于ADC ∆∽DBC,∆则2DC AC BC =⋅,即DC =.即,任意圆的半径都不小于圆内的任何一条弦长的一半三、 例题1.10,x x x>+已知求的最小值110,0,2x x x x >>+≥=因为则,则当11x x x==±时,即,而0x >, 所以当11x x x=+时,有最小值2 2.已知01x <<,求函数()1y x x =-的最大值因为01x <<,则0,10x x >->,则()211124x x y x x +-⎛⎫=-≤= ⎪⎝⎭ 即当()1x x =-时,12x =时,y 有最大值14总结:基本不等式的作用可以用来求函数的最值以及式子的范围,但基本不等式的应用需要条件注意:先要验证是否满足基本不等式的前提条件:,x y 均大于零然后,验证式子是否存在,x y xy +其中一个是固定的值,则另一个必有最值 最后,则要求出取得最值时的x ,y 的值,x ,y 的值必须满足第一个条件我们称利用基本不等式时,要满足:一正,二定,三相等,缺一不可,依次递推四、 基本不等式的常见题型1. 积时定值,和有最值例1:已知1x >,求11y x x =+-的最值 分析:显然第一个条件满足,而第二个积不是定值,不能使用,可以进行变形为1111y x x =-++-,即可求出例2:已知0x <,求1y x x=+的最值 分析:第一个条件10,0x x<<不成立,所以无法直接利用基本不等式,需要进行简单变形:()1y x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦,这时10,0x x ->->,12x x ⎛⎫-+-≥= ⎪⎝⎭ 即1[]2y x x ⎛⎫=--+-≤- ⎪⎝⎭,当且仅当1x x -=-时, 1x =±,又因为0x <, 则1x =-时,函数y 有最大值-2练习:112,33y x x x =+>-求时的最小值512,42445x y x x <=-+-求函数的最大值2313,0x x y x x++=>求时的最小值24)y x R =∈求的最小值2. 和是定值,积有最值例:当302x <<,求()32y x x =⋅-的最值 分析:第一个条件满足.而和不是定值,故需要适当变形: ()()1322322y x x x x =⋅-=⋅⋅- 这样就可以求出函数的最值了()()2112329322322228x x y x x x x +-⎛⎫=⋅-=⋅⋅-≤= ⎪⎝⎭, 当且仅当()232x x =-时,即34x =时,函数y 有最大值98练习: 104(82)x y x x <<=-当时,求的最大值22111x y x -≤≤=-,求函数的最大值33.利用条件化为1,借助1进行代换810,0,1,2x y x y x y>>+=+例:已知且求的最小值 分析: ()()811621282x yx y x y x y y x ⎛⎫+⋅=+⋅+=+++ ⎪⎝⎭,显然就可以求出最值了练习:141,,2,x y R x y x y+∈+=+已知求的最小值<2>已知0,0,a b >>a+b=2,则14y a b=+的最小值<3>若正数x ,y 满足35x y xy +=,求3x+4y 的最小值4.利用基本不等式转化成不等式求解,,3,xy x y x y R xy x y +∈=+++例:已知求,的范围练习:10,0,80,xy x y x y xy >>++-=已知求的最大值20,0,228,2x y x y xy x y >>++=+求的最小值<3>若对于任意的正数x ,231x a x x ≤++恒成立,则a 的取值范围5.扩展21,112a b a b x y a b +≤≤≤=+若都是正数,则时成立33332,,,3,,,,,3a b c R a b c abc a b c a b c R a b c a b c a b c abc a b c ++∈++≥==∈++≥==++⎛⎫≤== ⎪⎝⎭当且仅当时,等号成立当且仅当时,等号成立当且仅当时,等号成立例题:29104x y x x>=+当时,求的最小值2320(32)2x y x x <<=-当时,求的最大值22233332019,,1,1111(2)()()()24a b c abc a b c a b ca b b c a c =⎡⎤⎣⎦++≤+++++++≥全国均为正数,且证明:()6.实际应用:<1>某工厂要建造一个长方体的无盖存水池,其容积为4800立方米,深为3米,如果池底造价为每平方米150元,池壁每平方造价为120元,怎么设计水池能使总造价最低?最低造价是多少?<2>十九大提出中国的电动汽车革命早已展开,通过新能源汽车替代汽油车,中国正大力实施一项计划,某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,当生产量为x(百辆)时,需另外投入成本C(x)万元,且210100,040()10000501,40x x xC xx xx⎧+<<⎪=⎨+≥⎪⎩,由市场调研可知,每辆车的售价为5万元,且全年内生产的车辆当年能全部销售完.(1)求今年的利润()L x(万元)关于生产量x(百辆)的函数关系式(2)今年生产量为多少百辆时,该企业获得的利润最大?并求出最大利润.。

