(部编本人教版)最新度九年级数学上册 第3章 概率的进一步认识单元测试卷 (新版)北师大版【必做练习】

合集下载

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)(1)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)(1)

一、选择题1.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.162.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.343.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.794.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1125.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.126.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11767.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是()A.14B.13C.512D.238.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()A.12B.13C.14D.159.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a,第二次掷出的点数记为c,则使关于x的一元二次方程260ax x c++=有实数解的概率为()A.49B.1736C.12D.193611.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.812.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有()A.12个B.14个C.18个D.20个二、填空题13.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为____________ 14.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.15.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.16.有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张放回记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为 ____ .17.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .18.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____19.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.20.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.三、解答题21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数).(1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.22.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.23.为了提高学生的汉字书写能力,某学校连续举办了几届汉字听写大赛,今年经过层层选拔,确定了参加决赛的选手,决赛的比赛规则是:每正确听写出1个汉字得2分,满分是100分.下面是根据决赛的成绩绘制出的不完整的频数分布表、扇形统计图和频数分布直方图. 类别成绩x /分 频数(人数)A5060x ≤< 5B6070x ≤< 7C7080x ≤< a D8090x ≤< 15E90100x ≤<10请结合图表完成下列各题.(1)表中a 的值为 ,请把频数分布直方图补充完整;(2)如果想从A 类学生的3名女生和2名男生中选出两人进行培训,请计算选中1名男生和1名女生的概率是多少.24.明明是一个集邮爱好者,正值2021年辛丑牛年来临之际,明明收集了自己感兴趣的4张牛邮票(除正面内容不同外,其余均相同),现将这四张邮票背面朝上洗匀放好.(1)明明从中随机地抽取一张邮票是8分的概率是;(2)明明从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,请你用列表或画树状图的方法求抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率(这四张邮票分别用字母A,B,C,D表示).25.一个不透明的口袋里装有分别标有汉字“武”、“汉”、“加”、“油”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,球上的汉字刚好是“武”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P1.26.现有若干个完全相同的硬币(硬币的正、反面图案不同),按如下方式抛掷硬币:方式一:从中选取一枚硬币抛掷;方式二:从中选取两枚硬币抛掷;方式三:从中选取三枚硬币抛掷.请你在每一种抛掷方式中,各找出一种随机现象,使得这三种随机现象的概率相等(要求:概率不能为0或1),并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.2.B解析:B 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案 【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x .则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=.()2221241122x x++=, 故选:B . 【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.3.C解析:C 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案. 【详解】 画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155279.故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是21 3015;故选:B.【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.5.B解析:B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是38,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.6.B解析:B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.7.B解析:B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,∴组成的两位数是3的倍数的概率是:41123=.故选:B【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A【分析】骰子六个面出现的机会相同,求出骰子向上的一面点数大于3的情况有几种,直接应用求概率的公式求解即可.【详解】∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于3的有4,5,6共3个,∴这个骰子向上的一面点数大于3的概率为3162=故选:A.【点睛】考核知识点:概率.熟记概率的公式是关键.9.B解析:B【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案.【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则3xx+=0.4,解得:x=2,故选:B.【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.10.B解析:B【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2-6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】解:列表得:∵b=6,当b2-4ac≥0时,有实根,即36-4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=17,36故选:B.【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.11.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】-,共2个解:共有5个数,其中无理数有,2π1所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.12.B解析:B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:66x=0.3,解得:x=14,经检验,x=14是分式方程的解.估计口袋中红球约有14个.故选:B【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.二、填空题13.【分析】根据题意画出树状图求解即可;【详解】由题可得:共有9种情况两次摸到红球的情况有4种∴两次都摸到红球的概率为;故答案是【点睛】本题主要考查了画树状图求概率准确计算是解题的关键解析:4 9【分析】根据题意画出树状图求解即可;【详解】由题可得:共有9种情况,两次摸到红球的情况有4种, ∴两次都摸到红球的概率为49; 故答案是49. 【点睛】本题主要考查了画树状图求概率,准确计算是解题的关键.14.【分析】设正方形的边长为a 则正方形的面积为阴影部分的面积=2倍扇形面积-正方形面积空白区域面积=正方形面积-阴影部分面积豆子恰好落在空白区域的概率=空白区域面积÷正方形面积【详解】解:设正方形的边长 解析:42π- 【分析】设正方形的边长为a ,则正方形的面积为2a ,阴影部分的面积=2倍扇形面积-正方形面积,空白区域面积=正方形面积-阴影部分面积,豆子恰好落在空白区域的概率=空白区域面积÷正方形面积. 【详解】解:设正方形的边长为a ,则正方形的面积为2a ,则2倍扇形面积=2×2π4a =22a π,∴ 阴影部分的面积=2倍扇形面积-正方形面积=222a a π-,∴ 空白区域面积=正方形面积-阴影部分面积=22222222a a a a a ππ⎛⎫--=- ⎪⎝⎭, ∴ 豆子恰好落在空白区域的概率=空白区域面积÷正方形面积222242==2a a a ππ--.故答案为:42π-.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.此题用2倍扇形面积-正方形面积求出阴影部分的面积是解题关键.15.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.16.【分析】先画树状图展示所有12种等可能的结果数再找出两次都为红桃并且数字之和不小于8的结果数然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数其中两次都为红桃并且数字之和不小于8的解析:38【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为6,所以两次都为红桃,并且数字之和不小于8的概率=63= 168.故答案为38.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.4【分析】先列举出所有上升数再根据概率公式解答即可【详解】解:两位数一共有99-10+1=90个上升数为:共8+7+6+5+4+3+2+1=36个概率为36÷90=04故答案为:04解析:4【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.18.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164故答案为:1 4 .【点睛】本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.19.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.20.【分析】根据题意可用列举法列表法或树状统计图来计算出总次数和婷婷获胜的次数从而求出婷婷获胜的概率【详解】解:根据题意一共有25个等可能的结果即(11)(12)(13)(14)(15)(21)(22)解析:13 25【分析】根据题意,可用列举法、列表法或树状统计图来计算出总次数和婷婷获胜的次数,从而求出婷婷获胜的概率【详解】解:根据题意,一共有25个等可能的结果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);两人出拳的手指数之和为偶数的结果有13个,所以婷婷获胜的概率为13 25故答案为:13 25【点睛】本题考查的是用列举法等来求概率,找出所有可能的结果数和满足要求的结果数是解决问题的关键.三、解答题21.(1)13;(2)29【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13,故答案为:13;(2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.22.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率;(2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率.【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种,因此()1 4P=抽到丁,故答案为:14;()2根据题意,列表如下:因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种,则()82 123P==一男一女,所以,恰好抽到一男一女的概率是23.【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.23.(1)13,图见解析;(2)3 5【分析】(1)用E类别的频数除以该组的频率得到调查的总人数,然后计算a的值,最后补全频数分布直方图;(2)画树状图展示所有20种等可能的结果数,找出选中1名男生和1名女生的结果数,然后根据概率公式求解.【详解】解:(1)调查的总人数为:721050360÷=,∴5057151013 a=----=;故答案为:13.频数分布直方图为:(2)画树状图为:共有20种等可能的结果数,其中选中1名男生和1名女生的结果数为12,∴选中1名男生和1名女生的概率123205==.【点睛】本题考查了频数分布表、扇形统计图和频数分布直方图,也考查了用树状图法求概率,画出树状图是解题题的关键.24.(1)12;(2)抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率16=.【分析】(1)根据概率公式直接计算可得;(2)列树状图表示所有可能出现的情况,确定抽到的两张邮票恰好是“4分邮票”和“10分邮票”的次数,根据概率公式计算即可.【详解】(1)随机地抽取一张邮票是8分的概率是24=12,故答案为:12;(2)画树状图如图所示:由图可知,共有12种等可能的结果数,其中恰好是“4分邮票”和“10分邮票”的结果数有2种,∴抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率21 126 ==.【点睛】此题考查概率的计算公式,列举法求事件的概率,正确理解题意画出树状图是解题的关键.25.(1)14;(2)图表见解析,概率为13【分析】(1)直接利用概率公式求解即可;(2)画树状图(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球)展示所有12种等可能的结果数,再找出取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数,然后根据概率公式求解.【详解】解:(1)若从中任取一球,球上的汉字刚好是“武”的概率P=14;(2)画树状图为:(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球),共有12种等可能的结果数,其中取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数为4,所以甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P=41 123=.【点睛】本题考查了概率的计算问题,掌握概率的计算公式及利用树状图画出所有等可能的结果是解题的关键.26.方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面及以上的概率相等,理由见解析【分析】根据三种方式分别得出方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面以上的概率,即可得出答案.【详解】解:方式一:从中选取一枚硬币抛掷,出现正面向上的概率为:12,方式二:从中选取两枚硬币抛掷,可能出现的情况为:正正,反反,正反,反正,出现一正一反的概率为:12,方式三:从中选取三枚硬币抛掷,出现两个反面及以上的概率为:12.故方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面及以上的概率相等.【点睛】这道题考察的是用列举法求概率,掌握列举的基本方法是解题的关键.。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(含答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(含答案解析)

