鳌江四中2008学年第二学期七年级数学竞赛试题(含答案)

合集下载

2008全国初中数学竞赛试题及答案

2008全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题参考答案题 号 一 二 三 总 分1~5 6~10 11 1213 14 得 分 评卷人 复查人答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x-=+=,,则444y x +的值为( ).(A )7 (B ) 1132+ (C ) 7132+ (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212444311384x ++⨯⨯+==, 2114311322y -++⨯-+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(第3题)FEDCOA B(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A )52a (B )1 (C )32(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=(第4题)5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ②(第8题)(第9题答案)NEFMD BCA 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF 交 AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().(第8题答案)另解: ()()()ABC S rp p p a p b p c ∆==--- =12435125⨯⨯⨯=(这里2a b cp ++=) 所以125512r==, 22125358ABC a S h a ⨯===△ 由△ADE ∽△ABC ,得 3552335a a h r DE BC h --===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

初一下数学竞赛试题及答案

初一下数学竞赛试题及答案

初一下数学竞赛试题及答案【试题一】题目:一个数的平方根是另一个数的立方根,求这个数。

【答案】设这个数为 \( x \),则根据题意,我们有 \( \sqrt{x} =\sqrt[3]{y} \),其中 \( y \) 是另一个数。

将等式两边立方,得到\( x = y^{1/3} \)。

由于 \( y \) 可以是任意数,\( x \) 也可以是任意数的立方。

例如,如果 \( y = 8 \),则 \( x = 2 \)。

【试题二】题目:一个直角三角形的两条直角边分别为 \( 3 \) 厘米和 \( 4 \) 厘米,求斜边的长度。

【答案】根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过公式 \( c = \sqrt{a^2 + b^2} \) 计算,其中 \( a \) 和 \( b \) 是直角边的长度。

将 \( a = 3 \) 和 \( b = 4 \) 代入公式,得到 \( c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

【试题三】题目:如果一个数的 5 倍加上 12 等于这个数的 3 倍减去 8,求这个数。

【答案】设这个数为 \( x \),根据题意,我们有 \( 5x + 12 = 3x - 8 \)。

将等式两边的 \( x \) 项移项,得到 \( 2x = -20 \)。

解得 \( x = -10 \)。

【试题四】题目:一个圆的半径是 7 厘米,求这个圆的面积。

【答案】圆的面积 \( A \) 可以通过公式 \( A = \pi r^2 \) 计算,其中\( r \) 是圆的半径。

将 \( r = 7 \) 代入公式,得到 \( A = \pi \times 7^2 = 49\pi \) 平方厘米。

【试题五】题目:一个分数的分子和分母的和是 21,且这个分数等于\( \frac{3}{4} \),求这个分数。

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。

7. 圆的周长公式是C=__。

8. 如果一个数的立方等于它本身,那么这个数可能是____。

9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。

10. 一个数的倒数是1/这个数,那么1的倒数是____。

三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。

12. 什么是质数?请列出前5个质数。

13. 描述如何使用勾股定理来计算直角三角形的斜边长度。

四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。

15. 解下列方程:2x + 5 = 13。

五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。

求男生、女生和教师的人数。

答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。

12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

2008年全国 初中数学联赛(含答案)

2008年全国 初中数学联赛(含答案)

12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。

七年级数学竞赛训练题(2)(含答案)-

七年级数学竞赛训练题(2)(含答案)-

七年级数学竞赛训练题一.填空题:(每小题3分,共51分) 1、 若2(2)a -与8912004b -互为相反数,则a b a b -+=_________。

2、方程256x -=的解为__________。

3、△ABC 中,AB=10,AC=8,则BC 边上的中线AD 的取值范围是_______。

4、如图,B 、C 、D 依次是线段AE 上三点,已知AE =8.9cm ,BD =3cm ,则图中以A 、B 、C 、D 、E 这五个点为端点的所有线段长度之和等于 。