基本不等式

基本不等式
不等式
第三节 基本不等式


1
高考引航
2
必备知识
3
关键能力
高考引航
必备知识
知识清单
一 基本不等式 ≤
+
2
(1)基本不等式成立的条件:
a>0,b>0
(2)等号成立的条件:当且仅当ຫໍສະໝຸດ a=b..
二 几个重要的不等式
(1)a2+b2≥


(2) + ≥
(3)ab≤
(4)
2ab
2
(a,b∈R);
通道,如图.设矩形温室的室内长为 x(单位:m),三块种植植物的矩形区域的总面积为
S(单位:m2).
(1)求 S 关于 x 的函数关系式;
(2)求 S 的最大值.
解析
【解析】(1)由题设,得 S=(x-8)
900

7200
-2 =-2x-

+916,x∈(8,450).
(2)因为 8<x<450,
时,等号成立.
答案
解析
关键能力
题型归纳
题型一
利用基本不等式求最值
1
1
【例 1】(1)已知 a,b∈R,且 a-3b+6=0,则 2a+8 的最小值为 4
(2)(2020 届南昌市模拟)已知函数 y=x+

-2
的值为
4
.
(x>2)的最小值为 6,则正数 m
.
(3)(2020 届安徽天长模拟)已知正数 a、b 满足 a2+b2=6,则 b 2 + 4的最
大值为
5
.

基本不等式

基本不等式

基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)判断正误(正确的打“√”,错误的打“×”)(1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)×(教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析:选C.xy ≤⎝⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1822=81,当且仅当x =y =9时等号成立,故选C.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2解析:选D.因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x=-1时,等号成立,所以x +1x ≤-2. 若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5(教材习题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号. 答案:25 m 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题.高考对利用基本不等式求最值的考查常有以下三个命题角度:(1)求不含等式条件的函数最值; (2)求含有等式条件的函数最值; (3)已知不等式恒成立求参数范围.[典例引领]角度一 求不含等式条件的函数最值(1)函数f (x )=xx 2+3x +1(x >0)的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)因为x >0,则f (x )=xx 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1x 时等号成立.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1. 当且仅当5-4x =15-4x,即x =1时,等号成立. 故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)15 (2)1角度二 求含有等式条件的函数最值(1)(优质试题·高考山东卷)若直线xa +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为________. 【解析】 (1)由题设可得1a +2b =1,因为a >0,b >0,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +4ab +2≥4+2b a ·4ab =8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a 时,等号成立. 故2a +b 的最小值为8. (2)因为x >0,y >0,所以8=x +2y +x ·2y ≤(x +2y )+⎝ ⎛⎭⎪⎫x +2y 22, 令x +2y =t ,则8≤t +t 24,即t 2+4t -32≥0, 解得t ≥4或t ≤-8,即x +2y ≥4或x +2y ≤-8(舍去),当且仅当x =2y ,即x =2,y =1时等号成立. 【答案】 (1)8 (2)4角度三 已知不等式恒成立求参数范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.[通关练习]1.(优质试题·石家庄市教学质量检测(一))已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.解析:因为直线l 经过点(2,3),所以2a +3b -ab =0, 则3a +2b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫3a +2b =5+3b a +2ab ≥5+2 6.当且仅当3b a =2ab ,即a =3+6,b =2+6时等号成立. 答案:5+2 62.(优质试题·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4. 答案:43.当x ∈R 时,32x -(k +1)3x +2>0恒成立,则k 的取值范围是________.解析:由32x -(k +1)·3x +2>0,解得k +1<3x +23x . 因为3x+23x ≥22⎝⎛当且仅当3x=23x ,即x =log 32时,⎭⎪⎪⎫等号成立), 所以3x +23x 的最小值为2 2.又当x ∈R 时,3-(k +1)3+2>0恒成立,所以当x ∈R 时,k +1<⎝ ⎛⎭⎪⎫3x +23x min ,即k +1<22,即k <22-1. 答案:(-∞,22-1)利用基本不等式解决实际问题[典例引领]某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x -200=200,当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.(1)利用基本不等式求解实际问题的注意事项①根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.②设变量时一般要把求最大值或最小值的变量定义为函数. ③解应用题时,一定要注意变量的实际意义及其取值范围. ④在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2)此类问题还常与一元二次函数(如本例(2))、一元二次不等式结合命题,求解关键是构建函数与不等关系,在实际条件下解决.某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,若价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元? (2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入x4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和? 解:(1)设商品的销售价格提高a 元, 则(10-a )(5+a )≥50,解得0≤a ≤5. 所以商品的价格最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+x4+50(x >5)即可, 此时m =12x +34+50x ≥2x 2·50x +34=434,当且仅当12x =50x ,即x =10时,取“=”.故销售量至少应达到434万件,才能使技术革新后的销售收入等于原销售收入与总投入之和.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性. 易错防范(1)使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值要求每次等号成立的条件一致.1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误. 对于D ,因为ab >0, 所以b a +a b ≥2b a ·a b =2.2.(优质试题·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1, 所以1xy ≥1; 又1xy ≥M 恒成立,所以M ≤1,即M 的最大值为1.。

