东华理工大学601高等数学2017年考研初试真题
2017年考研数学一真题及答案解析
位:m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时开始后乙追 上甲的时刻记为 t0 (单位:s),则( )
(A)t0 10 (B)15 t0 20 (C)t0 25 (D)t0 25
【答案】B
【解析】从 0 到 t0 这段时间内甲乙的位移分别为
0
2
1ln(1 x)dx2 1 (ln(1 x) x2
0
2
1 0
1 x2 11 dx) 1
0 1 x
4
(17)(本题满分 10 分)
已知函数 y(x) 由方程 x3 y3 3x 3y 2 0 确定,求 y(x) 的极值
【答案】极大值为 y(1) 1 ,极小值为 y(1) 0
【解析】 两边求导得:
22
2
2
x(x)dx EX 0 。令 x 4 t ,则 x( x 4)dx = 2 4 2t (t)dt 8 1 4 t(t)dt 8
2
2
因此 E( X ) 2 .
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或 演算步骤. (15)(本题满分 10 分)
(14)设随机变量 X 的分布函数为 F (x) 0.5(x) 0.5( x 4) ,其中 (x) 为标准正态分布函数,则 2
EX _________
【答案】2
【解析】 F(x) 0.5(x) 0.5 ( x 4) ,故 EX 0.5 x(x)dx 0.5 x( x 4)dx
n i 1
Xi
,则下列结论中不正确
的是( )
n
( A) ( X i )2 服从 2分布 i 1 n
2017考研数学一真题及答案
...(1)若函数f(x)=⎨⎩1-cos x1【解析】lim=lim=,Q f(x)在x=0处连续∴x→0+ax【解析】Q f(x)f'(x)>0,∴⎨⎧f(x)>0={4,1,0}⇒∂f2017考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.⎧1-cos x ⎪ax ⎪b,x≤0,x>0在x=0处连续,则()(A)ab=12(B)ab=-12(C)ab=0【答案】A(D)ab=21x2x→0+ax2a(2)设函数f(x)可导,且f(x)f'(x)>0,则()11=b⇒ab=.选A. 2a2(A)f(1)>f(-1) (C)f(1)>f(-1)(B)f(1)<f(-1) (D)f(1)<f(-1)【答案】C⎧f(x)<0(1)或⎨(2),只有C选项满足(1)且满足⎩f'(x)>0⎩f'(x)<0(2),所以选C。
(3)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量u=(1,2,2)的方向导数为()(A)12【答案】D【解析】(B)6(C)4(D)2gradf={2xy,x2,2z},⇒gradf(1,2,0)u122 =gradf⋅={4,1,0}⋅{,,}=2.∂u|u|333(6)设矩阵 A = ⎢0 2 1⎥⎥ , B = ⎢⎢0 2 0⎥⎥ , C = ⎢⎢0 2 0⎥⎥ ,则( )T ⎣ ⎣ ⎣选 D.(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m )处,图中实线表示甲的速度曲线 v = v (t ) (单位:m / s ),虚线表示乙的速度曲线 v = v (t ) ,三块阴影部分面积的数值12依次为 10,20,3,计时开始后乙追上甲的时刻记为t (单位:s ),则()v(m / s)1020( A )t = 10【答案】B0 5 10 15 20 25 30 t(s)( B )15 < t < 20 (C )t = 25 ( D )t > 250 0 0【解析】从 0 到 t 这段时间内甲乙的位移分别为⎰t 0v (t)dt , ⎰ t 0v (t)dt , 则乙要追上甲,则1 2⎰ t 0v2(t) - v (t)dt = 10 ,当 t = 25 时满足,故选 C.1 0(5)设 α 是 n 维单位列向量, E 为 n 阶单位矩阵,则()( A) E - αα T 不可逆(C ) E + 2αα T 不可逆(B )E + αα T 不可逆 (D )E - 2αα T 不可逆【答案】A【解析】选项 A,由 ( E - αα T )α = α - α = 0 得 ( E - αα T ) x = 0 有非零解,故 E - αα T = 0 。
2017年考研数学一真题及答案解析
12017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=T E x 有非零解,故0αα-=T E 。
东华理工大学2017年硕士生入学考试初试试题