5、在一个平面内,画1条直线,能把平面分成2部分;画2条直线,最多能把平面分成4部分;画3条直线,最多能把平面分成7部分;画4条直线,最多能把平面分成11部分;……照此规律计算下去,画2004条直线,最多能把平面分成___________部分。

6、春节联欢会上,电工师傅在礼堂四周挂了一圈彩灯,其排列规则是:绿黄黄红红红绿黄黄红红红绿黄黄红红红绿黄黄红红红……那么,第2004个彩灯是________色的。

7、已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为________。

8、已知12 + 22 +32 +……+ n 2 = 16n(n+1)(2n+1),则22 + 42 +62 +……+1002 =________。

9、已知,如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为________。

10、美国《数学月刊》上有这样一道题:有人在如图所示的小路上行走(假设小路的宽度都是1米),当他从A 处到B 处时,一共走了_____________米。

BE 、CE 分别平分ABD ∠、11、如图,AC 、BD 相交于O ,ACD ∠,且交于E ,若060A ∠=, 040D ∠=,则E ∠= 。

12、用边长为12cm 的一块正方形制作成一副七巧板,在这副七巧板中最小的那块三角板的 面积是 cm 2。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C4. 以下哪个选项表示的是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A5. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:B7. 以下哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 6C. x = -3D. x = 0答案:A8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x > 2C. x < 4D. x < 2答案:A10. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是:A. 1B. 2C. 3D. 4答案:C二、填空题(每题3分,共30分)1. 一个数加上它的相反数等于______。

答案:02. 一个数的绝对值是它本身,这个数是______。

答案:非负数3. 一个角的补角是它的三倍,那么这个角的度数是______。

答案:45°4. 一次函数y = 2x + 1的图象经过点(0,1),则这个点是该函数的______。

答案:截距5. 一个数的平方是16,这个数是______。

答案:±46. 一个数的立方是8,这个数是______。

答案:27. 方程3x - 7 = 2的解是______。

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案

饶平四中七年级数学竞赛试题 (满分100分)时间:50分钟 班级:_________姓名:___________评分:_________一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为: A 、14辆 B 、12辆 C 、16辆 D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元 3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:A 、a>0???B 、a<0? ?C 、a>-1??D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为: A 、2Mcm 61 B 、2Mcm 51C 、2Mcm 41D 、2Mcm 316、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、28、老王家到单位的路程是3500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:●● ▲■ ●■ ▲ ●▲? (1) (2) (3)A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。

第二学期七年级四科联赛数学试卷附答案

第二学期七年级四科联赛数学试卷附答案

第二学期七年级四科联赛数学试卷考生须知:1. 全卷共4页, 有三大题, 23小题。

满分120分, 考试时间90分钟。

2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。

温馨提示: 请仔细审题, 细心答题, 相信你一定会有出色的表现.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内。

