非线性系统的鲁棒采样控制
非线性系统辨识与鲁棒控制设计
非线性系统辨识与鲁棒控制设计近年来,随着科技的迅猛发展,越来越多的实际控制系统呈现出非线性特性。
非线性系统在实际生活和工业生产中无处不在,如机械系统、电力系统和化学过程等。
为了更好地实现对非线性系统的控制,非线性系统辨识和鲁棒控制设计成为研究热点。
非线性系统辨识是指通过对系统输入输出数据进行分析和处理,建立系统的数学模型。
在非线性系统中,系统的动力学特性可能会因为非线性关系而变得复杂,因此,非线性系统辨识是非常具有挑战性的任务。
非线性系统辨识可以通过两种常用方法来实现:基于物理模型的辨识和基于数据的辨识。
基于物理模型的辨识方法是指通过对系统的运动方程和控制原理进行建模和推导,得到系统的数学模型。
这种方法适用于已知系统结构和动力学特性的情况下,可以较好地描述系统的行为。
然而,实际系统经常难以精确建模,因此,基于物理模型的辨识方法在非线性系统中的应用受到一定限制。
基于数据的辨识方法是指通过对系统输入输出数据进行数学处理和分析,从而推断出系统的数学模型。
这种方法不依赖于对系统的结构和动力学特性的先验知识,可以适用于各种非线性系统。
基于数据的辨识方法在非线性系统的辨识中具有广泛的应用,例如神经网络模型、支持向量机模型和遗传算法等。
在完成非线性系统辨识之后,鲁棒控制设计成为实现系统稳定性和性能要求的关键任务。
鲁棒控制设计是指通过设计适应非线性系统变化和不确定性的控制器,实现对系统的稳定性和鲁棒性能的改进。
在鲁棒控制设计中,一种常见的方法是通过将非线性系统转化为线性化系统,然后设计线性控制器进行控制。
鲁棒控制设计的核心思想是对系统不确定性和外部扰动进行补偿。
对于非线性系统的鲁棒控制,常用的方法包括滑模控制、自适应控制和模糊控制等。
滑模控制通过引入滑模面,实现对非线性系统的鲁棒控制;自适应控制通过在线调整参数,以适应非线性系统的变化;模糊控制通过建立模糊模型和设计模糊规则,实现对非线性系统的鲁棒控制。
除了上述方法,近年来,深度学习技术也开始应用于非线性系统的辨识和控制中。
非线性控制与鲁棒性
非线性控制与鲁棒性非线性控制是控制理论中的重要分支,它研究的对象是具有非线性特性的系统。
在现实世界中,许多系统都具有非线性特性,例如生物系统、化学反应系统、机械系统等等。
与线性系统相比,非线性系统更加复杂,因此需要采用不同的控制方法来实现对其的稳定控制。
而鲁棒性则是在面对系统参数变化、测量误差等不确定因素时,控制系统能够保持一定的性能。
非线性控制方法可以分为两大类:基于物理模型的方法和基于神经网络的方法。
1. 基于物理模型的非线性控制基于物理模型的非线性控制是以系统的数学模型为基础,采用数学分析和控制理论来设计控制器。
其中,最常用的方法是状态反馈控制和输出反馈控制。
状态反馈控制是通过测量系统状态来设计控制器,使系统的状态达到期望值。
这种方法需要系统的状态变量可测量,在实际应用中会受到传感器等因素的限制。
输出反馈控制是通过测量系统输出来设计控制器,并通过计算控制输入来使系统输出跟踪期望值。
输出反馈控制不需要测量系统的状态,因此更加实用,但也常常需要引入观测器等辅助设备。
2. 基于神经网络的非线性控制基于神经网络的非线性控制是利用神经网络的非线性映射能力来近似系统的非线性特性,进而设计控制器。
神经网络可以通过学习样本数据来建立系统的模型,并通过反馈控制来调整网络权值,实现对系统的控制。
基于神经网络的非线性控制具有较好的适应性和鲁棒性,能够处理一些复杂非线性系统难以建模的问题,但也面临着神经网络训练的困难和计算复杂度的挑战。
在非线性控制中,鲁棒性是一个重要的性能指标。
鲁棒性控制是指控制系统对于不确定性的抵抗能力,即当系统参数发生变化或存在测量误差时,控制系统能够保持一定的性能。
在设计鲁棒控制器时,需要考虑系统参数的范围、不确定性的影响以及控制器的稳定性等因素。
鲁棒控制的设计方法有很多,例如H∞控制、滑模控制、自适应控制等。
这些方法在处理非线性系统不确定性时,能够有效提高系统的稳定性和控制性能。
总结而言,非线性控制与鲁棒性是控制领域中的关键问题,研究非线性系统的控制方法并设计鲁棒控制器,可以提高控制系统的鲁棒性和性能。
非线性时变系统的稳定性和鲁棒性
外文资料翻译非线性时变系统的:稳定性和鲁棒性概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型,但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。
在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。
如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。
这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时变的,非完整系统,受到的干扰。
那个的可能性的框架内,以容纳间断的意见是必要的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。
1 引言许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态的在离散的instants 时间。
见例如[3,7,9,13] ,也是[6] 。
有许多好处,在考虑连续时间模型。
不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。
在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个重要步骤,以证明稳定的MPC的计划。
( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。
