知识点 :负整数指数幂(解答题)

合集下载

负整数指数幂计算题

负整数指数幂计算题

负整数指数幂计算题
负整数指数幂计算题是属于算术表达式求值课程中的一部分,因此理
解它们变得尤为重要。

那么,如何解决负整数指数幂计算题呢?在本
文中,我将通过解答几个例题,指导大家如何计算负整数指数幂。

首先,需要熟悉基本知识:负整数指数幂表示的数量会降低或增加,
这取决于底数(即负数的原数)的正负性。

当底数为正数时,指数幂
将增加,而当底数为负数时,其指数幂则会降低。

举个例子,让我们
来看看(-5)²的值,此时底数为负数,而指数为2,因此(-5)²=-25.
现在来解决一些复杂点的例子。

比如(-5)⁻⁴的计算,此时底数为负数,而指数为负数,因此其结果应当是正数。

我们先将指数取反,即-4取反变为4,然后把原来的负数取绝对值,即5变为正数,这样我们就得到了5⁴。

由于指数的符号变成了正,因此求出的结果为正数,即:5⁴= 625.
有时候,指数可能会出现在分母中,比如分母中出现负整数指数,比
如 1/ (-5)⁻³ 。

解答这类问题,我们需要先把分母中的指数取反,然
后将底数取绝对值,这样原式就变成了1/5³,由于指数的符号变成了正,因此求出的结果为正数,即:1/ 5³= 0.008。

总之,当底数为正数时,指数幂将增加;当底数为负数时,其指数幂
则会降低;当指数出现负数时,我们先把指数取反,然后将底数取绝
对值,这样就可以求出结果。

许多高中生和大学生学习数学时都会遇
到负整数指数幂计算题,希望以上介绍可以帮助大家解决这一问题。

知识点087:负整数指数幂(填空题)

知识点087:负整数指数幂(填空题)

一、填空题(共30小题)1、(2011•徐州)30﹣2﹣1=.考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.解答:解:原式=1﹣=,故答案为.点评:本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p为正整数);零指数幂:a0=1(a≠0).2、(2011•常州)计算:=;=;=1;=﹣2.考点:负整数指数幂;相反数;绝对值;零指数幂。

专题:计算题。

分析:分别根据绝对值、0指数幂及负整数指数幂的运算法则进行计算即可.解答:解:=;=;=1;=﹣2.故答案为:,,1,﹣2.点评:本题考查的是绝对值、0指数幂及负整数指数幂的运算法则,熟知以上知识是解答此题的关键.3、(2011•保山)计算=3.考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.解答:解:原式=2+1=3.故答案为3.点评:本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p为正整数);零指数幂:a0=1(a≠0).4、(2010•青海)分解因式:a3﹣25a=a(a+5)(a﹣5);计算:()﹣1+(π﹣)0﹣=0.考点:负整数指数幂;实数的运算;提公因式法与公式法的综合运用;零指数幂。

专题:计算题。

分析:分解因式a3﹣25a,一提公因式得a(a2﹣25a)二套平方差公式得a(a+5)(a﹣5);一个数的负一次方等它的倒数,则()﹣1=3,任何除0以外的实数的0次方都是1,则(π﹣)0=1,算术平方根是指一个正数的正的平方根,则=4,原式=3+1﹣4=0.解答:解:a3﹣25a=a(a2﹣25)=a(a+5)(a﹣5);()﹣1+(π﹣)0﹣=3+1﹣4=0.点评:解题关键是熟练掌握因式分解的方法、负整数指数幂、零指数幂、二次根式的性质及计算法则.5、(2010•南平)计算:2﹣1=.考点:负整数指数幂。

(完整版)幂的知识点

(完整版)幂的知识点

幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()pp p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()pp p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=. 【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【答案与解析】解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n ma a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nmn.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n na n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=. 【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)mn m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mmab==,则()()()36322mm m m ab a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m ma a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >) 要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn aa-=(a ≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy-=(0xy ≠),()()551a b a b -+=+(0a b +≠).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷- 【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m-===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数: (1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067 【答案与解析】 解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯; (3)-0.000135=41.3510--⨯; (4)0.00067=46.710-⨯. 【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15c D.8c2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x += B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x xx +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ; 【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=. 4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510. 5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n+==⨯=g . 8. 【答案】6;【解析】3119,3119,6x aa x x +=+==. 9. 【答案】25;【解析】()2632525n n aa===.10.【答案】5;1; 【解析】338,38,5mma a aa m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-; 12.【答案】200; 【解析】()()32322222()8()81000800200n nn n a a aa--=-=-=.三.解答题 13.【解析】 解:(1)×;(2)×;(3)×;(4)× 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4。

八年级负整指数幂的计算题

八年级负整指数幂的计算题

八年级负整指数幂的计算题一、计算。

1. 2^-3- 解析:根据负整指数幂的定义a^-p=(1)/(a^p)(a≠0,p为正整数),对于2^-3,这里a = 2,p=3,则2^-3=(1)/(2^3)=(1)/(8)。

2. 3^-2- 解析:同理,a = 3,p = 2,3^-2=(1)/(3^2)=(1)/(9)。

3. ((1)/(2))^-2- 解析:a=(1)/(2),p = 2,根据负整指数幂定义((1)/(2))^-2=(1)/((frac{1){2})^2}=(1)/(frac{1){4}} = 4。

4. ((1)/(3))^-3- 解析:a=(1)/(3),p = 3,((1)/(3))^-3=(1)/((frac{1){3})^3}=(1)/(frac{1){27}}=27。

5. 5^-1+3^-1- 解析:先分别计算负指数幂,5^-1=(1)/(5),3^-1=(1)/(3),则5^-1+3^-1=(1)/(5)+(1)/(3)=(3 + 5)/(15)=(8)/(15)。

6. 2^-2-4^-1- 解析:2^-2=(1)/(4),4^-1=(1)/(4),所以2^-2-4^-1=(1)/(4)-(1)/(4)=0。

7. ( - 2)^-3- 解析:(-2)^-3=(1)/((-2)^3)=(1)/(-8)=-(1)/(8)。

8. (-3)^-2- 解析:(-3)^-2=(1)/((-3)^2)=(1)/(9)。

9. 10^-3×10^5- 解析:根据同底数幂相乘,底数不变,指数相加,10^-3×10^5=10^-3 +5=10^2=100。

10. 2^-3÷2^-5- 解析:根据同底数幂相除,底数不变,指数相减,2^-3÷2^-5=2^-3-(-5)=2^-3 + 5=2^2=4。

11. (3×10^-2)×(2×10^3)- 解析:根据乘法交换律和结合律以及同底数幂相乘法则,(3×10^-2)×(2×10^3)=(3×2)×(10^-2×10^3) = 6×10^-2+3=6×10^1=60。

负整数指数幂的计算题

负整数指数幂的计算题

负整数指数幂的计算题在数学中,指数幂是一种常见的计算形式,从而可以表示一个数的幂。

通常情况下,指数幂是用正整数作为指数的,例如2^3表示的是2的3次方,即2乘以2乘以2,结果为8。

不过,在某些情况下,我们也可以用负整数作为指数进行幂运算。

本文将探讨负整数指数幂的计算,以帮助读者更好地理解这一概念。

一、负整数指数幂的定义在数学中,负整数指数幂的定义可以通过以下公式表示:a^(-n) = 1 / (a^n)其中,a代表底数,n代表指数。

可以看出,负整数指数幂就是将正整数指数幂的结果取倒数。

二、负整数指数幂的计算方法计算负整数指数幂的方法与正整数指数幂类似。

假设我们要计算a^(-n),那么可以按照以下步骤进行计算:1. 计算 a^n 的结果。

2. 将结果取倒数,即 1/(a^n)。

举例来说,如果要计算 2^(-3):1. 首先计算正整数指数幂 2^3 的结果,得到 8。

2. 将结果取倒数,得到 1/8,即2^(-3) = 1/8。

三、负整数指数幂的性质负整数指数幂有一些特殊的性质,下面将分别进行介绍。

1. 负整数指数幂的值小于1根据负整数指数幂的定义,可以得出结论:负整数指数幂得到的结果是一个小于1的数。

这是因为负整数指数幂等于正整数指数幂的倒数。

2. 不同底数负整数指数幂的比较对于不同的底数,负整数指数幂的大小比较并不简单。

例如,2^(-2) 和 3^(-2),很难直接判断哪一个更小。

因此,在进行不同底数负整数指数幂的比较时,建议先计算出其结果再进行比较。

3. 负整数指数幂的运算规则负整数指数幂也符合一些运算规则,这些规则可以与正整数指数幂的规则类比。

以下列举了几个常见的规则:- a^(-n) = 1 / (a^n)- (a * b)^(-n) = 1 / (a^n * b^n)- (a^n)^(-m) = a^(n * m)- a^(-n) * a^n = 1四、实际应用负整数指数幂的概念和计算方法在实际问题中有一定的应用。