东华理工大学2017年硕士生入学考试初试试题科目代码: 807 ; 科目名称:《普通物理》;(A 卷) 适用专业(领域)名称: 核科学与技术1. (10分)按玻尔氢原子模型,氢原子处于基态时,它的电子围绕原子核做圆周运动,电子的速率为2.2×10!m /s ,离核的距离为0.53×10-‐!"m 。
求电子绕核运动的频率和向心加速度。
2. (15分)跳伞运动员从1200m 高空下跳,期初不打开降落伞做加速运动。
由于空气阻力的作用,会加速到一“终极速度”200km/h 而开会匀速下降。
下降到地面50m 处时打开降落伞,很快速率会变为18km/h 而匀速下降着地。
若期初加速运动阶段的平均加速度按g/2(g 为重力加速度),此跳伞运动员在空中一共经历了多长时间?3. (10分)一架质量为5000kg 的直升机吊起一辆1500kg 的车辆以0.60m/s 2的加速度向上升起。
(1)空气作用在螺旋桨上的上举力多大?(2)吊车辆的缆绳中的张力多大?4. (10分)238U 核衰变为234Th 放出α粒子(质量数为4的氦核)时释放的总能量为4.27MeV ,求一个静止的238U 核放出的α粒子的动能。
5. (15分)质量为M 1=24 kg 、半径为R 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 、半径为r 的圆盘形定滑轮悬有m =10 k g 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度; (2) 绳中张力.(注:设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =)6. (15分)一定量的某种理想气体进行如图所示的循环过程。
已知气体在状态A 的温度为T A =300 K ,求(1) 气体在状态B 、C 的温度;A B C p (Pa) O V (m 3)1 2 3100200300(2) 各过程中气体对外所作的功;(3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和)。
2017年考研数学一真题及答案解析
f1'ex f2' sin x
x0
f1' (1,1) 1
f
' 2
(1,1)
0
f1' (1,1)
d2y dx2
f1'1' e2x
f1'2' ex ( sin x)
f
e''
21
x
(
sin
x)
f
'' 22
sin
2
x
f1'e x
f2' cos x
d2y dx2
x0
f ''
11
(1,1)
f1' (1,1)
( A)12 (B)6 (C)4 (D)2
【答案】D
【解析】 gradf
{2xy, x2 , 2z}, gradf
(1,2,0)
{4,1, 0}
f u
gradf
|
u u
|
{4,1, 0}{13 ,
2 3
,
32}
2.
选 D.
(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处,图中实线表示甲的速度曲线 v v1(t)(单 位:m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时开始后乙追
【答案】 y ex (c1 cos 2x c2 sin 2x) ,( c1, c2 为任意常数)
【解析】齐次特征方程为 2 2 3 0 1,2 1 2i
故通解为 ex (c1 cos 2x c2 sin 2x)
(11)
若曲线积分
2017考研数学一试题及答案解析.doc
2017 考研数学一答案及解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1 cos x(1)若函数f (x) ax , x 0 在 x 0 连续,则()。
b, x 0A.1 ab2B.1 ab2C. ab0D. ab 2 【答案】 A 【解析】由连续的定义可得limx 0- f (x) limx 0+f (x) f (0) ,而1 cos x 1( x )21 1lim+ f (x) lim+ lim+ 2 , lim - f ( x) b ,因此可得 b ,故选x 0 x 0ax x 0 ax 2a x 0 2a择 A。
(2)设函数f ( x)可导,且f ( x) f '( x) 0 ,则()。
A. f (1) f ( 1)B. f (1) f ( 1)C. | f (1) | | f ( 1)D. | f (1) | | f ( 1)【答案】 C【解析】令 F (x) f 2 ( x) ,则有 F '( x) 2 f ( x) f '(x) ,故 F ( x) 单调递增,则 F (1) F( 1),即 [ f (1)]2 [ f ( 1)]2,即 | f (1)| | f ( 1) ,故选择C。
