CDK Inhibitors Cell Cycle Regulators and Beyond
华科生物化学与分子生物学考研资料
名词解释:细胞周期:真核细胞主要以有丝分裂的方式进行增殖。
进入增殖的细胞,通过一系列循环发生的事件,最终实现细胞分裂,产生两个子代细胞,这一过程被称为细胞周期。
CDK:周期蛋白依赖性蛋白激酶(cyclin-dependent protein kinases, Cdks)主要在细胞周期调控中起作用的蛋白激酶,由于受周期蛋白的激活而得名。
Cyclin:细胞周期素(细胞周期蛋白)一类与细胞周期功能状态密切相关的蛋白质家族,其表达水平随着细胞周期发生涨落,可通过与特定蛋白激酶结合并激活其活性,从而在细胞周期的不同阶段发挥调控作用。
CDK抑制因子(CKI)(CDK inhibitor)是细胞内存在的一些对CDK激酶活性起负调作用的蛋白质。
它是能与CDK激酶结合并抑制其活性的一类蛋白质,具有确保细胞周期高度时序性的功能,在细胞周期的负调控过程中起着重要作用。
细胞凋亡(apoptosis):指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。
细胞凋亡与细胞坏死不同,细胞凋亡不是一件被动的过程,而是主动过程,它涉及一系列基因的激活、表达以及调控等的作用,它并不是病理条件下,自体损伤的一种现象,而是为更好地适应生存环境而主动争取的一种死亡过程。
凋亡体(apoptosome):与细胞凋亡有关功能的多蛋白质复合体,由细胞凋亡蛋白酶激活因子1、胱天蛋白酶9及细胞色素c组成。
激活胱天蛋白酶起始物和效应物反应机构,启动细胞凋亡级联反应下游过程变化。
Apaf:(apoptosis protease activating factor)秀丽新小杆线虫(Caenorhabditis elegans)细胞死亡蛋白的同源蛋白质。
可与细胞色素c结合而激活胱天蛋白酶3。
已知有Apaf 1和Apaf 2。
Apaf 1寡聚化后直接激活胱天蛋白酶9;Apaf 2是细胞色素c。
Bcl-2:B淋巴细胞瘤-2基因(B-cell lymphoma-2),是细胞凋亡研究中最受重视的癌基因之一,可以抑制由多种细胞毒因素所引起的细胞死。
细胞周期调控与肿瘤发生机制
细胞周期调控与肿瘤发生机制细胞周期是指细胞从一个细胞产生到再次分裂产生两个新的细胞的时间段。
正常时,细胞周期有严格的调控机制,以确保细胞的精确复制与分裂。
然而,当细胞周期调控失去平衡时,就可能导致肿瘤的发生。
本文将从细胞周期的调控机制和肿瘤发生的关系等方面进行探讨。
一、细胞周期调控机制细胞周期包括G1期、S期、G2期和M期(有些文献还分有七个阶段)。
细胞周期的调控主要由细胞周期蛋白激酶(Cyclin-dependent kinases,CDKs)和其激活剂——周期蛋白(Cyclins)调控。
具体来说,G1期主要由Cyclin D和CDK4/6复合物控制,调控细胞周期进入S期;S期主要由Cyclin E和CDK2复合物控制,调控DNA的复制过程;G2期主要由Cyclin A和CDK1复合物控制,调控细胞周期进入M期。
此外,有两类蛋白质也参与了细胞周期的调控:细胞周期蛋白相关磷酸酶(Cyclin-dependent kinase inhibitors,CKIs)和负调控蛋白家族(negative regulators)。
CKIs通过抑制CDKs的活性来调节细胞周期的进展。
而负调控蛋白家族则通过抑制周期蛋白的表达或降解来阻止细胞周期的进行。
二、细胞周期调控的失衡与肿瘤发生1. 基因突变导致的细胞周期紊乱细胞周期调控失衡与肿瘤发生密切相关。
一些肿瘤可能源于细胞周期调控相关基因的突变。
比如,在细胞周期调控中起重要作用的肿瘤抑制基因p53的突变,不仅会导致细胞周期的失控,还会增加DNA的损伤修复错误,从而导致细胞的异常增殖和突变积累。
此外,Cyclin D1基因的突变与乳腺癌、前列腺癌等肿瘤的发生也有关联。
2. 表观遗传调控与肿瘤发生除了基因突变,表观遗传调控也在细胞周期调控的失衡中发挥重要作用。
表观遗传调控指的是通过DNA甲基化、组蛋白修饰等方式,调节基因的表达水平而不改变其基本结构。
一些研究发现,在肿瘤细胞中,某些关键的细胞周期调控基因的甲基化水平发生改变,从而导致这些基因的表达异常,进而导致细胞周期的紊乱。
肿瘤标志物概述(详细)
肿瘤标志物概述(详细)1、CA-125CA-125是一种高分子糖蛋白,主要在卵巢上皮细胞中表达,也可在胸膜、腹膜、胰腺、肺和乳腺等组织中表达。
在卵巢癌患者中,CA-125水平明显升高,但也有部分非卵巢癌患者CA-125水平升高。
因此,CA-125主要用于卵巢癌的筛查、诊断和疗效观察,但不能作为卵巢癌的唯一诊断依据。
2、CA19-9CA19-9是一种复杂的糖蛋白,主要在胰腺、胆道、胃和结肠等组织中表达。
在胰腺癌、胆管癌、胃癌和结肠癌等消化道肿瘤患者中,CA19-9水平明显升高。
因此,CA19-9主要用于消化道肿瘤的筛查、诊断和疗效观察。
3、CA-153CA-153是一种复杂的糖蛋白,主要在乳腺上皮细胞中表达。
在乳腺癌患者中,CA-153水平明显升高,但也有部分非乳腺癌患者CA-153水平升高。
因此,CA-153主要用于乳腺癌的筛查、诊断和疗效观察,但不能作为乳腺癌的唯一诊断依据。
三)细胞表面肿瘤抗原类1、PSA前列腺特异性抗原(prostate-specific antigen,PSA)是一种蛋白质,主要由前列腺上皮细胞合成。
在前列腺癌患者中,PSA 水平明显升高,但也有部分非前列腺癌患者PSA水平升高。
因此,PSA主要用于前列腺癌的筛查、诊断和疗效观察,但不能作为前列腺癌的唯一诊断依据。
2、CYFRA21-1CYFRA21-1是一种细胞角质化蛋白,主要在上皮细胞中表达。
在肺鳞癌和其他鳞状上皮癌患者中,CYFRA21-1水平明显升高。
因此,CYFRA21-1主要用于肺鳞癌和其他鳞状上皮癌的筛查、诊断和疗效观察。
总之,肿瘤标志物在肿瘤的早期诊断、疗效观察和预后判断等方面具有重要的临床应用价值。
但需要结合临床症状、影像学检查等多种方法进行综合分析和判断。
细胞恶变时,基因表达会出现异常,导致表面的糖蛋白和糖脂产生变化,伴随着糖类抗原的异常。
肿瘤细胞株免疫BALB/C纯种小鼠,与骨髓瘤细胞杂交得到的单克隆抗体(McAb)能与某种特定的CA起反应。
细胞周期信号转导通路
Progress in the eukaryotic cell cycle is driven by oscillations(振动) in the activities of CDKs(Cyclin-Dependent Kinases). CDK activity is controlled by periodic synthesis(周期复合体)and degradation of positive regulatory subunits(调节亚基), Cyclins, as well as by fluctuations in levels of negative regulators, by CKIs (CDK Inhibitors), and by reversible phosphorylation. The mammalian cell cycle consists of four discrete phases: S-phase, in which DNA is replicated; M-phase, in which the chromosomes are separated over two new nuclei in the process of mitosis. These two phases are separated by two so called “Gap” phases, G1 and G2, in which the cell prepares for the upcoming events of S and M, respectively (Ref.1). The different Cyclins, specific for the G1-, S-, or M-phases of the cell cycle, accumulate and activate CDKs at the appropriate times during the cell cycle and then are degraded, causing kinase inactivation. Levels of some CKIs, which specifically inhibit certain Cyclin/CDK complexes, also rise and fall at specific times during the cell cycle (Ref.2). A breakdown in the regulation of this cycle leads to uncontrolled growth and contribute to tumor formation. Defects in many of the molecules that regulate the cell cycle also lead to tumor progression. Key among these are p53, the CKIs (p15 (INK4B), p16 (INK4A), p18 (INK4C), p19 (INK4D), p21, p27 (KIP1)), and Rb (Retinoblastoma Susceptibility Protein), all of which act to keep the cell cycle from progressing until all repairs to damaged DNA have been completed.In mammalian cells, different Cyclin-CDK complexes are involved in regulating different cell cycle transitions: Cyclin-D -CDK4/6 for G1 progression, Cyclin-E -CDK2 for the G1-S transition, Cyclin-A-CDK2 for S-phase progression, and Cyclin-A/B-CDC2 for entry into M-phase. Apart from thesewell-known roles in the cell cycle, several Cyclins and CDKs are involved in processes not directly related to the cell cycle. Cyclin-D binds and activates the estrogen receptor. (Ref.6). The Cyclin-H -CDK7 complex is a component of both the CDK-activating kinase and the basal transcription factor TFIIH and can phosphorylate CDKs. Other Cyclins and CDKs (Cyclin-C-CDK8, Cyclin-T-CDK9, and Cyclin-K) are also associated with RNA Polymerase-II and phosphorylate the carboxyl-terminal repeat domain.Cyclin-G, a target of p53, recruits PP2A (Protein Phosphatase 2A) to dephosphorylate MDM2 (Mouse Double Minute 2) (Ref.3).Cyclins associate with CDKs to regulate their activity and the progression of the cell cycle through specific checkpoints. Disruption of Cyclin action leads to either cell cycle arrest, or to uncontrolled cell cycle proliferation. Mitogenic signals that are received by cell surface receptors communicate to the nuclear cell cycle machinery to induce cell division through growth factor receptors that target Ras, which signals to a number of cytoplasmic signaling cascades such as PI3K (Phosphatidylinositiol–3 Kinase), Raf and Rho. These proteins connect to the nuclear cell cycle machinery to mediate exit from Go into G1 and S-phase of the cell cycle. Activation of Ras leads to transcriptional induction of Cyclin-D1 in early G1 through a Ras-responsive element in the Cyclin-D1 gene promoter. Cyclin-D associates with CDK4 and CDK6 to form active Cyclin-D/CDK4 (or -6) complexes. This complex is responsible for the first phosphorylation