显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。
然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)也可以得到保障(见例如[11])。
非线性系统的鲁棒性控制
非线性系统的鲁棒性控制一、引言现代控制理论中,非线性系统的鲁棒性控制一直是研究的热点之一。
非线性系统因为其复杂的特性,往往不容易被精确地建模和控制,因此,鲁棒性控制成为一种有效的方法。
本文将从非线性系统的定义入手,介绍非线性系统在鲁棒性控制中的应用和相关理论。
二、非线性系统的定义非线性系统是指,其输入和输出之间的关系不是线性的,其中包括的非线性元素很多,比如幂函数、三角函数、指数函数等。
与线性系统不同,非线性系统具有以下几个特点:1. 非线性系统的系统函数是非线性的,即系统的状态方程和输出方程是非线性的;2. 非线性系统的稳定性分析和控制设计往往比较复杂,需要使用数值模拟和优化算法等方法进行处理;3. 非线性系统的动态行为具有很多非线性效应,比如不稳定性、混沌和复杂多样的周期运动等。
三、非线性系统的鲁棒性控制非线性系统的鲁棒性控制是指,对于具有不确定参数和外部干扰的非线性系统进行控制,并保证其稳定性和性能的方法。
在实际应用中,非线性系统的鲁棒性控制被广泛应用于工业自动化、机器人控制、航空航天等领域。
非线性系统的鲁棒性控制包括以下几个方面:1. 鲁棒控制器的设计:在非线性系统中,我们通常使用鲁棒控制器来设计控制方案。
其中,鲁棒控制器是指一种能够对非线性系统的不确定性进行补偿的控制器。
常用的鲁棒控制器包括H∞控制器、滑模控制器、自适应控制器等。
2. 鲁棒性分析和验证:针对非线性系统的不确定性和外部干扰,需要对鲁棒性进行分析和验证。
其中,鲁棒分析是指确定鲁棒性参数的过程,鲁棒验证是指通过实验和仿真等方法验证鲁棒性的有效性。
3. 鲁棒性优化和调试:鲁棒性控制的优化和调试是非常重要的。
在控制系统设计过程中,需要考虑系统参数、系统耐干扰性、系统稳定性以及过渡过程等方面。
四、非线性系统的鲁棒控制策略(1)H∞控制H∞控制是一种广泛应用于非线性系统的鲁棒控制策略。
该方法通过数学分析和机理推导的方法,能够将非线性系统的模型转换为标准的H∞控制器模型,并对其进行分析和设计。
具有时滞的非线性控制系统的鲁棒性分析
具有时滞的非线性控制系统的鲁棒性分析随着科技快速发展,控制系统的普及和应用也越来越广泛。
在现代工程中,非线性控制系统应用尤其广泛。
非线性控制系统是一种多输入输出的系统,其中输出与输入之间的关系不是线性的。
而对非线性控制系统进行分析和控制的过程也十分复杂。
其中,时滞是非线性控制系统的一个重要特征,这个特征在实际工作中也十分常见。
因此,对于具有时滞的非线性控制系统的鲁棒性分析变得尤为重要。
一、什么是具有时滞的非线性控制系统时滞是指输入信号的延迟时间在传递至输出端时出现的时间差。
当控制系统的性能受到时滞的影响时,传统的线性控制理论就不再适用。
例如:当控制系统处于运动状态时,如果在早期状态的输入信号反映在控制输出上,则会发生控制器受到时间延迟的影响而失去控制。
非线性控制系统是一种复杂的系统,由于控制输出与输入之间的关系不是线性的,因此其分析和控制过程显得格外复杂。
非线性控制系统可以分为静止的和动态的。
前者的关系是固定的,不随时间的推移而发生改变;而后者的关系会随时间的推移而发生显著的变化。
动态系统可以分为时变和定常两种。
具有时滞的非线性控制系统则是指非线性控制系统中,控制输入的效果是在一定的时间间隔内发挥出来的。
这个时间延迟对于控制系统的性能有着重要影响,时滞的大小以及它的变化规律影响着系统的动态性能。
例如,一些激光稳定控制和罐容料液位控制系统的效果都受到时滞的影响。
二、为什么需要鲁棒性分析鲁棒性是指非线性控制系统在面对未知的、不确定的干扰和噪声时所表现出的稳健性。
在实际应用中,控制系统面临的环境和要求也比较复杂,不同的操作环境、气候要求、输入变化,都有可能导致控制系统的输入输出出现不确定的干扰和噪声,从而干扰了控制系统的正常工作。
如果不考虑这些鲁棒性问题,不仅不能应对常规的干扰,同时也很难有效预测和应对系统的未知干扰。
鲁棒性分析是通过对系统和模型的分析,来确定控制系统在面对各种干扰和干扰时所需要具备的鲁棒性,并针对具体的干扰和噪声进行优化。
一类非线性网络控制系统的鲁棒镇定问题
虑 如何 去构 造满足 这 些条 件 的 Lauo ypnv函数 。在文 献 [ ] 2 中针对 一类 非线 性 N S , 中被控 对 象是 一 个带 C s其
有 非线 性不 确定性 的线性 连续 对象 ,利用 采 样 控 制 的方 法 , u等 研 究 了非 线性 N S Y C s的镇 定性 。Z ag等 hn 考 虑 了有 界 常时滞 的 T S模 糊 系统 在 网络 环 境 下 的保 性 能 网 络 控 制 问题 J 但 是 他 们 没 有 说 明如 何 激 活 . , N S 框 架下 的模糊 控制 器 , 这一 点对基 于 T S模糊 模型 的非线 性 N S 是非 常 重 要 的 ,因此这 些 结论 在 Cs 而 . Cs
控控制 系统 ;— 模 糊 系统 ; Ts 鲁棒镇 定性
中 图分 类 号 :P 1 T 3 文献标识码 : A
控 制环 通过 一个 实 时 网络 闭合 形成 的反馈 控 制系 统被 称 为 网络控 制系统 。近年 来 ,网络控 制 系统 由 于
文章 编号 :6 3— 0 7 2 1 ) 1 0 2 0 17 2 5 (0 0 0 — 0 5— 4
一
类 非线 性 网络 控 制 系统 的鲁 棒 镇 定 问题
马 玉 龙
( 山西大 学商务 学 院 , 太原 0 03 ) 3 0 1
摘 要 : 究 了一 类 带有 不 确 定 的 非 线 性 网络 控 制 系 统 ( C s 的 鲁 棒 镇 定 问题 。 在 非 线 性 N S 研 N S) Cs
