初一数学上册知识 点大全

合集下载

七年级上册数学重点知识

七年级上册数学重点知识

七年级上册数学重点知识包括以下几个方面:
1. 有理数:了解正数、负数和零的概念,掌握有理数的加、减、乘、除运算规则,以及整数和分数的转换。

2. 一元一次方程:学会解一元一次方程,理解方程的解的概念,掌握解方程的方法。

3. 几何图形:了解线段、射线和直线的概念,掌握角的概念及角的度量,学会画图和识图。

4. 三角形:理解三角形的定义和性质,掌握三角形的三边关系、三角形内角和定理、三角形外角性质等。

5. 多边形:了解多边形的定义和性质,掌握多边形的内角和公式、外角和定理,以及多边形对角线的概念。

6. 几何图形的变换:掌握平移、旋转、轴对称等几何变换的概念和方法。

7. 数据分析:学会收集、整理、分析数据,掌握条形图、折线图、饼图等统计图表的绘制方法。

8. 逻辑推理:培养逻辑思维能力,掌握简单的逻辑推理方法。

以上就是七年级上册数学的重点知识,需要在学习过程中加以重视和掌握。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识
点及重难点
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初一数学上册必考知识点及重难点第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

初一上册数学知识点归纳大全(6篇)

初一上册数学知识点归纳大全(6篇)

初一上册数学知识点归纳大全(6篇)1.初一上册数学知识点归纳大全篇一平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

2.初一上册数学知识点归纳大全篇二数轴1.数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的'点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数⑴最小的自然数是0,无的自然数;⑵最小的正整数是1,无的正整数;⑶的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,则a=03.初一上册数学知识点归纳大全篇三(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

初一数学上册必考的知识点及重难点

初一数学上册必考的知识点及重难点

初一数学上册必考的知识点及重难点1.整数:-整数的概念及表示方法;-整数之间的大小关系;-整数的加法、减法、乘法和除法运算;-整式的化简和展开。

2.分数:-分数的概念及表示方法;-分数与数轴的关系;-分数的加法、减法、乘法和除法运算;-分数的化简和约分。

3.小数:-小数的概念及表示方法;-小数与分数的相互转换;-小数的加法、减法、乘法和除法运算;-小数的进位与舍位计算。

4.平方根:-平方根的概念及表示方法;-平方根的计算;-平方根与平方的关系;-平方根的应用。

5.比例与比例的应用:-比例的概念及表示方法;-比例的性质与判定方法;-比例的四种基本关系;-比例的应用,如物体相似、线段分割等。

6.百分数与百分数的应用:-百分数的概念及表示方法;-百分数与分数、小数的相互转换;-百分数的基本计算;-百分数的应用,如利润、增长率、折扣等。

7.几何图形:-点、线、面、角的基本概念;-直线、射线、线段的区别与判定方法;-正方形、长方形、菱形、平行四边形等各种图形的性质;-三角形及各种特殊三角形的性质。

8.平面与空间:-平面与立体图形的概念;-各种立体图形的性质,如长方体、正方体、棱锥、棱柱等;-空间几何体的展开与折叠。

9.统计与概率:-了解统计学的基本概念;-数据的收集、整理与分析方法;-概率的基本概念及计算方法;-利用概率进行问题解答。

1.整数运算中的进位与舍位计算;2.分数和小数之间的转换;3.平方根的计算和应用;4.比例和百分数的应用问题;5.图形的性质及判定方法;6.立体图形的展开与折叠;7.数据的收集、整理与分析方法;8.概率的计算和应用。

要提高数学水平,建议学生重点掌握以下方法:1.培养数学的逻辑思维能力,学会分析问题并找出解决方法;2.注重基础知识的掌握,特别是对概念和运算规则的理解;3.多进行练习,通过做题来巩固知识,理清思路;4.注意归纳总结,将不同类型的题目归类整理,帮助记忆和应用;5.多与同学和老师进行交流和讨论,探讨解题思路和方法;6.及时查漏补缺,对于不懂的知识点可以与老师或同学请教。