基本不等式课件(共43张PPT)

基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。

基本不等式完整版

基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。

2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。

3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。

2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4.求最值的条件:“一正,二定,三相等”。

5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。

2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。

3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。

4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。

5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式完整版(非常全面) 基本不等式专题辅导一、知识点总结1、基本不等式原始形式1) 若 $a,b\in R$,则 $a^2+b^2\geq 2ab$2) 若 $a,b\in R$,则 $ab\leq \frac{a^2+b^2}{2}$2、基本不等式一般形式(均值不等式)若 $a,b\in R^*$,则 $a+b\geq 2\sqrt{ab}$3、基本不等式的两个重要变形1) 若 $a,b\in R^*$,则 $\frac{a+b}{2}\geq \sqrt{ab}$2) 若 $a,b\in R^*$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4、求最值的条件:“一正,二定,三相等”5、常用结论1) 若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)2) 若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)3) 若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)4) 若 $a,b\in R$,则 $ab\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$5) 若 $a,b\in R^*$,则 $\frac{1}{a^2+b^2}\leq\frac{1}{2ab}\leq \frac{1}{a+b}$特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6、柯西不等式1) 若 $a,b,c,d\in R$,则 $(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2$2) 若 $a_1,a_2,a_3,b_1,b_2,b_3\in R$,则$(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\geq(a_1b_1+a_2b_2+a_3b_3)^2$3) 设 $a_1,a_2,\dots,a_n$ 与 $b_1,b_2,\dots,b_n$ 是两组实数,则有$(a_1^2+a_2^2+\dots+a_n^2)(b_1^2+b_2^2+\dots+b_n^2)\geq (a_1b_1+a_2b_2+\dots+a_nb_n)^2$二、题型分析题型一:利用基本不等式证明不等式1、设 $a,b$ 均为正数,证明不等式:$ab\geq\frac{1}{2}(a+b)^2$2、已知 $a,b,c$ 为两两不相等的实数,求证:$a^2+b^2+c^2>ab+bc+ca$3、已知 $a+b+c=1$,求证:$a^2+b^2+c^2\geq\frac{1}{3}$4、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$(1-a)(1-b)(1-c)\geq 8abc$5、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq\frac{9}{2(a+b+c)}$题型二:利用柯西不等式证明不等式1、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{2(a+b+c)}$2、已知 $a,b,c\in R^+$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$3、已知 $a,b,c\in R^+$,且 $abc=1$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq a+b+c$4、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$5、已知 $a,b,c\in R^+$,求证:$\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{c^2-ca+a^2}+\frac{c^3}{a^2-ab+b^2}\geq a+b+c$题型三:求最值1、已知 $a,b$ 均为正数,且 $a+b=1$,求 $ab$ 的最大值和最小值。

