大学物理第七章温度和气体动理论

合集下载

大学物理-气体分子动理论

大学物理-气体分子动理论

v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
速率为 vi 的概率为:
Pi
Ni N
长时间“观测”理想气体分子的速率 v :
v
0 ~ +∞ 连续分布
速率为 v → v + dv 的概率为:
Pv~vdv
dNv N
0
???
速率分布函数
Pv~vdv
dNv N
f (v)dv
f (v) dNv Ndv
刚性双原子分子的动能
分子动能
平动动能
t x
t y
t z
转动动能
r
r
t x
t y
t z
r
r
1 kT 2
t x
t y
t z
r
r
5 kT 2
温度较高时,双原子气体分子不能看作刚性分子,分子
平均能量更大,因为振动能量也参与能量均分
理想气体分子的平均能量
分子模型 刚性单原子分子 刚性双原子分子 刚性多原子分子
每个分子频繁地发生碰撞,速度也因此不断变化;
二、压强形成的微观解释
单个分子与器壁碰撞 冲力作用瞬间完成,大小、位置具有 偶然性;
大量分子(整个气体系统)与器壁碰撞 气体作用在器壁上是一个持续的、不 变的压力;
压强是气体分子给容器壁冲量的 统计平均量
三、理想气体的压强公式
建立三维直角坐标系 Oxyz
vz i N
气体处于平衡态时,气体分子沿各个方向运动的机会均等。
vx vy vz
气体分子速率平方的平均值
v v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
v

大学物理气体动理论

大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。

2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。

分子的速度和方向是随机的。

3. 气体的压强:气体分子与容器壁的碰撞会产生压强。

气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。

4. 理想气体状态方程:理想气体状态方程描述了气体的状态。

PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。

5. 分子平均动能:气体分子的平均动能与气体的温度成正比。

分子平均动能与分子质量无关。

6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。

热力学温度是温度的定量度量,它与分子平均动能的平方成正比。

7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。

分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。

总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。

气体的温度与分子运动

气体的温度与分子运动

气体的温度与分子运动气体是物质存在的状态之一,其特点是分子之间的间隔较大,分子运动自由而混乱。

气体的温度与分子运动之间存在着密切的关系,温度的升高会使气体分子的运动速度增加,而温度的降低则会导致气体分子的运动速度减慢。

本文将探讨气体的温度与分子运动之间的关系,并从微观角度解释这一现象。

一、气体的分子运动气体分子是以高速无规则运动的方式存在的。

根据动理论,气体分子不断地做无规则的热运动,具有三种基本运动状态:平动、转动和振动。

其中平动是最主要的运动形式,指的是分子在容器内的直线运动。

分子的平动速度与运动趋势是完全随机的,没有特定的方向。

二、气体温度的概念气体温度是指气体中分子热运动状态的一种表征,它反映了气体分子的平均动能。

温度的高低决定了分子热运动的剧烈程度。

通常,我们使用摄氏度(℃)或开尔文(K)来表示气体的温度。

三、温度与分子平均动能的关系根据气体动理论,气体分子的平均动能与温度成正比。

具体来说,当温度升高时,气体分子的平均动能也会增加;反之,温度降低时,气体分子的平均动能减少。

这是因为温度的增加意味着气体分子获得更多的热能,分子的平均速度也会增加。

在恒定体积下,气体分子的速度增加意味着分子碰撞的频率增加,分子间碰撞的力量也会增强。

同时,分子速度的增加也增加了分子与容器壁之间的碰撞频率和力量,从而增加了气体的压力。

四、温度与分子速度的关系温度与气体分子速度之间存在一定的关系。

根据麦克斯韦-玻尔兹曼分布定律,分子速度与温度之间的关系可以用以下公式表示:v = √(2kT/m)其中,v代表气体分子的速度,k为玻尔兹曼常数,T为温度,m为气体分子的质量。