初一数学上册知识点总结大全

初一数学上册知识点总结大全

初一数学上册知识点总结大全1.数学基础知识1.1 整数与自然数1.自然数:正整数,包括1,2,3,……2.整数:自然数、0、负整数,包括-3,-2,-1,0,1,2,3,……1.2 分数与小数1.分数:表示为两个整数的比,包括真分数和假分数。

2.小数:表示为小数点后带有数字的数。

1.3 基本计算1.加减乘除的基本概念、运算法则。

2.百分数的概念和计算方法。

3.分式的基本概念和运算法则,如分数的通分、约分、加、减、乘、除法等。

1.4 代数基本概念1.代数式的概念,包括代数式的意义、字母、式子的概念。

2.相等代数式和同类项的概念。

1.5 等式与方程1.等式:等号两边都是同一数字或者同一字母的代数式,如x+3=5。

2.方程:含有未知数的等式,如2x+6=10。

3.解方程的基本方法:去括号、同象移项、通分、消变元。

2. 几何基础2.1 几何基本概念1.点、线、面、角的基本概念和表示方法。

2.直线、射线和线段的区别和基本性质。

2.2 图形的基本概念和性质1.二维图形的分类、定义和表示方法,如三角形、正方形、长方形、梯形、矩形、菱形、圆形、半圆形等。

2.等腰三角形、等边三角形、直角三角形、对角线相等的四边形的基本概念和性质。

2.3 三角形1.三角形内角和的定理和推论。

2.三角形的外角和、等角变形定理和有关角的性质。

2.4 圆与圆的性质1.圆的基本概念和性质,如圆的内接四边形对角线相等、圆上两点间的弧等等。

3. 数据的概率统计3.1 数据的整理和表示1.分类数据的表示和分析方法,包括画频数分布直方图,统计频率、频数、众数等。

2.数量数据的表示和分析方法,包括中位数、平均数、极差、四分位数等。

3.2 概率的基本概念1.试验、样本点、事件和概率的概念。

2.常用的概率计算方法:事件概率、加法原理、乘法原理。

3.3 统计的基本概念1.统计的定义和作用。

2.常用的统计分析手段:频数分布、频数分布曲线、平均数和中位数等。

七年级上册数学要点

七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。

0既不是正数也不是负数。

2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。

整数包括正整数、0和负整数,分数包括正分数和负分数。

3. 数轴:数轴是一条直线,可以用来表示所有的有理数。

数轴上的每一个点都对应一个有理数,反之亦然。

数轴上的点有原点(表示0的点)、正方向和单位长度。

在数轴上,右边的数总比左边的数大。

4. 相反数和绝对值:只有符号不同的两个数互为相反数。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5. 倒数:乘积为1的两个数互为倒数。