基本不等式的四种形式

基本不等式的四种形式

基本不等式的四种形式基本不等式是数学中常用的一种关系式,它可以帮助我们解决各种问题。

本文将介绍基本不等式的四种形式,并通过具体例子进行说明。

第一种形式:a≥b这个不等式表示a大于等于b,即a可以是b或者大于b。

我们可以通过这个不等式来比较两个数的大小关系。

例如,我们要比较两个数a=5和b=3的大小关系。

根据基本不等式的第一种形式,我们可以得出结论:5大于等于3,即5≥3。

第二种形式:a≤b这个不等式表示a小于等于b,即a可以是b或者小于b。

同样地,我们可以通过这个不等式来比较两个数的大小关系。

例如,我们要比较两个数a=2和b=4的大小关系。

根据基本不等式的第二种形式,我们可以得出结论:2小于等于4,即2≤4。

第三种形式:a>b这个不等式表示a大于b,即a一定大于b。

我们可以通过这个不等式来判断两个数的大小关系。

例如,我们要比较两个数a=7和b=6的大小关系。

根据基本不等式的第三种形式,我们可以得出结论:7大于6,即7>6。

第四种形式:a<b这个不等式表示a小于b,即a一定小于b。

同样地,我们可以通过这个不等式来判断两个数的大小关系。

例如,我们要比较两个数a=1和b=8的大小关系。

根据基本不等式的第四种形式,我们可以得出结论:1小于8,即1<8。

基本不等式的四种形式可以帮助我们解决各种实际问题。

例如,在购物时,我们可以通过比较不同商品的价格来判断哪个商品更便宜。

假设商品A的价格是a,商品B的价格是b,根据基本不等式的四种形式,我们可以得出以下结论:1. 如果a≥b,则商品A的价格大于等于商品B的价格,即商品A 更贵。

2. 如果a≤b,则商品A的价格小于等于商品B的价格,即商品A 更便宜。

3. 如果a>b,则商品A的价格大于商品B的价格,即商品A更贵。

4. 如果a<b,则商品A的价格小于商品B的价格,即商品A更便宜。

通过基本不等式,我们可以更准确地比较两个数的大小关系,从而做出更合理的选择。

基本不等式

基本不等式

基本不等式一、基础知识☐基本不等式:在不等式的应用中,有一些很基本而十分重要的不等式,如平均值不等式和三角不等式等,我们将其统称为基本不等式.☐平均值不等式:两个正数的算术平均值大于等于它们的几何平均值,即对于任意的正数a 、b ,有2a b ab ,且等号当且仅当a b 时成立.证明:对于正数a 、b ,要证明定理所述之平均值不等式,只要证明2a bab ,即20a b ab.由22a b aba b.上式显然成立,且只有当ab 时,原不等式两边才相等.☐常用不等式:对于任意的正数a 、b ,有22a bab ,且等号当且仅当a b 时成立.☐三角不等式:对于任意的实数a 、b ,有a b a b ,且等号当且仅当0ab 时成立.证明:为证明a ba b ,只需证明22a ba b,即222222aab b a ab b ,也即22ab ab ,这是显然的,且等号当且仅当a 、b 同号,即0ab时成立.二、拓展知识☐基本不等式:如果a ,b ,c R ,那么3333a b c abc (当且仅当a b c 时取“”)证明:33333223333a b c abca bc a b ab abc223a b ca ba b c c ab a b c22223a b c a ab b ac bc c ab 222a b c a b c ab bc ac 22212a bc a ba cbca ,b ,cR ,222102a b c a b a cb c从而3333ab c abc☐推论:如果a ,b ,c R ,那么33a b c abc (当且仅当a b c 时取“”)☐基本不等式:1212nn a a a a a a n,*n N ,ia R ,1in .证明可用数学归纳法,二项式定理证明,这里证明省略; ☐柯西不等式:222222211221212n nn n a b a b a b a a a b b b,1,2,,i i a b R i n ,等号当且仅当120na a a 或i ib ka 时成立(k 为常数,1,2,,i n )证明:构造二次函数2221122n nf xa xb a x b a x b2222222121122122n n n n a a a xa b a b a b xb b b222120n aa a又0f x 恒成立222222211221212440n nn n a b a b a b a a a b b b即222222211221212n nn n a b a b a b a a a b b b当且仅当0i i a x b x(1,2,,i n )即1212nna a ab bb 时等号成立. ☑一个重要的不等式链:2112a b a b+≤≤≤+. ☑函数()()0,0bf x ax a b x =+>>图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象大致如下图(xx x f 1)(+=)所示:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:()2,ab,⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫ ⎪⎢ ⎪⎝⎣⎭.三、最值常见类型注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 类型一:积定和最小;重点:利用好“一正,二定,三相等”,凑积为定值; 例1、已知1->x ,求221xx 的最小值【解析】求和的最小值,去找积的定值,这里面发现2x 与21x 的积没有关系,但是能够注意到题目中有1->x ,从而01>+x ,且可以将2x 出来1x 让分母抵消,故有222221222122111xx x x x x ,当且仅当2211x x 即0x 时取等号;注意:在使用积定和最小时,第一要注意两个式子是正还是负(一正);第二要注意两个式子乘起来是不是定值,如果是定值,结束,如果不是定值要注意进行变形,凑成乘起来是定值的式子(二定);第三是要注意进行验证,是否可以取等(三取等);注意:三取等一定要关注,一个是为了验证等号,第二个是因为有的不等式是会进行多次应用基本不等式(多次放缩),如果多次应用中等号不一致,是不可以进行取等的; 例2、已知0xy ,1xy ,求yx y x -+22的最小值及相应的y x ,的值。