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。

负整数指数幂-初中数学习题集含答案

负整数指数幂-初中数学习题集含答案

负整数指数幂(北京习题集)(教师版)一.选择题(共2小题)1.(2019秋•西城区期末)下列运算正确的是 A .B .C .D . 2.(2016秋•西城区期末)下列各式正确的是A .B .C .D . 二.填空题(共3小题)3.(2019秋•西城区校级期中)计算的结果是 .4.(2019秋•西城区校级期中)若有意义,则满足的条件是 .5.(2018春•门头沟区期末) , . 三.解答题(共5小题)6.(2018秋•门头沟区期末)我们规定:,即的负次幂等于的次幂的倒数.例: (1)计算: ; ;(2)如果,那么 ;如果,那么 ; (3)如果,且、为整数,求满足条件的、的取值. 7.(2019春•顺义区期末)计算:; 8.(2018春•延庆区期末)计算: 9.(2018春•怀柔区期末)计算:. 10.(2016秋•西城区校级期中)化简:.()328-=-326-=-3128-=3126-=()6212121x x x x --==g 62331x x x x --÷==323322()x xy x y y--==32123()y x x y -=33-3(25)x -+x 0(3)π-=11()2-=1(0)p p a a a -=≠a P a p 22144-=25-=2(2)--=128p -=p =2116a -=a =19p a -=a p a p 20182022(1)()(4)33π---+---201601(1)(3)2π----+2018021(1)( 3.14)(2π----+32232()(2)m n m n ----g负整数指数幂(北京习题集)(教师版)参考答案与试题解析一.选择题(共2小题)1.(2019秋•西城区期末)下列运算正确的是 A .B .C .D . 【分析】直接利用负指数幂的性质化简得出答案.【解答】解:, 故选:.【点评】此题主要考查了负整数指数幂的性质,正确掌握定义是解题关键.2.(2016秋•西城区期末)下列各式正确的是 A .B .C .D . 【分析】根据同底数幂的乘法,同底数幂的除法,积的乘方,负整数指数幂,可得答案.【解答】解:、,故不符合题意;、,故不符合题意;、,故不符合题意; 、负整数指数幂与正整数指数幂互为倒数,故符合题意;故选:.【点评】本题考查了负整数指数幂,利用同底数幂的乘法,同底数幂的除法,积的乘方,负整数指数幂是解题关键.二.填空题(共3小题)3.(2019秋•西城区校级期中)计算的结果是  . 【分析】直接利用负指数幂的性质化简得出答案.【解答】解:. 故答案为:. 【点评】此题主要考查了负指数幂的性质,正确掌握定义是解题关键.()328-=-326-=-3128-=3126-=3128-=C ()6212121x x x x --==g 62331x x x x --÷==323322()x xy x y y--==32123()y x x y -=A 624x x x -=g A B 628x x x -÷=B C 323366()x xy x y y--==C D D D 33-12733113327-==1274.(2019秋•西城区校级期中)若有意义,则满足的条件是 . 【分析】根据负整数指数幂的底数不等于0列式计算即可得解.【解答】解:有意义,,满足的条件是. 故答案为:. 【点评】本题考查了负整数指数幂与零次幂成立的条件,需熟记. 5.(2018春•门头沟区期末) 1 , . 【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:,. 故答案为:1,2.【点评】此题主要考查了零指数幂的性质以及负指数幂的性质,正确把握相关定义是解题关键.三.解答题(共5小题) 6.(2018秋•门头沟区期末)我们规定:,即的负次幂等于的次幂的倒数.例: (1)计算:  ; ; (2)如果,那么 ;如果,那么 ; (3)如果,且、为整数,求满足条件的、的取值. 【分析】(1)根据负整数指数幂的计算法则计算即可求解;(2)根据负整数指数幂的计算法则找到指数即可求解;(3)根据负整数指数幂的计算法则找到底数和指数即可求解. 【解答】解:(1);; (2)如果,那么;如果,那么; (3)由于、为整数,所以当时,;当时,;当时,.3(25)x -+x 52x ≠-3(25)x -+Q 250x ∴-≠x ∴52x ≠-52x ≠-0(3)π-=11()2-=0(3)1π-=11()22-=1(0)p p a a a -=≠a P a p 22144-=25-=1252(2)--=128p -=p =2116a -=a =19p a -=a p a p 21525-=21(2)4--=128p -=3p =2116a -=4a =±a p 9a =1p =3a =2p =3a =-2p =故答案为:(1);;(2)3;. 【点评】考查了负整数指数幂,负整数指数幂:,为正整数),注意:①;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现的错误;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数;④在混合运算中,始终要注意运算的顺序.7.(2019春•顺义区期末)计算:; 【分析】直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案.【解答】解:原式 . 【点评】此题主要考查了实数运算,正确化简各数是解题关键.8.(2018春•延庆区期末)计算:【分析】直接利用负整数指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式 . 【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.9.(2018春•怀柔区期末)计算:. 【分析】直接利用零指数幂的性质以及负指数幂的性质化简各数得出答案.【解答】解:原式,.【点评】此题主要考查了负指数幂的性质和零指数幂的性质,正确掌握相关定义是解题关键.10.(2016秋•西城区校级期中)化简:. 【分析】利用负整数指数幂的法则求解即可.【解答】解: , , . 【点评】本题主要考查了负整数指数幂,解题的关键是熟记负整数指数幂的法则.125144±1(0p p a a a -=≠p 0a ≠2(3)(3)(2)--=-⨯-20182022(1)()(4)33π---+---411199=+--13=201601(1)(3)2π----+1112=-+12=2018021(1)( 3.14)(2π----+114=-+4=32232()(2)m n m n ----g32232()(2)m n m n ----g624614m n m n --=⨯g 2414m n -=424n m =。

沪教版七年级 整数指数幂及其运算,带答案

沪教版七年级  整数指数幂及其运算,带答案

整数指数幂及其运算教学目标理解整数指数幂的概念,掌握其运算法则.知识精要1.零指数 )0(10≠=a a2.负整数指数 ).,0(1为正整数p a aa p p ≠=- 注意正整数幂的运算性质:n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=⋅-+)(,)(),0(,可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是0或负整数.3. 用科学记数法表示绝对值大于0而小于1的数的方法:绝对值大于0而小于1的数可以表示为:10n a -⨯(其中110,a n ≤<为正整数) 热身练习1. 当x ________时,2(42)x -+有意义?2. 将代数式222332b a----化成不含负指数的形式_______. 3. 将235()x y --+写成只含有正整数幂的形式是_______.4. 计算:(1)03211(0.5)()()22---÷-+ (2)2574x x x x x ÷÷⋅⋅(3)2222()()a b a b -----÷+ (4) 323()xy -(5)02140)21()31()101()21()2(⋅++------ (6) 52332()()y y y ---÷⋅5. 用小数表示下列各数(1)610- (2)31.20810-⨯ (3)59.0410--⨯6. 用科学记数法表示下列各数(1)34200 (2)0.0000543 (3)-0.0007897. 计算:22(2)2----=_______.8.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米的长度为0.000000052米,用科学记数法表示此数为_________米.精解名题1. 用负整数指数幂表示下列各式(1)2335x y x y -+ (2)254m x y+(3)51ax by - (4)2()()mn m n m n -+2. 将下列各式写成只含有正指数幂的形式(1)2(5)(5)a b a b --+ (2)312)(--+cd ab(3)321(6)xy x y -+ (4)111()x y ---+(5)222(2)n n -+- (6)3222011111()()()()()23323---⨯-⨯++-(7) 2224()()x y x xy y ----++巩固练习1.化负整数指数幂为正整数指数幂:(1)4a -=________. (2)21()n m a b a b --+=________.(3) 2m n a b c --=________.2.如果下列各式中不出现分母,那么: (1)2x y =________. (2)33()b a a b =-________. (3)22()n a b a a b -+=________.3.科学记数法:(1)265000000=________.(2)63.50510-⨯=________.4. 计算:32m m --⋅=________.2005200620072008(1)(1)(1)(1)-+-+-+-=________.5.下列计算结果中, 正确的是( )A .236a a a --⋅= B. 0808m m m ÷÷=C. 5315()x x --=D. 091y y ⋅=6.下列各数中,是科学记数法的正确表示的是( )A. 15910-⨯B. 561.510-⨯C. 20.588910-⨯D. 5600--7.用科学记数法表示下列各数(1)20050000000; (2)100700000; (3)-1946000;(4)0.000001219 (5)0.00000000623 (6)-0.00000001688. 写出下列用科学记数法表示的数的原数.(1)96.66610⨯; (2)69.20110-⨯(3)16.43210-⨯ (4)22.78310⨯9.计算(1)06(0.7)(1);-+-(2)333(3)---+-(3)0221(4)(2)52-+-;(4)22[(5)]---(5)22()a b -+(6)11()()x y x y --+-(7)11(3)(4)a b a b --+-(8)2224()()x y x xy y ----++自我测试一、选择题:1.下列式子是分式的是( )A .x x +2B .22+xC .ππ+xD .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m 27966+-C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xyy x 222+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .-1 D .-27.已知432c b a ==,则c b a +的值是( ) A .54 B. 47 C.1 D.45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x 9.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .448020480=--x x B .204480480=+-x x C .420480480=+-x x D .204804480=--x x 10.计算()1222122-⎪⎭⎫ ⎝⎛---+-的正确结果是( ) A.2 B.-2 C.6 D.10二、填空题11.计算2323()a b a b --÷=____________.12.用科学记数法表示-0.000 000 0314=____________.13.计算22142a a a -=--____________. 14.方程3470x x=-的解是____________. 15.已知a +b =5, ab =3,则=+b a 11____________. 16.如果ba =2,则2222b a b ab a ++-=____________. 17.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门.请你尝试用含你n 的式子表示巴尔末公式______________________.三、解答题18.计算:(1))2(216322b a a bc a b -⋅÷ ; (2)9323496222-⋅+-÷-+-a a b a ba a .19.解方程求x :(1)0)1(213=-+--x x x x (2)13132=-+--x x x(3)2163524245--+=--x x x x (4)()22104611x x x x -=--20.有一道题:“先化简,再求值:22241()244x x x x x -+÷+-- 其中,x =-3”. 小玲做题时把“x =-3”错抄成了“x =3”,但她的计算结果也是正确的,请你解释这是怎么回事?21.甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地.已知这个人骑自行车的速度是步行速度的4倍.求步行速度和骑自行车的速度.22.甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的31,求步行和骑自行车的速度各是多少?23.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项 工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超 过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施 工,则刚好如期完成.问原来规定修好这条公路需多长时间?24.甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多少天?整数指数幂及其运算教学目标理解整数指数幂的概念,掌握其运算法则.知识精要1.零指数 )0(10≠=a a 2.负整数指数 ).,0(1为正整数p a aa p p ≠=- 注意正整数幂的运算性质:nn n mnnm n m n m n m n m b a ab a a a a a a a a a ==≠=÷=⋅-+)(,)(),0(,可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是0或负整数. 3. 用科学记数法表示绝对值大于0而小于1的数的方法:绝对值大于0而小于1的数可以表示为:10n a -⨯(其中110,a n ≤<为正整数)热身练习1. 当x 2≠时,2(42)x -+有意义?2. 将代数式222332b a ----化成不含负指数的形式3249a b3. 将235()x y --+写成只含有正整数幂的形式是2311()()5x y+ 4. 计算:(1)03211(0.5)()()22---÷-+ (2)2574x x x x x ÷÷⋅⋅解:原式=-4 解:原式=51x(3)2222()()a b a b -----÷+ (4) 323()xy -解:原式=2222b a b a -+ 解:原式=36127x y(5)02140)21()31()101()21()2(⋅++------ (6)52332()()y y y ---÷⋅解:原式=910161++- 解:原式17y = =45. 用小数表示下列各数(1)610- (2)31.20810-⨯ (3)59.0410--⨯ 解:(1)610-=0.000001(2)31.20810-⨯=0.001208 (3)59.0410--⨯=-0.00009046. 用科学记数法表示下列各数(1)34200 (2)0.0000543 (3)-0.000789 解:(1)34200=43.4210⨯(2)0.0000543=55.4310-⨯ (3)-0.00078=47.8910--⨯7. 计算:22(2)2----= 08.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米的长度为0.000000052米,用科学记数法表示此数为85.210-⨯米.精解名题1. 用负整数指数幂表示下列各式1189194274=-⨯⨯++=-(1)2335x y x y -+ (2)254m x y+解:原式231(3)(5)x y x y -=-+ 解:原式251(4)m x y -=+ (3)51ax by - (4)2()()mnm n m n -+ 解:原式51()ax by -=- 解:原式12()()mn m n m n --=-+2. 将下列各式写成只含有正指数幂的形式(1)2(5)(5)a b a b --+ (2)312)(--+cd ab 解:原式25(5)a b a b +=- 解:原式32()a e b d=+(3)321(6)xy x y -+ (4)111()x y ---+ 解:原式26xy x y=+ 解:原式xyx y =+(5)222(2)n n -+- (6)3222011111()()()()()23323---⨯-⨯++-解:原式0= 解:原式(7) 2224()()x y x xy y ----++ 解:原式巩固练习2.化负整数指数幂为正整数指数幂: 22243611()()1x x x y y y x y =-++=-(2)4a-=41a . (2)21()n m a b a b --+=2()m n b a a b + . (4) 2m n a b c --=2nm b a c.3.如果下列各式中不出现分母,那么:(1)2x y =2xy -. (2)33()b a a b =-313()a a b b ---.(3)22()na ba ab -+=2()(2)n a a b a b --+-. 3.科学记数法:(1)265000000=82.6510⨯. (2)63.50510-⨯=0.000003505. 4. 计算:32m m --⋅=5m -.2005200620072008(1)(1)(1)(1)-+-+-+-=0. 5.下列计算结果中, 正确的是( C ) A .236a a a --⋅= B. 0808m m m ÷÷= C. 5315()x x --= D. 091y y ⋅=6.下列各数中,是科学记数法的正确表示的是( A ) A. 15910-⨯ B. 561.510-⨯ C. 20.588910-⨯ D. 5600--7.用科学记数法表示下列各数(1)20050000000 (2)100700000 解:原式=102.00510⨯ 解:原式=81.00710⨯(3)-1946000 (4)0.000001219 解:原式=61.94610-⨯ 解:原式= 61.21910-⨯ (5)0.00000000623 (6)-0.0000000168 解:原式=86.2310-⨯ 解:原式=81.6810--⨯ 8. 写出下列用科学记数法表示的数的原数.(1)96.66610⨯ (2)69.20110-⨯ 解:原式=6666000000 解:原式=0.000009201(3)16.43210-⨯ (4)22.78310⨯ 解:原式=0.6432 解:原式=278.3 9.计算(1) 60)1()7.0(-+- (2)333(3)---+- 解:原式=1+1 解:原式=2(3)0221(4)(2)52-+- (4)22[(5)]--- 解:原式 解:原式(5)22()a b -+ (6)11()()x y x y --+- 解:原式=4222--++b ab a 解:原式22x y -=-(7)11(3)(4)a b a b --+- (8)2224()()x y x xy y ----++解:原式 解:原式36x y -=-112727227=--=-2514294=+=21()25625-==413124311ab ab ab ab =-+-=-+-自我测试一、选择题:1.下列式子是分式的是( B )A .x x +2B .22+xC .ππ+xD .2yx +2.下列各式计算正确的是( C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am an m n ++=3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m 27966+-C .2222ab b a b a +-D .22222yxy x y x +--4.化简2293mmm --的结果是( B ) A.3+m m B.3+-m mC.3-m mD.m m -3 5.若把分式xy y x 222+中的x 和y 都扩大2倍,那么分式的值( B )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程xa xa x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .-1 D .-27.已知432c b a ==,则c b a +的值是( D )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A ) A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100 D .306030100+=-x x 9.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( C )A .448020480=--x x B .204480480=+-x x C .420480480=+-x x D .204804480=--x x10.计算()1222122-⎪⎭⎫ ⎝⎛---+-的正确结果是( A ) A.2 B.-2 C.6 D.10 二、填空题11.计算2323()a b a b --÷=46a b .12.用科学记数法表示-0.000 000 0314=83.1410--⨯. 13.计算22142a a a -=--12a +. 14.方程3470x x=-的解是 30 . 15.已知a +b =5, ab =3,则=+b a 1135. 16.如果b a=2,则2222b a b ab a ++-=53. 17.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门.请你尝试用含你n 的式子表示巴尔末公式22(2)(2)4n n ++-. 四、解答题 18.计算:(1))2(216322b a a bc a b -⋅÷ (2)9323496222-⋅+-÷-+-a a b a b a a解:原式=234a c - 解:原式=23(2)a b --19.解方程求x : (1)0)1(213=-+--x x x x (2)13132=-+--xx x 解:1x = 解:2=x经检验1x =为增根, 经检验2=x 为原方程的解. 所以原分式方程无解; (3)2163524245--+=--x x x x (4)()22104611x x x x -=-- 解: 2=x 解:1x =经检验2=x 为增根, 经检验1x =为增根, 所以原分式方程无解; 所以原分式方程无解;20.有一道题: “先化简,再求值:22241()244x x x x x -+÷+-- 其中,x =-3”. 小玲做题时把“x =-3”错抄成了“x =3”,但她的计算结果也是正确的,请你解释这是怎么回事?解:原式=)4(44)4(22222-⋅-+-⋅+-x x xx x x =24x +,所以不论x 的值是 +3还是-3结果都为13 .21.甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地.已知这个人骑自行车的速度是步行速度的4倍.求步行速度和骑自行车的速度.解:设步行的速度是xkm /h ,骑自行车的速度是4xkm /h .247197=-+xx 解得 x =5经检验5=x 为原方程的解. 4×5=20km /h答:步行的速度是5km /h ,骑自行车的速度是20km /h .22.甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的31,求步行和骑自行车的速度各是多少?解:设步行的速度是xkm /h ,骑自行车的速度是3xkm /h .2135.45.4=-x x 解得 x =6经检验6=x 为原方程的解. 3×6=18km /h答:步行的速度是6km /h ,骑自行车的速度是18km /h . 23.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项 工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超 过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施 工,则刚好如期完成.问原来规定修好这条公路需多长时间?解:设原来规定修好这条公路需x 天,则甲需要x 天,乙需要(x +6)天.164)611(4=+-+++x x x x解得 x =12经检验12=x 为原方程的解.答:原来规定修好这条公路需12天.24.甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班 另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多 少天?解:甲单独完成任务后需x 天,乙单独完成任务后需y 天.⎪⎪⎩⎪⎪⎨⎧=++=+16)11(46111y yx y x 解得:⎩⎨⎧==189y x经检验⎩⎨⎧==189y x 为原方程的解.答:甲单独完成任务后需9天,乙单独完成任务后需18天.。