一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.152.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.453.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.124.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为()A.13B.49C.59D.235.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.186.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.347.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份8.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.139.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.2310.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.611.从1,2,3--三个数中,随机抽取两个数相乘,积是正数的概率是()A.13B.23C.16D.112.不透明的袋子中有三个小球,上面分别写着数字“1”,“2”,“3”,除数字外三个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为4的概率是()A.14B.13C.12D.23二、填空题13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a,放回后从卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=2x-1的概率为___________.14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.16.“校园手机”现象越来越受到社会的关注.小明决定从九(1)班的4位家长中随机选择2位进行深入调查,其中包含小亮的爸爸和妈妈,小亮的爸爸和妈妈被同时选中的概率是__________.17.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .18.盒子里有10个除颜色外完全相同的球,若摸到红球的概率是35,则红球有_____个.19.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为_____.20.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______.三、解答题21.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.(1)从中随机抽取一张,求抽到方程没有实数根的概率;(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.22.如图,转盘被等分成6个扇形,每个扇形上依次标有数字1,2,3,4,5,6.在游戏中特别规定:当指针指向边界时,重新转动转盘.(1)自由转动转盘,当它停止转动时,指针指向的数大于3的概率为;(2)请用画树状图法或列表法等方式求出“两次转动转盘,指针指向的数的和大于8”的概率.23.某校合唱团为了开展线上“同唱一首赞歌”活动,需招收新成员,小东、小海、小富、小美四名同学报名参加了应聘活动,其中小东、小海来自八年级,小富、小美来自九年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小东同学的概率为___________;(2)若随机抽取两名同学,请用画树状图或列表法求两名同学均来自九年级的概率.24.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.25.森林防火,人人有责.前不久,华蓥市公安局结合华蓥山竹林风景线建设,在华蓥山国家森林公园、石林景区,以“严防森林火灾、保护绿水青山”为主题,开展了森林防灭火知识宣传.广安市某校为了解九年学生对森林防灭火知识的了解程度,在九年级学生中做了一次抽样调查,并将结果分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调査结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)这次参与调查的学生一共有______人,并补全条形统计图.(2)若该校九年级共有1000名学生,请你估计该校九年级学生中“基本了解”森林防灭火知识的学生有多少人?(3)九(2)班被调查的学生中A等级的有5人,其中3名男生2名女生.现打算从这5名学生中任意抽取2名进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.26.某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】∵图中共有15个方格,其中黑色方格6个,∴黑色方格在整个方格中所占面积的比值=52=,165∴最终停在阴影方砖上的概率为2.5故选A.【点睛】此题考查几何概率,解题关键在于掌握计算公式.2.C解析:C【解析】试题这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C.考点:1.概率公式;2.中心对称图形.3.B解析:B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=1.4故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.C解析:C【分析】画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,所以两人中至少有一个给“好评”的概率=59. 故选C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率. 5.A解析:A【分析】设大正方形的边长为2a ,从而可得大正方形的面积为24a ,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =,编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a , 22a a 2a +=, 2a ,∴小正方形绿色草坪的面积为22(2)2a a =, 则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A .【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.6.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7; 其中能构成三角形的有2、6、7;4、6、7这两种情况, 所以能构成三角形的概率是2142=, 故选:B .【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.构成三角形的基本要求为两小边之和大于最大边. 7.B解析:B【分析】首先根据概率确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出红色区域应占的份数.【详解】解:∵他将转盘等分成12份,指针最后落在红色区域的概率为13, 设红色区域应占的份数是x , ∴1123x =, 解得:x=4,故选:B .【点睛】 本题考查了几何概率的求法,根据面积之比即所求几何概率得出是解题关键. 8.B解析:B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】 本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为39=13, 故选:B .【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果. 10.D解析:D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 11.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:共有6种情况,积是正数的有2种情况,所以,P(积是正数)=21 63 =,故选:A.【点睛】考查了列表法与树状图法,本题用到的知识点为:概率=所求情况数与总情况数之比.12.B解析:B【分析】利用树状图列举出所有等可能的情况,确定两次记录的数字之和为4的次数,根据概率公式计算得出答案.【详解】列树状图如下:共有9种等可能的情况,其中两次记录的数字之和为4的有3种,∴P(两次记录的数字之和为4)=3193=,故选:B.【点睛】此题考查树状图法求事件的概率,概率的计算公式,根据题意正确列举出事件发生的所有可能的情况是解题的关键.二、填空题13.【分析】利用列表法或画树状图法确定点的坐标的总可能性把坐标之一代入函数的解析式确定在直线上的可能性根据概率公式计算即可【详解】根据题意画树状图如下:∴一共有16种等可能性∵点(-2-5)(11)在直解析:18.【分析】利用列表法或画树状图法,确定点的坐标的总可能性,把坐标之一代入函数的解析式,确定在直线上的可能性,根据概率公式计算即可.【详解】根据题意,画树状图如下:∴一共有16种等可能性,∵点(-2,-5),(1,1)在直线y=2x-1上,∴有2种可能性,∴点(a,b)在直线y=2x-1的概率为216=18,故答案为:18.【点睛】本题考查了用列表法或画树状图法求概率,熟练掌握两种求概率的基本方法是解题的关键.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.【分析】由摸到红球的频率稳定在025附近得出口袋中得到红色球的概率进而求出球个数即可【详解】解:设球个数为x个∵摸到红色球的频率稳定在025左右∴口袋中得到红色球的概率为025∴解得:经检验x=20解析:【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【详解】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴514x=,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16.【分析】设4位家长为ABCD小亮和小明的家长分别为AB画出树状图即可【详解】解:设小亮小明的家长分别用AB表示另外两个家长用CD表示列树状图如下:∴一共有12种等可能的结果同时选中小亮和小明家长有2解析:16.【分析】设4位家长为A、B、C、D,小亮和小明的家长分别为A、B,画出树状图即可.【详解】解:设小亮、小明的家长分别用A、B表示,另外两个家长用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小亮和小明家长有2种情况,∴P(小亮和小明的家长被同时选中)=2÷12=16.故答案为:16.【点睛】此题考查了概率,用到的知识点为:概率=所求情况数与总情况数之比.17.4【分析】先列举出所有上升数再根据概率公式解答即可【详解】解:两位数一共有99-10+1=90个上升数为:共8+7+6+5+4+3+2+1=36个概率为36÷90=04故答案为:04解析:4【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.18.6【解析】【分析】用概率表示该色求所占比例可求红球个数【详解】由已知可得:红球个数10×=6故答案为6【点睛】本题考核知识点:概率解题关键点:理解概率意义解析:6【解析】【分析】用概率表示该色求所占比例,可求红球个数.【详解】由已知可得:红球个数10×35=6故答案为6【点睛】本题考核知识点:概率. 解题关键点:理解概率意义.19.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果以及点(ab)在第二象限的情况再利用概率公式即可求得答案【详解】解:画树状图图得:∵共有6种等可能的结果点(ab)在第二象限的有2种情况解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a,b)在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a,b)在第二象限的有2种情况,∴点(a,b)在第二象限的概率为:2163.故答案为:13.【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A可能出现的结果数时,要注意审查关于事件A的说法,避免多数或少数.20.【分析】将三个小区分别记为列举出所有情况后看所求的情况占总情况的多少即可求得答案【详解】解:将三个小区分别记为列表如下:A B C A B C ∵由表可知共有种等可能结果解析:13【分析】将三个小区分别记为A 、B 、C ,列举出所有情况后,看所求的情况占总情况的多少即可求得答案. 【详解】解:将三个小区分别记为A 、B 、C ,列表如下:3种 ∴两个组恰好抽到同一个小区的概率为3193= 故答案是:13【点睛】本题考查了概率公式的应用以及列表法或树状图法,要熟练掌握.解答此题的关键是要明确:随机事件A 的概率()P A =事件A 可能出现的结果数÷所有可能出现的结果数.三、解答题21.(1)13;(2)49.【分析】(1)根据根的判别式分别判断三个方程根的情况,再运用概率公式求解即可; (2)画出树状图展示所有9种等可能的结果,找出恰好抽到两个方程都有实数根的结果数,然后根据概率公式求解. 【详解】解:(1)方程有实数根,则2=40b ac ∆-≥> 甲方程:210x +=2=0411=40∆-⨯⨯-<∴甲方程没有实数根; 乙方程:20x x +=2=1410=10∆-⨯⨯>∴乙方程有实数根丙方程:2210x x ++=2=2411440∆-⨯⨯=-=∴丙方程有实数根所以,抽到方程没有实数根的概率13; (2)画树状图:共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4, 所以恰好抽到两个方程都有实数根的概率=49. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)12;(2)两次转动转盘,指针指向的数的和大于8”的概率为518. 【分析】(1)转盘共有6个数字,其中大于3的数有3个,指针指向的数大于3的概率利用概率公式可求,(2)画树状图如图共有36个等可能的结果,两次转动转盘,指针指向的数的和大于8”的结果有10个,利用概率公式即可求解. 【详解】解:(1)自由转动转盘,当它停止转动时,转盘共有6个数字,其中大于3的数有3个,指针指向的数大于3的概率为31=62, 故答案为:12; (2)画树状图如图:共有36个等可能的结果,两次转动转盘,指针指向的数的和大于8”的结果有10个, ∴两次转动转盘,指针指向的数的和大于8”的概率为1036=518.【点睛】本题考查概率,掌握列举法求概率的方法,关键是通过列举法或树状图找出满足条件的情况的数量.23.(1)14;(2)()16P=两名均来自九年级【分析】(1)根据概率的意义求解;(2)通过树状图分别计算总的可能性与两名同学均来自九年级的可能性,然后根据概率的意义求解即可.【详解】解:(1)∵随机抽取一名同学的结果可能性有4种,恰好抽到小东同学的可能性为1种,∴概率为1÷4=14,故答案为14;(2)画树状图如下:由上可知,总共有12种可能结果,其中两名均来自九年级的结果有2种:(小富,小美)、(小美,小富),所以所求概率为21126P==.【点睛】本题考查概率的应用,熟练掌握概率的意义和计算是解题关键.24.(1)60人,画图见解析;(2)225人;(3)2 3【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可;(2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】解:(1)此次调查的学生总人数为1220%60÷=(人).喜爱排球运动的学生人数为60-12-27=21(人),补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人.(3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P∴(抽取的两名学生恰好为1名男生和1名女生)82 123 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了条形统计图和扇形统计图.25.(1)200,补图见解析;(2)估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人;(3)35.【分析】(1)由“不了解”的人数及其所占的百分比即可求出总人数.根据总人数可求出C等级的人数,即可补全统计图.(2)利用C等级的人数所占的百分比乘以该校九年级的人数即可估算.(3)利用列表法列举出所有事件发生的情况,再找出抽到一男一女的情况,最后根据概率公式计算即可.【详解】(1)2010%=200÷人.C等级的人数为200(406020)80-++=(人),补全条形统计图如下:(2)801000400200⨯=(人),故估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人.(3)列表如下:男1男2男3女1女2男1男1,男2男1,男3男1,女1男1,女2男2男2,男1男2,男3男2,女1男2,女2男3男3,男1男3,男2男3,女1男3,女2女1女1,男1女1,男2女1,男3女1,女2女2女2,男1女2,男2女2,男3女2,女1故恰好抽到一男一女的概率为123 205=.【点睛】本题考查条形和扇形统计图相关联,列表法或树状图法求概率.掌握条形和扇形统计图的特点和能够正确列出表格是解答本题的关键.26.(1)见解析;(2)列表见解析,小明获得门票的概率P1=38,小华获得门票的概率P2=58,这个规则对双方不公平.【分析】(1)A展馆的门票数除以它所占的百分比,算出门票总数,乘以B展馆门票所占的百分比即为B展馆门票数,C所占的百分比等于整体1减去其余百分比,根据所求出的数据将统计图补充完整即可;(2)列举出所有情况,看小明抽得的数字比小华抽得的数字大的情况占所有情况的多少即可求得小明赢的概率,进而求得小明赢的概率,比较即可.【详解】。