基本不等式

基本不等式

基本不等式基本不等式是数学中一个重要的概念。

其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。

而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。

此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。

在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。

举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。

又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。

例3、已知$a,b,c$为不等正实数,且$abc=1$。

求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。

证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。

因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。

所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。

又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。

基本不等式

基本不等式
2.已知m=a+ (a>2),n=(x<0),则m、n之间的大小关系是()
A.m>nB.m<nC.m=nD.m≤n
A[∵m=(a-2)+ +2≥2 +2=4,n=22-x2<22=4.∴m>n.]
3.设a,b∈R,且a≠b,a+b=2,则必有()
A.1≤ab≤ B.ab<1< C.ab< <1D. <ab<1
(2)已知x,y∈(0, ),如果积xy是定值P,那么当x=y时,和和x+y有最小值2
以上两条可简记作:和一定,相等时,积最大;积一定,相等时,和最小.条件满足:“一正、二定、三相等”
利用基本不等式求最小值需要注意的问题:(一正、二定、三相等)
(1)函数式中各项必须都是正数;
(2)函数式中含变数的各项的积或者必须是常数;
B[∵ab≤ 2,a≠b,∴ab<1,又∵ > =1,∴ >1,∴ab<1< .]
4.若不等式x2+ax+1≥0对一切x∈ 恒成立,则a的最小值为()
A.0B.-2C.- D.-3
B[x2+ax+1≥0在x∈ 上恒成立⇔ax≥-x2-1⇔a≥ max
∵x+ ≥2,∴- ≤-2,∴a≥-2.]
5.如果正数a,b,c,d满足a+b=cd=4,那么()
A.ab≤c+d,且等号成立时a,b,c,d的取值唯一B.ab≥c+d,且等号成立时a,b,c,d的取值唯一
C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一
A[∵a+b≥2 ,∴ab≤ 2=4,当且仅当a=b=2时取等号.c+d≥2 ,∴c+d≥2 =4,当且仅当c=d=2时取等号.故c+d≥ab,当且仅当a=b=c=d=2时取等号.]