gesO2E ouin r o uain I EE, i aa a , J US 2 0 1 7 —6 6 rs 1 v lt ayC mp tt .E o o Ps tw y N , A,0 2:6 11 7 . c
非线性控制系统中的鲁棒性分析与设计
非线性控制系统中的鲁棒性分析与设计鲁棒性是指系统对外界扰动或者内部不确定性的抵抗能力,它在非线性控制系统中起着核心的作用。
在非线性控制系统中,由于系统本身的非线性特性,以及环境、传感器等因素的干扰,系统状态容易发生变化,因此需要进行鲁棒性分析和设计,以保证系统的稳定性和性能。
一、非线性控制系统概述非线性控制系统是指系统的输入与输出之间存在非线性关系的控制系统。
与线性控制系统相比,非线性控制系统具有更广泛的应用范围和更复杂的控制过程。
非线性控制系统包括了许多具有非线性特性的系统,如混沌系统、非线性振动系统等。
二、鲁棒性分析的概念鲁棒性分析是指对控制系统中的不确定性进行评估和控制的过程。
在非线性控制系统中,由于系统本身的非线性特性以及外界扰动的影响,控制系统的性能容易受到影响,因此需要进行鲁棒性分析来评估系统的稳定性和性能。
三、鲁棒性分析方法鲁棒性分析方法包括了最小相位鲁棒性、小增益鲁棒性等。
最小相位鲁棒性方法是一种从系统的传递函数角度出发,通过分析系统的相位角信息,判断系统的鲁棒性。
小增益鲁棒性方法是一种通过增加控制系统增益来提高系统的稳定性和鲁棒性的方法。
四、鲁棒性设计方法鲁棒性设计是指在控制系统的设计过程中,考虑到系统的不确定性,通过合理的设计方法来提高系统的鲁棒性。
常用的鲁棒性设计方法包括了H∞控制、µ合成、滑模控制等。
H∞控制是一种通过最小化系统的灵敏度函数来设计控制器的方法,具有较强的鲁棒性。
µ合成是一种基于频域方法的鲁棒性设计方法,通过合成系统增益矩阵来提高系统的鲁棒性。
滑模控制是一种通过引入滑模面来实现对非线性系统的鲁棒控制的方法,具有简单易实现的特点。
五、鲁棒性分析与设计的实例以机器人控制系统为例,进行鲁棒性分析与设计。
机器人控制系统中会存在着各种不确定性,如机器人本体的摩擦力、电机的转动惯量等。
通过对机器人控制系统进行鲁棒性分析,可以评估系统的稳定性和性能。
在设计过程中,通过合理选择控制策略和参数,以提高系统的鲁棒性,使得系统具有较强的抗干扰能力和自适应性。
非线性系统的鲁棒控制研究
非线性系统的鲁棒控制研究随着科技的不断发展,非线性系统的研究变得越来越重要。
非线性系统的不确定性和复杂性使得其在实际应用中难以被精确建模和控制。
而鲁棒控制正是针对这种不确定性和复杂性设计的一种控制方法,可以保证系统的鲁棒性和稳定性。
一、什么是非线性系统非线性系统是指系统输入和输出之间不遵循线性关系的系统。
与线性系统不同,非线性系统的输入响应与输出响应之间的关系是非线性的,其状态方程也是非线性的。
由于非线性系统的特殊性质,其规律和行为常常比线性系统更为复杂。
二、鲁棒控制的基本概念鲁棒控制是一种控制方法,可以保证系统在存在参数变化或外部干扰的情况下仍能保持稳定。
所谓鲁棒性,就是系统面对外部干扰和参数变化时仍能保持稳定的能力。
鲁棒控制的目标是使得系统具有较好的鲁棒性能,以面对不确定性和复杂性。
三、非线性系统的鲁棒控制在非线性系统中,系统的参数通常是不确定的。
这就要求鲁棒控制算法不仅具有在存在外部干扰时保持系统稳定的鲁棒性,还能够适应参数变化。
因此,鲁棒控制在非线性系统中具有更加广泛的应用。
1. 鲁棒滑模控制鲁棒滑模控制是鲁棒控制的一种方法。
滑模控制是一种常见的非线性控制方法,其基本思想是通过引入一个滑动模式,将系统状态限制在一个滑动模式面上实现系统的控制。
滑动模式面是一个特殊的平面,其状态方程是非线性的。
鲁棒滑模控制是针对滑模控制中的不确定性和扰动问题设计的一种方法,其能够保证系统在存在未知的参数扰动时也能保持稳定。
2. 自适应鲁棒控制自适应鲁棒控制是一种用于非线性系统的自适应控制方法。
它可以通过对系统参数的估计和修正来保证系统具有鲁棒性。
自适应鲁棒控制通常包括两个主要的部分:自适应机构和鲁棒控制器。
自适应机构能够实时估计系统的参数,鲁棒控制器则通过对估计值的修正来保证系统的鲁棒性。
3. 非线性鲁棒控制在非线性系统中,系统状态方程是非线性的,系统的稳定性也具有非线性特性。
非线性鲁棒控制是针对这种情况设计的一种控制方法。
非线性系统的鲁棒H∞控制
河南师范大学硕士学位论文非线性系统的鲁棒H<,∞>控制姓名:***申请学位级别:硕士专业:应用数学指导教师:***20090401摘要本文考虑了一类非线性时滞系统的鲁棒自适应巩控制和一类高阶非线性系统的鲁棒自适应比控制.在现有文献基础上,对非线性系统的鲁棒自适应如控制做了一些研究.首先,我们研究了一类非线性时滞系统的鲁棒自适应比控制,运用Backstepping方法和Lyapunov稳定性理论,通过巧妙的选取Lyapunov函数,构造了鲁棒自适应控制器,不仅解决了非线性系统中的时滞问题,并且保证了闭环系统的渐近稳定,数值例子和仿真证明了结论的有效性.其次,我们研究了一类高阶非线性系统的L2m增益鲁棒控制器设计方法,应用Back-stepping方法和改进的幂积分器方法,设计了一种新的鲁棒自适应如控制器,不仅使闭环系统全局渐近稳定并且满足上k范数界7.数值例子和仿真证明了结论的正确性.最后,针对以上非线性系统的鲁棒%控制问题作出了总结.