(好题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(包含答案解析)(1)

(好题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(包含答案解析)(1)

一、选择题1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A.抛一枚硬币,出现正面B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球2.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率3.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A.16B.19C.118D.2154.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )A.14B.16C.12D.345.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.156.典典、诺诺、悦悦三人参加学校的“幸运就是我”节目.幸运的是,她们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如下图),每次只能从其中一串的最下端取一件,直到礼物取完为止.典典第一个取得礼物,然后诺诺、悦悦依次取得第2件、第3件礼物.事后她们打开这些礼物品仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是()A.典典B.诺诺C.悦悦D.无法确定7.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是()A.14B.13C.512D.238.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。

九年级数学上册单元测试(三) 概率的进一步认识 含答案

九年级数学上册单元测试(三) 概率的进一步认识   含答案

编号:538580002222179545525983331学校:佛在合市经石门镇中碑磊小学*教师:晓癯谙*班级:白泽参班*单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x ,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总次数 1020306090120180240330450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下: 小亮 小丽1 2 3 4 5 6 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)[来源:学科网](5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表法):A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。

2023-2024学年第一学期北师大版九年级数学上册第3章复习测试卷附答案

2023-2024学年第一学期北师大版九年级数学上册第3章复习测试卷附答案

2023-2024学年第一学期九年级数学上册第3章【概率的进一步认识】复习测试卷一.选择题1.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.122.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,当三辆汽车经过这个十字路口时,至少有两辆汽车向左转的概率是()A.B.C.D.3.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.B.C.D.4.现有4根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能够组成三角形的概率是()A.B.C.D.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.6.从﹣4,﹣1,2,3四个数中随机选取两个不同的数,分别记为a,c,则关于x的方程ax2+4x+c=0有两个不相等的实数根的概率是()A.B.C.D.7.从1,2,3三个数中取出一个数作为点P的横坐标,从4,5,6,7四个数中取出一个数作为点P的纵坐标,则点P落在直线y=﹣x+6上的概率是()A.B.C.D.8.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.9.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c=0有实数解的概率为()A.B.C.D.10.在一个不透明的袋子里装有红球,黄球共36个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.9C.15D.2411.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率二.填空题12.如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.13.如图所示的电路图中,当随机闭合S1,S2,S3,S4中的两个开关时,能够让灯泡发光的概率为.14.将如图所示的两个转盘(A转盘被分成三等份,B转盘被分成四等份)各转动一次,当转盘停止后,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数概率是.15.一水库里有鲤鱼、鲫鱼、草鱼共2000尾,小明捕捞了100尾鱼,发现鲫鱼有35尾,估计水库里有尾鲫鱼.16.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有条鱼.三.解答题17.三人相互传球,由甲开始发球,并作为第一次传球.(1)用列表或画树状图的方法求经过3次传球后,球仍回到甲手中的概率是多少?(2)由(1)进一步探索:经过4次传球后,球仍回到甲手中的不同传球的方法共有多少种?18.某大学为了解大学生对中国共产党党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试活动.现从一、二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一a b43m大二39.544c n请你根据上面提供的所有信息,解答下列问题:(1)上表中a=,b=,c=,m=,n;根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.19.如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.20.“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等.(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.21.现有分别标有1,2,3,4的四张扑克:(1)同时从中任取两张,猜测两数和为奇数的机会;(2)先从中任取一张,放回后搅匀再取一张,猜测两数和为奇数的机会.小明说(1)(2)中和为奇数的机会均等;小刚说(1)(2)中和为奇数的机会不均等,你认为他们俩谁的判断正确?请用画树状图或列表的方法说理.22.小杰和小明玩扑克牌游戏,各出一张牌比输赢.游戏的规则是:谁的牌数字大谁赢,同样大就平:A 遇2就输,遇其他牌(除A外)都赢.目前小杰手中A、K、J,小明手中有2、Q、J.(1)求出小明抽到的牌恰好是“2”的概率;(2)小杰、小明两人谁获胜的机会大?画出树状图,通过计算说明理由.23.将5个完全相同的小球分别装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2、3、4;乙袋中有2个球,分别标有2、4.从甲、乙两个口袋中各随机摸出一个球.用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.24.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.25.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000…摸到白球的次数m5896116295484601…摸到白球的频率0.580.640.580.590.6050.601…(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?26.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).参考答案一.选择题1.解:设4个班级分别为A、B、C、D,相对应的4个老师分别为a,b,c,d.由图中可以看出,共有9种情况.故选:B.2.解:根据题意画图如下:一共有27种等可能的情况;至少有两辆车向左转的有7种,则至少有两辆车向左转的概率为:.故选:D.3.解:画树状图如图:,共有6个等可能的结果,恰好取到红色帽子和红色围巾的结果有1个,∴恰好取到红色帽子和红色围巾的概率为,故选:C.4.解:从中任取三根木棒所有可能的情况为(4、6、8),(4、6、10),(6、8、10),(4、8、10)4种情况,其中(4、6、8),(6、8、10),(4、8、10)这3种能构成三角形,所以能够构成三角形的概率是,故选:C.5.解:根据题意画图如下:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:P==.故选:C.6.解:画树状图如图:共有12个等可能的结果,关于x的方程ax2+4x+c=0有两个不相等的实数根(16﹣4ac>0,即ac<4)的结果有8个,∴关于x的方程ax2+4x+c=0有两个不相等的实数根的概率为=,故选:D.7.解:根据题意画图如下:共有12种等可能的情况数,其中点P落在直线y=﹣x+6上的有2种,则点P落在直线y=﹣x+6上的概率是=.故选:D.8.解:画树状图得:∵x2+px+q=0有实数根,∴Δ=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故选:A.9.解:列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=,故选:D.10.解:设袋子中红球有x个,根据题意,得:=0.25,解得x=9,∴袋子中红球的个数最有可能是9个,故选:B.11.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;C、任意写一个整数,它能被3整除的概率为,故此选项符合题意;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率,故此选项不符合题意;故选:C.二.填空题12.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.13.解:设S1、S2、S3、S4分别用1、2、3、4表示,画树状图得:∵共有12种等可能的结果,能够让灯泡发光的有6种结果,∴能够让灯泡发光的概率为:=,故答案为:.14.解:根据题意画图如下:共有12个等可能的结果,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为3的倍数偶数的结果有6个,则指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数的概率为=.故答案为:.15.解:由题意可得,2000×=700(尾),即估计水库里有700尾鲫鱼,故答案为:700.16.解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.三.解答题17.解:(1)画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=;(2)画树状图得:则经过4次传球后,球仍回到甲手中的不同传球的方法共有6种.18.解:(1)将一年级20名同学成绩整理如下表:成绩25303739434950人数1242542∴a=(25×1+30×2+37×4+39×2+43×5+49×4+50×2)=41.1,b=43,c==42.5,m=(5+4+2)÷20×100%=55%,n=(3+5+2+3)÷20×100%=65%,故答案为:41.1,43,42.5,55%,=65%;从表中优秀率看,二年级样本优秀率达到65%高于一年级的55%,因此估计二年级学生的优秀率高,所以用优秀率评价,估计二年级学生掌握党史知识较好.(2)∵样本合格率为:=92.5%,∴估计总体的合格率大约为92.5%,∴估计参加测试的两个年级合格学生约为:1240×92.5%=1147(人),∴估计参加此次测试活动成绩合格的学生人数能超过1000人;(3)一年级满分有2人,记为A,B,二年级满分有3人,记为C,D,E,画树状图如图:共有20种等可能的结果,两人在同一年级的结果有8种,∴两人在同一年级的概率为=.19.解:画树状图如图:共有9种等可能的结果,点(x,y)落在平面直角坐标系第一象限内的结果有4种,∴点(x,y)落在平面直角坐标系第一象限内的概率为.20.解:(1)居民甲接种的是新冠病毒灭活疫苗的概率为=;(2)画树状图如图:共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种,∴居民甲、乙接种的是相同种类疫苗的概率为=.21.解:小刚的判断正确.(1)列表如下:第一张第二张12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由上表可知,共有12种结果,每种结果出现的可能性相同,其中两数和为奇数的结果有8种.∴P(和为奇数)=;(2)列表如下:第一次第二次12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由上表可知,其16种结果,每种结果出现的可能性相同,其中两数和为奇数的结果共有8种.∴P(和为奇数)=,∵,∴小刚的判断正确.22.解:(1)小明抽到的牌恰好是“2”的概率=;(2)他们获胜的机会一样大.理由如下:画树状图为:共有9种等可能的结果,其中小杰获胜的结果数为4,小明获胜的结果数为4,所以小杰获胜的概率=;小明获胜的概率=,而=,所以小杰、小明两人获胜的机会一样大.23.解:画图如下:共有6种等可能的结果数,其中摸出的两个球上数字之和为5的有1种,则摸出的两个球上数字之和为5的概率为.故答案为:.24.解:(1)根据题意知,=0.25,解得:n=5,经检验n=5是分式方程的解,即估计箱子里白球的个数n为5,故答案为:5;(2)列表得红1红2白黄红1(红2,红1)(白,红1)(黄,红1)红2(红1,红2)(白,红2)(黄,红2)白(红1,白)(红2,白)(黄,白)黄(红1,黄)(红2,黄)(白,黄)摸球的结果共有12种等可能结果,其中两次均摸到红球的有2种结果,∴P(两次均摸到红球)==.25.答:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球是30×0.6=18个,黑球是30×0.4=12个;故答案为:(1)0.60;(2)0.6,0.4;26.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,∴估计摸到红球的概率为0.75,设白球有x个,根据题意,得:=0.75,解得x=1,经检验x=1是分式方程的解,∴估计箱子里白色小球的个数为1;(2)画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,∴两次摸出的小球颜色恰好不同的概率为=.。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(答案解析)(1)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(答案解析)(1)