由于速度与温度成正比,所以当温度升高时,分子速度也会增加。

这与我们前面提到的气体分子的平均动能与温度成正比的结论相一致。

五、温度对气体性质的影响温度的变化对气体性质有着明显的影响。

温度的升高会使气体分子的运动更加剧烈,气体分子之间碰撞的频率和力量增加,导致气体的压力增大。

2022大学物理B-第7章气态动理论答案

2022大学物理B-第7章气态动理论答案

第7章 气体动理论练习题一、选择题1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,R 是摩尔气体常量,k 称为玻耳兹曼常量,则该理想气体的分子数为[ B ](A) pV/m. (B) pV/(kT).(C) pV/(RT). (D) pV/(mT).2、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,mol M 为摩尔质量,A N 为阿伏加得罗常量)[ A ] (A)pV M m 23. (B) pV M M mol 23. (C) npV 23. (D) pV N MM A 23mol . 3、根据经典的能量按自由度均分原理,每个自由度的平均能量为[ C ](A) kT /4. (B)kT /3.(C) kT /2. (D)kT.4、在20℃时,单原子理想气体的内能为[ D ](A)部分势能和部分动能. (B)全部势能. (C)全部转动动能.(D)全部平动动能. (E)全部振动动能.5、如果氢气和氦气的温度相同,摩尔数也相同,则[ B ](A)这两种气体的平均动能相同. (B)这两种气体的平均平动动能相同.(C)这两种气体的内能相等. (D)这两种气体的势能相等.6、在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为[D ](A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1.7、在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为[B ](A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .8、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了[B ](A) 0.500. (B) 400.(B) 900. (D) 2100.9、麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示[ D ](A) 0v 为最概然速率.(B) 0v 为平均速率.(C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半.0 v二、填空题 1、有一个电子管,其真空度(即电子管内气体压强)为1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )解:nkT p =故3001038.176010013.1100.12355⨯⨯⨯⨯⨯⨯==--kT p n =3.2×1017 /m 32、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

大学普通物理学经典课件——气体动理论

大学普通物理学经典课件——气体动理论

出现的可能性大小 .
归一化条件
i
i
Ni iN
1
§7.2 平衡态 理想气体状态方程 一 气体的物态参量及其单位(宏观量)
1 气体压强 p :作用于容器壁上
单位面积的正压力(力学描述).
p,V ,T
单位: 1Pa 1N m2
标准大气压:45纬度海平面处, 0 C 时的大气压.
1atm 1.013 105 Pa
~ 107 m; z ~ 1010次 / s
对于由大 量分子组成的 热力学系统从 微观上加以研 究时,必须用 统计的方法 .
小球在伽 尔顿板中的分 布规律 .
............ ........... ............ ........... ............ ........... ............
2mvix
两次碰撞间隔时间
2x vix
单位时间碰撞次数 vix 2x
单个分子单位时间施于器壁的冲量 mvi2x x
y
A2o
z
- mmvvvxx
x
单个分子单位时间 施于器壁的冲量
A1 y
mvi2x x
大量分子总效应
zx
单位时间 N 个粒子
对器壁总冲量
mvi2x ix
m x
i
vi2x
Nm vi2x x iN
pV m RT M
例1 在水面下深为50.0m的湖底处(温度为4.0 ℃ ), 有一个体积为1.0×10-5m3的空气泡升到湖面上来,若 湖面的温度为17℃,求气泡到达湖面的体积(取大气 压p0=1.013×105Pa)。
§7.3 理想气体压强公式 一 理想气体的微观模型
1)分子本身的线度比起分子之间的距离小 了很多,以至于可以忽略不计(可视为质点)

大学物理《气体动理论(5学时)》课件

大学物理《气体动理论(5学时)》课件


(1)单一性(各处都有自己的P、V、T );
p,V ,T
征 (2)状态性质稳定性(与时间无关);
(3)热动平衡(不同与静力平衡)。 ( p ,V ,T )
p
否则为非平衡态系统。
oV
6/63
【A3.1.2】系统 平衡态 态参量
1 压强 p : 力学描述
单位: 1 Pa 1 N m2
标准大气压: 45纬度海平面处, 0C 时的 大气压. 1atm 1.01105 Pa
掌 握 麦 克 斯 韦 速 率 分 布律及三种统计速率 了解波尔兹曼分布
氢气分子
vrms 1.93103 m s1
氧气分子
vrms 483m s1
22/63
【A3.11.1】麦克斯韦速率分布律
1 兰媚尔实验 实验装置
接抽气泵
2
l v vl
A
Hg
金属蒸汽 狭 缝
23/63
BC D
显 示
热学研究两种方法
研究对象 物理量 出发点
方法
优点 缺点 二者关系
宏观理论
(热力学)
热现象
宏观量 观察和实验
总结归纳 逻辑推理 普遍, 可靠 不深刻
微观理论
(统计物理学) 热现象
微观量 微观粒子
统计平均方法 力学规律 揭露本质
无法自我验证
热力学验证统计物理学, 统计物理学揭示热力学 本质
1/63
统计规律
(v)dv
3kT
N
N
m
v2 vrms
3kT m
3RT 1.73 kT
m

kt
1 2
mv2
3 2
kT ,
v2 3kT / m

大学物理学第7章气体动理论(Temperature)