of tumor suppressor Rb in G1 (Ref.1). Subsequently, Cyclin-E is synthesized. When Cyclin-E is abundant it interacts with the cell cycle checkpoint kinase CDK2 and allow progression of the cell cycle from G1 to S-phase. One of the key targets of activated CDK2 complexed with Cyclin-E is Rb. When dephosphorylated in G1, Rb complexes with and blocks transcriptional activation by E2F transcription factors. But when CDK2/Cyclin-E phosphorylates Rb, it dissociates from E2F, allowing E2F to activate the transcription of genes required for S-phase. E2F activity consists of a heterodimeric complex of an E2F polypeptide and a DP1 protein (Ref.5). One of the genes activated by E2F is Cyclin-E itself, leading to a positive feedback cycle as Cyclin-E accumulates. In S-phase, Cyclin-A is made, whichin complex with DK2 adds further phosphates to Rb. Cyclin-B is made in G2 and M-phases of the cellcycle (Ref.4). It combines with CDK1 (also called CDC2 or CDC28) to form the major mitotic kinase MPF (M-phase Promoting Factor). MPF causes entry of cells into mitosis and, after a lag, activates the system that degrades its Cyclin subunit. MPF inactivation, caused by the degradation of Cyclin-B, is required forexit from mitosis (Ref.2). 14-3-3s bind to the phosphorylated CDC2–Cyclin-B kinase and exports it fromthe nucleus. During G2-phase, CDC2 is maintained in an inactive state by the kinases Wee1 and Myt1 (Myelin Transcription Factor 1). As cells approach M-phase, the phosphatase CDC25 is activated by PLK (Polo-Like Kinase). CDC25 then activates CDC2, establishing a feedback amplification loop thatefficiently drives the cell into mitosis.All Cyclins are degraded by ubiquitin-mediated processes, and the mode by which these systems are connected to the cell-cycle regulatory phosphorylation network, are different for mitotic and G1 Cyclins (Ref.2). The decision by the cell to either remain in G1 or progress into S-phase is the result in part of the balance between Cyclin-E production and proteolytic degradation in the proteosome. Cyclin-E is targetedfor destruction by the proteosome through ubiquitination when associated with a complex of proteinscalled the SCF or F box complex. During G1-phase, the Rb-HDACs (Histone Deacetylases) repressor complex binds to the E2F-DP1 transcription factors, inhibiting the downstream transcription. Manydifferent stimuli exert checkpoint control including TGF-Beta, DNA damage, contact inhibition, replicative senescence and growth factor withdrawal. The first four act by inducing members of the INK4A family orKIP/CIP families of cell cycle kinase inhibitors. TGF-Beta additionally inhibits the transcription of CDC25A,a phosphatase that activates the cell cycle kinases. DNA damage activates the DNA-PK/ATM/ATR kinases, initiating cascades that inactivate CDC2–Cyclin-B.Both synthesis and destruction of Cyclins are important for cell cycle progression. The destruction of Cyclin-B by Anaphase-Promoting Complex/cyclosome is essential for metaphase-anaphase transition, and expression of indestructible Cyclin-B traps cells in mitosis (Ref.3). Cyclins-E and A have been implicated in the DNA replication initiation process in mammalian cells. In embryonic systems, Cyclin-E regulates replication in the absence of Cyclin-A. For centrosome duplication, in somatic cells Cyclin-A is required to induce DNA replication and it has also been implicated in activation of DNA synthesis, because of its appearance time relative to the onset time of DNA synthesis and its localization to sites of nuclear DNA replication. Cyclin-E regulates the transcription of genes that encode the replication machinery but has also been implicated in the initiation process in mammalian cells (Ref.1). Similarly, expression of indestructible Cyclin-A arrests cells in late mitosis. Overexpression of Cyclin-F also causes an accumulation of the G2/M (Ref.3).。
CELLCYCLE一、MPF的发现及其作用
人们猜测,在M期的细胞中存在着某中分别提取出了能够 促进细胞分裂的的因子,统称为成熟促进因子 (maturation promoting factor,MPF)。
爪蟾卵子成熟过程
处于第六期的爪蟾卵母细胞(RD前期I),具GV。
MPF的生化成分:含有两个亚单位 MPF =Cdc2+cyclin (催化亚单位+调节亚单位)
•后来Paul Nurse(1990)进一步的实验证明P32 实际上是Cdc2的同源物,而P45是cyclinB的同源 物,从而将细胞周期三个领域的研究联系在一起。
•即MPF是由cyclin和CDC基因编码的依赖于 cyclin的蛋白激酶(cyclin-dependent kinase, CDK),
不具有活性,使CDK/cyclin不断积累。 • 在M期,Wee1的活性下降,CDC25使CDK去磷酸化,去除
了CDK活化的障碍。 • CDK的激活需要Thr161的磷酸化,它是在CDK激酶(CDK
activating kinase CAK)的作用下完成的。
CDK activating
DNA复制的控制
S-CDK触发 pre-RC的启动, 同时阻止了DNA 再次进行复制, 因为S-CDK将 CDC6磷酸化,使 其脱离ORC,磷 酸化的CDC6随后 被SCF参与的遍 在蛋白化途径降 解。从而保证了 DNA的复制当且 仅当一次
限制点在细胞周期中的作用
•细胞要分裂,必须正确复制DNA和达到一定的 体积,在获得足够物质支持分裂以前,细胞不可 能进行分裂。细胞周期的运行,是在一系列称为 检验点(check point)的严格检控下进行的, 当DNA发生损伤,复制不完全或纺锤体形成不正 常,周期将被阻断。
–G2期PCC为双线染色体,说明DNA复制已完成。
细胞周期调控
调节亚基:目前从芽殖酵母、裂殖酵母和各类动物中分
离出的周期蛋白有30余种,在脊椎动物中为A1-2、B1-3 、 C、 D1-3、E1-2、F、G、H等。分为G1型、G1/S型S型和M型 4类(见表)。各类周期蛋白均含有一段约100个氨基酸的 保守序列,称为周期蛋白框,介导周期蛋白与CDK结合。。
表1不同类型的周期蛋白
① 相应Cyclin水平的高低。
② CDK分子上一定位点的磷酸化修饰。 ③ CDIs(CDK-Inhibitors)含量的高低。
CDK分子上一定位点的磷酸化修饰。
CDK1的激活需要Thr14和Tyr15去磷酸化和Thr161的磷酸化
CKIs(CDK-Inhibitors): 细胞周期蛋白依赖性激酶抑制因子 对细胞周期起负调控作用,分为两大家族:
由524个氨基酸组成,特异性催化CDK4/6-CyclinD和
CDK2/cyclinA/E脱磷酸化激活;CDC25B和CDC25C分别由566 和473个氨基酸组成,它们二个特异性催化核外和核内的 CDK1/cyclinB脱磷酸化激活。特别是CDC25C在细胞核分裂 中起有特别的重要作用,因为在核分裂过程中尚有一个丝/
①Ink4(Inhibitor of cdk 4):
如P16ink4a、P15ink4b、P18ink4c、P19ink4d,特
异性抑制cdk4· cyclin D1、cdk6· cyclin D1复合物。
② Cip(CDK-interacting protein )/Kip(Kinase
inhibition protein):
激酶复合体 G1-CDK G1/S-CDK S-CDK M-CDK 脊椎动物 Cyclin CDK Cyclin D* CDK4 、6 Cyclin E Cyclin A Cyclin B CDK2 CDK2 CDK1(CDC2) Cyclin Cln 3 芽殖酵母 CDK CDK1(CDC28)
细胞周期蛋白依赖性激酶与肿瘤关系的研究进展
细胞周期限制点
细胞周期调控(cell cycle regulation)
二、历史回顾
Leland H. Hartwell 1970s “Checkpoint” Yeast genetics ~100 CDC genes Start gene
Paul M. Nurse 1970s CDKs yeast
Tim Hunt 1980s Cyclins Sea Urchins
将发挥微管组织中心的作用,纺锤体微管,星体微管的形成均与 此相关。
3、G2期(DNA合成后期,从DNA复制完成到有丝分裂开始前的时期, 为有丝分裂 进行物质条件)
为细胞分裂准备期,细胞中合成一些与M期结构功能相关的蛋白 质,与核膜破裂,染色体凝集相关的成熟促进因子在此期合成。 微管蛋白G2期合成达高峰,为M期纺锤体微管的形成提供了丰 富的来源。 已经复制的中心粒在G2期逐渐长大,并开始向细胞两极分离。
CDK activating
活性位点
抑制位点
2、细胞周期限制点(check point) 由于某些环境因素的作用细胞周期出现故障或差错, 这些信号可是细胞停留在某些点上,称为限制点。 主要检验点: G1/S限制点:DNA是否损伤?细胞外环境是否适宜? 细胞体积是否足够大?在酵母中称start点,在哺乳动 物中称R点(restriction point)。 S期限制点:DNA复制是否完成?