0没有倒数。

6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。

射线有一个端点,可以向一侧无限延伸。

线段有两个端点,长度有限。

7. 角:角是由有公共端点的两条射线组成的图形。

这个公共端点是角的顶点,两条射线是角的两边。

角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。

初一数学上册知识点总结大全

初一数学上册知识点总结大全

初一数学上册知识点总结大全数系自然数•自然数的概念•自然数的性质:加法、乘法的封闭性、结合律、交换律、分配律•自然数的分类整数•整数的概念•整数的性质:加法、乘法的封闭性、结合律、交换律、分配律、相反数、绝对值有理数•有理数的概念•有理数的分类:正有理数、负有理数、零•有理数加减乘除的性质实数•实数的概念•实数的分类代数式代数式的概念•代数式的定义•项、系数、次数的定义•代数式的分类代数式的运算•代数式的加减乘除•同类项的合并、分拆•因式分解•化简、展开一元一次方程•方程的概念•一元一次方程的定义•解一元一次方程的方法•未知数的含义一元一次方程的应用•问题与一元一次方程•求解一元一次方程的应用题平面图形平面直角坐标系•坐标系的引入•平面直角坐标系的定义•坐标、横纵坐标轴•坐标系上点的表示和名称平面图形•平面图形的分类•四边形、三角形、圆•图形的名称、性质和分类标准平面图形的运算•判断两个图形是否相等•判断两个图形是否全等•连通、包含、相交关系平面图形的计算•计算三角形的面积•计算四边形的面积•计算圆的周长、面积数据统计统计的概念•统计的定义•统计数据的分类统计量的概念•频数、频率和频率分布•极差、中位数、众数和平均数的定义•统计量的求解统计图表的制作•数据的分类和分组•构建数据的统计图表•统计图表的解析和应用空间与立体图形空间的概念•空间的概念•空间的三条坐标轴•空间直角坐标系立体图形的概念•立体图形的定义•立体图形的分类•立体图形的名称、性质和分类标准立体图形的运算•两立体图形的比较•两立体图形的相似•立体图形的切割、展开和摆放立体图形的计算•计算立体图形的表面积•计算立体图形的体积计算器使用计算器的键盘•计算器键盘的概念和位置•计算器常用键的名称和用途•计算器不同键的使用规则和特点计算器的常用功能•计算器的基本四则运算•计算器的比例运算•计算器的开方、乘方等高级运算计算器的误差处理•计算器的误差定义和分类•计算器误差的来源和解法•使用计算器时注意事项以上为初一数学上册常见知识点的汇总,希望这个文档能帮助到需要的学生,让大家更好地掌握初一数学上册的知识。

初一数学上册知识点总结

初一数学上册知识点总结

初一数学上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义和性质- 整数的定义和性质- 正数和负数的概念- 绝对值的理解2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较大小3. 整式与分数- 整式的概念和运算- 分数的概念和运算- 约分和通分- 混合运算法则4. 代数表达式- 代数表达式的构成- 单项式和多项式- 合并同类项- 代数式的基本变形二、几何1. 几何图形初步- 点、线、面的基本认识- 直线、射线、线段- 角的概念和分类- 角的度量和比较2. 平面图形- 平行线的性质- 三角形的基本性质- 四边形的基本性质- 圆的基本性质3. 面积与体积- 长方形和正方形的面积计算- 三角形的面积计算- 圆的面积计算- 体积的基本概念三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的基本计算- 等可能事件的概率四、应用题1. 一元一次方程- 方程的概念和基本性质- 解一元一次方程- 方程在实际问题中的应用2. 比例和相似- 比例的概念和性质- 相似三角形的性质- 比例在几何问题中的应用请注意,这只是一个基本的框架,具体的文档应该包含更详细的解释和示例。

您可以根据这个概要在Word文档中添加具体的解释、公式、图表和例题,以形成一个完整的知识点总结文档。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识点
及重难点
The latest revision on November 22, 2020
初一数学上册必考知识点及重难点
第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。

初一上册数学知识点归纳大全

初一上册数学知识点归纳大全

初一上册数学知识点归纳大全初一数学上册学问点整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中全部字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;5..6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开头合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:“方程的解就能代入”!5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的根据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------留意符号改变移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”认真读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,削减,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的表达,认真读题,按照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的根据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度?时间;(2)工程问题:工作量=工效?工时;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)÷2顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价,;利润问题常用等量关系:售价-进价=利润初一数学上册学问点整理一、代数初步学问。

初一数学知识点总结归纳重点上册

初一数学知识点总结归纳重点上册

初一数学知识点总结归纳重点上册一、整数运算:1.正整数和负整数的概念及表示方法;2.整数的加法和减法运算,运用数轴进行计算;3.整数的乘法运算,掌握乘法法则;4.整数的除法运算,求商和余数的方法。