关键词:鲁棒比控制,加幂积分器,自适应控制,渐近稳定ABSTRACTInthispaper,weconsidertheproblemofrobustadaptiveH∞controlforaclassofnonlineartime-delaysystemsandrobustadaptiveH∞controlforaclassofhigh-ordernonlinearsystems.Basedontheexistingliterature,somestudyhasbeendoneinthispaperonrobustadaptiveH∞controlofthenonlinearsystems.Firstly,WeconsidertheproblemofrobustadaptiveH∞controlforaclassofuncertainnonlineartime-delaysystems,usingBacksteppingmethodandLyapunovstabilitytheory,bychoosingLyapunovfunctionalskillfully,wehaveadesignofrobustadaptivecontroller.Wenotonlydealwiththetime—delaytermsofnonlinearsystems,butalsorendertheclosed—loopsystemasymptoticstability.Theillustrativeexampleandsimulationresultsverifytheeffectivenessoftheconclusion.Secondly,weconsiderthedesignmethodofL2仇一gainedrobustcontrollerforaclassofhigh—ordernonlinearsystems.Thesystemofthispaperisapolynomiallower—triangularform.BasedonBacksteppingmethodandmodifiedpowerintegratormethod,thenewrobustadaptive比controllerisdesigned,whichensuresthattheclosed—loopsystemismakes比normbound.Theillustrativeexampleandgloballyasymptoticallystableandsimulationresultsverifythecorrectnessoftheconclusion.Finally,wegiveasummaryoftheaboveproblemofrobustH∞controlfornonlinearsystems.KEYWORDS:RobustHoocontrol,PowerIntegrator,Adaptivecontrol,AsymptoticstabilityIII独创性声明本人郑重声明:所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果.尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得河南师范大学或其他教育机构的学位或证书所使用过的材料.与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意.签名:脚日期.鲨Z:皇:型关于论文使用授权的说明本人完全了解河南师范大学有关保留、使用学位论文的规定,即:有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅.本人授权河南师范大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文.(保密的学位论文在解密后适用本授权书)签名:第一章绪论§1.1学科概述在科技日新月异的今天,人们对实际生产过程的分析要求较高,大量的分析表明很多物理系统都是非线性的.严格地说,几乎所有的控制系统都是非线性的,非线性控制系统的形成基于两类原因,一是被控系统中包含有不能忽略的非线性因素,二是为提高控制性能或简化控制系统结构而人为地采用非线性元件.非线性系统的分析远比线性系统为复杂,缺乏能统一处理的有效数学工具.在许多工程应用中,由于难以求解出系统的精确输出过程,通常只限于考虑:系统是否稳定;系统是否产生自激振荡(见非线性振动)及其振幅和频率的测算方法;如何限制自激振荡的幅值以至消除它.而现代广泛应用于工程上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性等,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等.这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息.在某些工程问题中,非线性特性还常被用来改善控制系统的品质.例如将死区特性环节和微分环节同时加到某个二阶系统的反馈回路中去,就可以使系统的控制既快速又平稳.非线性控制系统在许多领域都具有广泛的应用.除了一般工程系统外,在机器人,生态系统和经济系统的控制中也具有重要意义.§1.2研究背景20世纪80年代以来,非线性科学越来越受到人们的重视,非线性系统的分析和设计问题引起了科研工作者的广泛兴趣【11.因为非线性系统所包含的现象十分复杂,迄今非线性系统理论还很不成熟.相平面法、李雅普诺夫方法和描述函数法是处理非线性控制系统的最经典的方法,但这三种分析方法对大多数非线性控制系统并不适用.变结构控制是目前最常用的非线性综合方法,并且已在实际中得到了一些应用,但使用该方法所设计的控制器会产生严重的抖动现象.各种智能方法也被用到非线性控制系统中,并提出了一些有效的控制方案.另一种研究非线性系统的思路是利用现代数学方法,其中的微分几何和微分代数控制方法极大地推动了非线性系统方面的研究.非线性系统的鲁棒比控制很多控制对象的数学模型随着时间或工作环境的改变而变化,其变化规律往往事先不知道.例如导弹或飞机的气动参数会随其飞行速度、飞机高度的变化而变化,因而导弹的数学模型参数可在很大的范围内变化.在飞行过程中,导弹的质量和质心位置会随着燃料的消耗而改变,这也会影响其数学模型的参数.