一、选择题1.有四根长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为()A.14B.23C.34D.122.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.124.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.345.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1126.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.237.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A.12B.14C.13D.198.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.19.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.117610.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13611.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率()A.12B.13C.14D.1612.某学习小组进行“用频率估计概率”的试验时,统计了某一结果出现的频率,并绘制了如图所示的折线统计图,则符合这一结果的试验可能是()A.先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上B.先后两次掷一枚质地均匀的骰子,两次的点数和不大于3C.小聪和小明玩剪刀、石头、布的游戏,小聪获胜D.一个班级中(班级人数为50人)有两人生日相同二、填空题13.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_____.14.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.15.如图所示,圆盘被分成8个全等的小扇形,分别写上数字1,2,3,4,5,6,7,8,自由转动圆盘,指针指向的数字3<的概率是________.16.某批篮球的质量检验结果如下:抽取的篮球数n10020040060080011001400优等品的频数m9219238055875210341316优等品的频率mn0.920.960.950.930.940.940.94从这批篮球中,任意抽取一只篮球是优等品的概率的估计值为______.17.在边长为1的小正方形组成的43⨯网格中,有如图所示的A B、两个格点,在其余格点上任意放置点C,恰好能使ABC∆的面积为1的概率是_____.18.小明与父母国庆节从杭州乘动车回台州,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是_________.19.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.20.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.三、解答题21.河口瑶族自治县位于红河哈尼族彝族自治州东南部,隔红河与越南老街市、谷柳市相望,是云南唯一一个以瑶族为主体的自治县.瑶族人民的粽粑是当地一种美味的特色小吃,包粽粑是瑶族传统的“盘王节”(农历十月十六)活动之一.盘王节那天,小盘同学回家看到桌子上有一盘粽粑,其中花生仁、紫苏仁各1,豆沙仁2个,这些粽粑除陷外,其它无差别.(1)小盘随机地从盘子中取一个粽粑,求取出的是花生仁的概率;(2)小盘随机地从盘子中取出两个粽粑,请用列表法或画树状图法表示所有可能的结果,并求出小盘取出的两个粽粑都是豆沙粽粑的概率.22.数学发展史是数学文化的重要组成部分,了解数学发展史有助于我们理解数学知识,提升学习兴趣,某校同学们就对“概率发展的历史背景”的了解程度在初三年级进行随机抽样调查,将调查结果绘制成如下两幅统计图:根据统计图的信息,解答下列问题:两幅统计图:(1)本次共调查______名学生,条形统计图中m ______.(2)若该校初三共有学生1500名,则该校约有名学生不了解“概率发展的历史背景”;(3)调查结果中,该校九年级(2)班学生中了解程度为“很了解”的同学是两名男生、一名女生,现准备从其中随机抽取两人去市里参加“初中数学知识的历史背景”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.23.如图,在电路AB中,有三个开关:S1、S2、S3.(1)当开关S1已经是闭合状态时,开关S2、S3的断开与闭合是随机的,电路AB能正常工作的概率是;(2)若三个开关S1、S2、S3的断开与闭合都是随机的,求电路AB能正常工作的概率.24.甲、乙,丙、丁4人聚会,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,求甲抽到的是自己带来的礼物的概率;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,用列表法或画树状图法求甲、乙2人抽到的都不是自己带来的礼物的概率.25.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.26.三名运动员参加定点投篮比赛,原定甲、乙、丙依次出场.为保证公平竞争,现采用抽签方式重新确定出场顺序.(1)画出抽签后每个运动员出场顺序的树状图;(2)求:①抽签后甲运动员的出场顺序发生变化的概率;②抽签后每个运动员的出场顺序都发生变化的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关键.2.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3.B解析:B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x .则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=.()2221241122x x++=, 故选:B . 【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.5.B解析:B 【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是21 3015;故选:B.【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.6.D解析:D【分析】直接运用概率计算公式求解即可.【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩,∴她取一只医用外科口罩的概率为:23,故选:D.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.7.B解析:B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°, 设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.8.C解析:C 【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案. 【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆, ∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34. 故选:C . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.也考查了中心对称图形的定义. 9.B解析:B 【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论. 【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02, 出售1200件衬衣,其中次品大约有1200×0.02=24(件), 故选:B . 【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比11.B解析:B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】列表得:∴恰好是一双的概率41.123故选B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上的概率为14,不符合题意;B、先后两次掷一枚质地均匀的骰子,两次的点数和不大于3的概率为112,不符合题意;C、小聪和小明玩剪刀、石头、布的游戏,小聪获胜的概率为13,符合题意;D、一个班级中(班级人数为50人)有两人生日相同的概率为1925,不符合题意;故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、填空题13.【分析】先设阴影部分的面积是x得出整个图形的面积是3x再根据几何概率的求法即可得出答案【详解】解:设阴影部分的面积是x∵点E是AC边的中点∴S△ACD=2x∵CD=2BD∴S△ACB=3x则这个点取解析:1 3【分析】先设阴影部分的面积是x,得出整个图形的面积是3x,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是x,∵点E是AC边的中点,∴S△ACD=2x,∵CD=2BD,∴S △ACB =3x ,则这个点取在阴影部分的概率是133x x =. 故答案为:13. 【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.14.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.【分析】结合题意根据列举法求出自由转动圆盘指针指向的所有情况以及指针指向的数字的情况数量通过计算即可得到答案【详解】自由转动圆盘总共有8种结果其中指针指向的数字的情况分别为:12∴指针指向的数字的概解析:14【分析】结合题意,根据列举法,求出自由转动圆盘指针指向的所有情况以及指针指向的数字3<的情况数量,通过计算即可得到答案. 【详解】自由转动圆盘,总共有8种结果,其中指针指向的数字3<的情况分别为:1,2∴指针指向的数字3<的概率为:21=84故答案为:14.【点睛】本题考查了概率的知识,解题的关键是熟练掌握列举法求概率的方法,从而完成求解.16.94【分析】结合频率估计概率的性质即可得到答案【详解】结合题意随着抽取的篮球数n的数量逐渐增大频率逐步稳定在094∴用频率估计概率任意抽取一只篮球是优等品的概率的估计值为:094故答案为:094【点解析:94【分析】结合频率估计概率的性质,即可得到答案【详解】结合题意,随着抽取的篮球数n的数量逐渐增大,频率逐步稳定在0.94∴用频率估计概率,任意抽取一只篮球是优等品的概率的估计值为:0.94故答案为:0.94.【点睛】本题考查了利用频率估计概率;求解的关键是熟练掌握频率、概率的性质,并运用到实际生活中的问题中,即可完成求解.17.【分析】在的网格中共有20-2=18个格点找到能使得三角形ABC的面积为1的格点即可利用概率公式求解【详解】解:由题意知任意放C的情况有18种使三角形的面积为的情况有5种故答案为:【点睛】本题考查了解析:5 18【分析】在43⨯的网格中共有20-2=18个格点,找到能使得三角形ABC的面积为1的格点即可利用概率公式求解.【详解】解:由题意知,任意放C的情况有18种,使三角形的面积为的情况有5种()15 18∴=使三角形面积为P故答案为:5 18【点睛】本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.18.【分析】根据题意列树状图解答即可【详解】由题意列树状图:他们的座位共有6种不同的位置关系其中小明恰好坐在父母中间的2种∴小明恰好坐在父母中间的概率=故答案为:【点睛】此题考查事件概率的计算正确列树状解析:1 3【分析】根据题意列树状图解答即可.【详解】由题意列树状图:他们的座位共有6种不同的位置关系,其中小明恰好坐在父母中间的2种,∴小明恰好坐在父母中间的概率=2163=,故答案为:1 3 .【点睛】此题考查事件概率的计算,正确列树状图解决问题是解题的关键.19.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.20.8【分析】设有红球有x个利用频率约等于概率进行计算即可【详解】设红球有x个根据题意得:=20解得:x=8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8【分析】设有红球有x 个,利用频率约等于概率进行计算即可. 【详解】 设红球有x 个, 根据题意得:40x=20%, 解得:x =8,即红色球的个数为8个, 故答案为:8. 【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.三、解答题21.(1)14;(2)16. 【分析】(1)直接利用概率公式求出取出的是肉包的概率;(2)用列表法列举出所有的可能,进而利用概率公式求出答案. 【详解】解:(1)共有4个等可能结果,其中花生仁有1个 ∴P (小盘从中随机地从盘子中取一个粽粑,取出的是花生仁)111124==++.(2)由题意可得:∴P (小盘取出的两个粽粑都是豆沙粽粑)21126==. 【点睛】此题主要考查了列表法或树状图法求概率,正确列举出所有的可能是解题关键.22.(1)60,18;(2)300人;(3)23.【分析】(1)根据了解很少的有24人,占40%,即可求得总人数;再利用调查的总人数减去其它各项的人数即可求得m的值;(2)利用1500乘以不了解“概率发展的历史背景”的人所占的比例即可求解;(3)画出树状图即可求出恰好抽中一男生一女生的概率.【详解】(1)由题目图表提供的信息可知总人数=24÷40%=60(名),m=60-12-24-6=18,故答案为:60,18;(2)1500×1260=300(名),即该校共有学生1500名,则该校约有300名学生不了解“概率发展的历史背景”,(3)画树状图得:∵共有6种等可能的结果,其中恰好抽中一男生一女生的共有4种情况,∴恰好抽中一男生一女生的概率为42=63.【点睛】本题考查了列表法与树状图法、条形统计图和扇形统计图等知识,读懂统计图,正确画出树状图是解题的关键.23.(1)34;(2)38【分析】先画树状图展示出所有等可能结果,从中找到使电路AB正常工作的情况数,在根据概率公式计算即可;【详解】(1)画树状图如下:由树状图知,共有4种等可能结果,其中电路AB能正常工作的有3种结果,∴电路AB能正常工作的概率是34;故答案是34.(2)画树状图如下:由树状图知,共有8种等可能结果,其中电路AB能正常工作的有3种结果,∴电路AB能正常工作的概率是38;【点睛】本题主要考查了画树状图求概率,准确分析计算是解题的关键.24.(1)14;(2)712【分析】(1)根据概率公式计算即可得出答案;(2)画出树状图,然后根据概率公式列式进行计算即可得解.【详解】解:(1)甲抽到的是自己带来的礼物的概率是:14.(2)设甲、乙、丙、丁4人的扎物分别为a、b、c、d,根据题意画出树状图如图;一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7种∴甲、乙2人抽到的都不是自己带来的礼物的概率为712.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.25.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 ,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)图见解析;(2)①23;②13.【分析】(1)根据题意画出树状图即可;(2)①先根据树状图得出所有可能的结果,再找出抽签后甲运动员的出场顺序发生变化的结果,然后利用概率公式进行计算即可得;②先根据树状图得出所有可能的结果,再找出抽签后每个运动员的出场顺序都发生变化的结果,然后利用概率公式进行计算即可得.【详解】解:(1)由题意,画树状图如下所示:(2)①由树状图可知,所有可能出现的等可能结果共6种,其中,抽签后甲运动员的出场顺序发生变化的有4种情况,即(乙、甲、丙),(乙、丙、甲),(丙、甲、乙),(丙、乙、甲),则抽签后甲运动员的出场顺序发生变化的概率为4263P==;②∵在这6种等可能的结果中,抽签后每个运动员的出场顺序都发生变化的有2种情况,即(乙、丙、甲),(丙、甲、乙),∴抽签后每个运动员的出场顺序都发生变化的概率为2163P==.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》检测卷(答案解析)