(3)函数 f (x, y, z) x 2 y z 2 在点 (1,2,0) r处沿向量 n (1,2,0) 的方向导数为( )。
A.12B.6C.4D.2【答案】 D【 解 析 】 gradf{2 xy, x 2 , 2z} , 因 此 代 入 (1,2,0) 可 得 gradf |(1,2,0) {4,1,0} , 则 有f grad u{4,1,0}{ 1 , 2 , 2} 2 。
u| u | 3 3 3(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位: m )处,图中,实线表示甲的速度曲线 vv 1 (t ) (单位: m/s ),虚线表示乙的速度曲线 v v 2 (t) ,三块阴影部分面积的数值依次为 10,20, 3,计时开始后乙追上甲的时刻记为t 0 (单位: s ),则( )。
2017年考研数学一真题及答案解析
2 x + c2 sin 2 x)
ò
xdx - aydy 在区域 D = ( x, y) | x2 + y 2 < 1 内与路径无关,则 L x2 + y 2 - 1
{
}
a = __________
【答案】 a = 1 【解析】
¶P -2 xy ¶Q 2axy ¶P ¶Q = 2 , = 2 , 由积分与路径无关知 = Þ a = -1 2 2 2 2 ¶y ( x + y - 1) ¶x ( x + y - 1) ¶y ¶x
x =0
= f1' (1,1) ×1 + f 2' (1,1) × 0 = f1' (1,1)
d y '' 2 x '' x '' x '' = f11 e + f12 e (- sin x) + f 21 e (- sin x) + f 22 sin 2 x + f1'e x - f 2' cos x 2 dx d2y '' Þ 2 = f11 (1,1) + f1' (1,1) - f 2' (1,1) dx x =0
(2)设函数
f ( x) 可导,且 f ( x) f ' ( x) > 0 ,则(
)
( A) f (1) > f (-1) (C ) f (1) > f (-1)
【答案】C
( B ) f (1) < f (-1) ( D ) f (1) < f (-1)
【解析】! f ( x) f ' ( x) > 0,\ í
东华理工大学高等数学期末考试试卷(含答案)
东华理工大学高等数学期末考试试卷(含答案)
一、高等数学选择题
1.设函数,则.
A、正确
B、不正确
【答案】B
2.函数的图形如图示,则函数
( ).
A、有一个极大值
B、有两个极大值
C、有四个极大值
D、没有极大值
【答案】A
3.().
A、
B、
C、
D、
【答案】B
4.设函数,则().
A、
B、
C、
D、
【答案】A
5.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】C
6.设,则=().A、
B、
C、
D、
【答案】D
7.不定积分.
A、
B、
C、
D、
【答案】A
8.设函数,则().
A、
B、
C、
D、
【答案】C
9.函数在点处连续.
A、正确
B、不正确
【答案】A
10.是偶函数.
A、正确
B、不正确
【答案】B
11.不定积分.
A、正确
B、不正确
【答案】B
12.设函数,则().
A、
B、
C、
D、
【答案】A
13.不是函数的极值点.
A、正确
B、不正确
【答案】B
14.是微分方程.
A、正确
B、不正确
【答案】A
15.设,则=().A、
B、
C、
D、
【答案】D。
2017年考研数学一真题及答案全
2017年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f xf z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n …为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx x x x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=. (2)构造()()'F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2017年考研数学一真题及解析
(A)t0 10 (B)15 t0 20 (C)t0 25 (D)t0 25
【答案】B
【解析】从 0 到 t0 这段时间内甲乙的位移分别为
t0 0
v1
(t)dt
,
t0 0
v2
(t)dt
,
则乙要追上甲,则
t0 0
v2 (t)
v1 (t)dt
10
,当 t0
25 时满足,故选
C.