八年级数学上册负整数指数幂练习题

八年级数学上册负整数指数幂练习题

八年级数学上册负整数指数幂练习题(含答案解析)学校:___________姓名:___________班级:__________一、单选题1.()02-的值为( )A .2-B .0C .1D .2 2.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<< B .b a c d <<< C .b a d c <<< D .a b d c <<<3.020*******)(0.125)8+⨯的结果是( )AB 2C .2D .04.计算x 2•x 3的结果是( )A .x 6B .x 5C .x 4D .x 35.若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是( ) A .b a b a -<<<-B .b b a a <-<<-C .a b b a <-<<-D .a b b a <<-<- 6.下列运算中,正确的是( )A 3±B .()020-=C .122-=-D 2- 7.已知212m -⎛⎫= ⎪⎝⎭,()32n =-,012p ⎛⎫=-- ⎪⎝⎭,则m ,n ,p 的大小关系是( ) A .m p n << B .n m p << C .p n m << D .n p m <<二、填空题8.计算:(1=__________; (2)=__________;(3)|2-=_________;(4)2|+=__________.9.计算:3|-11()3-=_______.10.计算:10(4)(π--+=_________.三、解答题11.计算:(1)(⎛⨯- ⎝;)12;(4))11112-⎛⎫ ⎪⎝⎭. 12.计算:|1-.13.已知一元二次方程20ax bx c ++=有一根为1,且1a =,求2013abc 的值.14.观察并验证下列等式:332121()29+=+=,3332123123()36++=++=,333321234123)410(0+++=+++=,(1)续写等式:3333312345++++=________;(写出最后结果)(2)我们已经知道()112312n n n +++⋅⋅⋅+=+,根据上述等式中所体现的规律,猜想结论:333331231()n n +++⋅⋅⋅+-+=________;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①333333695760+++⋅⋅⋅++;①333313521()n +++⋅⋅⋅+-;(4)试对(2)中得到的结论进行证明.参考答案:1.C【分析】根据零指数幂的运算法则求出()02-的值.【详解】解: ()021-=.故选:C .【点睛】本题考查了零指数幂,零指数幂法则:任何一个不等于零的数的零次幂都等于1.2.D【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭, ①10011999-<-<<, ①a b d c <<<,故选D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.3.C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.4.B【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:x 2•x 3=x 2+3=x 5.故选:B .【点睛】此题主要考查同底数幂的乘法,解题的关键是熟知其运算法则.5.C【分析】根据0a <,0b >,且a b >,可得0a ->,0b -<,a b ->,据此判断出b ,a -,b -的大小关系即可.【详解】解:①0a <,0b >,且a b >,①0a ->,0b -<,a b ->,①a b <-,①a b b a <-<<-.故选:C .【考点】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.6.D【分析】根据算术平方根,零指数幂,负整数指数幂,立方根的性质,逐项判断即可求解.【详解】解:3=,故本选项错误,不符合题意;B.()021-=,故本选项错误,不符合题意; C.1122-=,故本选项错误,不符合题意;2=-,故本选项正确,符合题意.故选:D .【点睛】本题主要考查了算术平方根,零指数幂,负整数指数幂,立方根的性质,熟练掌握相关运算法则是解题的关键.7.D【分析】根据负整数指数幂,有理数的乘方,零指数幂分别求得,,m n p 的值,进而比较大小即可.【详解】解:①212m -⎛⎫= ⎪⎝⎭4=,()32n =-8=-,012p ⎛⎫=-- ⎪⎝⎭1=-, ①n p m <<故选:D .【点睛】本题考查了负整数指数幂,有理数的乘方,零指数幂,掌握运算法则是解题的关键.8. 2; 2+【分析】根据同类根式的合并法则和去绝对值符号法则进行计算.【详解】解:(1=(2)=(3)|22=,(4)2|2++故答案为:2;2【点睛】本题考查同类根式的计算,掌握运算法则是关键.9.【分析】利用绝对值的性质、负整数指数幂的性质化简,再利用实数的加减运算法则得出结果.【详解】解:原式33=,=故答案为:【点睛】此题主要考查了绝对值的性质、负整数指数幂,解题的关键是正确化简各数.10.34##0.75【分析】根据零指数幂和负整数指数幂的计算法则求解即可【详解】解:原式114=-+34 =.故答案为:34.【点睛】本题主要考查了零指数幂和负整数指数幂,熟知二者的计算法则是解题的关键.11.(1)(2)(3)1(4)0【分析】(1)先根据二次根式性质进行化简,然后再进行计算即可;(2)先根据二次根式性质进行化简,然后再按照二次根式乘除运算法则进行计算即可;(3)根据二次根式混合运算法则进行计算即可;(4)根据平方差公式和二次根式性质和负整数指数幂进行运算即可.(1)解:==(2)(⎛⨯- ⎝⎛= ⎝⎭⎛= ⎝⎭= (3))1232=1=(4)解:)11112-⎛⎫ ⎪⎝⎭ 131412=--+22=-+0=【点睛】本题主要考查了二次根式的混合运算和实数混合运算,熟练掌握二次根式的性质和混合运算法则,是解题的关键.12.(1)-124(2)6【分析】(1)直接利用立方根性质化简以及有理数加减运算法则计算即可;(2)直接利用算术平方根性质以及绝对值的性质分别化简计算即可.(1)=2-3-54 =-124(2)|1-1=6【点睛】此题主要考查了实数运算,正确化简各数是解题关键.13.2.【分析】结合题意,根据二次根式的非负性得到2020b b -≥⎧⎨-≥⎩,解得2b =,代入1a =得到a ,又因为1x =是20ax bx c ++=的根,则可得1c =-,再将a ,b ,c 的值代入2013abc 计算,即可得到答案.【详解】①1a =,①2020b b -≥⎧⎨-≥⎩,即22b b ≥⎧⎨≤⎩,①2b =. 代入得1a =-.又①1x =是20ax bx c ++=的根,①211210c -⨯+⨯+=,①1c =-.①()20132013121abc =-⨯⨯-()1212=-⨯⨯-=.【点睛】本题考查二次根式的非负性、指数幂的运算,解题的关键是掌握二次根式的非负性、指数幂的运算.14.(1)225;(2)221(1)4n n +;(3)①1190700,①422n n -;(4)见解析 【分析】(1)(2)直接根据题意给出的规律即可求解.(3)①先按积的乘方分出27,提公因式27,再按给出的规律即可求解,①需先添偶次项,][333333331232[2462()()]n n +++⋅⋅⋅+-+++⋅⋅⋅+,前面括号中直接][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,后变括号利用积的乘方分出8,提公因式8,再按给出的规律计算,提公因式整理结果集(4)利用和立方公式展开,求出平方和公式,再利用和四次方公式展开,利用错位相减法求出立方和即可【详解】解:(1)22()1234552251=++++=,故答案为:225;(2)原式()2222111231(1)(1)24++n n n n n n ⎡⎤=++-+=+=+⎡⎤⎣⎦⎢⎥⎣⎦, 故答案为:221(1)4n n +; (3)①原式33333132333()()()20()=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712722732720=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712320()=+++⋅⋅⋅+,227123(20)++++=,2212720214=⨯⨯⨯, 2744100=⨯,1190700=;①原式][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,23333333322232[123212]n +++n =-++⨯+⋅⋅⋅⎤⎡+⨯⎣⨯⨯⎦, 22333312218(12(4))()3n n n =⋅⋅+⋅-+++, 2222()114218144()n n n n =⨯+-⨯⨯⨯+, 2222()()2121n n n n =+-+,,221(2)n n =-,422n n =-;(4)①33213(1)3n n n n +=+++,①33213(1)3n n n n +-=++,①332()(131)()311n n n n --=-+-+,…①3323232321-=⨯+⨯+,①3322131311-=⨯+⨯+,上述n 个等式相加,得,3322211312()()(312)n n n n +-=++⋅⋅⋅++++⋅⋅⋅++,①222331211()()(12)3n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-,3(1)(1)3(1)2n n n n +=+-⨯-+, 23(1)(1)12n n n ⎡⎤=++--⎢⎥⎣⎦, 21(1)2n n n ⎛⎫=++ ⎪⎝⎭, ①222112(1)(21)6n n n n ++⋅⋅⋅+=++, ①44321464()1n n n n n +=++++,①44321464()1n n n n n +-=+++,①44321416()()(1411)()n n n n n --=-+-+-+,…4432324262421-=⨯+⨯+⨯+,4432214161411-=⨯+⨯+⨯+,上述n 个等式相加,得,44333222141261()2412()()()n n n n n n +-=++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++,①33342224121161()()()()2412n n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-++⋅⋅⋅+-,41(1)(1)6(1)(21)4(1)62n n n n n n n +=+-⨯++-⨯-+,3()[()()121]121n n n n n =++-+--,32()(1)n n n =++, ①33322112(1)4n n n ++⋅⋅⋅+=+. 【点睛】本题考查自然数立方和公式推导及应用,掌握自然数列和公式,自然数平方和公式,自然数立方和推导过程,规律型:数字的变化类、因式分解的应用是解题关键.。

专题10 零指数幂和负指数幂(含答案)

专题10 零指数幂和负指数幂(含答案)

专题10 零指数幂和负指数幂知识解读1.零指数幂:任何不等于0的数的0次幂都等于1,即a0=1(a≠0).2.关于负指数幂的几个常用结论:(1)a-n与a n互为倒数;(2)n na bb a-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(3)n mm na bb a--=.3.科学记数法(1)确定a,a是只有一位整数的数;(2)确定n:方法一:当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零);方法二:绝对值大于等于10的数,小数点向左移到第一位数字后,看小数点移动了几位,n的值就是几,表达式中的n应为正整数;绝对值小于1的数,小数点向右移到第一位不为零的数后,看小数点移动了几位,n的值就是几,表达式中的n应为负整数.培优学案典例示范一、零指数幂和负指数幂例1计算:(1)(-5)0;(2)(π-3.14)0;(3)(-6)-2;(4)325-⎛⎫-⎪⎝⎭.【提示】(1)(2)中底数都不是0,所以这两个零次幂都等于1;(3)(4)先把负整数指数化为正整数指数.【解答】【技巧点评】对于零指数幂的运算,要弄清底数是否为0,只有当底数不为0时,这个零次幂才等于1;解负整数指数幂时,应先把负整数指数幂化为正整数指数幂,然后按照幂的运算性质计算.1.计算:)11201520152015-⎛⎫--- ⎪⎝⎭.二、科学记数法表示绝对值小于1的正数例2 PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A .2.5×10-7 B .2.5×10-6 C .25×10-7 D .0.25×10-5【提示】科学记数法的形式为a ×10n ,科学记数法的过程就是确定a 和n 的过程.【技巧点评】此类题目中的易错点:①a 的值和符号,如本题易把a 的值当作25;②n 的符号及n 的值. 特别注意:指数的负号与a 中的负号意义不同,不可以“负负得正”.跟踪训练22.一种微粒的半径是0.00004米,这个数据用科学记数法表示为( ) A .4×106 B .4×10-6 C .4×10-5 D .4×105 三、负指数幂和零指数幂参与的计算 例3 计算下列各式:1、(1)()()()2221323232363xy x y x y x y ---•- ; (2)()22334536a b a b a b ------.【提示】负指数幂的法则,结合幂的乘方和同底数幂的法则运算. 思路1:将负指数先化成正指数后,再运算; 思路2:分子与分子、分母与分母运算,最后再约分. 【解答】【技巧点评】上面的两种方法不一定要严格界限,可以相互配合使用.3.计算下列各式: (1)0112343632--⎛⎫⎛⎫-•-• ⎪ ⎪⎝⎭⎝⎭; (2)()23123236a b a b a b ------.例4 计算下列各式:(1)()22221111a b a b a b -------⎛⎫-•+ ⎪-⎝⎭; (2)152x xy x y x x x y x --⎛⎫⎛⎫+-÷• ⎪ ⎪-⎝⎭⎝⎭.【提示】平方差公式仍然适用,如a -2-b -2=(a -1-b -1)(a -1+b -1). 思路1:将负指数先化成正指数后,再运算;思路2:利用负指数幂的性质将分式运算化成类似于整式的运算. 【解答】【技巧点评】乘法公式在这里同样适用,如a -2-b -2=(a -1+b -1)(a -1-b -1),(a -1±b -1)2=a -2±2a -1b -1+b -2.跟踪训练44.已知x+x -1=a ,求x 2+x -2和x 4+x -4的值. 拓展延伸 例5 若a =5513-⎛⎫⎪⎝⎭,b =4414-⎛⎫ ⎪⎝⎭,c =3315-⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是 .【提示】把这三个幂的指数化为正数,然后都化成指数为11的幂,然后比较底数大小.跟踪训练55.已知x =1+2p ,y =1+2-p ,则用x 表示y 的结果是( ) A .11x x +- B .21x x ++ C .1xx - D .2-x竞赛连接例6 (浙江初中数学竞赛试题)已知x+y=x -1+y -1≠0,则xy 的值为( ) A .-1 B .0 C .1 D .2 【提示】x+y=x -1+y -1可化为x+y=1x +1y,适当变形.跟踪训练66.阅读下列解题过程:(-3m 2n -2)-3·(-2m -3n 4)-2 =(-3)-3m -6n 6·(-2)-2m 6n -8 A =127-m -6n 6·(14-m 6n -8) B =21108nC 上述解题过程中,从 开始出错,应改正为 .培优训练直击中考1.★下列运算正确的是( )A .a 2·(a 3)2=a 7B .-0.005=5×10-3C .(a -2)2=a 2-4D .()111212-⎛⎫+--- ⎪⎝⎭=22.★若102x =25,则10-x =( ) A .15- B .15 C .150 D .16253.★(x -1+y -1)-1=( ) A .x=y B .1x y + C .xy x y + D .x yxy+ 4.★计算:-22+(-2)2- (12-)-1= .5.★计算:(-2-1)-2= . 6.★已知1232723832x x --⎛⎫⎛⎫•=⎪⎪⎝⎭⎝⎭,则x = . 7.★计算下列各式,并且把结果化为只含有正整数指数形式:(1)()2225523a ba b --•; (2)()23421x y x y y --⎛⎫•÷ ⎪⎝⎭(3)222233(2)4a b ab a b ----;(4)122232(2)()2mn m n m ------÷.8.★已知14a a -+=,求22a a -+的值.9.★计算:(1)223(3)x y --; (2)3123(2)a b xy ----;(3)132415()()28p q p q ----÷-;(4)22333(3)3m n m n --; (5)132321163()(2)4a b c a b c ----;(6)3443431(2)()4x y yx ---;(7)231232(3)6a b a b a b ------;(8)322232132a b c x y ----⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (9)(111(2)()ab a b a b ----+-.知战竞赛1. ★★已知12a a-+=,则1a a -+=( )A.4B.2C.6D.82. ★★计算:2331123(2)2a b a b a b -------= . 3. ★★★求满足91016()()()28915ab c=的一切整数a ,b ,c 的值。