基本不等式高中数学

基本不等式高中数学

基本不等式高中数学
基本不等式是高中数学中常见的一个重要概念。

不等式是比较两个数大小关系的数学表达式,而基本不等式则是一些常用的不等式模式,可以帮助我们简化和解决复杂的不等式问题。

以下是几个常见的基本不等式:
1. 加法不等式:对于任意实数a、b和c,有a < b,则a + c < b + c。

2. 减法不等式:对于任意实数a、b和c,有a < b,则a - c < b - c。

3. 乘法不等式:对于任意正实数a、b和c,有a < b,则ac < bc;对于任意负实数a、b和c,有a < b,则ac > bc。

需要注意的是,当a、b和c中存在0时,乘法不等式的性质会有所不同。

4. 平方不等式:对于任意实数a,有a² ≥ 0。

这个不等式告诉我们,任何实数的平方都大于等于0。

5. 绝对值不等式:对于任意实数a,有|a| ≥ 0。

绝对值不等式告诉我们,任何实数的绝对值都大于等于0。

这些基本不等式可以作为解决不等式问题的基础,可以通过运用它们来简化和推导更复杂的不等式,进而求解不等式方程。

在解决不等式问题时,还需要注意不等式的性质和特殊情况的处理,例如分段函数、绝对值函数等。

基本不等式

基本不等式

感谢观看
证明
算术证明
Байду номын сангаас
几何证明
当时,两边开平方得 即当且仅当a=b时, 当且仅当a=b时,不等式取等号。
在△ABC中,∠BAC=90°,点D为BC的中点,AE为高,设BE=a,EC=b 由 射 影 定 理 , 得 A E ²= a b ∴AE= ∵在△ABC中,点D为斜边BC的中点 ∴ ∵在Rt△ADE中,AD≥AE △ABC∴当且仅当AD与AE重合,即a=b时等号成立
基本不等式
数学术语
01 概念
03 证明 05 应用
目录
02 公式 04 推广 06 技巧
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等 于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数, “二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。
概念
两个非负实数的算术平均值大于或等于它们的几何平均值。
公式
原型
变形 二元均值不等式
(a>0,b>0) 注:当且仅当a=b时取等 其中称为的算术平均数,称为的几何平均数。
1、(当且仅当时取等号)(a>0,b>0) 2、 3、
(调和均值≤几何均值≤算术均值≤平方均值)当且仅当a=b时等号成立
技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这 个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为 常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数, 这时候需要对其中某些系数进行调整,以便使其和为常数。

基本不等式6个公式

基本不等式6个公式

基本不等式6个公式
基本不等式是初中数学中常见的一类不等式,包括以下6个公式:
1. 两个非负实数的平均数大于等于它们的几何平均数:(a+b)/2≥√ab
这个公式表明,对于两个非负实数a和b,它们的平均数不会小于它们的几何平均数。

2. 两个非负实数的平方和大于等于它们的算术平均数的平方:a²+b²≥(a+b)²/4
这个公式表明,对于两个非负实数a和b,它们的平方和不会小于它们的算术平均数的平方。

3. 两个正实数的积大于等于它们的几何平均数的平方:ab≥(a+b)²/4
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的几何平均数的平方。

4. 两个正实数的积大于等于它们的调和平均数的平方:ab≥4/(1/a+1/b)²
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的调和平均数的
平方。

5. n个正实数的算术平均数大于等于它们的几何平均数:(a1+a2+...+an)/n≥√(a1a2...an)
这个公式表明,对于n个正实数a1、a2、...、an,它们的算术平均数不会小于它们的几何平均数。

6. n个正实数的调和平均数大于等于它们的算术平均数:n/(1/a1+1/a2+...+1/an)≥(a1+a2+...+an)/n
这个公式表明,对于n个正实数a1、a2、...、an,它们的调和平均数不会小于它们的算术平均数。

基本不等式大全

基本不等式大全

基本不等式大全基本不等式是数学中的一个重要概念,有许多种不同的形式和用途。

以下是一些常见的基本不等式:1.均值不等式:a+b≥2\sqrt{ab} ,当且仅当a=b 时等号成立。

2.柯西不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i * b_i≥(\sum_{i=1}^{n} a_i)(\sum_{i=1}^{n} b_i)。

3.伯努利不等式:如果x > 0, n > 0, 则(1 + x)^n ≥1 + nx。

4.赫尔德不等式:如果f(x) 是[a, b] 上的非负连续函数,则对于所有满足a ≤x ≤b 的x,有\int_{a}^{b} f(x) dx ≤(b-a) * f(a) + f(b)。

5.琴声不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i^n ≥(\sum_{i=1}^{n} a_i)^n。

6.杨氏不等式:对于任意的实数a, b,都有a^2+b^2≥2ab,当且仅当a=b时等号成立。

7.三角不等式:对于任意的实数x, y,都有|x+y|≤|x|+|y|,当且仅当x与y同号时等号成立。

8.绝对值不等式:对于任意的实数x, y,都有|x-y|≤|x|+|y|,当且仅当x与y异号时等号成立。

9.权方和不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i *\frac{b_i}{a_i} ≥(\sum_{i=1}^{n} b_i)(\sum_{i=1}^{n} \frac{1}{a_i})。

以上这些基本不等式在数学学习和应用中都非常重要,希望能帮助到你。

基本不等式(很全面)

基本不等式(很全面)

基本不等式(很全面)基本不等式基本不等式原始形式:对于任意实数a和b,有a+b≥2ab/(a^2+b^2)。

基本不等式一般形式(均值不等式):对于任意实数a和b,有a+b≥2ab/2.基本不等式的两个重要变形:1)对于任意实数a和b,有(a+b)/2≥√(ab)。

2)对于任意实数a和b,有ab≤(a^2+b^2)/2.求最值的条件:“一正,二定,三相等”。

常用结论:1)对于任意正实数x,有x+1/x≥2(当且仅当x=1时取“=”)。

2)对于任意负实数x,有x+1/x≤-2(当且仅当x=-1时取“=”)。

3)对于任意正实数a和b,有(a/b+b/a)≥2(当且仅当a=b 时取“=”)。

4)对于任意实数a和b,有ab≤(a^2+b^2)/2≤(a+b)^2/4.5)对于任意实数a和b,有1/(a+b)≤1/2√(ab)≤(1/a+1/b)/(a+b/2)。