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则( )
故可逆。其它选项类似理解。
2 0 0 2 1 0 1 0 0 (6)设矩阵 A 0 2 1 , B 0 2 0 ,C 0 2 0 ,则( )
0 0 1 0 0 1 0 0 2
( A) A与C相似, B与C相似 B A与C相似, B与C不相似 (C) A与C不相似, B与C相似 D A与C不相似, B与C不相似
(A)12 (B)6 (C)4 (D)2
长理资料群:五,八,6 8,8,六,7,7,五
【答案】D
【解析】 gradf {2xy, x2, 2z}, gradf
(1,2,0)
{4,1, 0}
f u
gradf
u {4,1, 0}{ 1,
|u|
3
2, 3
2} 2. 3
选 D.
(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处,图中实线表示甲的速度曲线 v v1(t) (单位: m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时 开始后乙追上甲的时刻记为 t0 (单位:s),则( )
2017 年考研数学一真题及答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题
2017年考研数学一真题及答案解析
2017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x x f x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,1{2,,|uf u gradf xy x z gradf gradf u ∂=⇒=⇒=⋅=⋅=∂选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=T E 。
2017年全国硕士研究生考试数学一试题及答案
2017年全国硕士研究生考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1 cos、、x(1)若函数f(x) —ax —,X 0在x 0连续,则()。
b,x 0-1A.ab —2u 1B.ab2C.ab 0D.ab 2(2)设函数f (x)可导,且f(x)f'(x) 0 ,则(A.f(1) f( 1)B.f(1) f( 1)C.I f(1)l I f( 1)D.I f(1)I I f( 1)(3)函数f (x, y, z) x2y z2在点(1,2,0)处沿向量n (1,2,0)的方向导数为( )。
A.12B.6C.4D.2(4)甲乙两人赛跑,计时开始时,甲在乙前方10 (单位:m)处,图中,实线表示甲的速度曲线v M(t)(单位:m/s),虚线表示乙的速度曲线v v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()。
要条件是()。
A. P(B | A) P(B| A) B. P(B| A) P(B| A)A. t o 10B. 15 t o 20C. t o 25D. t o 25(5)设为n 维单位列向量, E 为n 维单位矩阵,则(A. E T 不可逆B. E T 不可逆C. E 2 T不可逆 D. E 2T不可逆2 0 02 1 0 (6)已知矩阵A 02 1 ,B 0 2 0 ,C 0 0 10 0 11 0 00 2 0,则( )0 0 2A. A 与C 相似,B 与C 相似B. A 与C 相似,B 与C 不相似C. A 与C 不相似,B 与C 相似D. A 与C 不相似,B 与C 不相似(7)设A , B 为随机事件,若0 P(A) 1,0 P(B)1,且 P(A| B) P(A|B)的充分必C. P(B|A) P(B|A)D. P(B| A) P(B| A)(8)设 X 1,X 2,L X n (n1 n2)来自总体N( ,1)的简单随机样本,记 X — X i ,则下列n i 1结论中不正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(12) 方程x 2 + 4x6 −1 = 0有
个实根 。
⎧x = 1
(13)过原点且与两直线
⎪ ⎨
y
⎪⎩z
= −1 + = 2+t
t
,及
x +1 1
=
y
+ 2
2
=
z
−1 都平行的平面方程为 1
。
(14)设其中 D 由 y =
x
和
y
=
x
围成,则
∫∫
D
sin y
y
dσ
=
.。
三、解答题:(15)-(22)小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出 文字说明、证明过程或演算步骤. (15)(本题满分 11 分)
证明 : 当x ≥ 1时, 恒等式2 arctan x + arcsin 2x = π 成立. 。 1+ x2
第 2 页,共 3 页
注意:答案请做在答题纸上,做在试卷上无效
(16)(本题满分 11 分)
∫ 计算积分
16
arctan
x −1 dx.