中考数学每日一练:负整数指数幂的运算性质练习题及答案_2020年解答题版

中考数学每日一练:负整数指数幂的运算性质练习题及答案_2020年解答题版

答案
~~第4题~~ (2017营口.中考模拟) 先化简,再求值:(
﹣x﹣1)÷ ,其中x=( )﹣1+
考点: 实数的运算;负整数指数幂的运算性质;利用分式运算化简求值;特殊角的三角函数值;
+4sin30°.
答案
~~第5题~~ (2017建昌.中考模拟) 先化简,再求值:( ﹣
)÷ ,其中x=|1﹣ |+( )﹣1 .
考点: 负整数指数幂的运算性质;利用分式运算化简求值;
答案
2020年 中 考 数 学 : 数 与 式 _分 式 _负 整 数 指 数 幂 的 运 算 性 质 练 习 题 答 案
1.答案:
2.答案: 3.答案: 4.答案:
5.答案:
答案
~~第2题~~ (2019广东.中考模拟) 计算:( )﹣2+(π﹣2019)0+sin60°+| ﹣2|
考点: 0指数幂的运算性质;负整数指数幂的运算性质;二次根式的加减法;特殊角的三角函数中考模拟) 计算:( )﹣1+tan60°+|﹣ |﹣ .
考点: 实数的运算;负整数指数幂的运算性质;特殊角的三角函数值;
中考数学每日一练:负整数指数幂的运算性质练习题及答案_2020年解答题版
2020年 中 考 数 学 : 数 与 式 _分 式 _负 整 数 指 数 幂 的 运 算 性 质 练 习 题
~~第1题~~ (2019相城.中考模拟) 计算:(﹣ )0﹣|﹣3|+(﹣1)2015+( )﹣1 .
考点: 实数的运算;0指数幂的运算性质;负整数指数幂的运算性质;

专题1-10 零次幂和负整数指数幂(拓展提高)(解析版)

专题1-10 零次幂和负整数指数幂(拓展提高)(解析版)