大学物理学第7章气体动理论(Temperature)
热力学着重阐明热现象的宏观规律,它是以大量实 验事实为基础,从能量的观点出发,分析研究热功转换的 关系和条件,以及消耗能量作功等一系列技术问题。二 者相辅相成,缺一不可。
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2

大学物理 气体动理论

大学物理 气体动理论

三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:

x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA

k

R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解

第七章 气体动理论7–1 一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为_________________。

解:由nkT P =,可得单位体积内分子数的增量为kTP P kT P n 12-=∆=∆ 7–2 一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为_______,分子平均平动动能增量为_________。

解:设经加热和压缩后气体的压强为P ',则有TV P T PV 22/⨯'=所以P P 4='压强增量为P P P P 3=-'=∆由分子平均平动动能的计算公式kT 23=ε知分子平均平动动能增量为kT 23。

7–3 从分子动理论导出的压强公式来看,气体作用在器壁上的压强,决定于 和 。

解:由理解气体的压强公式k 32εn P =,可知答案应填“单位体积内的分子数n ”,“分子的平均平动动能k ε”。

7–4 气体分子在温度T 时每一个自由度上的平均能量为 ;一个气体分子在温度T 时的平均平动动能为 ;温度T 时,自由度为i 的一个气体分子的平均总动能为 ;温度T 时,m /M 摩尔理想气体的内能为 。

解:kT 21;kT 23;kT i2;RT i M m 27–5 图7-1所示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线,其中曲线(a )是__________气分子的速率分布曲线; 曲线(c )是__________气分子的速率分布曲线。

解:在相同温度下,对不同种类的气体,分子质量大的,速率分布曲线中的最慨然速率p v 向量值减小方向迁移。

可得图7-1中曲线(a )是氩气分子的速率分布曲线,图7-1中曲线(c )是氦气分子的速率分布曲线。

7–6 声波在理想气体中传播的速率正比于气体分子的方均根速率。

大学物理复习题分解

大学物理复习题分解

大学物理复习题分解第一章质点运动学htz?(h?0,??0,R、1、设质点的运动方程x?Rcos?t,y?Rsin?t,2?h、ω=常数),求:①位置矢量的表达式;②任意时刻速度;③任意时刻加速度。

2、一质点在xoy平面上运动,运动函数为x=2t,y=4t2-8(采用国际单位制),求:①质点的轨道方程;②t=1s和t=2s 时,质点的位置、速度和加速度。

3、一质量为10kg的物体沿x轴无摩擦地运动,设t?0时物体位于原点,速度为零,求:①设物体在力F?(3?4t)N的作用下运动了3s,它的速度及加速度各为多少?②设物体在力F?(3?4x)N的作用下移动了3m,它的速度和加速度各为多少?4、有一学生在体育馆阳台上以投射角??300和速率v0?20m/s向台前操场投出一垒球。

球离开手时距离操场水平面的高度h?10m。

试问球投出后何时着地?在何处着地?5、一吊扇翼片长R?0.50m,以n?180r/min的转速转动。

关闭电源开关后,吊扇均匀减速,经tA?1.50min转动停止。

(1)求吊扇翼尖原来的转动角速度?0与线速度v0;(2)求关闭电源开关后时翼尖的角加速度、切向加速度、法向加速度和总加速度。

6、质量m?2kg质点在力F的作用下,在OX直线上运动,运动方程为:x?1t2?2t?4(F,x,t采用国际单位),求:⑴ t=2s 21末的速度v?? 和加速度a??⑵ 在t=1s到t=2s的过程中,力F的冲量I??⑶在t=1s到t=2s的过程中,力F做的功W??第二章牛顿运动定律1、质量为m的小球从高处落下,设它所受到的空气阻力与它的速度的大小成正比f当小球下落的速度vT?80m/s 时,?kv。

重力与阻力平衡,小球作匀速直线运动。

求小球下落到速度v1?1vT时,所经历的时间。

22、一个质量m为的珠子系在线的一端,线的另一端绑在墙上的钉子上,线长为l。

先拉动珠子使线保持水平静止,然后松手使珠子下落。

求线摆下?角时这个珠子的速率和线的张力。

第七章 气体动理论(答案)