1.下图最左边的图案通过平移得到的图案是()2.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次 转弯的角度可以是( ) A . 先右转60°,再左转120° B . 先左转120°,再右转120° C . 先左转60°,再左转120° D . 先右转60°,再右转60°3.为了了解萧山区2014年数学学业考试各分数段成绩分布情况,从中抽取 1500名考生的学业考试数学成绩进行统计分析.在这个问题中,样本容量是指( ) A .1500 B .被抽取的1500名考生C .被抽取的1500名考生的学业考试数学成绩D .义乌市2013年学业考试数学成绩 4.方程的根是( )A .﹣1 B .2 C . ﹣1或2D . 1或25.“小马虎”在下面的计算中只做对一道题,他做对的题目是( )A.22)(ab ab =B. 623)(a a =C.235x y xy +=D.1243a a a =⋅6.已知m+n=2,mn=﹣2,则(1﹣m )(1﹣n )的值为( ) A . ﹣3 B . ﹣1 C .1 D .5 7.若02(3)2(36)x x ----有意义,那么x 的取值范围是 ( ) A.3x > B.2x < C.32x x ≠≠或 D.32x x ≠≠且8.如图,有下列判定,其中正确的有 ( ) ①若∠1=∠3,则AD∥BC ②若AD∥BC,则∠1=∠2=∠3③若∠1=∠3,AD∥BC,则∠1=∠2④若∠C+∠3+∠4=180°,则AD∥BCA .1个B .2个C .3个D .4个9.如图,已知直线L 交直线a,b 于A,B 两点,且a ∥b,E 是a 上的点,F 是b 上的点,满足∠DAE=13∠BAE, ∠DBF=13∠ABF,则∠ADB 的度数是 ( ) A. 045 B. 050 C. 060 D.无法确定Aab LDBEF(第9题)10、用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是( )A.2003B.2004C.2005D.2006二、认真填一填(本题有6个小题,每小题4分,共24分) 11.已知23x y =⎧⎨=-⎩是方程mx+3y=1的一个解,则m 的值是 .12. 某种细胞的平均半径是0.0036m ,用科学记数法可表示为 m . 13.若分式=0,则x= ;若分式有意义,则x 应满足的条件是 .14.若x ,y 均为正整数,且2x •8•4y=256,则x+y 的值为 .15.有两个正方形A,B 现将B 放在A 的内部得到图甲,将A,B并列放置,后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B 的面积之和为___________BABA16.如图a 是长方形纸带,∠DEF=17°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则 图c 中的∠CFE 的度数是 .三、全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推演步骤。

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。

温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。

每小题3分,共30分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。

七年级第二学期数学竞赛试题及参考答案

七年级第二学期数学竞赛试题及参考答案

七年级数学竞赛试题时间120分钟 总分150分1、平面直角坐标系内,点A (n ,n -1)一定不在 象限。

2、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小....的顺序排列为 。

3、.线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为 。

4.、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于1 0,则a 的值是 。

5、正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_____ 。

6、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。

7、如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________。

8、如图,小亮从A 点出发,沿直线前进10米后向左转30︒,再沿直线前进10米,又向左转30︒,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米。

0 2 8 4 2 4 6 2 4 6 8 44 A30︒30︒30︒第8题第2题FEDCBA 第7题ABCDEFG9、方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解是________________ 。

10、如上图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = _____________度。

二、选择题((共8小题,每小题5分,共40分):11、若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限 12、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数13、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、1714、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<615、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%16、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题17、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则第17题S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3118、方程198919901989...433221=⨯++⨯+⨯+⨯x x x x 的解是( )A 、1989B 、1990C 、1991D 、1992三、解答题:(共5小题,共60分):19、(10分)已知方程组⎩⎨⎧=+=+4232y ax y x 的解,x 与y 之和为1,求a 的值20、(15分)如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 求21∠∠与的度数21、(15分)如图所示,在△ABC 中,∠B=∠C ,∠A DE =∠AED ,︒=∠60BAD ,第23题F求∠EDC的度数;22.(20分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格为每顶160元,可供10人居住的大帐篷,价格为每顶400元,学校共花去捐款96000元,正好可供2300人临时居住。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。