1
(17)(本题满分 12 分)
设平面图形由抛物线 x = y2 + 2与过抛物线上点(4, 2)的法线及x轴, y轴所围成. 2
(1) 求此平面图形的面积;(2) 求该平面图形绕 y 轴旋转而成的旋转体的体积.。
(18)(本题满分 12 分)
( ) ∫∫ 求 I = x2 + y 2 + y dσ ,其中 D为x2 + y2 ≤ 4和(x +1)2 + y2 ≥ 1所围区域。 D
(19)(本题满分 12 分)
设 u = f (x, y, z)有连续的一阶偏导数,又函数 y = y(x) 及 z = z(x) 分别由下列两式确
设正项数列{an
}满足
lim
n→∞
an+1 an
= 0,则 (
)
A.lim n→∞
a
n
=
0;
C.lim n→∞
an
不存在;
B.lim n→∞
an
=
C
>
0;
D.{an }的收敛性不能确定.
ห้องสมุดไป่ตู้
(3) 设 lim f (2x) − f (0) = 1,则f ′(0)等于( ) x→0 ln(1 + 3x)
东华理工大学
考研专业课初试真题
硕士研究生入学考试专业课初试真题
注意:答案请做在答题纸上,做在试卷上无效
东华理工大学 2017 年硕士生入学考试初试试题 科目代码: 601 ; 科目名称:《高等数学》;( A 卷) 适用专业(领域)名称::化学、地球物理学、电路与系统、计算机科学与技术、
环境科学与工程
则 ∫∫ a D
f (x) + b f ( y) dσ = ( f (x) + f (y)
)
A. abπ ;
B. ab π ; 2
(7)直线
⎧5x ⎨⎩2 x
+ +
y y
− −
3z 3z
− −
7 7
= =
0 0
(
)
C. (a + b)π ;
D. a + b π 。 2
A. 垂直 yoz 平面; B. 平行 x 轴; C 在 yoz 平面内.; D. 在 xoy 平面内。
A.1
B. 3 2
C.2
(4) 设 lim f (x) − f (a) = −1,则点x = a( ) x→a (x − a)2
D. 5 2
A.是f (x)的极大值点; C.是f (x)的驻点,但不是极值点;
B.是f (x)的极小值点; D.不是f (x)的驻点.
(5)极限 lim x→0
1
1
1
1
证明不等式 a n+1 (n + 1)2
<
a n − a n+1 ln a
<
an n2
,(a > 1,n ≥ 1). 。
(22)(本题满分 12 分) 求微分方程 y′′ + 3y′ + 2 y = 3xe−x 的通解。
第 3 页,共 3 页
(9) 设函数y = y(x)由方程sin(xy) + 3x + y = 1所确定,则dy x=0 =
。
(10) 设y = lim t(1 + 1 )2tx , x = t 2 + t,则 dy = . 。
x→∞
x
dx
1
∫2
(11)
−1
sin x2 ⋅ ln
1+ x 1− x
dx = ___________________ 。
(8)微分方程 y′′ − 2 yy′3 = 0 满足条件 y′(0) = −1, y(0) = 1的解是(
)
A. y3 = x + 1 ; B. x 3 = y − 1; C. y3 = −x + 1 ; D. x 3 = − y + 1。
3
3
3
3
3
3
二、填空题:(共 6 小题,每小题 4 分,共 24 分)请将答案写在答题纸指定位置上。
一、选择题:(共 8 小题,每小题 4 分,共 32 分)下列每小题给出的四个选项中,只有 一项符合题目要求,请将答案写在答题纸指定位置上.
(1) 极限 lim (1 + x→0
2x)sin x − cos x sin x 2
=(
)
A. 1; C. 2;
B. 3; 2
D. 5. 2
(2)
x2 y x4 + y2
=(
)
y→0
A. 0 B. 不存在
C. 存在但不等于0或 1
D. 1
2
2
第 1 页,共 3 页
注意:答案请做在答题纸上,做在试卷上无效
{ } (6)设区域 D (x, y) | x2 + y 2 ≤ 4, x ≥ 0, y ≥ 0 , f (x) 为 D 上正值连续函数, a,b 为常数,
定
∫ e xy − xy = 2 和 e x = x−z sin t dt ,求 du
0t
dx
(20)(本题满分 12 分) 设f (x)在[0,1]上连续,在(0,1)内可导,且f (0) = 0,
证明:在(0,1)内存在一点c,使cf ′(c) + 2 f (c) = f ′(c).
(21)(本题满分 12 分)