第七章 气体动理论(答案)

一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M MpV mol=→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。

[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;② ⎰21)(v v dv v Nf ——表示速率分布在v 1~v 2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;N n V =,当V 增大时,n 减小; ∴Z 减小。

大学物理复习7-9 温度 气体动理论 热力学第一定律

大学物理复习7-9 温度 气体动理论   热力学第一定律
第七章 温度
平衡态——
在不受外界影响条件下, 在不受外界影响条件下,系统的宏观性质不随时间 宏观性质:体积、压强、温度、 变化的状态 称为 平衡态 。(宏观性质:体积、压强、温度、内能)
不受外界影响: 外界对系统既不做功,又不传热。 不受外界影响: 外界对系统既不做功,又不传热。 平衡态: 平衡态: 理想概念 ,动态平衡 ( 宏观性质不变 ,但微观粒子不断运动 )。
理想气体的热力学能
1.定义 气体的热力学能是指它所包含的所有分子的 气体的热力学能是指它所包含的所有分子的 热力学能 动能和分子间因相互作用而具有的势能的总和. 动能和分子间因相互作用而具有的势能的总和. 2.理想气体的热力学能 对于理想气体, 对于理想气体,由于分子间的相互作用力可 以忽略不计,所以,其热力学能就是它的所有分 以忽略不计,所以,其热力学能就是它的所有分 子的动能之和. 子的动能之和. 设某种气体分子的自由度为 i ,则一个分子 i 的平均动能为 kT 2
理想气体温标: 理想气体温标:
玻意耳定律:一定质量的气体,在一定温度下,其压强 P 和 玻意耳定律:一定质量的气体,在一定温度下, 的乘积是一个常数。 体积 V 的乘积是一个常数。
pV = C (常数)
(温度不变) 温度不变)
对不同的温度, 这一常量数值不同。各种气体都近似遵守这一定律, 对不同的温度, 这一常量数值不同。各种气体都近似遵守这一定律, 并且压强越小,符合得越好。 并且压强越小,符合得越好。
已知 p1=8.5×104Pa , p2=4.2×106Pa, T1=273K+47K=320K × ×
pV p2V 1 1 2 = T T 1 2
V 1 2 , = V 17 1`
pV T ∴ 2 = 2 2 T = 930K pV 1 1 1

大学物理试题精选2

大学物理试题精选2

⼤学物理试题精选2第七章⽓体动理论⼀、热学基础1. 下列各量是微观量是:A .PB .EC .D .V2.下列各量是宏观量是:A.TB.vC.mD.w3.平衡态就是所有分⼦都静⽌的状态.( × )4.令⾦属棒的⼀端插⼊冰⽔混合的容器,另⼀端与沸⽔接触,待⼀段时间后棒上各处温度不随时间变化,此时⾦属棒处于平衡态。

()答案: 4. ×⼆、理想⽓体的压强和温度1. 理想⽓体的压强公式为A .w n 31; B . w n 32; C . w n ; D . w n 21。

2.⼀定量的理想⽓体,当其体积变为原来的三倍,⽽分⼦的平均平动动能变为原来的6倍时,则压强变为原来的:A .9倍B .2倍C .3倍D .4倍3.容器内贮有1摩尔氢⽓和1摩尔氦⽓,若两种⽓体各⾃对器壁产⽣的压强分别为p 1和p 2,则两者的⼤⼩关系是()A .p 1>p 2B .p 1<p 2C .p 1= p 2D .不确定4.温度的测量是建⽴在哪个定理基础上的:A .热⼒学第⼀定律 B.热⼒学第⼆定律C.热⼒学第三定律D.热⼒学第零定律5.关于温度的意义,下述说法中不正确的是:A .⽓体的温度是分⼦平均平动能的量度B .⽓体的温度表⽰单个⽓体分⼦的冷热强度C .⽓体的温度是⼤量⽓体分⼦热运动的集体表现,具有统计意义D .温度的⾼低反映物质内部分⼦热运动剧烈程度的不同三、能量按⾃由度均分、理想⽓体内能公式:1.在平⾯上运动的质点的⾃由度为()A . 2;B . 5;C . 3;D . 6。