初一奥林匹克数学竞赛试题

初一奥林匹克数学竞赛试题

12008年初中数学联赛(初一组)试卷一、选择题(本大题满分56分,每小题8分)1、数a 、b 、c 、d 所对应的点A 、B 、C 、D 在数轴上的位置如图所示,那么a +c 与b +d 的大小关系是( )A. a +c < b +dB. a +c = b +dC. a +c >b +dD.不能确定的 2、若7a +9│b │=0,a b 2一定是,( )A.正数B. 负数C. 非负数D. 非正数3、若│m │= m +则(4m +1)2004的值是( )A.1B.2C.3D.44、当x =-1时,代数式2 a x 3—3b +8的值为18,这时, 代数式9b -3 a +2=( )A.28B.-28C.32D.-32 5、已知2是关于x 的方程23x 2-2 a =0的一个解,则2 a -1的值为( )A.3B.4C.5D.66、已知关于x 的一次方程(3a +8b )x +7=0无解,则a b 是( )A.正数 B 非正数 C.负数 D.非负数7、方程│x -5│+x -5=0的解的个数为( )A.不确定B.无数个C.2个D.3个二、填空题(本大题满分40分,每小题8分)1、已知a 、b 互为倒数,c 、d 互为相反数,e <0且│e │=1,那么,(-a b )2008-e 2009的值为 .2、0.7×194+243×(-15)+0.7×95+41×(-15)= .3、已知当x =-2时,代数式a x 3+b x +1的值为6,那么当x =2时,代数式a x 3+b x +1的值为 .4、方程 12x -3(1-23x )-4(2-4x)=24 的解是 .5、方程 │3x -1│=│2x +1│ 的解是 .三、计算(本大题满分20分,)要求写出必要的步骤.(1)211×(-455)+365×455-211×545+545×365 (2)解方程:│x-│3x+1│=4四、(本大题满分12分,)汽车以每小时72千米的速度,笔直匀速开向寂静的山谷,驾驶员按了一声喇叭,6秒钟后他听到回声,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是多少米?五、(本大题满分12分,)某商场经营一种商品,由于进货时价格比原来进价降低了6.4%,使得利润率增加了8个百分点,求这种商品原来的利润率.1 2。

七年级数学竞赛试卷含答案

七年级数学竞赛试卷含答案

一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 15B. 17C. 28D. 352. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 平行四边形D. 梯形3. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 24B. 32C. 16D. 204. 如果一个数的平方是25,那么这个数可能是?A. 5B. -5C. 5或-5D. 255. 下列哪个数是负数?A. -3B. 0C. 3D. ±36. 一个等腰三角形的底边长是6厘米,腰长是8厘米,那么这个三角形的周长是多少厘米?A. 20B. 24C. 28D. 327. 下列哪个数是正数?A. -0.5B. 0C. 0.5D. ±0.58. 一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 25C. 15D. 209. 下列哪个数是有理数?A. √2B. πC. 0.101001D. √-110. 一个圆的半径是3厘米,那么它的直径是多少厘米?A. 6B. 9C. 12D. 15二、填空题(每题5分,共20分)11. 一个数的倒数是它的什么数?12. 一个等腰直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是________厘米。

13. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是________平方厘米。

14. 下列分数中,哪个是最简分数?________三、解答题(每题10分,共30分)15. 一辆汽车从甲地出发,以每小时60公里的速度行驶,2小时后到达乙地。

如果以每小时80公里的速度行驶,那么到达乙地需要多少小时?16. 一个梯形的上底是10厘米,下底是20厘米,高是15厘米,求这个梯形的面积。

17. 解下列方程:3x - 5 = 4x + 2。

四、应用题(每题15分,共30分)18. 小明家住在5楼,他每层楼爬3分钟,那么他从1楼到5楼一共需要多少时间?19. 一块正方形的草坪,边长是20米,现在要在草坪周围围一圈篱笆,篱笆的长度是多少米?答案:一、选择题1. B2. A3. B4. C5. A6. B7. C8. B9. C 10. A二、填空题11. 相反数 12. 5 13. 50 14. 2/3三、解答题15. 2小时16. 300平方厘米17. x = -7四、应用题18. 10分钟19. 80米。

初一竞赛数学试题及答案

初一竞赛数学试题及答案

初一竞赛数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的平方等于这个数本身,这个数可能是:A. 0B. 1C. 2D. 33. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a+b+cC. a*b+b*c+a*cD. a/b+b/c+c/a4. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零5. 下列哪个是完全平方数?A. 15B. 16C. 17D. 18二、填空题(每题2分,共10分)6. 一个数的相反数是它本身,这个数是________。

7. 一个数的倒数是1/2,这个数是________。

8. 一个数的立方等于它本身,这个数可能是________、________、________。

9. 如果a+b=10,a-b=2,那么a²-b²=________。

10. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是________。

三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,n³-n 总是能被n+1整除。

12. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的表面积和体积。

13. 一个数列的前三项是1,1,2,从第四项开始,每一项都是前三项的和。

求第10项的值。

14. 一个圆的直径是14cm,求它的周长和面积。

答案一、选择题1. B2. B3. A4. D5. B二、填空题6. 零7. 28. 0,1,-19. 4810. 5cm(根据勾股定理)三、解答题11. 证明:n³-n = n(n²-1) = n(n-1)(n+1),可以看出n³-n可以被n+1整除。