专题1.10 零次幂和负整数指数幂(拓展提高)一、单选题1.下列运算正确的是( ) A .336x x x += B .2224(3)6xy x y = C .1122x x-=D .725x x x ÷=【答案】D【分析】根据合并同类项法则,积的乘方运算法则,负整数指数幂的意义和同底数幂的除法对四个选项依次判断即可.【详解】解:A 选项,33362x x x x +=≠,故A 选项不符合题意; B 选项,222424(3)96xy x y x y =≠,故B 选项不符合题意;C 选项,12122x x x-=≠,故C 选项不符合题意; D 选项,725x x x ÷=,故D 选项符合题意. 故选:D .【点睛】本题考查了合并同类项法则,积的乘方运算法则,负整数指数幂的意义和同底数幂的除法,熟练掌握这些知识点是解题关键. 2.如果等式()331x x +-=成立,则使得等式成立的x 的值有几个( )A .1个B .2个C .3个D .4个【答案】B【分析】利用零指数幂的性质以及有理数的乘方运算法则得出即可. 【详解】解:3(3)1x x +-=,∴若30x +=,解得:3x =-,此时0(6)1-=,符合题意, 当31x -=,解得:4x =,此时711=符合题意,当31x -=-时,解得:2x =,此时5(1)1-=-,不符合题意, 综上所述:满足等式的x 值有2个. 故选:B .【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,分类讨论得出是解题关键.3.细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是( ) A .25×10﹣5米B .25×10﹣6米C .2.5×10﹣5米D .2.5×10﹣6米【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000025=2.5×10-6. 故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.20202021223202120192021202032a b c ⎛⎫⎛⎫==⨯-=-⨯- ⎪⎪⎝⎭⎝⎭,,,则a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a【答案】D【分析】根据题意,分别将a ,b ,c 的值算出后比较大小即可得解.【详解】解:020211a ==,()()222202012020120202020120201b =-+-=--=-,20202020202032333232222332c ⎛⎫=⨯=-⨯⨯=- ⎪⎛⎝⎫⎛⎫-⨯ ⎪⎪⎝⎝⎭⎭⎭, ∵3112-<-<, ∴c b a <<, 故答案为:D .【点睛】本题主要考查了幂运算,平方差公式的应用等,熟练掌握相关运算法则是解决本题的关键. 5.据悉,华为Mate40 Pro 和华为Mate40 Pro+搭载业界首款5nm 麒麟90005GSoC 芯片,其中5nm 就是0.000000005m .将数据0.000000005用科学记数法表示为( )A .9510-⨯B .80.510-⨯C .7510-⨯D .7510⨯【答案】A【分析】绝对值小于1的正数用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<; 【详解】0.000000005=9510-⨯ , 故选:A .【点睛】本题考查了科学记数法的形式,正确理解科学记数法是解题的关键;6.我们根据指数运算,得出了一种新的运算,如下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①4log 162=,②2log 84=,③31log 29=-,其中正确的是( ) A .①② B .①③ C .②③ D .①②③【答案】B【分析】根据题中的新定义法则判断即可.【详解】解:根据题意得:①log 416=log 442=2,故①正确; ②322log 8log 23==,故②错误 ③123331log log 9log 329--===-,故③正确. ∴正确的式子是①③, 故选:B .【点睛】此题考查了有理数的乘方运算和负整数指数幂,熟练掌握运算法则是解本题的关键.二、填空题7.计算:230248-⨯⨯=_______. 【答案】16.【分析】先分别算出负指数幂、乘方和零指数幂,再计算乘法,即可得出答案. 【详解】解:230248-⨯⨯ 16414=⨯⨯ 16=故答案为:16.【点睛】本题考查的是负指数幂、乘方和零指数幂,熟记负指数幂和零指数幂的性质是解题的关键. 8.若(1﹣x )1﹣3x =1,则满足条件的x 值为__________________. 【答案】0或13【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案.【详解】解:∵(1﹣x )1﹣3x=1,∴当1﹣3x =0时, 解得:x =13,当1﹣3x =1时, 解得:x =0, 当1﹣x =﹣1时, 解得:x =2(不合题意), 则满足条件的x 值为0或13.故答案为:0或13.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键. 9.若(3)1x x -=,则x 的值为__. 【答案】0或4或2【分析】分底数为1或-1,指数为0几种情况,分类讨论,列方程求解即可. 【详解】解:当31x -=,解得:4x =, 此时(3)1x x -=,当31x -=-,解得:2x =, 此时(3)1x x -=,当0x =,此时(3)1x x -=,综上所述:x 的值为:0或4或2. 故答案为:0或4或2.【点睛】本题考查了0指数的性质,解题关键是根据底数和指数进行分类讨论,注意:0指数底数不为0. 10.某种细胞可以近似地看成球体,它的半径是0.0000005米,用科学记数法表示为_________米. 【答案】5×10﹣7 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000005=5×10-7. 故答案为:5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=-⎩,若x y =1,则a =___.【答案】3或32【分析】由1,y x =可得1,x = 或1,x y =-是偶数,或0,0,x y ≠= 再分三种情况列方程组,解方程组可得答案.【详解】解:1,y x =1,x ∴= 或1,x y =-是偶数,或0,0,x y ≠=当1x =时,11135y a y a +=-⎧∴⎨-=-⎩解得:3,3a y =⎧⎨=-⎩ 当1,x y =-是偶数,11135y a y a -+=-⎧∴⎨--=-⎩解得:11a y =⎧⎨=⎩,不合题意舍去,当0,0,x y ≠=135x a x a =-⎧∴⎨=-⎩解得:3212a x ⎧=⎪⎪⎨⎪=-⎪⎩ 综上:a 的值为:3或32故答案为:3或32【点睛】本题考查的是二元一次方程组的解法,零次幂的含义,有理数的乘方的应用,掌握以上知识是解题的关键.12.一个正方体集装箱的棱长为0.4m .(1)用科学记数法表示这个集装箱的体积是_________3m ;(2)若有一个小立方块的棱长为3110m -⨯,则把集装箱装满需要这样的小立方块的个数为_______.(用科学计数法表示)【答案】26.410-⨯ 76.410⨯【分析】(1)利用有理数的乘法运算结合科学记数法的表示方法得出答案; (2)利用有理数的乘除运算法则化简求出答案. 【详解】解:(1)一个正方体集装箱的棱长为0.4m , ∴这个集装箱的体积是:230.40.40.4 6.410()m -⨯⨯=⨯,答:这个集装箱的体积是236.410m -⨯; 故答案是:26.410-⨯;(2)一个小立方块的棱长为3110m -⨯,23376.410(110) 6.410--∴⨯÷⨯=⨯(个),即:需要76.410⨯个这样的小立方块才能将集装箱装满. 故答案是:76.410⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.已知223x y z x y z -+=-+=,且x 、y 、z 的值中有且仅有一个为0,则()zxy =______. 【答案】1【分析】原式化为2323x y z x y z -+=⎧⎨-+=⎩,得到x +y =0,即可得出z =0,解方程组023x y x y +=⎧⎨-=⎩即可求解.【详解】解:原式化为2323x y z x y z -+=⎧⎨-+=⎩①②,②-①得,0x y +=,∵x ,y ,z 的值中仅有一个为0, ∴0z =,由023x y x y +=⎧⎨-=⎩解得:11x y =⎧⎨=-⎩,∴()[]01(1)1zxy =-=⨯, 故答案为:1.【点睛】本题考查了解三元一次方程组,0指数幂运算,加减消元法消去z 联立关于x 、y 的方程组是解题的关键.14.若a =(﹣2)﹣2,b =(﹣1)﹣1,c =(﹣32)0,则a 、b 、c 的大小关系是_____.【答案】b <a <c【分析】先求出a 、b 、c 的值,再根据有理数大小比较法则比较即可. 【详解】解:∵a =(-2)-2=14,b =(-1)-1=-1,c =(-32)0=1,∴b <a <c , 故答案为:b <a <c .【点睛】本题考查了有理数的大小比较法则,负整数指数幂,零指数幂的应用,解此题的关键是求出每个式子的值,题目比较典型,难度适中.三、解答题15.(1)计算:20212(2015)()2π--+-+;(2)20132012512()()125-⨯. 【答案】(1)1;(2)512-【分析】(1)原式第一项利用有理数的乘方法则,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算,即可得到结果;(2)原式利用同底数幂的乘法法则变形,再利用积的乘方逆运算化简,计算即可得到结果.【详解】解:(1)20212(2015)()2π--+-+= -4+1+4 =1; (2)20132012512()()125-⨯ 20125125()()12512=-⨯⨯- 20125(1)()12=-⨯-512=-【点睛】此题考查了整式的混合运算,以及实数的运算,涉及的知识有:幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.(1)()()()345222a a a ⋅÷- (2)()3242(3)2a a a -⋅+-(3)34()()x y y x -⋅-(4)2201901(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭【答案】(1)4a -;(2)6a ;(3)7()x y -;(4)9-. 【分析】(1)先算幂的乘方,再算同底数幂的乘除法即可; (2)先算积的乘方,在算同底数幂的乘法,再合并同类项即可; (3)先利用偶数次幂变底数符号,再计算同底数幂乘法即可; (4)先计算负1的奇数次幂,零指数幂,负指数幂,再算加减法即可. 