1、细胞周期的启动机制
细胞周期能否启动进行细胞增殖,主要的调控点在G1期,它决定 细胞是否通过G1期进入S期。 这一调控点首先在芽殖酵母的研究中被认识,人们称其为“起始 点”(START)。一旦细胞通过start,它们势必进入 S期,完成整 个细胞分裂周期。因此 start 有人称之为酵母细胞周期的“决定 点”。 在人体细胞增殖中,在G1期存在相似的调控机制。在G1期较晚时, 也有一个决定点,称为“限制点”(restriction point),与酵母 的START功能类似,不同的是,人类细胞是否通过“限制点”, 进入细胞周期,主要受与细胞增殖有关的细胞外生长因子的调控, 而不是营养素。只要有相应的生长因子存在,细胞就能通过 R 点 进入 S 期,完成整个细胞周期。回到 G0/1 期。相反,如果细胞在 G1期就缺乏相应的生长因子,细胞周期的运行将停止在 R点,此 时细胞进入“安静状态,称之为G0期。
细胞周期抑制剂在医学中的应用研究进展
细胞周期抑制剂在医学中的应用研究进展细胞周期抑制剂(Cell cycle inhibitors)是一种药物,在医学领域中被广泛研究和使用。
其主要作用是抑制细胞周期的进展,使得癌细胞无法快速分裂和增殖,从而达到抑制癌症生长和扩散的目的。
近年来,细胞周期抑制剂的研究取得了一些重要的进展,本文对这些进展进行了详细介绍。
一、CDK(细胞周期蛋白依赖性激酶)抑制剂CDK是一类关键的细胞周期调控蛋白,在正常细胞中具有调节细胞周期进程的作用。
而在癌细胞中,CDK活性增强,导致细胞周期进程异常,从而促进癌细胞快速分裂和增殖。
因此,CDK抑制剂被认为是治疗癌症的一个重要途径。
自20世纪80年代以来,CDK抑制剂的研究一直在进行中。
近年来,一些新型CDK抑制剂被开发出来,如palbociclib、ribociclib、abemaciclib等。
这些新型CDK抑制剂可以非常灵活地选择不同的CDK抑制剂,有效地抑制非常特定的细胞周期进展。
这些药物在临床中的应用也取得了一些进展。
例如,palbociclib已经被FDA批准用于内膜癌和乳腺癌的治疗,ribociclib已被批准用于乳腺癌的治疗。
这些药物不仅可以延长患者的生存期,而且也很少引起严重的不良反应。
二、p53激活剂p53是一种肿瘤抑制基因,能够调控细胞周期进程。
在肿瘤细胞中,p53通常被突变或失活,导致肿瘤细胞的异常增殖和恶性转化。
因此,p53激活剂被认为是治疗癌症的一个重要途径。
近年来,p53激活剂的研究也取得了一些进展。
例如,PRIMA-1和PRIMA-1Met是两种有效的p53激活剂之一。
这些药物可以调整p53的活性,促进肿瘤细胞凋亡,从而达到治疗癌症的目的。
此外,这些药物还能够增强放疗和化疗的疗效,提高癌症患者的治疗成功率。
然而,当前研究中还存在着一些问题和挑战。
例如,p53抑制因子的存在会削弱这些药物的疗效,使得p53激活剂对肿瘤治疗的效果有限。
因此,未来需要寻找新的药物策略,以克服这些问题。
细胞周期依赖性激酶CDKs介绍
热门靶点-细胞周期依赖性激酶CDKs介绍细胞周期是细胞生命活动的基本过程,它控制着细胞从静止期转向生长增殖期。
细细胞周期蛋白依赖激酶(CDKs)和细胞周期蛋白(Cyclins)是整个细胞周期调控机制中的核心分子。
细胞周期失调是人类癌症的一个共同特征,细胞周期蛋白依赖性激酶(CDKs)抑制剂对细胞周期控制起着至关重要的作用,也是一个最有前景的癌症治疗领域。
细胞周期蛋白依赖性激酶属于丝氨酸/苏氨酸激酶家族成员之一,是一种由细胞周期催化激酶亚基和调节亚基组成的二聚体复合物,目前已经发现11个CDK成员。
CDK调节机制依靠正向磷酸化(CDK激动激酶,CAK)和负向磷酸化(Weel,Myt1),以及相关的具有驱动细胞周期的CDK-细胞周期蛋白复合物组装成的高度互连的调节机制。
抗肿瘤细胞周期药物治疗目前已知的机制有如下四个。
阻滞细胞周期从G1期进入S期。
cyclin-CDKs负责调节细胞周期来完成细胞的分裂。
cyclin D和CDK4/6在细胞周期进程中发挥着关键的作用,可使Rb蛋白磷酸化和失活,阻滞细胞增殖周期进入S 期。
特异性ATP 竞争性CDK4/6抑制剂可诱导Rb 蛋白阳性肿瘤不可逆的细胞周期G1期阻滞。
选择性CDK4/6抑制剂包括ribociclib、abemaciclib和palbociclib,阻滞细胞从G1期进入S期,提高抗肿瘤效果。
诸多的细胞周期治疗药物中,批准临床应用只有CDK4/6抑制剂ribociclib、abemaciclib、palbociclib,阻滞细胞周期从G1期进入S期,激活抗肿瘤免疫,控制代谢功能和调节转录水平。
调节转录水平有丝分裂期间细胞转录保持在低水平状态,只有当丝分裂结束后转录才会重新激活。
CDK9 和CDK12可调控细胞转录。
细胞周期治疗领域的研究主要是寻找转录CDKs的抑制剂。
激活抗肿瘤免疫研究证实,CDK4/6抑制剂不仅能诱导肿瘤细胞周期阻滞,还促抗肿瘤免疫:首先,CDK4/6抑制剂激活肿瘤细胞内源性逆转录病毒成分表达,增加细胞内双链RNA水平,进而刺激产生Ⅲ 型干扰素并增加肿瘤抗原递呈;其次,CDK4/6抑制剂显著抑制调节性T细胞的增殖,促进细胞毒性T细胞对肿瘤细胞的清除。
细胞周期调控
Activation of Cdc2/CDK1
Tyr15
Thr 161
CAK and CKI
• CAK (CDK activating kinase):
Cdk7 Mat1 Cyclin H
CAK and CKI
• CAK (Cdk activating kinase) • CKI (Cdk inhibitor):
MPF include Cdk and cyclin
P32 = P34cdc2 = CDK1 P45 = P56cdc13 = cyclin B
CDK and Cyclin
Cyclins
Cyclins
CDKs
CDK kinase domain
Structure of Human CDK2
CDKs
APC and SCF
Cell Cycle Regulation
• M-phase regulation • G1-phase regulation • S-phase regulation • DNA damage regulation
Mitotic Spindle Checkpoint
M-phase Regulation
Overview of checkpoint controls in the cell cycle
Cell Cycle and Diseases
Cell Cycle and Diseases
Cell Cycle and Diseases
Cell Cycle and Diseases
ห้องสมุดไป่ตู้
Cell Cycle and Diseases
• Cell cycle is regulated by destruction of cyclins.