12. 表面积= 2(5×4 + 5×3 + 4×3) = 94平方厘米,体积 =5×4×3 = 60立方厘米。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a,b,c是三个不同的实数,且a + b + c = 0,那么下列哪个等式是正确的?A. a = -b - cB. a = b + cC. b = -a - cD. c = a + b3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-14. 一个圆的半径为3厘米,那么它的周长是:A. 6πB. 12πC. 18πD. 24π5. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 7/14二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。

7. 如果一个数的绝对值是2,那么这个数可以是______。

8. 一个两位数,十位数字是x,个位数字是y,这个数可以表示为10x + y,如果这个数是偶数,那么y的值可以是______。

9. 一个直角三角形,其中一个锐角是30°,另一个锐角是______。

10. 如果一个数的立方是-64,那么这个数是______。

三、解答题(每题5分,共20分)11. 一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。

求这个数列的第10项。

12. 一个班级有40名学生,其中20名学生参加了数学竞赛,15名学生参加了物理竞赛,有5名学生同时参加了数学和物理竞赛。

求没有参加任何竞赛的学生人数。

13. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求这个长方体的体积。

14. 一个数的平方加上这个数的两倍等于10,求这个数。

答案一、选择题1. B. 12. A. a = -b - c3. C. 04. B. 12π5. C. 3/4二、填空题6. 57. ±28. 0, 2, 4, 6, 89. 60°10. -4三、解答题11. 第10项是144。

鳌江四中2008学年第二学期七年级数学竞赛试题

鳌江四中2008学年第二学期七年级数学竞赛试题

2008学年第二学期七年级数学竞赛试题一、选择题(每小题5分,共40分)1、)A 大于零B 小于零C 等于零D 小于或等于零2、已知三角形的三条边长分别为1,x,4,其中x为正整数,则这个三角形的周长为……………………………………………………………()A 6B 9C 10D 123、若有理数x,y满足|2x-1|+y2-4y=-4,则x·y的值等于……………()A.-1 B.1 C.-2 D.24、下列事件为必然事件的是…………………………………………………()A 今年6月1日鳌江气温为30度;B 在一个箱子里有10个红球,任意拿出一个球,这个球一定是白球;C 抛掷一块石块,石块终将下落;D 这次数学竞赛,每位参赛的同学都会考满分;5、若分式方程11ax=-无实数根,则a的值为……………………………()A 1B -1C 0D 不存在这样的a6、某单位购买甲、乙两种纯净水若干桶,共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水桶数是甲种水桶数的75%。

设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是……………………………………()A、8625075%x yy x+=⎧⎨=⎩B、8625075%x yx y+=⎧⎨=⎩C、6825075%x yy x+=⎧⎨=⎩D、6825075%x yx y+=⎧⎨=⎩7、当x=3时,代数式px3+qx+3的值是2005,则当x=-3时,代数式px3+qx+3的值为………………………………………………( ) A:2002 B:1999 C:-2001 D:-19998、如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A的度数为………………………………………………………………()A 150B 200C 250D 300二、填空题(每小题5分,共30分)9、因式分解:x3-6x2x+9xy2= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008学年第二学期七年级数学竞赛试题
一、选择题(每小题5分,共40分)
1、)
A 大于零
B 小于零
C 等于零
D 小于或等于零
2、已知三角形的三条边长分别为1,x,4,其中x为正整数,则这个
三角形的周长为……………………………………………………………()
A 6
B 9
C 10
D 12
3、若有理数x,y满足|2x-1|+y2-4y=-4,则x·y的值等于……………()
A.-1 B.1 C.-2 D.2
4、下列事件为必然事件的是…………………………………………………()
A 今年6月1日鳌江气温为30度;
B 在一个箱子里有10个红球,任意拿出一个球,这个球一定是白球;
C 抛掷一块石块,石块终将下落;
D 这次数学竞赛,每位参赛的同学都会考满分;
5、若分式方程
1
1
a
x
=
-
无实数根,则a的值为……………………………()
A 1
B -1
C 0
D 不存在这样的a
6、某单位购买甲、乙两种纯净水若干桶,共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水桶数是甲种水桶数的75%。