【详解】解:(1)()()()345222a a a ⋅÷-,= ()6810a a a ⋅÷-,=6810a +--, =4a -;(2)()3242(3)2a a a -⋅+-,=24698a a a ⋅-, =6698a a -, =6a ;(3)34()()x y y x -⋅-, = 34()()x y x y -⋅-, =7()x y -;(4)220191(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭,=119-+-, =9-.本题考查整式乘除乘方混合运算和实数幂的混合运算,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序,以及负数的乘法,零指数幂负指数幂是解题关键. 17.先阅读下面的内容,再解决问题,例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. 解:∵m 2+2mn +2n 2﹣6n +9=0 ∴m 2+2mn +n 2+n 2﹣6n +9=0 ∴(m +n )2+(n ﹣3)2=0 ∴m +n =0,n ﹣3=0 ∴m =﹣3,n =3(1)若x 2﹣2xy +2y 2+4y +4=0,求x y +的值. (2)已知32b a +=.①用含a 的式子表示b : ; ②若28317m m ab +=-,求()mab 的值.【答案】(1)4x y +=-;(2)①23b a =-;②81【分析】(1)根据完全平方公式把原式变形,根据非负数的性质分别求出x 、y ,即可求解; (2)①根据32b a +=可得32a b =-;②根据①中结果将32a b =-代入28317m m ab +=-,配成完全平方式,根据非负数的性质求出各字母的值即可解答.【详解】解:(1)原式=2222440x xy y y y -++++=, 即22()(2)0x y y -++=, ∴2,2y x =-=-, ∴224x y +=--=-; (2)①∵32b a +=, ∴23b a =-; 故答案为:23b a =-②将32a b =-代入28317m m ab +=-, 得28(2)17m m b b +=--,2281720m m b b +++-=,整理得: 22816210m m b b +++-+=, 即: 22(4)(1)0m b ++-=, ∴4,1m b =-=, ∵32a b =-, ∴13a =,∴()41(1)813m ab -=⨯=.【点睛】本题主要考查了完全平方公式的应用,根据题意将原式适当变形,整理为完全平方式是解题关键. 18.如图1是一个长为4a ,宽为b 的长方形,沿图中虚线用剪刀分成四个全等的小长方形,然后用这四块小长方形拼成如图2的正方形.(1)观察图2,直接写出(a +b )2,(a ﹣b )2,ab 三者的等量关系式; (2)用(1)的结论解答:①若m +2m ﹣1=3,求m ﹣2m ﹣1的值;②如图3,正方形ABCD 与AEFG 边长分别为x ,y .若xy =15,BE =2,求图3中阴影部分的面积和.【答案】(1)(a +b )2=(a -b )2+4ab .(2)±1;(3)8【分析】(1)根据大正方形的面积等于4个小长方形和小正方形面积之和,可得结论; (2)利用(1)中关系式计算可得结论;(3)利用三角形的面积公式计算出阴影部分的面积,然后整体代入即可. 【详解】解:(1)∵大正方形的面积等于4个小长方形和小正方形面积之和, ∴(a +b )2=4ab +(b -a )2. ∴(a +b )2=(a -b )2+4ab . 故答案为:(a +b )2=(a -b )2+4ab .(2)由(1)得:(m +2m ﹣1)2=(m -2m ﹣1)2+4×m ×2m ﹣1. ∴(m -2m ﹣1)2=(m +2m ﹣1)2-8∴(m -2m ﹣1)2=9-8=1.∴m -2m ﹣1=±1.(3)∵ABCD ,AEFG 为正方形,边长分别为x ,y .BE =2,∴DG =BE =2,x -y =2.∴(x -y )2=4.∴x 2-2xy +y 2=4.∵xy =15∴x 2+y 2=34,∴x 2+2xy +y 2=34+30,∴(x +y )2=64.∵x >0,y >0,∴x +y =8.∴S 阴影=12BE •EF +12CD •DG =y +x =8.【点睛】本题主要考查了完全平方公式的几何背景,利用图形面积之间的关系得到(a +b )2,(a -b )2,ab 之间的等量关系式是解题的关键.19.我国是最早采用十进制进行计算的国家,研究发现,使用十进制跟我们有十根手指头有关.进制也就是进位制,是人们规定的一种进位方法,对于任何一种进制一X 进制,就表示某一位置上的数运算时是逢X 进一位,十进制是逢十进一,二进制就是逢二进一,十六进制是逢十六进一,以此类作.X 进制就是逢X 进一.为与十进制进行区分,我们常把用X 进制表示的数a 写成(a )X .X 进制的数转化为十进制数的方法;X 进制表示的数(1111)X 中,从右边数起,第一位上的1表示1×X 0,第二位上的1表示1×X 1,第三位上的1表示1×X 2,第四位上的1表示1×X 3,故(1111)X 转化为十进制为:(1111)X =1×X 3+1×X 2+1×X 1+1×X 0(规定当X ≠0时,X 0=1) 例如:(101)2=1×22+0×21+1×20=5,(1023)5=1×53+0×52+2×51+3×50=138. 根据材料,完成以下问题:(1)把下列进制表示的数转化为十进制表示的数:(10101)3=________,(257)8=________;(2)一个四进制三位数(a 3b )4与七进制三位数(3ba )7之和能被8整除(1≤a ≤3,1≤b ≤3.且a ,b 均为整数),求a 的值;(3)若一个八进制数与一个六进制数之差为420,则称这两个数为“坤鹏数”,试判断(mm 4)8与(n 2n )6是否为“坤鹏数”并说明理由.【答案】(1)91,175;(2)a 的值是1;(3)(mm 4)8与(n 2n )6是“坤鹏数”,理由见解析【分析】(1)根据进制的定义以及转化方法计算即可;(2)先转化为十进制数,再根据之和能被8整除求解;(3)先转化为十进制数,根据差为420列二元一次方程,求是否有不大于10的自然数解.【详解】解:(1)(10101)3=1×34+0×33+1×32+0×31+1×30=91, (257)8=2×82+5×81+7×80=175;(2)∵(a 3b )4=a ×42+3×41+b ×40=16a +12+b , (3ba )7= 3×72+b ×71+a ×70=147+7b +a ,∴(a 3b )4+(3ba )7=17a +8b +159=17a +8b +8×19+7,∵(a 3b )4+(3ba )7能被8整除,∴17a +7能被8整除,当a =1时,17a +7=24,能被8整除;当a =2时,17a +7=41,不能被8整除;当a =3时,17a +7=58,不能被8整除;综上可知,(a 3b )4+(3ba )7能被8整除时,a 的值是1;(3)∵(mm 4)8=m ×82+m ×81+4×80= 72m +4,(n 2n )6=n ×62+2×61+n ×60=37n +12, ∴(mm 4)8-(n 2n )6= 72m +4-37n -12=420,∴72m -37n =428,∵m ,n 是不大于10的自然数,∴m =8,n =4,∴当m =8,n =4时,(mm 4)8与(n 2n )6是“坤鹏数”.【点睛】本题考查数的新定义、列代数式、整式的加减、以及二元一次方程的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.20.我们规定:1(0)p p a a a -=≠,即a 的负P 次幂等于a 的p 次幂的倒数.例:22144-= (1)计算:25-=_____;2(2)--=_____;(2)如果128p -=,那么p =_____;如果212a -=,那么a =_____;(3)如果116p a -=,且a 、p 为整数,求满足条件的a 、p 的取值.【答案】(1)125,14;(2)3,(3)a =16时,p =1;a =±4时,p =2;a =±2时,p =4 【分析】(1)根据负整数指数幂的计算法则计算即可求解;(2)根据负整数指数幂的计算法则找到指数即可求解;(3)根据负整数指数幂的计算法则找到底数和指数即可求解.【详解】解:(1)25-=125;2(2)--=14; (2)如果128p -=,则311228p -==, 那么p =3; 如果212a -=,则()22112a -==,那么a =(3)由于a 、p 为整数,所以当a =16时,p =1;当a =±4时,p =2; 当a =±2时,p =4. 【点睛】本题考查了负整数指数幂,负整数指数幂:1p pa a -=(a ≠0,p 为正整数),注意:①a ≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(-3)-2=(-3)×(-2)的错误;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数;④在混合运算中,始终要注意运算的顺序.。

负整数指数幂的专题训练(附答案及解析)教程文件

负整数指数幂的专题训练(附答案及解析)教程文件
19、(2008•乌兰察布)下列计算正确的是( )
A、(﹣2)0=0B、3﹣2=﹣9
C、 D、
20、计算|﹣5|+( )﹣1﹣20080的结果是( )
A、5B、6
C、7D、8
二、填空题(共5小题)
21、将 按从小到大的顺序排列:_________.
22、求下列各数的平方根:
81:_________;289:_________;0:_________; :_________;2.56:_________;10﹣2:_________.
一、选择题(共20小题)
1、(2011•广西)下列各数中,负数是( )
A、﹣(1﹣2)B、(﹣1)﹣1
C、(﹣1)nD、1﹣2
考点:正数和负数;有理数的乘方;负整数指数幂。
专题:常规题型。
分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.
2、下列运算结果为负数的是( )
A、(﹣2008)﹣1B、(﹣1)2008
C、(﹣1)×(﹣2008)D、﹣1﹣(﹣2008)
考点:正数和负数;有理数的乘方;负整数指数幂。
专题:常规题型。
分析:首先审清题意,对各选项计算后再进行判断.
解答:解:A、(﹣2008)﹣1=﹣ ,是负数,故本选项正确;
B、(﹣1)2008=1,是正数,故本选项错误;
(3)先化简,再求值: ÷ ﹣ ,其中x=﹣1.
27、已知 与 互为相反数,求xy,(xy)﹣1的值.
28、(2011•珠海)计算:|﹣2|+ ﹣(π﹣5)0﹣ .
29、(2011•重庆)|﹣3|+(﹣1)2011×(π﹣3)0﹣ + .