2019-浅析CDK抑制剂的研究进展-范文模板 (2页)
2019-浅析CDK抑制剂的研究进展-范文模板本文部分内容来自网络,本司不为其真实性负责,如有异议或侵权请及时联系,本司将予以删除!== 本文为word格式,下载后可随意编辑修改! ==浅析CDK抑制剂的研究进展细胞周期是细胞生命活动的重要部分。
20世纪70年代后,诺贝尔生理学医学奖}0获得者经研究发现了细胞周期蛋白依赖性激酶细胞蛋白在细胞周期调控中的重要作用,开启了细胞周期和相关分子的调控研究热潮。
目前已经发现和细胞周期调控有关的分子主要包括三大类,即细胞周期蛋白、细胞周期蛋白依赖性激酶、细胞周期蛋白依赖性激酶抑制剂。
随着细胞周期蛋白依赖性激酶在细胞周期调控中的核心地位被确定,细胞周期蛋白依赖性激酶抑制剂已经成为当前抗肿瘤药物研究的热点。
细胞周期蛋白依赖性激酶抑制剂是细胞周期的负性调节因子,其作用就是阻断细胞周期。
它是一种抑制细胞分化的抑制蛋白,从生物抑制剂方而来说主要分为两大类:一类是INK4家族,其主要作用是抑制CDK4, 6的活性,比如p15, p16, p18, p19;另一类是Cip/Kip家族,主要作用是抑制CDK2, 4, 6的活性,比如p21, p27。
本文旨在对与肿瘤发生密切相关的CDK2, CDK4, CDK6, CDK7印制剂的研究做一个综述,对新的CDK抑制剂研发提供背景分析。
1 CDK2抑制剂蛋白依赖性激酶CDK2是一种调节细胞周期有序进行的重要蛋白,它的DNA全长879个碱基,编码含有298个氨基酸的蛋白质。
与cycling E结合并活化维持G,后期的磷酸化,保证细胞顺利通过G,期并进入5期。
随着对CDK2结构蛋白认识的加深,文献报道了越来越多ATP竞争性的小分子CDK2抑制剂,但其开发并不容易furl。
第一个进入临床实验的CDKI是Flavopiridol,具有广谱性,可以直接对CDK1产生抑制作用,最新的研究表明它对CDK9也具有较强的抑制作用191。
201X年,Song等poi发现了在4一位为取代苯环的化合物((BMI-1026)对CDK2的抑制活性达到了纳摩尔数量级,201X年Brascan等合成了新一代的CDKI抑制剂PHA-848125,该药能够高选择性地抑制CDK2,降低蛋白的表达。
细胞周期调控与肿瘤进展实验报告
细胞周期调控与肿瘤进展实验报告绪论肿瘤是当今社会公共健康领域的重大疾病之一,其中肿瘤细胞异常增殖和不受约束的增长是其主要特征之一。
细胞周期调控是细胞准确复制和分裂的基本机制,也是细胞生命周期中的关键阶段。
了解细胞周期调控对于理解肿瘤的形成和发展具有重要作用。
因此,本实验旨在探究细胞周期调控与肿瘤进展之间的关系。
材料与方法1. 细胞培养:使用人类癌细胞系A549和正常肺细胞系HBE进行细胞培养。
2. 细胞分裂抑制实验:将A549细胞分为实验组和对照组,实验组使用某种细胞周期抑制剂处理,而对照组不添加抑制剂。
3. 细胞增殖分析:通过MTT实验和细胞计数法等方法,定量分析细胞增殖情况。
4. Western blot分析:检测细胞周期相关蛋白的表达水平。
结果1. 细胞分裂抑制实验结果显示,实验组A549细胞的细胞分裂显著受到抑制,相比于对照组,细胞数量减少。
2. 细胞增殖分析结果显示,实验组A549细胞的增殖能力较对照组明显降低。
3. Western blot分析结果显示,实验组A549细胞中细胞周期关键蛋白如Cyclin D1、Cyclin E、Cdk2的表达水平显著下调。
讨论根据实验结果,我们可以得出如下结论:1. 细胞周期调控在肿瘤细胞的生长和增殖中起到重要的作用。
2. 细胞周期抑制剂能够有效抑制肿瘤细胞的增殖能力。
3. 细胞周期相关蛋白的异常表达与肿瘤的发生和发展密切相关。
结论本实验结果表明,细胞周期调控与肿瘤进展之间存在着紧密的联系。
进一步研究细胞周期调控的机制以及肿瘤细胞中相关蛋白的表达变化有助于寻找肿瘤治疗的新靶点和方法,为肿瘤治疗提供新的思路和策略。
参考文献:1. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153-66.2. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501-12.3. Nurse P. Cyclin dependent kinases and cell cycle control. J Cell Sci. 1994;107(Pt 9):2291-4.(字数:493字)。
细胞周期调控因子的功能和信号传递
细胞周期调控因子的功能和信号传递细胞周期调控因子是细胞在不断生长和分裂的过程中起到极其重要作用的一类蛋白质。
在细胞内部,细胞周期调控因子对于控制细胞进程中的各个环节都有着具体的功能。
同时,细胞周期调控因子的正常激活和配合也必须经过一系列复杂的信号传递过程。
在细胞生命周期中,细胞周期调控因子的变化会受到多种因素的影响,如环境因素、生理状态等,共同发挥控制细胞生长和分裂的作用。
一、细胞周期调控因子的功能细胞周期调控因子包括各种蛋白质,会直接或间接地调控和影响细胞周期不同阶段的控制点。
这些蛋白质分为细胞周期蛋白依赖性激酶(CDKs)、CDK的调节亚基以及CDK抑制剂等类别。
CDKs是细胞周期调控因子中最为重要的一类,他们主要负责在细胞分裂周期各个阶段同各种调节分子相互作用,从而推进或阻根细胞周期的进程。
在G1阶段,CDK启动体与其调节亚基(S-phase kinase associated protein 1,SKP1)和复合体连在一起,形成CDK4/6-启动体复合物。
在这种情况下,CDK4/6需要Rb蛋白和其他营养信号以实现G1期的耗能阶段。
同时,同样为G1阶段调控因子的CDK2-欧洲航天局(HG)复合物在G1/S过渡期开始被激活,并引发S期起始DNA复制。
在S期期间,细胞调节因子通过开始点和终止点之间释放蛋白质有序注入,从而控制基因的复制。
在G2期开始,CDK1-启动体复合物开始被激活,并使细胞通过几个门控点,终止细胞分裂。
二、细胞周期调控因子信号传递的关键因素根据现有研究,细胞周期调控因子信号传递过程中需要参与的主要因素包括细胞内信号转导,不同的调节因子和各种整合蛋白等。
与此同时,还有一些重要的细胞因子,例如细胞因子CDK抑制剂,也可以通过影响CDK家族通路来调节细胞周期。
研究表明,细胞周期调控因子信号传递是非常复杂和严谨的,只有在不断的调节和修整中才能最终实现。
此外,CDK活性的控制还需要各种底物和不同调控因子以及不同底物的同步调节,以实现细胞周期的稳定。
细胞周期与细胞增殖
细胞周期与细 胞增殖的研究 将有助于提高 农业生产效率, 为农业现代化 提供技术支持。
细胞周期与细 胞增殖的研究 将有助于环境 保护,为污染 治理提供新的 技术和方法。
细胞周期与细胞 增殖的研究将有 助于新材料的开 发和应用,为工 业发展提供新的 动力。
感谢观看
汇报人:XX
过程:间期、前期、 中期、后期、末期
特点:DNA复制、 染色体形成、纺锤 体形成、染色体分 离、细胞质分裂
结果:形成两个遗 传物质相同的子细 胞
无丝分裂
定义:一种快 速的细胞分裂 方式,不经过 纺锤体和染色
体的变化
特点:细胞 核先延长, 然后分裂成 两个子细胞
过程:细胞核 膜消失,染色 体分散,细胞 质分裂,形成
两个子细胞
应用:无丝分 裂在生物体的 生长、发育和 修复损伤中起
着重要作用
减数分裂
定义:一种特 殊的细胞分裂 方式,涉及染 色体的减半和
重组
过程:包括减 数第一次分裂 和减数第二次 分裂两个阶段
结果:产生四 个单倍体细胞, 每个细胞都含 有一半的染色
体
意义:对于生 物的遗传多样 性和进化具有
重要意义
细胞周期与细胞增殖
XX, a click to unlimited possibilities
汇报人:XX
目录
单击此处添加 目录项标题
细胞周期概述
细胞增殖方式
细胞周期与细 胞增殖的相互
关系
细胞增殖的检 测方法
细胞周期与细 胞增殖的研究 意义和应用前
景
1
添加章节标题
2
细胞周期概述
细胞周期的定义
6
细胞周期与细胞增殖的研究意义和应用前 景
细胞周期素依赖性激酶
细胞周期素依赖性激酶作者:张端莲唐吉云陕声国【关键词】皮肤血管瘤;,,细胞周期素依赖性激酶摘要:目的:探讨细胞周期素依赖性激酶7(CDK7)蛋白在皮肤血管瘤组织中的表达及临床意义。
方法:采用免疫组织化学人皮肤血管瘤组织中增生期、退化期及正常皮肤组织中(CDK7)蛋白的表达。
结果:增生期血管瘤内皮细胞(CDK7)的表达水平明显高于退化期及正常皮肤组织,差异有显著性意义(P<0.01);退化期与正常皮肤组织血管内皮细胞CDK7表达水平差异无显著性意义(P>0.05)。
结论:血管瘤的发生、发展与(CDK7)蛋白的表达有着一定的关系。
关键词:皮肤血管瘤;细胞周期素依赖性激酶7血管瘤是婴幼儿常见的一种皮肤肿瘤,是以血管内皮细胞异常增殖、大量血管增生为主要病理学特征的良性血管病变。
尽管对血管瘤及相关领域的研究取得许多进展,但其确切的发病机制仍不十分清楚。
一般认为,血管瘤主要的特征是毛细血管的内皮细胞增生[1]。
周期素和CDK 为细胞周期正调节蛋白(positive cellcycle regulatory proteins) ,其作用是促进细胞周期的运转,正常哺乳动物细胞周期的调控是通过细胞周期素(cyclin s)、cyclin依赖激酶(CDK)、CDK抑制蛋白(CK I) 网络来实现的,它们之间的相互作用在很大程度上决定细胞周期的进展。
其中CDK分别受到cyclins的正调控和CKI的负调控,CDK活性的异常可能与肿瘤的发生有着密切的关系[2]。
本实验采用免疫组织化学方法对血管瘤组织中CDK7的表达进行了研究,为进一步探讨血管瘤发生、发展的确切机制提供理论依据。
1 材料11 材料来源收集武汉大学人民医院病理科2002~2005年皮肤血管瘤存档蜡块50例,其中男性26例,女性24例,年龄2月~67岁,平均32.5岁。
血管瘤位于头皮、眼睑、耳部、颈部、胸部、上臂、手部及大腿等部位。
Cyclin依赖性激酶参与调控细胞周期进程
Cyclin依赖性激酶参与调控细胞周期进程细胞周期是指细胞从分裂完成到下一次分裂的整个过程。
它是一个精密调控的过程,涉及多个蛋白质因子的参与。
其中,Cyclin依赖性激酶 (CDK) 是细胞周期调控中至关重要的调节因子之一。
CDK通过与Cyclin蛋白以及其他调节蛋白的信号调控形成复合物,从而参与调节细胞周期的各个阶段。
细胞周期主要分为四个阶段:G1期(细胞生长期)、S期(DNA复制期)、G2期(前分裂期)和M期(有丝分裂期)。
在这四个阶段中,CDK扮演着重要的调节作用。
在G1期,细胞准备进入S期进行DNA复制。
CDK4和CDK6与Cyclin D结合形成复合物,活化细胞周期蛋白E (Cdc25E) ,进而促进细胞进入S期。
此外,CDK的活化还可抑制转录因子Rb,并释放E2F因子,从而促进细胞周期的推进。
S期是细胞周期的一个重要阶段,其中的DNA复制也受到CDK的精细调控。
在S期早期,CDK2与Cyclin E形成复合物,激活DNA复制酶复合物,并将细胞的复制原点激活,引导DNA复制的开始。
在S期后期,Cyclin A取代Cyclin E结合CDK2,进一步推进DNA复制过程。
这些调控机制确保了每个染色体只复制一次,避免过度复制和基因突变。
进入G2期,细胞准备进入有丝分裂阶段。
在此期间,CDK1与Cyclin A和Cyclin B形成复合物,促进细胞周期蛋白Cdc25C的活化,引导细胞进入有丝分裂。
此外,CDK1还能调控微管的动力学,确保正确的纺锤体形成和微管的附着。
最后,细胞进入M期,进行有丝分裂。
在M期早期,Cyclin B与CDK1结合,形成活化的复合物。
该复合物进一步促进细胞周期蛋白Cdc25B的活化,并引导细胞进入分裂说期。
在M期后期,这个复合物被泛素化降解,在细胞完成分裂之前有效地终止了有丝分裂。
除了以上的基本过程,CDK还与其他调控蛋白相互作用,确保细胞周期的精确调节。
例如,Cdk抑制蛋白 (CKI) 能够与CDK结合,抑制它们的活性,从而调控细胞周期的进程。
细胞周期调控中的CDK激酶与cyclin蛋白
细胞周期调控中的CDK激酶与cyclin蛋白细胞是生命的基本单位,细胞在生长、分裂、分化、运动等各种生命现象中,都需要依赖许多基因和蛋白质的调控。
其中,CDK激酶与cyclin蛋白是细胞周期调控中的重要分子机制。
这些分子机制使得细胞周期有序地进行,避免细胞的异常增殖和肿瘤的发生。
CDK激酶是蛋白激酶家族的一种,是细胞周期调控中最为重要的调节因子之一。
它的活性依赖于其结合的cyclin蛋白型号,不同的cyclin与CDK结合后可以形成不同的复合物,进而调节细胞周期中各个阶段的进展。
CDK激酶与cyclin蛋白通过结合成为活性的复合物,在细胞周期中的不同阶段担任不同的角色。
其中,G1期CDK4/6-cyclin D复合物主要调控细胞进入S期;S期CDK2-cyclin E复合物则负责启动DNA合成;G2期CDK1-cyclin A/B复合物参与细胞进入有丝分裂前期,并维持有丝分裂前期到有丝分裂期的转变;有丝分裂期CDK1-cyclin B复合物控制细胞进入有丝分裂,由此可见,CDK激酶与cyclin蛋白对于一个正常细胞周期的有序进行至关重要。
CDK激酶与cyclin蛋白之间的调控方式非常复杂,很多分子参与其中,如CKIs、Wee1、Cdc25等。
CKIs是CDK的抑制剂,可与CDK-cyclin复合物结合,并抑制其活性。
Wee1是CDK的一种抑制剂,可以通过磷酸化CDK的特定位点,使其失活。
Cdc25是CDK激酶的一种促进剂,可以去除CDK激酶上的抑制磷酸,使其活性增强。
细胞周期的稳定性和有序性,取决于CDK激酶与相关分子之间的平衡,任何一种酶的功能失控都可能导致细胞周期的混乱。
因此,CDK激酶与cyclin蛋白在许多研究中被认为是肿瘤治疗的新靶点,尤其是针对它们的一些抑制剂的使用。
例如,Palbociclib和Ribociclib等CDK4/6特异性抑制剂已经被批准用于治疗乳腺癌。
这类抑制剂能够抑制CDK4/6与cyclin D复合体的活性,从而阻碍细胞周期的进展,达到治疗肿瘤的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CDK Inhibitors:Cell Cycle Regulators and BeyondArnaud Besson,1Steven F.Dowdy,2and James M.Roberts3,*1Universite´de Toulouse–LBCMCP and CNRS-UMR5088,Toulouse,France2Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine,University of California,San Diego,School of Medicine,9500Gilman Drive,La Jolla,CA92093,USA3Division of Basic Sciences,Fred Hutchinson Cancer Research Center,Seattle,WA98109,USA*Correspondence:jroberts@DOI10.1016/j.devcel.2008.01.013First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1,p27Kip1,and p57Kip2have emerged as multifaceted proteins with functions beyond cell cycle regulation.In addition to regulating the cell cycle,Cip/Kip proteins play important roles in apoptosis,transcriptional regulation,cell fate determination,cell migration and cytoskeletal dynamics.A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization,protein-protein interactions,and stability.These functions are essential for the maintenance of normal cell and tissue homeostasis,in processes ranging from embryonic development to tumor suppression.General Features of Cip/Kip ProteinsProgression through the cell-division cycle is regulated by the coordinated activities of cyclin/cyclin-dependent kinases(CDK) complexes.One level of regulation of these cyclin-CDK com-plexes is provided by their binding to CDK inhibitors(CKIs).In