二、分数运算:1.分数的概念和表示方法;2.分数的加法和减法运算;3.分数乘法的性质及运算法则;4.分数除法的性质和运算法则;5.约分和通分的方法。

三、小数运算:1.小数的概念和表示方法;2.小数的加法和减法运算;3.小数乘法的性质和运算法则;4.小数除法的性质和运算法则。

四、比例与相似:1.比例的概念和表示方法;2.比例的性质和运算法则;3.相似的概念和判定方法。

五、几何图形与测量:1.平行线与平行四边形的性质;2.三角形的性质及分类;3.识别和绘制平面图形,如正方形、矩形、长方形、菱形、梯形等;4.体积和质量的单位换算。

六、方程与函数:1.一元一次方程的概念和解法;2.函数的概念和函数图像的绘制;3.解方程和求函数值的运算。

七、统计与概率:1.统计数据的收集和整理;2.统计图的制作和分析;3.概率的概念和计算方法。

这些数学知识点是初一上册数学学习的重点,下面我会对其中几个知识点进行详细介绍。

一、整数运算:整数运算是数学学习的基础,因此非常重要。

正整数是大于零的整数,负整数是小于零的整数。

我们可以用数轴来表示正负整数,数轴上的点表示一个整数。

在数轴上,向右移动表示正数增加,向左移动表示负数增加。

整数的加法和减法运算可以通过数轴进行计算,例如:3 + 5 = 8,-2 + 3 = 1。

整数的乘法运算可以通过乘法法则进行计算,例如:2 × 3 = 6,-2 × -3 = 6。

整数的除法运算可以求商和余数,例如:7 ÷ 3 = 2余1。

二、分数运算:分数是整数的一种表示方法,它由分子和分母两个部分组成。

分数的加法和减法运算可以通过通分进行计算,即将两个分数的分母变为相同的,然后将分子相加或相减。

初一上册数学知识点最全版

初一上册数学知识点最全版

初一上册数学知识点最全版初一上册数学知识点同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:①所含字母相同。