设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是……………………………………()A、
86250
75%
x y
y x
+=


=

B、
86250
75%
x y
x y
+=


=

C、
68250
75%
x y
y x
+=


=

D、
68250
75%
x y
x y
+=


=

7、当x=3时,代数式p x3+qx+3的值是2005,则当x=-3时,
代数式px3+qx+3的值为………………………………………………( ) A:2002 B:1999 C:-2001 D:-1999
8、如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A
的度数为………………………………………………………………()
A 150
B 200
C 250
D 300
二、填空题(每小题5分,共30分)
9、因式分解:x3-6x2x+9xy2= 。

10、如图,在△ABC中,AB=AC,D,E分别在边AB,AC上,
AD=AE,DC,BE交于点F,则图中全等的三角形有对。

11、如图:∠B=200, ∠C=500,把△ABC绕点A按
顺时针方向旋转到△AB/C/,使点B/在CA的延长线上,
则△ABC旋转了_ ____度。

12、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想
填空:当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n 为正整数)块时,黑色瓷砖为块.
13、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠
笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需元。

14、有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了
找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是_________.
2362三、解答题(第15-17小题,每题12分,18小题14分,共50分)
15、四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上. (1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个
游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
16、如图,D 是∠EAF 平分线上的一点,若∠ACD+∠ABD=1800,请说明CD=DB 的理由。

17、已知a2-3a+1=0,求代数式
2
41
a
a
的值。

18、在汶川大地震后,许许多多志愿者到灾区投入了抗震救灾行列中。

都江堰市
志愿者小方八点多准备前去为灾民服务,临出门他一看钟,时针与分针正好是重合的,下午两点多他拖着疲惫的身体回到家中,一进门看见钟的时针与分针方向相反,正好成一条直线,问小方是几点钟去为灾民服务?几点钟回到家?共用了多少时间?
参考答案及评分标准 一、选择题(每小题5分,共40分)
二、填空题(每小题5分,共30分)
三、解答题(第15-17小题,每题12分,18小题14分,共50分)
15题:(12分)解:(1)P=1
2
2分
(2)列表法或画树状图正确得4分
∵P 小贝=58,P 小晶=3
8
∴游戏不公平 8分 规则修改为:组成的两位数小于32,
则小贝胜(答案不唯一,合理即得分)。

10分 16题:(12分)解:过点D 分别作AE,AF 的垂线,交AE 于M,交AF
于N
则∠CMD=∠BFD=900 2分 ∵AD 是∠EAF 的平分线
∴DM=DN 4分 ∵∠ACD+∠ABD=1800
∠ACD+∠MCD=1800
∴∠MCD=∠NBD 6分 在△CDM 和△BDN 中 ∠CMD=∠BFD=900 ∠MCD=∠NBD DM=DN
∴△CDM ≌△BDN 10分 ∴CD=DB 12分 17题:(12分)解:∵a 2-3a+1=0,
∴a ≠0,则a+
1
a
=3 (4分)
18题:(14分)解:设8点x 分时针与分针重合,
则: x -12
x
=40 4分
解得:x =43711. 即8点437
11分时出门。

6分 设2点y 分时,时针与分针方向相反。

则:y -12
y
=10+30 10分
解得:y =43711. 即2点437
11分时回家 12分
所以14点43711分-8点437
11=6点
答共用了6 个小时。

14分
2
4
22211111()21
7
a a a a a a ==+++-= (10分) (12分)。

相关文档
最新文档