一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是( )A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .任意写一个整数,它能被3整除的概率D .从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.有四根长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为( ) A .14B .23C .34D .123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .164.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是( ) A .12B .23C .25D .355.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( ) A .13B .23C .19D .126.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( )A.29B.13C.49D.597.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.148.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.239.从1,2,3--三个数中,随机抽取两个数相乘,积是正数的概率是()A.13B.23C.16D.110.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13611.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.812.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个二、填空题13.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_____.14.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表:试验种子数n(粒)1550100200500100020003000发芽频数m14459218847695219002850发芽频率mn10.80.90.920.940.9520.9520.950.9515.如图,正方形ABCD是一飞镖游戏板,其中点E,F,G,H分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是______.16.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.17.十八世纪法国有名的数学家达兰倍尔犯了这样一个错误:拿两枚硬币随意抛掷,会出现三种情况,要么两枚都是正面向上,要么一枚正面向上,一枚背面向上,要么两枚都是背面向上,因此,两枚都是正面向上的概率是13.事实上,两枚硬币都是正面向上的概率应该是______.18.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.19.一个不透明的盒子中装有3个黄球,6个红球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是黄球的概率为__________.20.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有 人,在线答疑所在扇形的圆心角度数是 ; (2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.一个不透明的口袋里装有分别标有汉字“优”、“秀”、“学”、“生”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的的概率是______;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优秀”或“学生”的概率.23.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球.(1)请用画树形图或列表的方法写出两次取出的小球所能产生的全部结果; (2)求两次取出的小球标号相同的概率; (3)求两次取出的小球标号的和等于4的概率.24.小辉和小聪两人在玩转盘游戏时,把一个可以自由转动的转盘A 分成3等份的扇形区域,把转盘B 分成2等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小辉获胜:若指针所指两个区域的数字之和为3的倍数,则小聪获胜,如果指针落在分割线上,则需要重新转动转盘.(1)请用画树状图或列表法的方法表示出所有可能的结果.(2)在这个游戏中,小辉、小聪两人获胜的概率分别是多少?该游戏规则对双方公平吗?25.一个袋子内装有质地大小完全相同的四个小球,分别标记数字1,2,3,4.下图是一个正六边形棋盘,现通过摸球的方式玩跳棋游戏,规则是:从袋子内随机取出一个小球,当计算完袋子内其余三个小球上的数字之和记为n后将小球放回.然后从下图中的A点开始沿着逆时针方向连续跳动n个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.()1随机摸球一次,则棋子跳动到点E处的概率是.()2随机摸球两次,用画树状图或列表的方法,求棋子最终跳动到点D处的概率.26.在一个密闭的口袋里装有四个除颜色外都相同的小球,其中1个红色,1个黄色,2个白色.(1)小明从口袋中随机模出1个小球,恰好是黄色的概率为______;(2)小明随机一次从口袋中摸出两个小球,试用树状图或表格列出所有可能的结果,并求摸到的两个小球的颜色恰为一红一白的概率为_______;(3)往口袋里再放入一个完全相同的黄色小球,先摸出一个小球放回,摇匀后再随机摸出一个小球,则两次摸到的小球的颜色恰为一红一白的概率是______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关键.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.C解析:C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:2.5故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.C解析:C【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【详解】解:列表得:直左右右(直,右)(左,右)(右,右)左(直,左)(左,左)(右,左)∴两辆汽车经过这个十字路口全部继续直行的概率是19; 故选C . 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6.C解析:C 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】 解不等式组得:7x ax ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a - , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C . 【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.B解析:B 【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案. 【详解】解:根据题意,在A ,B ,C ,D 四个点中任选三个点,有: △ABC 、△ABD 、△ACD 、△BCD ,共4个三角形; 其中是等腰三角形的有:△ACD 、△BCD ,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.8.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:共有6种情况,积是正数的有2种情况,所以,P(积是正数)=21 63 ,故选:A.【点睛】考查了列表法与树状图法,本题用到的知识点为:概率=所求情况数与总情况数之比.10.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比11.B解析:B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.B解析:B【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案.【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则3xx+=0.4,解得:x=2,故选:B.【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.二、填空题13.【分析】先设阴影部分的面积是x得出整个图形的面积是3x再根据几何概率的求法即可得出答案【详解】解:设阴影部分的面积是x∵点E是AC边的中点∴S△ACD=2x∵CD=2BD∴S△ACB=3x则这个点取解析:1 3【分析】先设阴影部分的面积是x,得出整个图形的面积是3x,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是x,∵点E是AC边的中点,∴S△ACD=2x,∵CD=2BD,∴S△ACB=3x,则这个点取在阴影部分的概率是1 33xx=.故答案为:13.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.14.95【分析】根据9批次种子粒数从1粒增加到3000粒时种子发芽的频率趋近于095所以估计种子发芽的概率为095【详解】解:∵种子粒数3000粒时种子发芽的频率趋近于095∴估计种子发芽的概率为095解析:95 【分析】根据9批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95. 【详解】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95, ∴估计种子发芽的概率为0.95. 故答案为:0.95. 【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积设正方形ABCD 的边长是则∵F 是BC 中点∴∴概率是故答案是:【点睛】本题考查概率的求解析:14【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率. 【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积, 设正方形ABCD 的边长是x ,则AB x =, ∵F 是BC 中点, ∴12BF x =, ∴211112224ABFSAB BF x x x =⋅=⋅=, 概率是221144ABFABCDxSS x ==. 故答案是:14.本题考查概率的求解,解题的关键是掌握概率求解的方法.16.【分析】先把分式方程化为整式方程解整式方程得到x =且x≠2利用有理数的整除性得到a =2或3然后根据概率公式求解【详解】把分式方程去分母得ax ﹣2﹣(x ﹣2)=6∴(a ﹣1)x =6∵分式方程有整数解∴解析:13. 【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解. 【详解】把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6, ∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.17.【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案【详解】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的解析:14【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数,然后根据概率公式即可得出答案. 【详解】解:同时抛掷两枚质地均匀的硬币一次,共有正正、正反、反正、反反四种等可能的结果,两枚硬币都是正面向上的有1种,所以两枚硬币都是正面向上的概率应该是14;故答案为14.【点睛】此题考查了求概率,用到的知识点为:概率=所求情况数与总情况数之比,熟知概率的定义是解题关键.18.【分析】先画出树状图求出所有可能出现的结果数再找出选出的2名同学刚好是一男一女的结果数然后利用概率公式求解即可【详解】解:设报名的3名男生分别为ABC2名女生分别为MN则所有可能出现的结果如图所示:解析:3 5【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.19.【分析】先算出总的球的个数直接利用概率公式求解即可求得答案【详解】解:总的球数为:3+6=9个所以从中随机摸出一个球恰好是黄球的概率为:故答案为:;【点睛】本题主要考查了概率公式:随机事件A的概率P解析:1 3先算出总的球的个数,直接利用概率公式求解即可求得答案.【详解】解:总的球数为:3+6=9个,所以从中随机摸出一个球,恰好是黄球的概率为:31 93 ,故答案为:13;【点睛】本题主要考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)14;(2)13【分析】(1)直接利用概率公式求解即可;(2)列表法列出所有等可能的结果,从中找到符合条件的结果数,再根据概率公式求解即可;【详解】解:(1)∵共有4个数,∴若从中任取一个球,球上的汉字刚好是“优”的概为14;(2)列出下表:优秀学生优(优,秀)(优,学)(优,生)秀(秀,优)(秀,学)(秀,生)学(学,优)(学,秀)(学,生)生(生,优)(生,秀)(生,学)∴共有12种可能的结果,其中能组成“优秀”“学生”各有2种可能,∴按要求能组成“优秀”或“学生”的概率为41 123 ==.【点睛】本题考查了列表法和树状图法,以及用概率公式求解概率;正确掌握知识点是解题的关键;23.(1)见解析;(2)14;(3)316【分析】(1)先画树状图展示所有16种等可能的结果数即可;(2)两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【详解】解:画树状图如图:共有16种等可能的结果数;(2)由树状图得:共有16种等可能的结果数,两次取出的小球标号相同的结果有4个,∴两次取出的小球标号相同的概率为41=164;(3)如图:共有16种等可能的结果数两次取出的小球标号的和等于4的有3种,∴两次取出的小球标号的和等于4的概率为316.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)见解析;(2)小辉获胜的概率为12,小聪获胜的概率为13,该游戏规则对双方不公平.【分析】(1)根据题目中两个转盘的数字及游戏规则,即可画出树状图;(2)根据树状图展示所有等可能的结果数6种,计算出小辉获胜的概率和小聪获胜的概率,然后通过比较概率的大小判断该游戏规则对双方是否公平.【详解】解:(1)画树状图为:(2)根据树状图,共有6种等可能的结果数,其中数字和为2的倍数有3种,数字和为3的倍数有2种,∴小辉获胜的概率=3162=,小聪获胜的概率=21 63 =,∵12>13,∴该游戏规则对双方不公平.【点睛】本题考查了概率的应用,掌握树状图或列表法计算出概率并利用概率进行判断是解答此题的关键.25.()11 4;()214【分析】(1)当数字和为8时,可以到达点E,根据概率公式计算即可;(2)利用列表法统计即可;【详解】解:(1)随机取出-个小球,剩余三个小球之和为1+2+3=6,1+2+4=7,1+3+4=8,2+3+4=9,∴有6,7,8,9四种等可能的情况∵从 A 点开始沿着逆时针方向连续跳动(2+6N)个顶点才能达到点 E ,其中 N 为正整数.∴当和为8时棋子跳到E处则棋子跳到点E处的概率为1 4故答案为:1 4()2列表如下:15,有4种情况,所以棋子最终落在点D 处的概率,P(落在D处)41 164 ==【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.26.(1)14;(2)13;(3)425.【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有12个等可能的结果,两次摸到小球的颜色恰为一红一白的结果有。

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)(4)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)(4)