②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:(1)准确的找出同类项。

(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

(3)写出合并后的结果。

合并同类项时注意:(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0(2)不要漏掉不能合并的项。

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

(4)不是同类项千万不能进行合并。

初中数学学习方法课前认真预习预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。

带着预习中不明白的问题去听老师讲课,来解答这类的问题。

预习还可以使听课的整体效率提高。

具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15—20分钟。

在时间允许的情况下,还可以将练习册做完。

要记好课堂笔记要将平时的单元检测出现的错误问题归纳一下,并且将错题再做一遍。

然后总结为什么错,错在什么地方。

如果整张试卷考得都不好,那么可以复印将试卷重做一遍。

还可以将作业上的错题、难题、易错题重做一遍。

这样对以后的做题过程中会有意想不到的收获。

另外在数学考试技巧上,如果想得高分,在选择、填空、计算题上是不能丢分的。

在考数学的时候思想不能开小差。

但上课听讲、认真答题及提高准确率、总结经验和方法技巧才是最重要的。

还要将所学的知识用到生活中去,做到学以致用。

你就会感受到学习数学的快乐。

多做练习要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。

- 整数具有加法、减法、乘法和除法等基本运算性质。

1.1.2 整数的分类- 自然数:正整数和0。

- 整数:包括自然数、负整数和0。

1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。

- 分数具有加法、减法、乘法和除法等基本运算性质。

1.2.2 分数的分类- 正分数:分子大于分母的分数。

- 负分数:分子小于分母的分数。

- 零分数:分子等于分母的分数。

1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。

- 小数具有加法、减法、乘法和除法等基本运算性质。

1.3.2 小数的分类- 有限小数:小数部分有限的小数。

- 无限小数:小数部分无限的小数。

第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。

2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。

2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。

- 变量可以取不同的数值。

2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。

- 代数式的加减法:同类项之间进行加减运算。

2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。

第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。

3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。

3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。

初一数学上册必背知识点归纳

初一数学上册必背知识点归纳

初一数学上册必背知识点归纳
一、数的概念和数量关系
1. 数的分类:自然数、整数、有理数、无理数
2. 数的比较:大于、小于、等于
3. 数的运算:加法、减法、乘法、除法
4. 数的表示法:标数法、科学计数法
二、代数式与函数
1. 代数式的基本概念:字母、系数、幂次、项、多项式、恒等式
2. 一元一次方程:解方程的基本思想与方法
3. 函数的概念:函数的自变量、函数表达式、函数值、函数图象
4. 直线函数:函数的图象、函数的斜率与截距、函数的应用
三、图形与运动
1. 基本几何图形:点、线、面
2. 三角形:三边关系、角的关系、三角形的分类
3. 运动与速度:速度的概念、速度的计算、速度的图象
四、比例与百分数
1. 比例的基本概念:比例关系、比例的性质、比例的运算
2. 百分数的基本概念:百分数与百分数计算
3. 比例与百分数在实际生活中的应用
五、数据与概率
1. 统计图表:直方图、折线图、饼图
2. 数据的分析与解释:数据的集中趋势、数据的离散程度、数据的关系与综合应用
3. 概率的基本概念:事件、频率与概率、概率与运算
六、空间与形体
1. 几何体的认识和分类:立方体、长方体、正方体、棱台、棱锥、棱柱、圆锥、圆柱、球
2. 空间观念的培养和规律的探究
以上是初一数学上册的必背知识点归纳,希望对你的学习有所帮助。