当对象的数学模型参数在小范围内变化时,可用一般的反馈控制、最优控制或补偿控制等方法来消除或减小参数变化对控制品质的有害影响.如果控制对象参数在大范围内变化时,系统仍能自动地工作于最优工作状态或接近于最优的工作状态,因而就提出了自适应控制问题【2】.自适应控制是一种比较复杂的反馈控制,利用自适应控制能够解决一些常规的反馈控制所不能解决的复杂控制问题,可以大幅度地提高系统的稳态精度和动态品质.自从1983年Artstein[3】与Sontag[a]提出控制Lyapunov函数(CLF)概念后,借助于控制Lyapunov函数构造稳定控制律的方法得到了广泛的研究.对于某些类型的非线性系统,如果能找到其CLF,我们便能直接利用一些基于CLF与系统动态的通用公式【5'6】计算出使系统稳定的控制律.这样,Lyapunov函数不再局限于对非线性系统稳定性的描述,而在非线性控制系统的设计方面也显示出巨大的应用价值.近年来的研究已经使CLF进一步应用于时变系统、随机系统、离散系统等许多领域.Li与Kokotovic[71将CLF引入自适应非线性系统中,提出了自适应控制Lyapunov函数(ACLF)的概念,将对自适应系统的控制问题转化为对非自适应系统的控制问题.并利用ACLF构造控制律与自适应律.利用Lyapunov构造控制律具有较大的优势,因为即使我们通过其它方法构造出一个控制律,仍然需要一个适当的Lyapunov函数去证明其稳定性.Backstepping方法【5l是上世纪九十年代提出的,由于其独特的构造性的设计过程和对非匹配不确定的处理能力,在飞机及导弹控制系统设计中得到成功的应用.该方法是针对不确定性系统的一种系统化的控制器综合方法,是将Lyapunov函数的选取与控制器的设计相结合的一种回归设计方法.它通过从系统的最低阶次微分方程开始,引入虚拟控制的概念,一步一步设计满足要求的虚拟控制,最终设计出真正的控制律.时滞现象在各种各样的控制系统中都是普遍存在的,如长管道进料或皮带传输,极缓慢的过程或复杂的在线分析仪等均存在时滞现象.时滞的存在使得系统的分析和综合变得更加复杂和困难,因此,在过去的几十年内,不确定时滞系统的稳定性分析和镇定问题受到很多学者关注,并取得了丰硕成果【8—15】.在许多控制过程中,我们希望设计的控制器不仅要镇定整个闭环系统而且要实现系统第一章绪论满意的性能指标,其中的一种方法就是所谓的如控制.基于此种思想,如性能问题已取得了一些成果,见文献【16—29】.鲁棒上k控制理论是在上k空间(即Hardy空间)通过某些性能指标的无穷范数优化而获得具有鲁棒性能的控制器的一种理论.控制界将鲁棒日o。
非线性系统鲁棒性控制方法研究
非线性系统鲁棒性控制方法研究随着科技的不断发展和应用的广泛推广,非线性系统的研究变得越来越重要。
而对于非线性系统的控制,鲁棒性是一个十分关键的方面,即使在面对系统参数不确定或者外部干扰的情况下,也能保持系统稳定性和性能。
在非线性系统控制中,经典的线性控制方法常常难以适应非线性系统的特点。
因此,研究鲁棒性控制方法就变得尤为重要。
鲁棒性控制方法是一种能够保证控制系统在存在不确定性的情况下依然保持系统稳定性和性能的控制策略。
以下将介绍几种常见的非线性系统鲁棒性控制方法。
第一种鲁棒性控制方法是自适应控制。
自适应控制方法是一种基于反馈机制的控制策略,通过实时调整控制器参数来应对系统参数的不确定性。
自适应控制方法具有很强的适应性和鲁棒性,可以在系统发生变化时实时调整控制器参数,从而保持系统的稳定性和性能。
然而,自适应控制方法也存在一些问题,比如参数调整的收敛性和鲁棒性等方面的问题,需要进一步的研究和改进。
第二种鲁棒性控制方法是滑模控制。
滑模控制是一种通过引入滑模面来实现对非线性系统的控制的方法。
滑模面是一个超平面,通过使系统状态在滑模面上滑动,来实现对系统的控制。
滑模控制方法具有很强的适应能力和鲁棒性,可以在面对参数不确定性和外部干扰时保持系统的稳定性和性能。
然而,滑模控制方法也存在一些问题,比如滑模面设计和参数选择等方面的问题,需要进一步的研究和改进。
第三种鲁棒性控制方法是鲁棒控制。
鲁棒控制是一种通过设计鲁棒控制器来实现对非线性系统的控制的方法。
鲁棒控制器是一种能够对系统的参数不确定性和外部干扰具有鲁棒性的控制器。
鲁棒控制方法通过在控制器中引入不确定性补偿器或者鲁棒辨识器来实现对不确定性的补偿,从而保持系统的稳定性和性能。
鲁棒控制方法具有很强的鲁棒性和适应性,能够在面对不确定性和干扰时依然保持系统的控制性能。
然而,鲁棒控制方法也存在一些问题,比如鲁棒性分析和控制器设计等方面的问题,需要进一步的研究和改进。
鲁棒控制原理及应用举例
鲁棒控制原理及应用举例摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。
关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统经典的控制系统设计方法要求有一个确定的数学模型。
在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。
但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。
对许多要求不高的系统,这样的数学模型已经能够满足工程要求。
然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。
因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。
由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。
随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。