一、选择题1.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB 型血的人数是( )A .16人B .14人C .6人D .4人2.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .593.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( ) A .24个B .10个C .9个D .4个4.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个B .12个C .8个D .不确定5.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( ) A .29B .13C .59D .236.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1B .0.2C .0.3D .0.67.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是( ) A .12B .35C .16D .3108.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为( ) A .13B .14C .16D .1369.,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是( ) A .15B .25 C .35D .4510.某商场举办有奖销售活动,每张奖券获奖的可能性相同,以每10000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖100个,问:一张奖券中奖的概率是多少( ) A .110000B .1110000C .11110000D .1100011.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是( ) A .10B .15C .20D .3012.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( ) A .6个B .10个C .15个D .30个二、填空题13.现将背面完全相同,正面分别标有数6-,1,2,3的四张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数标记为m ,再从剩下的三张卡片中任取一张,将该卡片上的数记为n ,则数字m 、n 都、不是方程2560x x -+=的解的概率为______. 14.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表:15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.十八世纪法国有名的数学家达兰倍尔犯了这样一个错误:拿两枚硬币随意抛掷,会出现三种情况,要么两枚都是正面向上,要么一枚正面向上,一枚背面向上,要么两枚都是背面向上,因此,两枚都是正面向上的概率是13.事实上,两枚硬币都是正面向上的概率应该是______.17.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.18.如图,在3×3的正方形网格中,点,,,,,,A B C D E F G 都是格点,从,,,,,A B C D E F 五个点中任意取一点,以所取点及G E 、为顶点画三角形,所画三角形是等腰三角形的概率是_____.19.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.20.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则两次都摸到黄球的概率为__________.三、解答题21.小辉和小聪两人在玩转盘游戏时,把一个可以自由转动的转盘A 分成3等份的扇形区域,把转盘B 分成2等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小辉获胜:若指针所指两个区域的数字之和为3的倍数,则小聪获胜,如果指针落在分割线上,则需要重新转动转盘.(1)请用画树状图或列表法的方法表示出所有可能的结果.(2)在这个游戏中,小辉、小聪两人获胜的概率分别是多少?该游戏规则对双方公平吗? 22.某市合唱团为开展“百人合唱爱国歌”网络“线上云演出”活动,需招收新成员、小霞、小健、小婷、小宇四名学生报名参加了应聘活动,其中小霞、小健来自七年级,小婷、小宇来自八年级.现对这四名学生采取随机抽取的方式进行网络线上面试. (1)若随机抽取一名学生,恰好抽到学生小霞的概率为 ;(2)若随机抽取两名学生,请用列表法或树状图法求抽中两名学生均来自七年级的概率. 23.小明和小华想利用抽取扑克牌游戏决定谁去参加市里举办的“创建全国文明城市,争做文明学生”的演讲比赛,游戏规则是:将4张除了数字2、3、4、5不同外,其余均相同的扑克牌,数字朝下随机平铺于桌面,一人先从中随机取出1张,另一人再从剩下的3张扑克牌中随机取出一张,若取出的2张扑克牌上数字和为偶数,则小明去参赛,否则小华去参赛.(1)用列表法或画树状图法,求小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.24.“赣江”是长江主要支流之一,江西省最大的河流.其东源出自石城县武夷山,称“绵水”,流经瑞金,在会昌县与“湘水”(江西)汇合,称“贡水”;其西源出自崇义县聂都山,称“章水”.“章水"与“贡水”在赣州市八镜台汇合,是为“赣江”.小丽和小杰一起玩游戏:将“章水”、“贡水”、“绵水”、“湘水”分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上.小丽从中随机抽取一张卡片,小杰再从剩余的卡片中随机抽取一张卡片.(1)“赣江被抽中”是______事件,“章水被抽中”是______事件(填“不可能”或“必然”或“随机”);(2)试用画树状图或列表的方法表示所有可能的结果,并求“两人抽取的河流能汇合”的概率.25.明明是一个集邮爱好者,正值2021年辛丑牛年来临之际,明明收集了自己感兴趣的4张牛邮票(除正面内容不同外,其余均相同),现将这四张邮票背面朝上洗匀放好.(1)明明从中随机地抽取一张邮票是8分的概率是;(2)明明从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,请你用列表或画树状图的方法求抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率(这四张邮票分别用字母A,B,C,D表示).26.从一副扑克牌中取出红桃J,Q,K和黑桃J,Q,K.这两种花色的六张扑克牌.(1)将这六张牌背面朝上,洗匀,随机抽取一张,直接写出这张牌是K的概率_________(2)将这三张红桃分为一组,三张黑桃分为一组,分别将这两组牌背面朝上洗匀,然后从这两组牌中各随机抽取一张,请利用列表或画树状图的方法,求其中一张是J 一张是Q 的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意计算求解即可. 【详解】由题意知:共40名学生,由表知:P (AB 型)=0.10.10.10.40.350.10.151. ∴本班AB 型血的人数=40×0.1=4名. 故选D . 【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.2.C解析:C 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a- , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.3.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x+=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.C解析:C【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.5.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为 39=13, 故选:B . 【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.6.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D . 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.7.D解析:D 【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率. 【详解】 解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况, ∴两次摸到的球的颜色相同的概率为:310. 故选:D . 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.C解析:C 【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可. 【详解】 列表得:∴两个骰子的点数相同的概率为:61=366故选:C 【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比9.C解析:C 【分析】先确定这5个数中无理数的个数,再利用概率公式计算得出答案. 【详解】∵cos45°是无理数, ∴,cos45°,π,0,17,cos45°,π,共3个, ∴,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是35. 故选C. 【点睛】此题主要考查了概率公式,正确得出无理数的个数是解题关键.10.C解析:C 【分析】根据题中信息得到中奖的可能有111次,共有10000次机会,再利用概率计算公式计算即可. 【详解】由题意知,中奖的可能有111次,共有10000次机会, ∴中奖的概率为11110000, 故选:C. 【点睛】此题考查概率的计算,需根据题意找到事件的所有次数与事件A 可能出现的次数,再代入计算公式计算.11.D解析:D 【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.25左右列出关于x 的方程,求出x 的值,从而得出答案. 【详解】解:设袋子中红球有x 个,根据题意,得:40x=0.25, 解得x=10,∴袋子中红球的个数最有可能是10个,黄球有40-10=30(个) 故选:D . 【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.C解析:C 【分析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可. 【详解】∵共试验400次,其中有240次摸到白球,∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个,则0.610xx =+,解得:x=15,∴盒子中的白球大约有15个,故选:C.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.二、填空题13.【分析】画树状图列出所有等可能情况再找出数字mn都不是方程x2−5x+6=0的解的情况利用概率公式计算可得【详解】画树状图如下:由树状图知共有12种等可能结果∵x2−5x+6=0的解为x=2或x=3解析:1 6【分析】画树状图列出所有等可能情况,再找出数字m、n都不是方程x2−5x+6=0的解的情况,利用概率公式计算可得.【详解】画树状图如下:由树状图知共有12种等可能结果,∵x2−5x+6=0的解为x=2或x=3,∴数字m、n都不是方程x2−5x+6=0的解的有2种结果,∴数字m、n都不是方程x2−5x+6=0的解的概率为212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,是解题的关键.14.95【分析】根据9批次种子粒数从1粒增加到3000粒时种子发芽的频率趋近于095所以估计种子发芽的概率为095【详解】解:∵种子粒数3000粒时种子发芽的频率趋近于095∴估计种子发芽的概率为095解析:95【分析】根据9批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【详解】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案【详解】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的解析:1 4【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数,然后根据概率公式即可得出答案.【详解】解:同时抛掷两枚质地均匀的硬币一次,共有正正、正反、反正、反反四种等可能的结果,两枚硬币都是正面向上的有1种,所以两枚硬币都是正面向上的概率应该是14;故答案为14.【点睛】此题考查了求概率,用到的知识点为:概率=所求情况数与总情况数之比,熟知概率的定义是解题关键.17.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.18.【分析】找出从ABCDEF五个点中任意取一点组成等腰三角形的个数再根据概率公式即可得出结论【详解】∵从ABCDEF五个点中任意取一点共有5种情况其中GEF;GEA两种取法可使这三定组成等腰三角形∴所解析:2 5【分析】找出从A,B,C,D,E,F五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【详解】∵从A,B,C,D,E,F五个点中任意取一点共有5种情况,其中G、E、F;G、E、A两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是25,故答案为:25.【点睛】此题考查概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解题的关键.19.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则5153x=+,解得10x=.故答案为:10.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.20.【分析】首先根据题意画出树状图由树状图求得所有等可能的结果与两次都摸到黄球的情况然后利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知共有9种等可能结果其中两次都摸到黄球的有1种结果∴两解析:1 9【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有1种结果,∴两次都摸到黄球的概率为19;故答案为:19.【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.三、解答题21.(1)见解析;(2)小辉获胜的概率为12,小聪获胜的概率为13,该游戏规则对双方不公平.【分析】(1)根据题目中两个转盘的数字及游戏规则,即可画出树状图;(2)根据树状图展示所有等可能的结果数6种,计算出小辉获胜的概率和小聪获胜的概率,然后通过比较概率的大小判断该游戏规则对双方是否公平.【详解】解:(1)画树状图为:(2)根据树状图,共有6种等可能的结果数,其中数字和为2的倍数有3种,数字和为3的倍数有2种,∴小辉获胜的概率=3162=,小聪获胜的概率=21 63 =,∵12>13,∴该游戏规则对双方不公平.【点睛】本题考查了概率的应用,掌握树状图或列表法计算出概率并利用概率进行判断是解答此题的关键.22.(1)14;(2)16.【分析】(1)共有4种可能出现的结果,抽到小霞的只有1种,即可利用概率公式求出恰好抽到学生小霞的概率;(2)用树状图表示所有可能出现的结果,进而求出两个同学均来自七年级的概率.【详解】解:(1)∵共有4种可能出现的结果,抽到小霞的只有1种,∴恰好抽到小霞的概率为:P(小霞)=14,故答案为:14;(2)用树状图表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是七年级,即抽到小霞、小健的有2种,∴P(小霞、小健)=212=16.【点睛】本题考查了概率的应用,运用列表法或树状图法列举出所有可能出现的结果情况是正确解答的前提.23.(1)13;(2)不公平,理由见解析【分析】(1)先列出表格,展示出所有等可能的结果,数出符合条件的结果数,利用概率公式,即可求解;(2)分别求出小明和小华去参赛的概率,进而即可求解.【详解】解:(1)列表如下P∴(小明参赛)41 123 ==;(2)游戏不公平,理由:P(小明参赛)13 =,P∴(小华参赛)12133 =-=,1233≠,∴这个游戏不公平.【点睛】本题主要考查概率和游戏的公平性,掌握列树状图和列表格展示等可能的结果,是解题的关键.24.(1)不可能、随机,(2)列表见解析,13.【分析】(1)根据随机事件和不可能事件的概念判断即可;(2)列举出所有情况,看所求的情况占总情况的多少即可.【详解】解:(1)“赣江被抽中”是不可能事件,“章水被抽中”是随机事件;故答案为:不可能、随机.(2)根据题意可列表如下:(A表示章水,B表示贡水,C表示绵水,D表示湘水)由表可知,共有12种等可能结果,其中“两人抽取的河流能汇合”的有4种结果,所以“两人抽取的河流能汇合”的概率=41 123=.【点睛】本题主要考查了事件的类型,列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件,解题关键是注意两步实验中是否有重.25.(1)12;(2)抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率16=.【分析】(1)根据概率公式直接计算可得;(2)列树状图表示所有可能出现的情况,确定抽到的两张邮票恰好是“4分邮票”和“10分邮票”的次数,根据概率公式计算即可.【详解】(1)随机地抽取一张邮票是8分的概率是24=12,故答案为:12;(2)画树状图如图所示:由图可知,共有12种等可能的结果数,其中恰好是“4分邮票”和“10分邮票”的结果数有2种,∴抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率21 126 ==.【点睛】此题考查概率的计算公式,列举法求事件的概率,正确理解题意画出树状图是解题的关键.26.(1)13;(2)29.【分析】(1)由概率公式即可求解;(2)画出树状图,共有9个等可能的结果,其中一张是J一张Q的结果有2个,由概率公式求解即可.【详解】解:(1)将这六张牌背面朝上,洗匀,随机抽取一张,则这张牌是K的概率为21 63 =,故答案为:13;(2)画树状图如图:共有9个等可能的结果,其中一张是J一张Q的结果有2个,∴其中一张是J一张Q的概率为29.【点睛】本题考查了列表法或树状图法以及概率公式,正确画出树状图是解题的关键.。