初一数学上册知识点复习大全

初一数学上册知识点复习大全

初一数学(上)知识点有理数1 .有理数:(1)凡能写成q (p,q 为整数且p 0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数 P 统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是 正数; 不是有理数;(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这四个区域的数也有自己的特性; (4)自然数 0和正整数;a>0 a 是正数;a<0a 是负数;a>0 a 是正数或0 a 是非负数;a< 0 a 是负数或0 2 .数轴:数轴是规定了原点、正方向、单位长度的一条直线.3 .相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c 的相反数是-a+b-c ; a-b 的相反数是b-a ; a+b 的相反数是-a-b ; ⑶ 相反数的和为0 a+b=0 a 、b 互为相反数.4 .绝对值:正后理数正整数正分数整数 正整数 零零②有理数 负整数 负有理数负整数负分数分数正分数 负分数(2)有理数的分类: ① 有理数 这三个数把数轴上的数分成四个区域, a 是非正数.(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表 示某数的点离开原点的距离;⑶回1 a 0 ;回 a ' a4 4) |a|是重要的非负数,即|a| >0;注意:|a| - |b|=|a • b|,5 .有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的 数大;(6)大数-小数> 0,小数-大数V 0.6 .互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;假设aw0,那么a 的倒数是工;倒数是本身的a 数是±1;假设ab=1 a 、b 互为倒数;假设ab=-1 a 、b 互为负倒数. 7 .有理数加法法那么:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3) 一个数与0相加,仍得这个数. 8 .有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+© . 9 .有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).(2)绝对值可表示为:| aa (a 0)0 (a 0)或 a a (a 0)(a 0)(a 0) ;绝对值的问题经常分类讨论;a b10有理数乘法法那么:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab) c=a (bc);(3)乘法的分配律:a (b+© =ab+ac .12 .有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即反无意义.13 .有理数乘方的法那么:(1)正数的任何次哥都是正数;(2)负数的奇次哥是负数;负数的偶次哥是正数;注意:当n为正奇数时:(-a) n=-a n或(a -b) n=-(b-a) n,当n 为正偶数时:(-a) n =a n 或(a-b) n=(正a) n .14 .乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做哥;(3) a2是重要的非负数,即a、0;假设a2+|b|=0 a=0,b=0;一 2 一一0.12 0.01 2(4)据规律1 1底数的小数点移动一位,平方数的小数点移动二位.102 10015 .科学记数法:把一个大于10的数记成ax 10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16 .近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17 .有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18 .混合运算法那么:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原那么.19 .特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜测的一种方法,但不能用于证实.代数初步知识1 .代数式:用运算符号— x + ……〞连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2 .列代数式的几个考前须知:(1)数与字母相乘,或字母与字母相乘通常使用「〞乘,或省略不写;(2)数与数相乘,仍应使用“X〞乘,不用「〞乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如ax 5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如ax 1」应写成V a;2 2(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3+a写成0的形式;a(6) a与b的差写作a-b,要注意字母顺序;假设只说两数的差,当分别设两数为a、b时,那么应分类,写做a-b和b-a .3.几个重要的代数式:(m n表示整数)(1) a与b的平方差是:a 2-b2 ; a 与b差的平方是:(a-b) 2 ;(2)假设a、b、c是正整数,那么两位整数是:10a+b ,那么三位整数是:100a+10b+c(3)假设m n是整数,那么被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)假设b>0,那么正数是:a2+b ,负数是:-a 2-b ,非负数是:小,非正数是:-a2.整式的加减1 .单项式:在代数式中,假设只含有乘法(包括乘方)运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2 .单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3 .多项式:几个单项式的和叫多项式.4 .多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(假设a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5 .整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.6 .同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7 .合并同类项法那么:系数相加,字母与字母的指数不变.8 .去〔添〕括号法那么:去〔添〕括号时,假设括号前边是“+〞号,括号里的各项都不变号;假设括号前边是“-〞 号,括号里的各项都要变号.9 .整式的加减:整式的加减,实际上是在去括号的根底上,把多项式的同类项合并.10 .多项式的升哥和降哥排列:把一个多项式的各项按某个字母的指数从小到大〔或从大到小〕排列起来,叫 做按这个字母的升哥排列〔或降哥排列〕.注意:多项式计算的最后结果一般应该进行升哥〔或降哥〕排列.一元一次方程1 .等式与等量:用“=〞号连接而成的式子叫等式.注意:“等量就能代入〞!2 .等式的性质:等式性质1:等式两边都加上〔或减去〕同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以〔或除以〕同一个不为零的数,所得结果仍是等式. 3 .方程:含未知数的等式,叫方程.4 .方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入〞!5 .移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6 . 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是 一元一次方程.7 . 一元一次方程的标准形式:ax+b=0 〔x 是未知数,a 、b 是数,且aw0〕.整式分类为:整式单项式 多项式8 . 一元一次方程的最简形式:ax=b (x是未知数,a、b是数,且aw0).9 .一元一次方程解法的一般步骤:整理方程……去分母…… 去括号…… 移项…… 合并同类项••… 系数化为1……(检验方程的解).10 .列一元一次方程解应用题:(1)读题分析法:........ 多用于“和,差,倍,分问题〞仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增力口, 减少,配套---- ",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:....... 多用于“行程问题〞利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做量),填入有关的代数式是获得方程的根底.11 .