metazoans,two CKI gene families have been defined based on their evolutionary origins,structure,and CDK specificities. The INK4gene family encodes p16INK4a,p15INK4b,p18INK4c, and p19INK4d,all of which bind to CDK4and CDK6and inhibit their kinase activities by interfering with their association with D-type cyclins(Sherr and Roberts,1999).In contrast,CKIs of the Cip/Kip family bind to both cyclin and CDK subunits and can modulate the activities of cyclin D-,E-,A-,and B-CDK com-plexes(Sherr and Roberts,1999).The Cip/Kip family members p21Cip1/Waf1/Sdi1(p21,encoded by cdkn1a)(el-Deiry et al., 1993;Gu et al.,1993;Harper et al.,1993;Xiong et al.,1993), p27Kip1(p27,cdkn1b)(Polyak et al.,1994a;Polyak et al., 1994b;Toyoshima and Hunter,1994),and p57Kip2(p57,cdkn1c) (Lee et al.,1995;Matsuoka et al.,1995)share a conserved N-terminal domain that mediates binding to cyclins and CDKs but diverge in the remainder of their sequence,suggesting that each of these proteins could have distinct functions and regulation.A vast body of literature has described the importance of p21, p27,and p57in restraining proliferation during development,dif-ferentiation,and response to cellular stresses(Sherr and Rob-erts,1999),although each has specific biological functions that distinguish it from the other family members.Thus,different anti-proliferative signals tend to cause elevated expression of only a subset of the Cip/Kip proteins.For example,p21is an impor-tant transcriptional target of p53and mediates DNA-damage-induced cell-cycle arrest in G1and G2(el-Deiry et al.,1993;Gartel and Tyner,1999).In contrast to p21,p27expression is usually elevated in mitogen-starved cells and other quiescent states, and the protein is rapidly downregulated as cells enter the cell cycle(Besson et al.,2006;Coats et al.,1996).Several lines of evidence point toward an important role for p57in the regulation of the cell cycle during embryonic development.Unlike its ubiq-uitous siblings,p57has a tissue-restricted expression pattern during embryogenesis and in the adult(Lee et al.,1995;Matsuoka et al.,1995).The transcriptional regulation of p57is mediated by factors that play critical roles during embryogenesis such as Notch/Hes1,MyoD,BMP-2and-6,and p73(Blint et al.,2002; Georgia et al.,2006;Gosselet et al.,2007;Vaccarello et al., 2006).The cdkn1c gene is also an imprinted gene with preferred expression of the maternal allele(Matsuoka et al.,1996),which is recognized as a general mechanism to regulate embryonic growth(Andrews et al.,2007).Importantly,p57is the only CKI to be required for embryonic development,as most mice lacking the cdkn1c gene have multiple developmental abnormalities and die at birth(Yan et al.,1997;Zhang et al.,1997).The importance of the Cip/Kip proteins in cell-cycle regulation is underscored by the phenotypes of the knockout mice for each of these proteins.p27null mice display an overall increased body size and multiple organ hyperplasia,revealing the importance of p27in limiting growth(Fero et al.,1996).Although mice lacking p21do not display an overt hyperproliferative disorder,p21À/Àcells fail to undergo DNA-damage-induced cell-cycle arrest and can reach higher saturation density(Deng et al.,1995). Embryos lacking p57exhibit hyperplasia in several organs and delayed differentiation,probably due to failure to exit the cell cycle in a timely fashion(Zhang et al.,1997).Although p21,p27,and p57were initially considered as tumor suppressors based on their ability to block cell proliferation,it rapidly became clear that the situation was not so simple.p21, p27,and p57are also involved in the regulation of cellular pro-cesses beyond cell-cycle regulation,including transcription, apoptosis,and migration,which may be oncogenic under certain circumstances.Moreover,it appears that the loss or subversion of the regulatory mechanisms governing Cip/Kip proteins may lead to the specific loss of the tumor suppressor function of the CKI while maintaining the oncogenic ones.Herein,we will Developmental Cell14,February2008ª2008Elsevier Inc.159examine these various functions,how they are regulated, and their significance in vivo,especially in the context of tumor-igenesis.Cip/Kip Proteins in Cell-Cycle RegulationCip/Kip proteins were initially characterized as strict inhibitors of all cyclin-CDK complexes,albeit displaying lower affinity toward cyclin B-CDK1(Sherr and Roberts,1999).The crystal structure of the N-terminal cyclin and CDK-binding domains of p27(aa 22–106)bound to cyclin A-CDK2revealed that the CKI occludes a substrate interaction domain on the cyclin subunit and inserts itself in the catalytic cleft of the CDK,thereby preventing ATP binding and catalytic activity(Russo et al.,1996).However,sub-sequent studies reported that p21,p27,and p57participated in the assembly of catalytically active cyclin D-CDK4/6complexes (LaBaer et al.,1997).Therefore,not only could Cip/Kip proteins promote cyclin D-dependent events,but the sequestration of CKIs into cyclin D-CDK4/6complexes could allow the down-stream activation of cyclin E-CDK2(Cheng et al.,1998;Perez-Roger et al.,1999;Polyak et al.,1994a;Reynisdottir et al., 1995).The latter is confirmed in cyclin D1and D2knockout mice,which display reduced CDK2-associated kinase activity, likely due to the increased availability of Cip/Kip proteins to bind to CDK2(Geng et al.,2001;Perez-Roger et al.,1999).Nev-ertheless,there are other reports demonstrating inhibition of cyclin D-CDK4/6complexes by Cip/Kip proteins,and therefore it was anticipated that the effect of these CKIs on CDK activity would be modulated by other factors.The Cip/Kip proteins are intrinsically unstructured,adopting specific tertiary conformations only after binding to other proteins(Adkins and Lumb,2002;Esteve et al.,2003;Lacy et al.,2004).This conformationalflexibility suggests that phos-phorylation events and protein-protein interactions may modify the folding of the CKIs,thereby modulating their ability to inhibit cyclin-CDK complexes.Likewise,it may explain why CKIs are capable of interacting with a wide diversity of proteins to regulate various cellular functions.Indeed,it appears that the binding specificity of Cip/Kip pro-teins is modulated by their phosphorylation on distinct residues, and their potency to inhibit cyclin-CDK complexes can be mod-ified by binding to other proteins.For example,phosphorylation of p21on Thr-57(by CDK2or glycogen synthase kinase3b [GSK3b])increases the ability of p21to bind to cyclin B1-CDK1 complexes at the G2/M transition,without inhibiting the com-plexes,thus promoting cell-cycle progression(Dash and El-Deiry,2005).Likewise,the phosphorylation of p27on Tyr-74,-88and/or-89by Src,Lyn,or Abl,greatly decreased the abil-ity of p27to inhibit CDK2containing complexes,as Tyr-88is part of the310-helix that normally inserts into the ATP-binding site of the CDK(Chu et al.,2007;Grimmler et al.,2007).In addition,p27 phosphorylation on Tyr-88and-89was reported to decrease its affinity for CDK2while increasing that for CDK4complexes (Kardinal et al.,2006).A recent report suggested that Tyr-88 phosphorylation was cell-cycle regulated and modulated the ability of p27to inhibit cyclin D-CDK4complexes(James et al., 2008).p27was a potent cyclin D-CDK4inhibitor in quiescent cells,but not in cycling cells,in which it was tyrosine phosphor-ylated.Moreover,the weak inhibitory form of p27,phosphory-lated on Tyr-88,could be converted to a potent