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(答案解析)(1)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(答案解析)(1)

一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.153.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( )A.12B.56C.13D.234.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1125.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.236.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.197.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.58.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A.12B.35C.16D.3109.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”或,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为()A.16B.15C.13D.1910.,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是()A.15B.25C.35D.4511.小张和小王相约去参加“抗疫情党员志愿者进社区服务”活动现在有A、B、C三个社区可供随机选择,他们两人恰好进入同一社区的概率是()A.19B.13C.29D.2312.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有()A.6个B.10个C.15个D.30个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.同时掷两枚质地均匀的骰子;两枚骰子点数之和为10的概率为__________.15.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率________.16.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.17.有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张放回记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为 ____ .18.如图,在43⨯的矩形方框内有一个不规则的区城A(图中阴影部分所示),小明同学用随机的办法求区域A的面积.若每次在矩形内随机产生10000个点,并记录落在区域A 内的点的个数,经过多次试验,计算出落在区域A内点的个数的平均值为6700个,则区域A的面积约为___________.19.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.23.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).”发生的概率;(1)求事件“转动一次,得到的数恰好是1(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.24.在一个不透明的盒子里装有三个分别标有数字1,2,3的三个乒乓球,除所标数字外,乒乓球的形状、大小、质地、颜色等其它方面完全相同.从中先随机抽取一个乒乓球,记该乒乓球上的数字为x;再从剩下的两个乒乓球中随机抽取一个乒乓球,记该乒乓球上的数为y.x y所有可能出现(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(,)的结果;(2)求取出的两个乒乓球上的数字之和为偶数的概率P.25.现有三张正面分别标有一个正数,一个负数和一个0的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀.(1)从中随机抽取一张卡片,卡片上的数是0的概率为多少?(2)从中随机抽取一张卡片,记下数字后放回,背面朝上洗均匀,再随机抽取-张记下数字,求前后两次抽取的数字之积为0的概率.(用列表法或画树状图求解)26.从一副扑克牌中取出红桃J,Q,K和黑桃J,Q,K.这两种花色的六张扑克牌.(1)将这六张牌背面朝上,洗匀,随机抽取一张,直接写出这张牌是K的概率_________(2)将这三张红桃分为一组,三张黑桃分为一组,分别将这两组牌背面朝上洗匀,然后从这两组牌中各随机抽取一张,请利用列表或画树状图的方法,求其中一张是J一张是Q的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.A解析:A【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】∵图中共有15个方格,其中黑色方格6个,∴黑色方格在整个方格中所占面积的比值=52=165,∴最终停在阴影方砖上的概率为25.故选A.【点睛】此题考查几何概率,解题关键在于掌握计算公式.3.B解析:B【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得.【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56,故选:B.【点睛】此题主要考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.B解析:B【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是21 3015;故选:B.【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.5.D解析:D【分析】直接运用概率计算公式求解即可.【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩,∴她取一只医用外科口罩的概率为:23,故选:D.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 8.D解析:D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,∴两次摸到的球的颜色相同的概率为:310.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.C解析:C【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.【详解】解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,即324,423,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为21 63 =,故选:C.【点睛】本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.10.C解析:C【分析】先确定这5个数中无理数的个数,再利用概率公式计算得出答案.【详解】∵cos45°=22是无理数,∴2,cos45°,π,0,17五个数中无理数有2,cos45°,π,共3个,∴从2,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是35.故选C.【点睛】此题主要考查了概率公式,正确得出无理数的个数是解题关键.11.B解析:B【分析】画树状图展示所有9种等可能的结果数,找出两人恰好进入同一社区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,则两人恰好进入同一社区的概率=31 93 =.故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.12.C解析:C 【分析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可. 【详解】∵共试验400次,其中有240次摸到白球,∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个,则0.610xx =+, 解得:x=15,∴盒子中的白球大约有15个, 故选:C . 【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】利用列表法确定所有可能的情况确定两枚骰子点数之和为10的情况的数量根据概率公式计算得出答案【详解】解:列表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7解析:1 12【分析】利用列表法确定所有可能的情况,确定两枚骰子点数之和为10的情况的数量,根据概率公式计算得出答案.【详解】解:列表:∴P(两枚骰子点数之和为10)=336=1 12,故答案为:1 12.【点睛】此题考查利用列举法求事件的概率,正确列出所有等可能的情况,熟记概率的计算公式是解题的关键.15.【分析】根据题意画出树状图得出所有等可能的情况数找出恰有一个篮子为空的情况数然后根据概率公式即可得出答案【详解】解:三个不同的篮子分别用ABC表示根据题意画图如下:共有9种等可能的情况数其中恰有一个解析:2 3【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【详解】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为62=93.故答案为:23.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】由摸到红球的频率稳定在025附近得出口袋中得到红色球的概率进而求出球个数即可【详解】解:设球个数为x个∵摸到红色球的频率稳定在025左右∴口袋中得到红色球的概率为025∴解得:经检验x=20解析:【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【详解】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴514x,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.17.【分析】先画树状图展示所有12种等可能的结果数再找出两次都为红桃并且数字之和不小于8的结果数然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数其中两次都为红桃并且数字之和不小于8的解析:38【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为6,所以两次都为红桃,并且数字之和不小于8的概率=63= 168.故答案为38.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.18.04【分析】先利用古典概型的概率公式求概率再求区域A的面积的估计值【详解】解:由题意∵在矩形内随机产生10000个点落在区域A内点的个数平均值为6700个∴概率P=∵4×3的矩形面积为12∴区域A的解析:04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=67000.6710000,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.19.【分析】根据题意可用列举法列表法或树状统计图来计算出总次数和婷婷获胜的次数从而求出婷婷获胜的概率【详解】解:根据题意一共有25个等可能的结果即(11)(12)(13)(14)(15)(21)(22)解析:13 25【分析】根据题意,可用列举法、列表法或树状统计图来计算出总次数和婷婷获胜的次数,从而求出婷婷获胜的概率【详解】解:根据题意,一共有25个等可能的结果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);两人出拳的手指数之和为偶数的结果有13个,所以婷婷获胜的概率为13 25故答案为:13 25【点睛】本题考查的是用列举法等来求概率,找出所有可能的结果数和满足要求的结果数是解决问题的关键.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5【分析】利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164=.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)60人,画图见解析;(2)225人;(3)2 3【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可;(2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】解:(1)此次调查的学生总人数为1220%60÷=(人).喜爱排球运动的学生人数为60-12-27=21(人), 补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人. (3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P ∴(抽取的两名学生恰好为1名男生和1名女生)82123==. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了条形统计图和扇形统计图. 23.(1)13;(2)事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)见解析,59【分析】(1)转动一次,得到的数共有三种可能,即可得到答案; (2)根据题意,找概率为0的事件,即可得到答案; (3)根据题意画树状图即可得到答案; 【详解】解:(1)转动一次,得到的数共有三种可能,其中为1-的有一种,(-1)13P =所指的数为; (2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)画树状图如下:共有9种可能,其中两次绝对值相等的有5种,()5 9P∴=所指两数的绝对值相等;【点睛】本题主要考查了列表法与树状图法,准确计算是解题的关键.24.(1)树状图见解析;(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)1 3【分析】(1)画出树状图即可列出所有可能;(2)根据两个乒乓球上的数字之和为偶数出现的次数求概率即可.【详解】解:(1)树状图如图所示.(,)x y所有可能出现的结果共有6种,分别为(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)由树状图知,在6种可能出现的结果中,取出的两个乒乓球上的数字之和为偶数的有两种,即(1,3),(3,1),所以所求概率2163 P==.【点睛】本题考查了列举法求概率,正确画出树状图是解题关键.25.(1)13;(2)59【分析】(1)从中随机抽取一张卡片,卡片上的数是0的概率=抽到是0的可能÷所有可能;(2)先画树状图展示所有9种等可能的结果数,再找出两个数的积等于0的结果数,然后根据概率公式求解.【详解】解:(1)从中随机抽取一张卡片,正面的数字是0的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个数的积等于0的结果数为5,所以两个数的积等于0的概率=59;故答案为59.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.26.(1)13;(2)29.【分析】(1)由概率公式即可求解;(2)画出树状图,共有9个等可能的结果,其中一张是J一张Q的结果有2个,由概率公式求解即可.【详解】解:(1)将这六张牌背面朝上,洗匀,随机抽取一张,则这张牌是K的概率为21 63 ,故答案为:13;(2)画树状图如图:共有9个等可能的结果,其中一张是J一张Q的结果有2个,∴其中一张是J一张Q的概率为29.【点睛】本题考查了列表法或树状图法以及概率公式,正确画出树状图是解题的关键.。

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(答案解析)(3)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(答案解析)(3)