设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U 中的每一对象都保持不变,则称系统具有鲁棒性。
鲁棒控制理论与方法
鲁棒控制理论与方法鲁棒控制是现代控制理论中的一个重要分支,它致力于设计出对系统参数变化、外部扰动和建模误差具有鲁棒性的控制器,以保证系统在不确定性环境下的稳定性和性能。
本文将介绍鲁棒控制的基本理论和常用方法,以及其在工业控制、机器人控制等领域中的应用。
一、鲁棒控制基础理论鲁棒性是指控制系统对不确定性的一种抵抗能力,它可以通过针对系统模型的不确定性建立数学模型,以保证系统稳定性和性能。
鲁棒控制的基础理论包括:1. H∞ 控制理论:H∞ 控制是一种用于处理线性时不变系统鲁棒控制问题的数学工具。
该方法通过定义一个性能指标,以最小化系统输出的最坏情况下的波动来设计控制器。
2. μ合成控制理论:μ合成是一种基于描述函数的鲁棒控制方法,它将系统不确定性建模为复杂函数,并通过求解非线性最优化问题来设计控制器。
3. 鲁棒控制的小参数理论:该理论主要研究在参数扰动很小时,系统性能的鲁棒稳定性和鲁棒性问题。
二、常用的鲁棒控制方法鲁棒控制方法多种多样,下面列举几种常用的方法:1. H∞ 控制方法:H∞ 控制方法通过在系统输出和控制器输入之间引入鲁棒性加权函数来设计鲁棒控制器。
该方法适用于线性时不变系统和线性时变系统。
2. μ合成控制方法:μ合成控制方法通过优化复杂描述函数来设计鲁棒控制器。
该方法适用于线性和非线性系统,并且具有较强的泛化能力。
3. 自适应控制方法:自适应控制方法将未知参数作为反馈调整的对象,通过在线估计参数的方式设计鲁棒控制器。
该方法适用于需要适应不确定性参数的系统。
4. 鲁棒滑模控制方法:鲁棒滑模控制方法通过引入滑模面的概念,以实现对系统模型误差和扰动的高度鲁棒性。
该方法适用于非线性和时变系统。
三、鲁棒控制在工业与机器人控制中的应用鲁棒控制在工业控制和机器人控制领域具有广泛的应用,以下列举几个实际应用案例:1. 工业过程控制:鲁棒控制可以用于工业过程中对温度、压力、流量等参数的控制。
通过对系统模型的不确定性建模和鲁棒控制器的设计,可以保证工业过程的稳定性和性能。
非线性系统的鲁棒控制及其应用
非线性系统的鲁棒控制及其应用非线性系统是指其系统变量之间的关系呈现出非线性的特征,其物理意义在我们日常生活中无处不在,例如气候系统、生态系统、经济系统等。
然而,由于非线性系统具有高度的复杂性和不可预测性,其控制与实现一直是控制领域的难点和研究热点。
针对非线性系统的鲁棒控制方法在近年来被广泛研究,其所控制的非线性系统能够在干扰和不确定性的作用下依旧能够实现稳定的控制,被广泛应用在现代工业与科学中。
一、鲁棒控制的基本概念鲁棒控制方法是一种针对非线性系统的控制技术,其核心思想是在非线性控制系统的设计中考虑干扰和不确定性因素,从而增强控制系统的稳定性。
其主要构想为:通过给定控制环节引入干扰和参数的不确定性,从而能够将根据给定的控制目标控制系统的输出控制在预定的范围之内。
从控制论的角度来理解鲁棒控制,鲁棒控制是一种基于系统自身特性变化的控制方法。
因控制对象的物理意义多为一些复杂的非线性系统,而这些非线性系统一般包括了大量的未知动态元素或噪声干扰,使得无法以对问题的精确的数学模型来描述或分析其特征和行为,因而在实际控制系统中通常出现各种意外的干扰和不同的不确定因素。
在这样的背景下,如何在控制过程中快速、准确、高效地处理这些因素显得尤为重要。
因此鲁棒控制方法逐渐成为一种非常有利于解决这类问题的控制技术,其通过将控制器设计的过程中考虑多种影响控制器性能并对其进行优化,从而提高控制器的鲁棒性,使其能充分适应所需要控制的对象,从而实现系统的稳定控制。
二、鲁棒控制方法的系统结构鲁棒控制系统的核心思想是让系统控制器能够追踪所需要控制系统所需输出的组合信号,同时它可以调节系统中特定的元素来达到满足特定要求的目标。
鲁棒控制系统通常包括三个主要的部件:鲁棒控制器、非线性动态系统和外部环境。
1.鲁棒控制器鲁棒控制器是控制系统中的核心部件,其功能是处理从系统中所传输出来的信号,同时通过相关的数学算法和理论来优化动态调整控制系统的实际性能并追踪系统的输出。
非线性电机系统鲁棒控制方法研究
非线性电机系统鲁棒控制方法研究一、引言非线性电机系统的鲁棒控制是电机控制中的重要研究方向。
非线性电机系统由于具有不确定性、非线性和复杂性等特点,传统的控制方法往往难以满足鲁棒性要求。
因此,针对非线性电机系统的控制问题,研究鲁棒控制方法具有重要的理论和实际意义。
本文将围绕非线性电机系统鲁棒控制方法展开研究,探索适用于非线性电机系统的鲁棒控制策略,以提高电机系统的性能和控制精度。
二、非线性电机系统的特点与建模非线性电机系统一般由磁场方程、电流方程、运动方程和转子动态方程等数学模型组成。
与线性电机系统相比,非线性电机系统具有以下特点:1. 不确定性:非线性电机系统中存在参数不准确、外部干扰等不确定性因素,使得控制过程充满挑战性。
2. 非线性:系统中的非线性因素如饱和、磁滞、摩擦等导致系统的输出与输入之间不是线性关系。
3. 复杂性:非线性电机系统通常包含多个耦合的动态过程,导致系统难以建模和控制。
建立准确的非线性电机系统模型是进行鲁棒控制方法研究的前提。
常用的建模方法有物理建模和统计建模两种。
物理建模方法通过对电机系统的物理特性进行建模,包括电机的电气特性、磁特性、机械特性等。
统计建模方法则基于实验数据对电机系统进行建模和参数辨识。
根据实际需求和研究目的,选择合适的建模方法对非线性电机系统进行描述和分析。
三、非线性电机系统鲁棒控制方法的研究现状目前,对于非线性电机系统的鲁棒控制方法,已经涌现出了多种有效的策略,包括传统的PID控制、自适应控制、模糊控制、神经网络控制等。
下面我们将针对这些方法进行综述。
1. PID控制方法PID控制是一种传统的控制方法,通过设置比例、积分和微分三个参数来调节系统的控制性能。