inhibitor by treat-ment with protein tyrosine phosphatase(PTP)(James et al., 2008).However,the physiological significance of this regulatory pathway of p27in vivo remains to be investigated.Several other phospho-sites on p21and p27also indirectly affect the ability of these proteins to bind to and inhibit cyclin-CDK complexes by controlling their subcellular localization(see below)(Borriello et al.,2007;Child and Mann,2006).A number of proteins can either enhance or diminish the inhib-itory effect of CKIs on cyclin-CDK complexes by forming quater-nary complexes and potentially altering the conformation of the CKI bound to these complexes.Human papillomavirus-16E7 protein can bind to p21and p27and abrogate their inhibitory ac-tivity toward CDK2-containing complexes(Funk et al.,1997; Jones et al.,1997).The nuclear protein Set/TAF1(Template-activating factor-1)was found to associate with the C-terminal part of p21,which reversed the inhibition of cyclin E-CDK2and enhanced the inhibition of cyclin B-CDK1complexes(Canela et al.,2003;Estanyol et al.,1999).Two other proteins,TOK1a (p21and CDK-associated protein-1)(Ono et al.,2000)and the multifunctional domain protein TSG101(Tumor susceptibility gene-101)(Oh et al.,2002),can also associate with p21to en-hance cyclin-CDK inhibition.Further studies are warranted to elucidate how the binding of these proteins may alter the confor-mation of the CKI bound to cyclin-CDK complexes and to deter-mine how significant these interactions are in the control of p21’s function.The general conclusion is that Cip/Kip proteins are potent inhibitors of cyclin-CDK complexes,although most of thefindings in recent years have shown that their inhibitory potential is dependent on cellular context and regulated via phosphorylations and protein-protein interactions.Cip/Kip proteins also modulate cell-cycle progression inde-pendently of cyclins and CDKs via the inhibition of components of the replication machinery.p21wasfirst reported to bind to proliferating cell nuclear antigen(PCNA),a DNA polymerase d processivity factor,via its C terminus(aa143–160),thereby blocking processive DNA synthesis(Luo et al.,1995).This func-tion of p21is modulated by phosphorylations on Ser-145(by PKB/Akt[protein kinase B]and possibly PKA),Ser-146(by PKC z),or Ser-160(by PKC),which prevent p21from binding to PCNA(Child and Mann,2006).p57was subsequently found to interact with PCNA(via aa271–275),preventing its activity and blocking DNA replication(Watanabe et al.,1998).Although no interaction between p27and PCNA has been reported,p27 may also inhibit DNA synthesis via the interaction and inhibition of minichromosome maintenance-7(MCM7),a subunit of the MCM2-7replication fork helicase,an activity that lies within the C-terminal part of p27(aa144–198)(Nallamshetty et al.,2005). Regulation of p21and p27Localizationby PhosphorylationsPhosphorylation on various amino acids controls many aspects of Cip/Kip protein biology,not only by altering the Cip/Kip pro-teins’affinity for specific cyclin-CDK complexes and other pro-teins,but also their stability(reviewed in Borriello et al.,2007; Child and Mann,2006),and their subcellular localization.Phos-phorylation of p21on two sites,Thr-145and Ser-153,by PKB/ Akt and PKC,respectively,promote the cytoplasmic retention of p21(Child and Mann,2006;Rodriguez-Vilarrupla et al., 2005;Zhou et al.,2001).Thefirst site is proximal to p21’s nuclear160Developmental Cell14,February2008ª2008Elsevier Inc.localization sequence(NLS)and prevents the interaction with importin when phosphorylated,and the second one occludes a binding site for calmodulin,thus blocking calmodulin-mediated nuclear import(Child and Mann,2006;Rodriguez-Vilarrupla et al.,2005;Zhou et al.,2001).Three phosphorylation sites on p27were found to cause cytoplasmic localization.Ser-10phos-phorylation,which stabilizes the protein in quiescent cells, causes its export from the nucleus in G1phase by providing a binding site for CRM1/exportin1(Besson et al.,2006;Connor et al.,2003;Rodier et al.,2001).In quiescent cells,Mirk/Dirk ki-nase has been proposed to phosphorylate this site,whereas in proliferating cells,there are reports implicating kinase interacting with stathmin(KIS),PKB/Akt,and extracellular signal-regulated kinase-2(ERK2)as the physiologically relevant in vivo kinases (Besson et al.,2004a).On the other hand,phosphorylation of Thr-157(a site not conserved in the mouse protein)by PKB/ Akt or Thr-198by PKB/Akt or p90ribosomal S6-kinase (p90RSK)causes retention of p27in the cytoplasm by promoting the association of p27with14-3-3,which prevents p27from interacting with importin a and transport in the nucleus(Fujita et al.,2003;Liang et al.,2002;Sekimoto et al.,2004).The extent to which altered subcellular localization modulates the many biological effects of Kip/Cip proteins is an area of considerable interest and active investigation.Cip/Kip Proteins,Tumor Suppressors,.and Oncogenes?There is a great deal of evidence,both from clinical studies and animal models,to support the tumor-suppressor function of p21, p27,and p57.However,the full extent to which p27,and proba-bly also p21,may contribute to tumorigenesis has been underes-timated by the study of mouse models that treated these CKIs solely as CDK inhibitors.Only very recently has the development of a new mouse model allowed us to ask whether CDK-indepen-dent functions of p27need to be considered in order to under-stand the biological effects of p27.Those studies revealed that the CDK-independent functions of p27play significant roles, not only in normal development,but also during tumorigenesis. The p27À/Àmice,which spontaneously develop adenomas of the intermediate lobe of the pituitary gland and are more suscep-tible to tumorigenesis induced by chemical carcinogens or irra-diation,gavefirm evidence for a tumor suppressor role of p27 (Fero et al.,1996,1998;Kiyokawa et al.,1996;Nakayama et al.,1996).In fact,the loss of one allele of cdkn1b is sufficient to predispose to induced tumorigenesis(Fero et al.,1998).More-over,the tumor-prone phenotypes caused by the loss of other tumor suppressor genes,such as Rb(Retinoblastoma),PTEN (phosphatase and tensin homolog deleted on chromosome ten),p16INK4a,p18INK4c,or APC(adenomatous poliposis coli), are enhanced by the simultaneous loss of p27(Di Cristofano et al.,2001;Franklin et al.,2000;Malumbres et al.,2000; Martin-Caballero et al.,2004;Park et al.,1999).In rats,an in-herited syndrome of multiple endocrine neoplasia(MEN)was linked to a germline nonsense mutation in the cdkn1b gene, and germline mutations in the human cdkn1b gene are also associated with MEN(Georgitsi et al.,2007;Pellegata et al., 2006).p27expression is a prognostic marker for clinical out-come in human cancers.Low amounts of nuclear p27protein are frequently observed in a broad array of human malignancies,including carcinomas of the breast,colon,prostate,ovary,lung, brain,stomach,and others,and this is associated with increased tumor aggressiveness(Besson et al.,2004a;Blain et al.,2003; Slingerland and Pagano,2000).However,unlike the classic tumor suppressor genes Rb or p53,inactivating mutations of the cdkn1b gene in tumors are extremely rare(Blain et al., 2003;Fero et al.,1998;Ponce-Castaneda et al.,1995;Slinger-land and Pagano,2000).Instead,p27is downregulated by other mechanisms,including proteolytic degradation,decreased transcription,or by cytoplasmic mislocalization.In