特别说明:以上不等式中,当且仅当a=b时取“=”。

柯西不等式:1)对于任意实数a、b、c和d,有(a+b)(c+d)≥(ac+bd)^2.2)对于任意实数a1、a2、a3、b1、b2和b3,有(a1^2+a2^2+a3^2)(b1^2+b2^2+b3^2)≥(a1b1+a2b2+a3b3)^2.3)对于任意实数a1、a2、…、an和b1、b2、…、bn,有(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+an bn)^2.题型归纳:题型一:利用基本不等式证明不等式。

题目1:设a、b均为正数,证明不等式ab≥2/(1/a+1/b)。

题目2:已知a、b、c为两两不相等的实数,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2≥2/(a-b+b-c+c-a)。

题目3:已知a+b+c=1,求证:a^2+b^2+c^2+9abc≥2(ab+bc+ca)。

题目4:已知a、b、c为正实数,且abc=1,求证:a/b+b/c+c/a≥a+b+c。

高中数学基本不等式

高中数学基本不等式

考向三 运用消参法解决不等式问题
例 3 若实数 x,y 满足 xy+3x=30<x<12,则3x+y-1 3的最小值为________.
变式 1:(徐州、宿迁三检)若 a 0,b 0 ,且 1 + 1 1,则 a + 2b 的最小值为 .
2a + b b +1
变式 2、设实数 x,y 满足 x2+2xy-1=0,则 x2+y2 的最小值是________.
常数代换法的技巧 (1)常数代换法就是利用常数的变形以及代数式与“1”的积、商都是自身的性 质,通过代数式的变形构造和式或积式为定值,然后利用基本不等式求最值. (2)利用常数代换法求解最值应注意:①条件的灵活变形,常数化成1是代数式 等价变形的基础;②利用基本不等式求最值时“一正、二定、三相等”的检验,否 则容易出现错解.
(5)1a+2 1b≤ ab≤a+2 b≤
a2+2 b2(a,b>0 当且仅当 a=b 时取等号).
1、(2021·潍坊市潍城区教育局月考)下列不等式一定成立的是( )
A.lg(x2+ 1 )>lgx(x>0) 4
C. x2 1 2 x xR
B.sinx+ 1 ≥2(x≠kπ,k∈Z) sin x
D.18
)
A.1
B. 9
C.9
2
D.18
变式
1、若正实数
x ,y
满足
x
y
1 ,则
y x
4 y
的最小值是


变式 2、 已知 a,b 为正数,且直线 ax+by-6=0 与直线 2x+(b-3)y+5=0 互相平行,则 2a+3b 的最小值为________.
变式 3、已知正实数 a,b 满足 a+b=1,则 2a2 1 2b2 4 的最小值为