列方程解应用题的常用公式:12 )行程问题:距离=速度♦时间速度—时间—;时间速度丁作昌丁作昌13 )工程问题:工作量=工效•工时工效工时;工时工效14 )比率问题:局部=全体•比率比率禀全体售;全体比率15 )顺逆流问题:顺流速度=静水速度+ 水流速度,逆流速度=H■水速度-水流速度;.......... .................. d ..................................... 售价战木(5)商品价格问题:售价=定价•折•—,利润=售价-本钱,利润率———100%;10 本钱(6)周长、面积、体积问题:C 圆=2兀R S 圆=兀R2, C 长方形=2(a+b), S 肪形=ab, C 正邠=4a, S 正方形=a 2, S w =兀(R 2-r 2),V 长方体=abc , V 正方体 =a 3, V 期i= % RRh , V 雕=1 % Rh.3 图形熟悉初步线段、射线、直线X1.正确理解直线、射线、线段的概念以及它们的区别:名称 图形 表小方法 端点 长度直线l -------- * * ----------- A B直线AB 或BA直线l无端点无法度量射线 O M 射线OM 1个 无法度量线段l * ----------------------------- 9 A B线段AB 或BA线段l2个可度量长度X2.直线公理:经过两点有且只有一条直线. .比拟线段的长短X1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. ①圆规截取比拟法; ②刻度尺度量比拟法.X3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;派2.比拟线段长短的两种方法:b 图2OB图3用圆规可以画出线段的和、差、倍. 三.角的度量与表不X1.角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边.X2.角的表示法:角的符号为“/①用二个字母表不,如图1所小/ AOB④用希腊字母表示,如图4所示/ 3 X 经过两点有且只有一条直线o ※两点之间的所有连线中,线段最短.※两点之间线段的长度,叫做这两点之间的距离.1o =60' 1 ' =60〞※角也可以看成是由一条射线绕着它的端点旋转而成的.如图5所示: ※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.如图6所示: ※终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图7所示: ※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线X 经过直线外一点,有且只有一条直线与这条直线平行.X 如果两条直线都与第三条直线平行,那么这两条直线互相平行. ※互相垂直的两条直线的交点叫做垂足.平角图6②用一个字母表示,如图2所示/b ③用一个数字表示,如图3所示/I周角 图7B※平面内,过一点有且只有一条直线与直线垂直.※如图8所示,过点C作直线AB的垂线,垂足为.点,线段CO的长度叫做点C到直线AB的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册知识点大全初一数学上册知识点大全1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.4、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.7、倒数:乘积是1的两个数互为倒数.8、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.9、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a 叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.10、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.11、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.12、近似数:与实际很接近的数.13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.14、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.2、用字母表示数后,字母的取值要根据实际情景来确定.3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.4、单独一个数或单独一个字母也是代数式.5、列代数式的实质就是把文字语言转化为符号语言.6、列代数式的一般方法有:(1)抓住关键词,由关键词确定相应的运算符号;(2)理清运算顺序,一般是先读的先算,必要时添上括号;(3)较复杂的数量关系,可分段处理;(4)根据实际问题中的基本数量关系或公式列代数式.7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.8、求代数式的值的步骤:先代入,再求值.9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.12、在多项式里,最高次项的次数就是这个多项式的次数.13、单项式和多项式统称为整式.14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的降幂排列.15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的升幂排列.16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.17、把多项式中的同类项合并成一项,叫做合并同类项.18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19、去括号法则:(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;20、添括号法则:(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;(2)所添括号前面是“—”号,括到括号里的各项改变正负号;21、整式加减的一般步骤:先去括号,再合并同类项.第4章生活中的立体图形1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分为圆锥和棱锥2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的图,即视图.3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n 边形,可以判断是圆柱或n棱柱.5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.8、在多边形中,最基本的图形是三角形.9、两点之间线段最短.10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.12、把一条线段分成两条相等线段的点,叫做这条线段的中点.13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转而成的图形.14、角的表示方法(1)当顶点处只有一个角时,用一个大写字母表示;(2)用三个大写字母表示,注意顶点字母必须写在中间;(3)用希腊字母或阿拉伯数字表示.15、角的大小比较:(1)“形的比较”——叠合法;(2)“数的比较”——度量法.16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角.18、同角(或等角)的余角相等;同角(或等角)的补角相等.第5章相交线与平行线1、对顶角相等.2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.3、直线外一点与直线上各点连接的所有线段中,垂线段最短.4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.5、在同一平面内不相交的两条直线叫做平行线.6、经过直线外一点,有1条直线与这条直线平行.7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.8、平行线的判定方法(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;(5)在同一平面内,垂直于同一条直线的两条直线互相平行.9、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.第1章走进数学世界1、数学伴我们成长,测量、称重、计算等都与数学有关.2、数学与现实生活密切联系,人类离不开数学.3、人人都能学好数学.第2章有理数1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表示具有相反意义的量.2、正数和负数(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a 的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.文章来源网络整理,请自行参考使用。

相关文档
最新文档