addition,the inhibition of p27expression by miRNAs in glioblastomas and prostate carcinoma cell lines was recently described,and this might constitute yet another way to decrease p27levels in tumors(Galardi et al.,2007;le Sage et al.,2007).Increasing evidence points to the importance of subcellular localization in the control of p27’s function and raises the possi-bility that cytoplasmic p27may actively contribute to tumorigen-esis(Besson et al.,2004a).This is supported by the fact that elevated cytoplasmic localization of p27is a negative prognostic factor in subsets of certain tumor types,including carcinomas of the breast,cervix,esophagus,ovary,uterus,some leukemias and lymphomas,and in melanomas(Besson et al.,2004a;Blain et al.,2003;Denicourt et al.,2007;Qi et al.,2006;Rosen et al., 2005;Slingerland and Pagano,2000).In contrast,mice express-ing p27S10A,which is mostly nuclear,were partially resistant to urethane-induced tumorigenesis despite reduced p27protein levels(Besson et al.,2006).An active role for p27in promoting tumor formation is also sup-ported by several studies in mice.Indeed,in mammary and pros-tate cancer models,p27+/Àmice were more prone to tumorigen-esis than p27À/Àanimals,suggesting an active contribution of the remaining p27allele during tumor development(Gao et al., 2004;Muraoka et al.,2002).Moreover,a knockin mouse model in which point mutations in p27prevent its interaction with cyclins and CDKs(p27CKÀ)revealed that in contrast to p27À/Àmice,which spontaneously develop only pituitary tumors, p27CKÀmice developed hyperplastic lesions and tumors in mul-tiple organs,including the lung,retina,pituitary,ovary,adrenals, spleen,and lymphomas(Besson et al.,2007).Although the mouse models provide a strong evidence for an oncogenic effect of p27,they did not address whether that effect was exerted in the nucleus or cytoplasm,which should be the focus of future studies.Overall,there are clear indications,both from clinical studies and animal models,that p27has a tumor suppressor function which is exerted in the nucleus via its inhibitory inter-actions with cyclin-CDK enzymes.Collectively,the data also suggest that p27can promote oncogenesis and this occurs independently of its interaction with cyclins and CDKs,most likely in the cell cytoplasm.In the lung and retina of p27CKÀmice,the development of tu-mors was associated with the expansion of stem/progenitor cell populations(Besson et al.,2007).Thus,this mouse model indi-cates that p27,independently of its role as a CDK inhibitor,could function as an oncogene in vivo,possibly by deregulating the proliferation and/or differentiation of stem/progenitor cells. Therefore,a reasonable hypothesis to account for the lack of mutations in the cdkn1b gene in human cancers is that there is a selection both for the loss of the CDK-inhibitory,tumor-sup-pressive function of p27in the nucleus and for the maintenance Developmental Cell14,February2008ª2008Elsevier Inc.161of the cyclin-CDK-independent,oncogenic functions of p27.The misregulation of stem/progenitor cells by p27could constitute an important pathway by which it promotes tumorigenesis.The CDK-independent functions of p27are just beginning to be stud-ied,and the mechanism by which they can promote tumorigen-esis and stem-cell amplification remains to be evaluated.In particular,whether the participation of p27in tumor initiation and progression relies on single or multiple distinct functions of the protein remain unknown.The evidence supporting a tumor suppressor role for p21is not as strong,and the many reports offer a contrasting view on p21’s role during tumorigenesis.Although p21À/Àmice were initially described to remain tumor-free until7months of age,a subse-quent study found that they were susceptible to spontaneous tumorigenesis at an average age of16months and developed mostly histiocytic sarcomas,hemangiomas,and lymphomas (Deng et al.,1995;Martin-Caballero et al.,2001).Also supporting a tumor suppressor role for p21,the tumor-prone phenotype caused by the loss of p18INK4c or APC was enhanced by con-comitant loss of p21(Malumbres et al.,2000).On the other hand,loss of p21actually delayed tumor development in ATMÀ/À,p53À/À,or irradiated wild-type mice;this was attributed to increased apoptosis of tumor cells in the absence of p21 (De la Cueva et al.,2006;Martin-Caballero et al.,2001;Wang et al.,1997).Likewise,PDGF-induced gliomagenesis was dra-matically reduced in mice lacking p21(Liu et al.,2007).The tumor-promoting effect in this model required the cyclin-binding domain of p21to increase the amount of nuclear cyclin D1(Liu et al.,2007),providing a clear example of tumorigenic role for p21dependent on its cyclin-CDK regulatory function.Indeed, binding of p21to cyclin D1prevents its export from the nucleus and its subsequent degradation in the cytoplasm(Alt et al., 2002).Therefore,as with p27,the study of the p21-null mouse may have led to a misunderstanding of the complex role that p21has in tumorigenesis,and,by analogy with p27,the construc-tion of p21separation-of-function mutations is likely to offer significant new insights into the roles of p21in tumors. Indeed,clinical studies analyzing human tumors have also come to conflicting conclusions.Like p27,inactivating mutations in the cdkn1a gene are exceedingly rare(Roninson,2002).While loss of p21is a negative prognostic marker in some cancer types,it appears that overexpression or cytoplasmic localization of p21is a marker of poor prognosis and aggressive tumors in carcinomas of the pancreas,breast,prostate,ovary,cervix, and in glioblastomas(Biankin et al.,2001;Roninson,2002). Thus,it appears likely that similar to p27,exclusion of p21 from the nucleus results in the loss of its tumor-suppressor function while selectively maintaining other tumor-promoting functions.There is ample evidence indicating a tumor-suppressor role for p57,and,unlike its siblings,no oncogenic activity has been reported for p57so far.In human tumors,p57inactivation occurs through several mechanisms,including maternal-specific loss of heterozygosity(LOH);loss of imprinting;promoter methylation in carcinomas of the lung,gastrointestinal tract,liver,pancreas, breast,head,and neck;acute myeloid leukemia;and others (Higashimoto et al.,2006;Kikuchi et al.,2002;Kobatake et al., 2004;Kondo et al.,1996;Lai et al.,2000).The perinatal lethality of mice lacking p57has limited further investigations to deter-mine the significance of p57as a tumor suppressor in the adult in vivo,and conditional p57mutant animals have not yet been constructed.However,in one study in which approximately 10%of p57-null animals survived to adulthood,no spontaneous tumors were observed at the age of5months(Yan et al.,1997). It is not known whether the tumor-suppressor function of p57 relies solely on its cyclin-CDK inhibitory activity or if the additional domains unique to p57(PAPA repeats and QT domain in human p57),whose functions remain unclear,also participate.C dkn1c (encoding p57),a maternally expressed gene,resides within an imprinted gene cluster on chromosome11p15that has been implicated in the development of Beckwith-Wiedemann syn-drome(BWS).BWS is a heterogeneous overgrowth syndrome associated with various developmental defects and increased risk of embryonal tumor development(Weksberg et al.,2005). Cdkn1c mutations are found in5%–10%of sporadic BWS cases and approximately40%of inherited BWS cases(Weksberg et al., 