一、选择题1.一个不透明的袋子里装有黄、白、红三种颜色的球,其中黄色16个,白色8个和红色若干,小明通过多次摸球试验后,发现摸到红球的频率稳定在0.5左右,则摸到黄球的概率约为()A.23B.12C.13D.162.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率3.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定4.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.125.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为()A.13B.49C.59D.236.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.347.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.198.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11769.一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为()A.50 B.30 C.12 D.810.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。

北师大版九年级数学上册--第3章-《概率的进一步认识》-单元测试卷-含答案【2024版】

北师大版九年级数学上册--第3章-《概率的进一步认识》-单元测试卷-含答案【2024版】

可编辑修改精选全文完整版北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A,B,C,D中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试(含答案解析)(1)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试(含答案解析)(1)
A. B. C. D.
10.从 ,cos45°, ,0, 五个数中,随机抽取一个数,抽到无理数的概率是()
A. B. C. D.
11.从一副扑克中抽出三张牌,分别为梅花1,2,3,背面朝上搅匀后先抽取一张点数记为 ,放回搅匀再抽取一张点数记为 ,则点 在直线 上的概率是()
A. B. C. D.
12.不透明的袋子中有三个小球,上面分别写着数字“ ”,“ ”,“3”,除数字外三个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为4的概率是()
(1)小盘随机地从盘子中取一个粽粑,求取出的是花生仁的概率;
(2)小盘随机地从盘子中取出两个粽粑,请用列表法或画树状图法表示所有可能的结果,并求出小盘取出的两个粽粑都是豆沙粽粑的概率.
22.数学发展史是数学文化的重要组成部分,了解数学发展史有助于我们理解数学知识,提升学习兴趣,某校同学们就对“概率发展的历史背景”的了解程度在初三年级进行随机抽样调查,将调查结果绘制成如下两幅统计图:根据统计图的信息,解答下列问题:
A. 个B. 个C. 个D.不确定
7.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
8.从 三个数中,随机抽取两个数相乘,积是正数的概率是()
A. B. C. D.
9.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()
3.D
解析:D
【分析】
根据题意计算求解即可.
【详解】
由题意知:共40名学生,
由表知:P(AB型)= .
∴本班AB型血的人数=40×0.1=4名.

九年级数学上册第三章概率的进一步认识单元检测题

九年级数学上册第三章概率的进一步认识单元检测题

九年级数学上册第三章概率的进一步认识单元检测题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列说法合理的是( )A .小明在10次抛图钉的试验中发现三次钉尖朝上,由此他说钉尖朝上的概率为30%B .抛掷一枚普通的正六面体的骰子,出现6的概率是16,即是每6次就有1次掷到6 C .某彩票的中奖机会是2%,则买100张彩票,一定会有2张中奖D .在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.512.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是( ) A .连续抛一枚均匀硬币2次,必有1次正面朝上B .连续抛一枚均匀硬币10次,都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( )A.14B.13C.12D.344.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和概率最大的和等于( )A .3B .4C .5D .65.在ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ,②AC =BD ,③AC ⊥BD ,④AB ⊥BC 中任取一个作为条件,即可推出ABCD 是菱形的概率为( ) A.14 B.12 C.34D .1 6.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A.12B.13C.14D.167.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( )A.12B.23C.25D.35 8.[2018·攀枝花]布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A.49B.29C.23D.139.一个质地均匀的正方体骰子的六个面上分别刻有1到6六个点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=x上的概率为( )A.118B.112C.16D.1410.现有4张卡片,其中3张卡片正面上的图案是“★”,1张卡片正面上的图案是“▲”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )A.916B.34C.38D.12二、填空题(本大题共8个小题,每小题3分,共24分)11.[2018·武汉]下表记录了某种幼树在一定条件下移植成活情况.移植总数n 400 1 500 3 500 7 000 9 000 14 000 成活数m 325 1 336 3 203 6 335 8 073 12 628成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是__ __(精确到0.1).12.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为__ __m2.13.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球.若从这个袋子里随机摸岀一个乒乓球.恰好是黄球的概率为710,则袋子内共有乒乓球的个数为__ __.14.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是__ __.15.若从-1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是__ __.16.2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是__ __.17.一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是________枚.18.盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是________.三、解答题19.某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.(1)该事件最有可能是__ __(填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率;②掷一枚硬币,正面朝上;③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.(2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字__ __正面朝上,该事件发生的概率接近于13.20.某校组织一项公益知识竞赛,比赛规定:每个班由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队.求恰好抽到男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)21.甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方,为此两人发生了争执.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢.请你用画树状图的方法帮他们分析一下,这个规则对甲、乙双方是否公平.22.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球.小明和小东同时从袋中随机各摸出1个球,并计算这两球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用画树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.23.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,每次转盘停止后指针所指扇形内的数字为每次所得的数(若指针指在分界线时重转).当两次所得的数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时,返现金10元.(1)试用画树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?24.某校开展研学旅行活动,准备去的研学基地有A(曲阜),B(梁山),C(汶上),D(泗水),每位学生只能选去一个地方.王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总人数,并补全条形统计图;(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章概率的进一步认识
考试总分: 120 分考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有到的点数,掷两次骰子,掷得面朝上的点数之和是的概率是()
A. B. C. D.
2.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下
列说法正确的是()
A.(正面朝上)一定等于
B.(正面朝上)一定不等于
C.多投一次,(正面朝上)更接近
D.投掷次数逐渐增加,(正面朝上)稳定在附近
3.如图,甲、乙两个转盘同时转动,两指针指向的数之积不小于的概率是()
A. B. C. D.
4.在一个不透明的袋子里装有若干个红球和黄球,这些球除颜色外完全相同.从中任意摸出一个球,记下颜色后放回,搅匀后再重新摸球,则下列说法中正确的是()
A.摸到黄球的频数越大,摸到黄球的频率越大
B.摸到黄球的频数越大,摸到黄球的频率越小
C.重复多次摸球后,摸到黄球的频数逐渐稳定
D.重复多次摸球后,摸到黄球的频率逐渐稳定
5.如图,电路图上有四个开关、、、和一个小灯泡,闭合开关或同时闭合开关、
、都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()
A. B. C. D.
6.某人随意投掷一枚均匀的骰子,投掷了次,其中有次掷出的点数是偶数,即掷出的点
数是偶数的频率为,则下列说法正确的是()
A.一定等于
B.一定不等于
C.一定大于
D.投掷的次数很多时,稳定在附近
7.鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成组进行活动,则小明和小华被分在一组的概率是()
A. B. C. D.
8.甲、乙两人进行象棋比赛,比赛规则为局胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第局,那么最后甲获胜的概率是()
A. B. C. D.
9.一箱灯泡的合格率是,小刚由箱中任意买一个,则他买到次品的概率是()
A.B.
C. D.
10.一个口袋中装有个绿球,个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()
A. B. C. D.
二、填空题(共 10 小题,每小题 3 分,共 30 分)
11.“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共
个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在,由此可以估计纸箱内红球的个数约是________个.
12.同时抛掷两枚均匀的“硬币”,出现“两个正面朝上”的机会是________;出现“一正一反”的机会是________.
13.在一次摸球试验中,袋中共有红球白球个,在次摸球实验中,有次摸到红球,则
2
摸到红球的概率是________.
14.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为、、、,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是的概率为________.
15.学校组织团员同学参加实践活动,共安排辆车,小王和小李随机上了一辆车,结果他们同车的概率是________.
16.在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共个,墨墨通过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在和,则口袋中可能有黄球________个.
17.某商场为了促销,凡购买元商品的顾客获抽奖券一张.抽奖活动设置了如下的电翻奖牌,一张抽奖券只能有一次机会在个数字中选中一个翻牌,其对应的反面就是奖品(重新启动会自动随机交换位置),有两张抽奖券翻奖牌,两张抽奖券是“谢谢参与”的概率是________.
翻奖牌正面
翻奖牌反面
一个
18.在研究抛掷分别标有,,,,,的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大假设下表是几位同学抛掷骰子的实验数据.请你根据这些数据估计上面问题的答案大约是
________.(之间的任意一个数值答案有多个)
19.某校食堂有、两层,学生可以任意选择楼层就餐,则甲乙丙三名学生中至少有两人在同一楼层就餐的概率是________.
20.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是________.
三、解答题(共 6 小题,每小题 10 分,共 60 分)
21.一个不透明的布袋里装有个完全相同的小球,每个球上面分别标有数字、、,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).
22.一个口袋中有除颜色外其余均相同的个白球和若干个黑球,在不允许将球倒出来数的情况下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出个球,求出其中白球数与的比值,再把球放回口袋中摇匀.不断重复上述过程次,得到的白球数与的比值分别为:,,,,.根据上述数据,求口袋中黑球的个数.
23.为了估计某鱼塘中的鱼数,养鱼者首先从鱼塘中捕获条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,经过一段时间后,再从鱼塘中打捞出若干条,分别数出标有记号的条数.进行重复试验,试验数据如下表:
根据表中的数据,频率的值稳定在哪个常数附近?(结果用小数表示,精确到)请你估算出这个鱼塘中鱼数有多少条?
24.甲、乙两个不透明的口袋,甲口袋中装有个分别标有数字、、的小球,乙口袋中装有分别标有数字、的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其
4
中一种)求出两个数字之和能被整除的概率.
25.在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.
26.对某工厂生产的大批同类产品进行合格率检查,分别抽取件、件、件、
件、

求该厂产品的合格率.答案
1.B
2.D
3.C
4.D
5.A
6.D
7.D
8.B
9.D
10.B
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.解:树状图如下:
所有可能出现的结果共有种,其中满足条件的结果有种
∴(所得的两数的绝对值相等)

或列表格如下:
所有可能出现的结果共有种,其中满足条件的结果有种,
∴(所得的两数的绝对值相等),.
22.解:∵,
∴口袋中球的总数为:,
∴口袋中共有黑球:个.
故口袋中黑球一共个.
23.解:的值稳定在附近.(条),
∴估计这个鱼塘中有条鱼.
24.解:画树状图为:
共有种等可能的结果数,其中两个数字之和能被整除的结果数为,所以两个数字之和能被整除的概率.
25.解:画树状图得:
∵共有种等可能的结果,小明两次摸出的球颜色不同的有种情况,6
∴小明两次摸出的球颜色不同的概率为:.
26.解:从上表的数据可看到,当抽取件数(即重复试验次数)越大,“一件产品合格”事件发生的频率就越接近常数,
所以“一件产品合格”的概率约为,我们通常说该厂产品的合格率为.。

相关文档
最新文档