负整数指数幂的专题训练(附答案及解析)

负整数指数幂的专题训练(附答案及解析)
19、(2008•乌兰察布)下列计算正确的是( )
A、(﹣2)0=0B、3﹣2=﹣9
C、 D、
20、计算|﹣5|+( )﹣1﹣20080的结果是( )
A、5B、6
C、7D、8
二、填空题(共5小题)
21、将 按从小到大的顺序排列:_________.
22、求下列各数的平方根:
81:_________;289:_________;0:_________; :_________;2.56:_________;10﹣2:_________.
∴ <1<2<9,即c<a<d<b.
故选A.
点评:本题涉及到实数的零指数幂,负整数指数及负数开立方,要把它们逐一计算再比较大小.
13、将 ,(﹣3)0,(﹣4)2这三个数按从小到大的顺序排列,正确的结果是( )
A、 B、
C、 D、
考点:实数大小比较;零指数幂;负整数指数幂。
专题:计算题。
分析:先分别计算出各式的值再进行比较即可.
23、计算:3﹣2的算术平方根是_________.
24、( 的算术平方根是_________.
25、 的相反数是_________, 的绝对值是_________, =_________, 的平方根是_________.
三、解答题(共5小题)
26、计算:(1)(﹣1)2+( )﹣1﹣5 ÷(2007﹣π)0(2) ﹣ +
A、c<a<d<bB、b<d<a<c
C、a<c<d<bD、b<c<a<d
考点:实数大小比较;零指数幂;负整数指数幂。
专题:计算题。
分析:直接计算,再根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小进行解答.

高中 指数与指数函数知识点+例题+练习 含答案

高中 指数与指数函数知识点+例题+练习 含答案

教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。

初中数学知识点详解:零指数幂与负整指数幂

初中数学知识点详解:零指数幂与负整指数幂

初中数学知识点详解:零指数幂与负整指数幂零指数幂与负整指数幂在初中数学教育中,零指数幂和负整指数幂是非常重要的概念。

在这篇文章中,我们将深入探讨这两个概念的定义、性质和运用,希望能够帮助初中学生更好地掌握这些知识点。

一、零指数的定义与性质1.定义在数学中,零指数幂是指任何数的0次幂,即a^0=1。

其中,a是任何实数。

这个定义可以简单地表示为:任何数的0次幂等于1。

这意味着,无论a是什么数,a^0都等于1。

例如:2^0 = 15^0 = 1(-3)^0 = 12.性质零指数幂有一些非常有用的性质,这些性质在数学中经常被使用。

任何数的1次幂等于该数本身,即a^1=a。

这是由指数幂的定义可以得知的。

任何数的负整数次幂等于该数的倒数的该数幂次方,即a^(-n)=1/a^n。

其中,n为正整数,a不等于0。

例如:2^(-3) = 1/2^3 = 1/85^(-2) = 1/5^2 = 1/25(-3)^(-4) = 1/(-3)^4 = 1/81除此之外,零的0次幂是一个未定义的运算,因为0^0没有数学上的意义。

二、负整指数幂的定义与性质1.定义在数学中,负整指数幂是指一个实数的指数为负整数n的幂,即a^(-n)。

这个定义可以看作是指数幂的倒数。

由于指数为负数,因此需要对指数幂做出一定的特殊定义。

2.性质负整指数幂也有一些非常有用的性质,这些性质同样在数学中经常被应用。

任何数的负整数幂等于该数的倒数的该数幂次方,即a^(-n)=1/a^n。

其中,n为正整数,a不等于0。

例如:2^(-3) = 1/2^3 = 1/85^(-2) = 1/5^2 = 1/25(-3)^(-4) = 1/(-3)^4 = 1/81任何数的负幂次方都可以写成分数的形式,即a^(-n)=1/a^n=a^(1/n)/a。

例如:3^(-2) = 1/3^2 = 1/9 = 3^(1/2)/34^(-3) = 1/4^3 = 1/64 = 4^(1/3)/4这种形式的转化对于问题的计算和解决非常有用。

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别价格A 款玩偶B 款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行,反比例函数y =的图象与大正方形的一边交于点A (1,2),且经过小正方形的顶点B .(1)求反比例函数的解析式;(2)求图中阴影部分的面积.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:∠BOC +∠BAD =90°.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得cos ∠BAD =.已知铁环⊙O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)50≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100频数7912166b .成绩在70≤x <80这一组的是(单位:分):70 71 72 7274 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为  .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 (填序号)组,达到9小时的学生人数占被调查人数的百分比为 ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m =  ;S 甲2 S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).【答案】(1),(2)4y2.【解答】解:(1)=3﹣3+=,(2)(x﹣2y)2﹣x(x﹣4y)=x2﹣4xy+4y2﹣x2+4xy=4y2.二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=﹣+1=1;(2)原式=•=.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【答案】(1);(2)x+1.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【答案】(1)菜苗基地每捆A种菜苗的价格是20元;(2)本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)选择活动一更合算;(2)一件这种健身器材的原价是400元;(3)300≤a<400或600≤a<800.【解答】解:(1)∵450×=360(元),450﹣80=370(元),∴选择活动一更合算;(2)设一件这种健身器材的原价为x元,若x<300,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;∴300≤x<500,∴x=x﹣80,解得x=400,∴一件这种健身器材的原价是400元;(3)当300≤a<600时,a﹣80<0.8a,解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a,∴600≤a<800;综上所述,300≤a<400或600≤a<800.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?【答案】(1)A款玩偶购进20个,B款玩偶购进10个;(2)按照购进A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)从利润率的角度分析,对于小李来说第二次的进货方案更合算.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第二次的利润率=×100%=46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【答案】(1)反比例函数的解析式为y=;(2)8.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)点P的坐标为(0,2.8);a的值是﹣0.4;(2)选择吊球方式,球的落地点到C点的距离更近.【解答】解:(1)在y=﹣0.4x+2.8中,令x=0得y=2.8,∴点P的坐标为(0,2.8);把P(0,2.8)代入y=a(x﹣1)2+3.2得:a+3.2=2.8,解得:a=﹣0.4,∴a的值是﹣0.4;(2)∵OA=3m,CA=2m,∴OC=5m,∴C(5,0),在y=﹣0.4x+2.8中,令y=0得x=7,在y=﹣0.4(x﹣1)2+3.2中,令y=0得x=﹣2+1(舍去)或x=2+1≈3.82,∵|7﹣5|>|3.82﹣5|,∴选择吊球方式,球的落地点到C点的距离更近.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【答案】(1)抛物线的表达式为y=﹣x2+x+;(2)当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【答案】(1)证明见解答过程;(2)50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 78.5 分,成绩不低于80分的人数占测试人数的百分比为 44% .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【答案】见试题解答内容【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分),所以这组数据的中位数是78.(5分),成绩不低于8(0分)的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩7(7分)低于中位数78.(5分),所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于8(0分)的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 ③ (填序号)组,达到9小时的学生人数占被调查人数的百分比为 17% ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.【答案】见试题解答内容【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m = 7.5 ;S 甲2 < S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5,<;(2)小丽应选择甲公司(答案不唯一),理由见解答;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解答】解:(1)甲公司配送速度得分从小到大排列为:6 6 7 7 7 8 9 9 9 10,一共10个数据,其中第5个与第6个数据分别为7、8,所以中位数m==7.5.=×[3×(7﹣7)2+4×(8﹣7)2+2×(6﹣7)2+(5﹣7)2]=1,=×[(4﹣7)2+(8﹣7)2+2×(10﹣7)2+2×(6﹣7)2+(9﹣7)2+2×(5﹣7)2+(7﹣7)2]=4.2,∴<,故答案为:7.5,<;(2)小丽应选择甲公司(答案不唯一),理由如下:∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)。

负整数指数幂

负整数指数幂

负整数指数幂精选题43道一.选择题(共17小题) 1.(13)﹣2的相反数是( )A .9B .﹣9C .19D .−192.若a =0.32,b =﹣3﹣2,c =(−13)﹣2,d =(−13)0,则( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b3.若a =﹣22,b =2﹣2,c =(12)﹣2,d =(12)0.则( ) A .a <b <d <cB .a <b <c <dC .b <a <d <cD .a <c <b <d4.已知:a =(12)﹣3,b =(﹣2)2,c =(π﹣2018)0,则a ,b ,c 大小关系是( ) A .b <a <cB .b <c <aC .c <b <aD .a <c <b5.若a =(23)﹣2,b =1﹣1,c =(−32)0,则a 、b 、c 的大小关系是( ) A .a >b =cB .a >c >bC .c >a >bD .b >c >a6.若(x ﹣3)0﹣2(2x ﹣4)﹣1有意义,则x 取值范围是( )A .x ≠3B .x ≠2C .x ≠3或x ≠2D .x ≠3且x ≠27.已知a =2﹣55,b =3﹣44,c =4﹣33,d =5﹣22,则这四个数从小到大排列顺序是( ) A .a <b <c <d B .d <a <c <bC .a <d <c <bD .b <c <a <d8.若代数式(x ﹣1)0+(3x ﹣6)﹣1有意义,则x 的取值范围是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .x ≠1或x ≠29.计算(﹣1)﹣2018+(﹣1)2017所得的结果是( )A .﹣1B .0C .1D .﹣210.若a =0.32,b =﹣3﹣2,c =(﹣3)0,那么a 、b 、c 三数的大小为( ) A .a >c >b B .c >a >b C .a >b >c D .c >b >a11.若(2x +5)﹣3有意义,则x 满足的条件是( )A .x >−52B .x ≠−52C .x ≠0D .x <−5212.下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=−14;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) A .①②③B .①③⑤C .②③④D .②④⑤13.下列计算正确的有( )①3﹣1=﹣3;②(−2)−3=18;③(−34)−2=169;④(π﹣3.14)0=1A .1个B .2个C .3个D .4个14.已知1纳米=10﹣9米,某种植物花粉的直径为35000纳米,那么这种花粉的直径为( )A .3.5×10﹣5米 B .3.5×104米C .3.5×10﹣9米 D .3.5×10﹣6米15.如果a =(﹣2019)0,b =(﹣0.1)﹣1,c =(−53)﹣2,那么a 、b 、c 三数的大小为( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a16.某种冠状病毒的直径是120纳米,1纳米=10﹣9米,则这种冠状病毒的直径是( )厘米. A .120×10﹣9B .1.2×10﹣7C .1.2×10﹣6D .1.2×10﹣517.若a =﹣0.32,b =﹣3﹣2,c =(−12)−2,d =(−13)0,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b二.填空题(共16小题) 18.计算(−12)﹣2= .19.计算:(π﹣3)0+(12)﹣1= .20.计算:(﹣3)0+3﹣1= .21.计算:(12)﹣1﹣(3.14﹣π)0= .22.3﹣2= .23.计算:20190+(13)﹣1= .24.若7﹣2×7﹣1×70=7p ,则p 的值为 .25.计算:|﹣3|+(12)−1= . 26.计算:(π﹣2)0﹣2﹣1= .27.如果a =(﹣2010)0、b =(﹣0.2)﹣1、c =(−53)−2,那么a 、b 、c 的大小关系为 .(用“<”连接)28.若代数式(x ﹣1)0﹣2(2x ﹣3)﹣3有意义,则x 的取值范围是 .29.(12)0= ;(13)﹣2= .30.计算:(π﹣3)0﹣(−12)﹣2= .31.计算:(12)﹣2= .32.若(x +1)0﹣2(x ﹣2)﹣2有意义,则x 的取值范围是 .33.计算:20−|−3|+(−12)−2= . 三.解答题(共10小题)34.已知a 是大于1的实数,且有a 3+a ﹣3=p ,a 3﹣a ﹣3=q 成立.(1)若p +q =4,求p ﹣q 的值; (2)当q 2=22n +122n−2(n ≥1,且n 是整数)时,比较p 与(a 3+14)的大小,并说明理由.35.计算:(−13)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)036.我们规定:a ﹣p =1a p (a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:4﹣2=142 (1)计算:5﹣2= ;(﹣2)﹣2= ;(2)如果2﹣p =18,那么p = ;如果a ﹣2=116,那么a = ;(3)如果a ﹣p =19,且a 、p 为整数,求满足条件的a 、p 的取值.37.计算:|−2|+(π−3)0−(13)−2+(−1)2019. 38.计算:1232−124×122+(12)−1+(π−2019)0 39.计算:√12−|2√3−1|+(π−2√3)0+(12)−2 40.(12)−3−20190−|−5|41.计算:(−12)−1+(π−√3)0+√(−2)2. 42.计算:(1)(12)−2+(π−3)0−(−0.125)2018×82019 (2)−32×2+[−(1−0.2÷35)×(−3)2] 43.(π−2019)0+(12)−1−32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答题(共30小题)1、(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣()﹣考点:负整数指数幂;有理数的乘方;零指数幂。