2005).In addition,maternal-specific methylation of a chromatin insulator,KvDMR1,is lost in30%–50%of BWS cases,causing aberrant silencing of cdkn1c(Fitzpatrick et al.,2002;Higashimoto et al.,2006).Interestingly,a fraction of BWS patients exhibit point mutations rather than complete deletion or silencing of the p57 gene,and the majority of these mutations are located outside of the cyclin-CDK regulatory region in the C-terminal part of the protein(Bhuiyan et al.,1999;Hatada et al.,1997;Lee et al., 1997;O’Keefe et al.,1997).These support the hypothesis that the role of p57in tumorigenesis may extend beyond cyclin-CDK regulation.Cip/Kip Proteins and ApoptosisCKIs can modulate apoptosis in various ways,depending on the cellular context and the pathway they target(Figure1).Numer-ous reports have suggested proapoptotic roles for p21or p27 by overexpression in cancer cell lines or in response to antican-cer agents;however,in these studies,p21was overexpressed using adenoviral vectors,and their relevance to physiological conditions is uncertain.One way by which Cip/Kip proteins pro-tect against apoptosis is via their CDK inhibitory activity.This wasfirst shown in endothelial cells,where caspase-mediated cleavage of p21and p27upregulates CDK2activity,thereby enhancing the apoptotic program(Levkau et al.,1998).Indeed, both dominant-negative CDK2and a caspase-resistant mutant of p21suppressed apoptosis in this model.However,most of the studies investigating a role for Cip/Kip proteins in apoptosis did not test whether this was linked to CDK regulation,and future experiments should aim at exploring how exactly the CKIs are working in this process.There are also numerous in vivo models of apoptosis being increased in CKI-deficient mice,but again whether these phenotypes were CDK mediated was not deter-mined.For example,several of the phenotypes of the p57-null mice were shown to be a consequence of increased apoptosis attributed to a failure to exit the cell cycle and differentiate (Yan et al.,1997;Zhang et al.,1997).Likewise,p27has been reported to play a protective role in safeguarding normal tissues from excessive apoptosis during inflammatory injury(Opha-scharoensuk et al.,1998).This ability of CKIs to limit or prevent apoptosis is also particularly relevant in cancer therapies,and induction of p21(by p53)and p27have been associated with resistance to apoptosis induced by cytotoxic drugs or irradiation162Developmental Cell14,February2008ª2008Elsevier Inc.(De la Cueva et al.,2006;Eymin and Brambilla,2004;Martin-Caballero et al.,2001;St Croix et al.,1996;Wang et al.,1997).The impact of CKIs on apoptosis may not be explained entirely by CDK regulation.For instance,p57could either promote or in-hibit apoptosis.In both cases,this was independent of its role in cyclin-CDK regulation:p57and a mutant lacking the ability to interact with cyclins and CDKs were equally able to promote staurosporine-induced apoptosis,which involved the transloca-tion of p57to mitochondria (Vlachos et al.,2007).On the other hand,p57was found to bind via its QT domain (aa 238–316)to the stress-activated kinase JNK1/SAPK,inhibiting its kinase activity,and expression of the QT domain was sufficient to block UV-or MEKK1-induced apoptosis,mediated by JNK1(Chang et al.,2003).Substantial evidence points to a role for p21in pro-tecting against apoptosis,via cell-cycle inhibition,transcriptional regulation,and protein-protein interactions;this constitutes the best-characterized oncogenic function of the protein (Roninson,2002).p21could block Fas-mediated cell death by directly bind-ing via its N terminus to pro-caspase-3,which prevented its con-version to the active caspase form (Suzuki et al.,1998).p21can prevent stress-induced apoptosis mediated by the JNK and p38signaling pathways by acting at two distinct levels.First,p21binds to and inhibits the activity of the MAPKKK ASK1/MEKK5(Huang et al.,2003).Second,like p57,p21can bind to JNK kinases through its cyclin-CDK binding domain,which both inhibits JNK activity and prevents JNK activation by upstream kinases (Shim et al.,1996).So far,there have not been any reports to suggest that p27can directly interfere with pro-or antiapoptotic pathways.Cip/Kip Proteins in Transcriptional RegulationSimilar to the regulation of apoptosis,Cip/Kip proteins can re-press transcription indirectly by inhibiting cyclin-CDK com-plexes,in turn preventing the phosphorylation of Rb-family pro-teins (p107,p110,and p130).In their hypophosphorylated state,Rb-related proteins sequester E2F family members,thereby re-pressing their transcriptional targets (Sherr and Roberts,1999).In addition,Cip/Kip proteins can also modulate the activity of transcription factors through direct binding to transcription fac-tors (Figure 2).The N-terminal cyclin-CDK binding region of p57can interact with MyoD,protecting MyoD from degradation and thus promoting transactivation of muscle-specific genes (Reynaud et al.,2000).Interestingly,a similar mechanism is ob-served between p27and Neurogenin-2,and p27-mediated sta-bilization of Neurogenin-2promotes the differentiation of neuro-nal progenitors in the cortex (Nguyen et al.,2006).This interaction is evolutionarily conserved,since in Xenopus primary neurogenesis also relies on the stabilization of X-NGNR1,a Neu-rogenin-2homolog,by p27Xic (Vernon et al.,2003).p21is also a potent regulator of several transcription factors.Through direct binding,p21inhibits the activities of E2F1,c-Myc,and STAT3(Coqueret and Gascan,2000;Delavaine and La Thangue,1999;Kitaura et al.,2000).On the other hand,p21can stimulate p300/Creb-binding protein (CBP)histone acetyl transferase complex-mediated transcriptional activation (Snow-den et al.,2000).Through direct binding to p300,p21can disrupt the activity of the CRD1-transcriptional-repression domain of p300and derepress transcription of target genes (Snowden et al.,2000).The biological significance of the role of p21in tran-scriptional regulation is still poorly understood.Forexample,Figure 2.Transcriptional Regulation by Cip/Kip ProteinsThe CKIs p21,p27,and p57can repress E2F-mediated transcription indirectly via the inhibition of cyclin-CDK complexes,thereby maintaining Rb-family pro-teins (Rb/p110,p107,and p130)in a hypophosphorylated state in which they sequester E2F transcription factors.Cip/Kip proteins also regulate transcrip-tions factors directly;for instance,p57and p27can interact via their N termini with MyoD and Neurogenin-2(Ngn-2),respectively,stabilizing them and pro-moting transcription of their target genes.On the other hand,p21binds to E2F1,c-Myc,and STAT3to inhibit their activities.p21may also derepress p300/CBP targets by inhibiting the transcriptional repression domain ofp300.Figure 1.Cip/Kip Proteins and ApoptosisCip/Kip proteins can inhibit apoptosis indirectly via the inhibition of cyclin-CDK complexes,and p21and p27are targeted for cleavage by caspases to promote cyclin-CDK activation during the apoptotic process.Upregulation of the CKIs by cytotoxic agents can partici-pate in the resistance of tumor cells to anticancer treatments.p21and p57may also directly prevent the induction of apoptosis by in-terfering with activation of the stress-signaling pathways;for in-stance,both bind to and inhibit the activity of JNK1/SAPK,and p21can also inhibit ASK1/MEKK5.p21may also block the process-ing of pro-caspase-3into its active form.Developmental Cell 14,February 2008ª2008Elsevier Inc.163。