四个基本不等式

四个基本不等式

叫做平方平均数、算术平均数、几何平均数、调和平均数
1.平方平均数:
又名均方根(Root Mean Square),英文缩写为RMS。

它是2次方的广义平均数的表达式,也可称为2次幂平均数。

英文名为,一般缩写成RMS。

2.算术平均数:
又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。

它主要适用于数值型数据,不适用于品质数据。

3.几何平均数:
是对各变量值的连乘积开项数次方根。

求几何平均数的方法叫做几何平均法。

如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。

4.调和平均数:
是总体各统计变量倒数的算术平均数的倒数。

调和平均数是平均数的一种。

但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2x+(1-2x) ]2 1 ≤ ∙[ = 8. 2 2 1 当且仅当 2x=(1-2x), 即 x= 4 时, 取“=”号. 1. ∴当 x = 1 时 , 函数 y = x (1 2 x ) 的最大值是 8 4
纠错:
1 1.已知函数 f ( x) x ,求函数的 x 最小值和此时x的取值.
只要证
ab 证明不等式: ≥ ab (a 0, b 0) 2
分 析 法
① ②
2
a b≥ _______ 2 ab _____ 要证①,只要证 a b 2 ab ≥0
2
(a 0, b 0, a ( a ) , b ( b ) )
要证②,只要证
(___ a ___) b ≥0
2
(a b) 0
2
2
(a b) 0
所以(a b) ≥0
所以a b ≥2ab.
2 2
重要不等式:一般地,对于任意实数a、b,总有
a b ≥2ab
2 2
当且仅当a=b时,等号成立
适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0, b 0, 我们用 a , b分别代替a, b, 可得到什么结论?
如果a 0, b 0, 我们用 a , b分别代替a, b, 可得到什么结论?
2 2 ( a ) ( b ) ≥2 a b 替换后得到:
即:
a b≥2 ab
ab 即: ≥ ab 2
(a 0, b 0)
你能用不等式的性质直接推导这个不等式吗?
ab 证明:要证 ≥ ab 2
2

显然, ③是成立的.当且仅当a=b时, ③中的等号成立.
基本不等式
特别地,若a>0,b>0,则
≥ a b _____ 2 ab
ab 通常我们把上式写作: ab≤ (a 0, b 0) 2
当且仅当a=b时取等号,这个不等式就叫做基本不等 式.(也叫均值定理) 适用范围: a>0,b>0
若x、y都为正数,
2
2 P x+y有最小值_______.
x y≥2 xy 2 P
x y S 1 2 xy≤ xy≤ S 4 2 2
1 x< 例1:若 0< 2 大值.
, 求函数 y=x(1-2x) 的最
配凑系数
分析: 2 x+(1-2x) 不是 =1为 常数. 1 解: ∵0<x< 2 , ∴1-2x>0. 1 ∴y=x(1-2x)= 2 ∙2x∙(1-2x)
运用均值不等式的过程中,忽略了“正数” 这个条件.
3 ( x 2) , 2.已知函数 f ( x) x x2 求函数的最小值.
用均值不等式求最值,必须满足“定值”这 个条件.
4 3 求函数y sin 其中 (0, ] sin 2 的最小值。 4 4 解:y sin 2 sin sin sin 4,函数的最小值为4。
②如何用a, b表示CD?
D
A a OC b B
E
ab CD=______
BC DC Rt△ACD∽Rt△DCB, 所以 DC AC
所以DC 2 BC AC ab
若x、y都为正数, 则当x+y的值是常数S时 则当xy的值是常数P时, 当且仅当x=y时, 1 S 当且仅当x=y时, xy有最大值_______ 4
a b 面积S=_____
2
2
2、四个直角三角形的
A
a
2ab 面积和S’ =__
3、S与S’有什么
样的不等关系?
B
S>S′即
问:那么它们有相等的情况吗?
a b > 2ab
2 2
(a≠b)
D b G A H
D
a 2 b2
F
E a a C A E(FGH) b C
a b > 2ab
2
B 2
B
(a≠b)
a b
2
2

2ab
(a=b)
猜想: 一般地,对于任意实数a、b,我们有 2 2
a b 2ab
当且仅当a=b时,等号成立。
思考:你能给出不等式 a 2 b 2≥2ab 的证明吗?
证明:(作差法) a b 2ab (a b)
2 2
2
当a b时
当a b时
ab 在数学中,我们把 叫做正数a,b的算术平均数, 2 ab 叫做正数a,b的几何平均数;
文字叙述为: 两个正数的算术平均数不小于它们的几何平均数.
你能用这个图得出基本不等式的几何解释吗? 如图, AB是圆的直径, O为圆心, 点C是AB上一点, AC=a, BC=b. 过点C作垂直于AB的弦DE,连接 AD、BD、OD. ab ①如何用a, b表示OD? OD=______ 2
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
思考:这会标中含有 怎样的几何图形? 思考:你能否在这个 图案中找出一些相等 关系或不等关系?
D
探究1:
1、正方形ABCD的
a bC H
用均值不等式求最值,必须注意 “相等” 的条 件. 如果取等的条件不成立,则不能取到该最值.
小结:
1. 两个重要的不等式
(1)a, b R,那么a 2 b2≥2ab ,当且仅当a b时,等号成立
ab (2) ab≤ (a >0,b>0),当且仅当a b时,等号成立。 2 2. 利用基本不等式求最值
已知 x, y 都是正数, P, S 是常数. (1) xy=P x+y≥2 P(当且仅当 x=y 时, 取“=”号). 2(当且仅当 x=y 时, 取“=”号). (2) x+y=S xy≤ 1 S 4
求最值时注意把握 “一正,二定,三相等”
相关文档
最新文档