专题:计算题。

分析:本题涉及零指数幂、乘方、负整数指数幂三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+1﹣2=0.故答案为0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算.2、(2010•西宁)计算:()﹣﹣(﹣)考点:负整数指数幂;有理数的乘方;零指数幂。

专题:计算题。

分析:此题涉及到负整数指数幂、零指数幂、乘方三个知识点,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得结果.解答:解:原式=2﹣1+()(3分)=2﹣1+1(5分)=2.(7分)点评:本题考查实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算.3、(2010•邵阳)计算:()﹣﹣考点:负整数指数幂。

专题:计算题。

分析:根据负整数指数幂、倒数、立方根的知识点进行解答,一个数的负指数次幂等于这个数的正指数次幂的倒数;互为倒数的两个数的积为1;8的立方根是2.解答:解:原式=3﹣1+2=4.故答案为4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、立方根、倒数的知识点.4、(2009•重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.考点:负整数指数幂;绝对值;有理数的乘方;算术平方根;零指数幂。

专题:计算题。

分析:根据绝对值、负整数指数幂、零指数幂、算术平方根、有理数的乘方等知识点进行解答.解答:解:原式=2+3×1﹣3+1=3.故答案为3.点评:本题主要考查绝对值、负指数幂、零次幂、算术平方根、(﹣1)的偶次方的计算与化简,比较简单.5、(2009•漳州)计算:﹣()﹣()﹣考点:负整数指数幂;绝对值;零指数幂。

专题:计算题。

分析:本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.解答:解:原式=2+1﹣3=0.故答案为0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值等考点的运算.6、(2009•西宁)计算:|﹣3|+(﹣1)0﹣2×()﹣1考点:负整数指数幂;绝对值;零指数幂。

分析:按照实数的运算法则依次计算:|﹣3|=3,(﹣1)0=1,()﹣1=2将其代入原式易得答案.解答:解:原式=|﹣3|+(﹣1)0﹣2×()﹣1=3+1﹣2×2=0.故答案为0.点评:本题主要考查绝对值、零指数幂、负整数指数幂等知识点,比较简单.7、(2009•贵港)(1)计算:()﹣1﹣++(﹣1)2009(2)解方程组:﹣()﹣()考点:负整数指数幂;有理数的乘方;立方根;实数的运算;解二元一次方程组。

专题:计算题。

分析:(1)根据负整数指数幂、立方根、有理数的乘方等知识点进行解答,(2)由于x,y的系数都有倍数关系,但y的系数的符号相反,所以可考虑消去y,用加法消元.解答:解:(1)原式=3﹣2+1﹣1=1(2)(1)×2,得4x﹣2y=12(3),(2)+(3),得5x=10,x=2.把x=2代入(1),得y=﹣2∴原方程组的解为﹣故答案为1、﹣.点评:需要注意的知识点是:a﹣p=;当方程组中的两个未知数都有倍数关系时,可选择符号相反的未知数的系数消去.8、(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣1考点:负整数指数幂。

专题:计算题。

分析:按照实数的运算法则依次计算:先算乘方,后算乘除,然后算加减.解答:解:∵(﹣2)2=4,()﹣1=3;∴(﹣2)2+2×(﹣3)+()﹣1=4﹣6+3=1.故答案为1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.9、(2009•滨州)计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0考点:负整数指数幂;绝对值;有理数的乘方;零指数幂。

专题:计算题。

分析:按照实数的运算法则依次计算:﹣12=﹣1,|﹣2|=2﹣,()﹣1=2,(2009﹣π)0=1,将其代入原式易得答案.解答:解:原式=﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0=﹣1+2﹣+2﹣5=﹣2﹣.故答案为﹣2﹣.点评:本题主要考查负整数指数幂、绝对值、乘方、零指数幂等知识点,基础知识,需要熟练掌握.10、(2008•株洲)(1)计算:|﹣1|+(3﹣π)0﹣()﹣1;(2)分解因式:x3﹣6x2+9x.考点:负整数指数幂;提公因式法与公式法的综合运用;零指数幂。

专题:计算题。

分析:(1)负数的绝对值是它的相反数,任何数(0除外)的0次方是1,一个数的﹣1次方是等于它的倒数;(2)提取公因式x后运用完全平方公式分解.解答:解:(1)原式=1+1﹣2=0;(2)原式=x(x2﹣6x+9)=x(x﹣3)2.故答案为0、x(x﹣3)2.点评:本题主要考查负整数指数幂、零指数幂、因式分解等知识点,基础题需要掌握.11、(2008•肇庆)计算:()0﹣|1﹣|+2﹣1考点:负整数指数幂;绝对值;零指数幂。

专题:计算题。

分析:根据零指数幂、绝对值、负整数指数幂等知识点进行计算,任何不等于0的数的0次幂都等于1;一个数的负指数等于这个数的正指数的次幂的倒数;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.解答:解:原式=﹣=1.故答案为1.点评:本题主要考查负整数指数幂、绝对值、零指数幂的知识点,比较简单.12、(2008•湘潭)计算:|﹣1|+(3﹣π)0﹣()﹣1.考点:负整数指数幂;绝对值;零指数幂。

专题:计算题。

分析:按照实数的运算法则依次计算,(3﹣π)0=1,()﹣1=2、|﹣1|=1.解答:解:原式=1+1﹣2=0.故答案为0.点评:涉及知识:负指数为正指数的倒数,任何非0数的0次幂等于1,绝对值的化简.13、(2008•苏州)计算:(﹣)﹣()﹣.考点:负整数指数幂;有理数的乘方;算术平方根。

专题:计算题。

分析:本题根据有理数的乘方、算术平方根、负整数指数幂等知识点进行解答.解答:解:原式=9﹣2+2=9.点评:本题主要考查有理数乘方、算术平方根、负整数指数幂等知识点,需注意的知识点是:a ﹣p=.14、(2008•江汉区)计算:|﹣3|+(1﹣)0+﹣()﹣2考点:负整数指数幂;绝对值;零指数幂;二次根式的性质与化简。

专题:计算题。

分析:本题涉及零指数幂、绝对值、二次根式的化简、负整数指数幂四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+1+2﹣4=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15、(2007•肇庆)计算:﹣|﹣1|+(1﹣)0+1﹣1考点:负整数指数幂;绝对值;算术平方根;零指数幂。

专题:计算题。

分析:根据算术平方根、绝对值、零指数幂等知识点进行解答,即9的算术平方根是3;负数的绝对值是它的相反数;任何不等于0的数的0次幂都等于1;1﹣1=1,1的任何次幂都等于1.解答:解:原式=3﹣1+1+1=4.点评:此题考查了算术平方根、绝对值的意义、0次幂的性质、负指数转换为正指数的方法.16、(2007•盐城)计算:﹣﹣(﹣)﹣()﹣考点:负整数指数幂;绝对值;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂、算术平方根、绝对值等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣2+1﹣3(四种运算每错一个扣(2分),扣完(6分)为止)(6分)=﹣1.(8分)故答案为﹣1.点评:本题考查实数的运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1,绝对值的化简.17、(2007•徐州)计算:(﹣1)3+20﹣()﹣考点:负整数指数幂;有理数的乘方;算术平方根;零指数幂。

专题:计算题。

分析:根据有理数的乘方、令指数幂、负整数指数幂、算术平方根的知识点进行解答.解答:解:原式=(﹣1)3+20﹣()﹣=﹣1+1﹣2+3=1.点评:本题考查实数的运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、算术平方根、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1.18、(2007•沈阳)计算:(π﹣3)0﹣|﹣3|+(﹣)﹣2﹣考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及零指数幂、负整数指数幂、绝对值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣3++9﹣=7.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.19、(2007•韶关)计算:|﹣2|+﹣()﹣1+(3﹣π)0考点:负整数指数幂;绝对值;算术平方根;零指数幂。

专题:计算题。

分析:按照实数的运算法则依次计算,注意:()﹣1=2,(3﹣π)0=1.解答:解:原式=2+3﹣2+1=4.故答案为4.点评:本题需注意的知识点是:a﹣p=,任何不等于0的数的0次幂是1.20、(2007•莆田)计算:2×2﹣1+|﹣1|+(1﹣π)0考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及零指数幂、负整数指数幂、绝对值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣=﹣=.点评:本题考查实数的运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简.21、(2007•宁夏)计算:()﹣﹣﹣()﹣考点:负整数指数幂;绝对值;立方根;零指数幂。

专题:计算题。

分析:本题涉及零指数幂、负整数指数幂、绝对值、开立方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣4+5﹣4(4分)=﹣2.(6分)点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、开立方、绝对值等考点的运算.22、(2007•梅州)计算:﹣()﹣﹣(﹣).考点:负整数指数幂;绝对值;算术平方根;零指数幂。

相关文档
最新文档