在非线性电机系统中,PID控制方法能够实现对系统稳态和动态性能的调节。
然而,由于非线性电机系统的复杂性和不确定性,传统PID控制方法的应用效果较为有限。
2. 自适应控制方法自适应控制方法通过在线辨识系统模型和参数,自动调节控制器参数以适应系统的变化。
非线性反馈控制与鲁棒控制
非线性反馈控制与鲁棒控制在控制工程领域,非线性反馈控制和鲁棒控制是两种重要的控制策略。
它们在处理复杂系统、提高系统稳定性和鲁棒性方面发挥着关键作用。
本文将介绍非线性反馈控制和鲁棒控制的基本原理和应用。
一、非线性反馈控制非线性反馈控制是一种可以应对非线性系统的控制策略。
与传统的线性控制器相比,非线性反馈控制可以更好地适应系统的动态特性和非线性特征。
其基本思想是通过引入非线性函数来修正系统输出与期望输出之间的误差,并在系统的稳态工作点处进行线性化处理。
非线性反馈控制主要包括状态反馈、输出反馈和动态反馈等方式。
其中,状态反馈利用系统状态量来构建非线性修正项,输出反馈依据系统输出量进行修正,动态反馈则结合了状态和输出信息以实现更加精确的控制效果。
非线性反馈控制在飞行器、机器人、电力系统和化工过程等领域得到广泛应用。
通过引入非线性修正项,可以提高系统的稳定性和响应速度,同时克服系统非线性带来的问题,提高系统的控制性能。
二、鲁棒控制鲁棒控制是一种能够处理系统参数变化和外界扰动的控制方法。
与传统的控制方法相比,鲁棒控制可以通过设计鲁棒稳定控制器来保证系统的稳定性和性能,无需精确的系统模型和参数信息。
鲁棒控制主要包括H∞控制、μ合成控制和自适应控制等方法。
其中,H∞控制以系统的H∞性能指标为基础,设计出具有鲁棒性能的控制器。
μ合成控制则通过数学优化方法,将系统不确定性和鲁棒性能综合考虑,设计出稳定且鲁棒的控制器。
自适应控制通过实时估计和调整控制器参数,以应对系统参数变化和扰动。
鲁棒控制广泛应用于航空航天、自动驾驶、制造业和机械控制等领域。
它能够有效提高系统的稳定性和鲁棒性,抑制系统受到的不确定性和扰动的影响,保证系统的控制效果。
三、非线性反馈控制与鲁棒控制的结合非线性反馈控制和鲁棒控制都是针对复杂系统的控制方法,它们在理论和实践中都具有重要的地位。
而将这两种方法结合起来,可以更好地解决复杂系统的控制问题。
结合非线性反馈控制和鲁棒控制的方法有很多,常见的有滑模控制、自适应控制和鲁棒最优控制等。
非线性时变系统的鲁棒性分析与控制研究
非线性时变系统的鲁棒性分析与控制研究随着科技的发展,人们对控制理论的需求越来越高。
非线性时变系统在实际生活中也随处可见,尤其在工业生产、交通运输等领域中占据着重要的位置。
对于这种具有不确定性和复杂性的系统,如何进行鲁棒性分析和控制成为研究的热点和难点之一。
一、非线性时变系统的基本概念非线性时变系统一般由非线性方程组描述,包含多个状态变量,其特点是动态系统的状态随时间演化而不断变化。
对比于线性时变系统,非线性时变系统具有更大的不确定性和复杂性,因此在分析和控制上存在更大的困难。
二、鲁棒性分析的概念及原理鲁棒性分析是指对于非线性时变系统,通过对系统内变量、外部干扰、模型误差等因素进行综合分析,提高系统稳定性、鲁棒性和抗干扰能力的方法。
鲁棒性分析时还需要考虑系统的变化特性,是通过建立合适的模型来确定变化特性,对系统进行统计分析。
三、鲁棒性控制的方法鲁棒性控制是指对鲁棒性分析结果进行整合,通过采用不同的控制策略,提高系统的鲁棒性、稳定性和抗干扰能力。
一般来说,鲁棒性控制的方法包括自适应控制、模糊控制、神经网络控制等。
自适应控制是指根据系统状态的变化,适时调整控制器参数和控制策略,进而提高系统的控制性能和鲁棒性。
模糊控制是指利用灰色系统理论,根据系统变化规律进行模糊分类,对控制器进行优化,提高系统控制精度和鲁棒性。
神经网络控制是指利用人工神经网络模拟人脑神经元的工作原理和计算方法,对于非线性时变系统进行特征提取和建模,在此基础上进行控制,提高系统的控制精度和抗干扰能力。
四、应用案例分析鲁棒性分析和控制不仅在理论研究上有重要的意义,更是在各种实际应用中有广泛的应用价值。
例如,在机械控制、电力系统、自动化生产等领域,非线性时变系统的控制问题始终是一个难题。
以机器人控制为例,当机器人完成一个复杂任务时,系统状态经常会发生变化,干扰、误差等问题也随之出现。
通过对机器人的鲁棒性分析和控制,可以在系统状态发生变化时,适时调整控制策略,提高控制精度和鲁棒性。
鲁棒控制算法
鲁棒控制算法
鲁棒控制算法是一种控制系统的调节方法,能够使系统保持稳定性和准确性。
这种方法通常应用于不稳定的控制系统,例如非线性系统、时变系统等。
鲁棒控制算法的基本思想是在保证系统鲁棒性的前提下,通过标准控制方法对系统进行调节。
所谓鲁棒性,就是指控制系统在面对各种异常条件时,仍能够保持住系统的稳定性和准确性。
因此,鲁棒控制算法能够使得系统对于参数变化和外部干扰有更好的适应能力。
鲁棒控制算法的设计与实现主要分为以下几个步骤:
1. 确定控制对象的数学模型和系统采样周期。
这是鲁棒控制算法设计的第一步,要明确控制对象的特征和采样频率,才能够对系统进行控制。
2. 根据系统模型,设计控制器,这是鲁棒控制算法设计的核心部分。
鲁棒控制器主要包括三种类型:P-I-D型、自适应型、模型参考自适应型。
在设计过程中,需要深入理解系统模型,根据系统特点选择相应类型的控制器,并进行参数调节,确保系统能够稳定运行。
3. 实现控制器的参数调节。
通常采用试控法或者模型预测控制技术等
方法,对控制器参数进行调节,以使控制器更符合系统的特性。
4. 进行系统仿真和实验验证。
在设计和调节过程结束后,需要对系统
进行仿真和实验比较,验证控制器的鲁棒性和稳定性。
总体来说,鲁棒控制算法能够使得系统对于参数变化和外部干扰有更
好的适应能力,从而保证系统的稳定性和准确性。
该算法在飞行控制、机器人控制、电力电子等多个领域都有着广泛的应用。
随着计算机能
力的不断提高,鲁棒控制算法将会得到更广泛的应用,成为控制领域
的一个重要研究方向。
非线性系统鲁棒控制技术的应用研究
非线性系统鲁棒控制技术的应用研究近年来,非线性系统控制技术领域的快速发展,使得控制工程师们能够更加准确有效地控制非线性系统,其中鲁棒控制技术是一个颇受关注的领域。
本文将探讨鲁棒控制技术在非线性系统中的应用研究,包括介绍非线性系统和鲁棒控制技术的基本概念及原理,分析鲁棒控制技术在非线性系统中的优势和不足,以及对未来鲁棒控制技术发展的展望。
一、非线性系统非线性系统是指在系统的输入和输出之间存在着非线性关系,这种非线性关系可能会导致系统的输出产生不稳定甚至chaos的现象。
在实际的工程应用中,由于受到各种外界干扰和不确定因素的影响,系统可能会变得复杂起来,难以完全建立精确的模型。
因此,对于非线性系统的控制研究成为了一个极具挑战性的问题。
二、鲁棒控制技术鲁棒控制技术是指在所面对的控制系统存在着各种不确定因素的情况下,利用适当的控制策略,实现控制系统的性能可靠、对外界扰动具有强鲁棒性的一种控制技术。
它能够有效解决传统控制方法中所无法应对的非线性系统中的鲁棒控制问题。
鲁棒控制技术应用广泛,在建筑施工、车联网、自动化生产等领域都得到了很好的应用。
三、鲁棒控制技术在非线性系统中的应用1. 控制趋势鲁棒控制技术对非线性系统的控制,在实现系统动态优化和稳定控制的基础上,还可以提高系统的鲁棒性能,即使在面临非线性系统的非线性问题时也能够提供良好的控制效果。
2. 处理方法鲁棒控制技术主要概括了两种控制方法。
一是将鲁棒设计作为基础控制器的补充,使得控制性能更优;二是将鲁棒控制设计作为基础控制器的核心,以维持鲁棒性能和灵活性。
3. 控制效果鲁棒控制技术实现了对非线性系统的完整控制,有效提高了控制的精度和可靠性,同时对于系统中存在的干扰也能够有更好的抵抗能力。
这种控制方式能够在工程应用中取得良好的效果,学术界和工程实践中都有大量相关的研究和应用案例。
四、鲁棒控制技术的优劣势1. 优势鲁棒控制技术不需要考虑和精确地知道控制系统的各项参数,只需要知道系统的输入和输出即可,因此非线性控制方法更具有灵活性。
控制系统鲁棒性分析与设计
控制系统鲁棒性分析与设计控制系统是现代工程中不可或缺的一部分。
在实际工程应用中,控制系统必须能够应对各种不可避免的外界扰动和系统参数变化。
因此,控制系统的鲁棒性分析与设计变得尤为重要。
本文将着重探讨控制系统的鲁棒性,并介绍其中一些常用的分析与设计方法。
一、什么是控制系统的鲁棒性控制系统的鲁棒性是指系统在面对各种扰动时,仍能保持良好的性能表现。
换句话说,鲁棒性是表征系统抵御不确定因素的能力。
这些不确定因素可能包括外部环境变化、传感器偏差、执行器误差等。
鲁棒性分析与设计的目标是确保系统能够在不确定性条件下稳定运行,并保持所需的性能指标。
二、鲁棒性分析方法1. 线性鲁棒性分析线性鲁棒性分析是指采用线性模型来描述系统特性,并通过相关数学工具进行鲁棒性分析。
其中,最著名的方法之一就是基于Bode图的频域鲁棒性分析。
通过绘制系统的频率响应曲线,并分析曲线上的幅值和相位裕度,可以评估系统的鲁棒性能。
2. 非线性鲁棒性分析非线性鲁棒性分析是指考虑系统的非线性特性,并通过非线性控制理论进行鲁棒性分析。
相比于线性鲁棒性分析,非线性鲁棒性分析更加复杂。
其中一种常用的方法是利用Lyapunov稳定性理论来分析非线性系统的鲁棒性。
三、鲁棒性设计策略1. 基于PID控制器的鲁棒性设计PID控制器是最常用的控制器之一,其鲁棒性设计是十分重要的。
通过选择合适的PID参数,可以提高系统对不确定性的抵抗能力。
常见的PID鲁棒性设计方法包括基于频率响应的方法、基于线性矩阵不等式的方法等。
2. 基于自适应控制的鲁棒性设计自适应控制是一种根据系统实时变化来自主调整控制策略的方法。
通过利用自适应算法,控制系统可以实时更新控制策略,以应对不确定性的变化。
自适应控制的鲁棒性设计方法有许多种,包括模型参考自适应控制、无模型自适应控制等。
3. 基于鲁棒控制的鲁棒性设计鲁棒控制是一种专门针对不确定性的控制方法。
通过设计鲁棒控制器,系统可以保持良好的稳定性和性能指标。
非线性时变时滞系统的鲁棒H∞控制
一
水
水
木
枣 木
木
木
奉
术
M
l( t ) I 一 l 7 。 I l ( f ) d t <
一 一 ^ 木
一
・
V ( x ( t ) )+ l ( l £ )I l 一y l I ( £ )I l s r ( t ) [ 7 t r p+ +Q +P +( 4 +1 ) F l+
C 。 , A , , D , i=1 , 2是 常数 矩 阵 ; ( t )是 时变 时滞
且 满 足 0≤ 『 l ( t )s h< ∞ , 五 ( £ ) h<l ( 2 )
中. 文献[ 3 ] 给出一类不确定非线性 系统鲁棒 日 控 制问题 的解 , 但是文 中并未考虑时滞. 文献 [ 4 ] 给出 类非线性时滞系统鲁棒 日 控制器 的存在条件及
证明
=A l+A 2 , l 1=- A P+
选取 L y a p u n o v泛 函为 ( s ) ( s ) d s+
2 A 2 ] x ( t 一 ( t ) )+2 ( t ) [ P 8 2+h A ,  ̄ B 2+
尸 +Q +P 2+( 4 h+1 ) F l+2 h A 1 +c G 1 .
给 出系统状态反馈 鲁棒
关键词 : 非线性 系统 ; 鲁棒 H 控制 ; 时变时滞 ; 线性矩阵不等式( L M I )
中圈分类号 : T P 2 7 3 文献标志码 : A 文章编号 : 1 0 0 8-7 9 7 4 ( 2 0 1 3 ) 0 2- 0 0 0 1一 o 3
近2 0年来 , 线性 系 统鲁 棒 。控 制 理论 的研 究 取 得 了很 大 进 展 【 l ] , 并 被 逐 渐 推 广 到 非 线 性 系 统