2. 分⼦的平均平动动能⽤温度表⽰的公式是 3/2kT ,设理想⽓体的温度为T ,⾃由度为i 理想⽓体分⼦的平均总动能公式为 i/2kT 。

3. 刚性氧⽓分⼦和氨⽓分⼦的⾃由度分别是 5 , 6 ;对应的分⼦平均平动动能分别是 3/2kT , 3/2kT 。

4.温度为T 时,刚性氧⽓分⼦和氦⽓分⼦的平均平动动能分别为 3/2kT 和 3/2kT 。

大学物理气体动理论

大学物理气体动理论

温标 —— 温度的数值表示法
温度与“火候”
明弘治 绿彩
伽利略温度计 16世纪 ( 明 )
摄氏温标: t ℃ 利用水银或酒精的热胀冷缩特性 标准状态下 水的冰点 —— 0 ℃ 水的沸点 —— 100℃ 冰点和沸点之差的百分之一规定为1℃ 。
热力学温标: T K
与任何物质特性无关 与理想气体温标等价
nvi2x
据统计假设:
v2x
v2y
vz2
1v2 3
p1 3nv23 2n1 2v23 2nkt
理想气体压强公式: 宏观量
p

2 3
n kt
微观量
说明:
kt

1 2

v2
分子平均平动动能
压强公式是统计规律,不是力学规律。
是大量分子运动的集体表现,决定于微观量 的统计平均值。
常见的一些现象:
1、一壶水开了,水变成了水蒸气。 2、温度降到0℃以下,液体的水变成了固体的冰块。 3、气体被压缩,压强增大。 4、物体被加热,物体的温度升高。
热现象
热运动:物质中大量微观粒子的无规则运动
热学:是研究与热现象(热运动的集体表现)有关 的规律的学科。
①宏观理论:热力学(宏观理论)
从实验事实出发,以热力学基本规律为基础,用 逻辑推理的方法研究物质各宏观性质间的关系,以 及热运动过程进行的方向和限度。
T1
T2
p,V,Tpo,Vo,To(标准)状态
标准状态: p01.0132 15 5 0PaTo27.135K
V0

m M
Vmol
Vmol2.4 210 3m 3
其中: m 气体的总质量,M 为气体的摩尔质量
pVp0V0 mp0Vmol T T0 M T0

大学物理温度与气体动理论

大学物理温度与气体动理论

2
第一章 气体动理论
Kinetic Theory of Gases
主要内容 理想气体状态方程 压强的微观公式 温度的微观公式 理想气体的内能 麦克斯韦速率分布律
3
§1.1 平衡态 Equilibrium State
——在不受外界影响的条件下,系统的宏 观性质不随时间改变的状态
n —— 分子数密度(m3)
k =R/NA=1.381023J/K ——玻尔兹曼(Boltzmann)常量
[来历]
1
p
M
RT
V Mmol
1M
= V
M mol
N AkT
= nkT
9
§1.3 压强公式
Microscopic Expression for Pressure 推导:理想气体分子模型+统计方法
① 平衡态下,分子的空间分布均匀 ② 平衡态下,分子的速度分布各向同性
或说:分子各方向运动概率均等
vx vy vz 0 vx2 vy2 vz2 v2 3
11
⒊压强公式的推导 Y
L3
A L2
Oi
Z
L1
设总分子数:N
器壁侧面积:A
第i分子的速度的
x 分量:vix 0
X vix 0 的含义
p

2 3
nt
Note 压强是统计量
15
§1.4 温度的微观公式 Microscopic Expression of Temperature
状态方程: p = n k T
压强公式:
p

2 3
nt
t

3 2
kT
——温度是分子平均平动动能的标志 (温度的统计解释)

第7章 气体动理论

第7章 气体动理论

三、分子运动论的发展
1. 早期的分子运动论
(1) 德莫克里特:物质皆由各种不同微粒组成 (2) 1658年,伽桑狄提出,物质是由分子构成的
二、热力学第一定律的建立
1.定律诞生的背景
(1) 蒸汽机的进一步发展,迫切需要研究热和功的关系 (2) 能量转化与守恒思想的萌发
1836年俄国的赫斯:热总是恒定的
y
vy
A2
v
2 vx
vx vx 2 l1 2l1
vz
l1

l vx A1 2
※N个分子一秒内给予A1的冲量为
z
l3 x
F t
v1x 2
l1

v2 x2
l1

vNx2
l1
2

l1
v
i
2
ix
t 1
pV m RT RT M
例2 设空气中含有23.6%氧和76.4%氮, 求在压 强 p=105Pa和温度T=17oC时空气的密度
解:设空气中氧和氮的质量分别为 m1、 m2 ,摩尔质量分别为1 、2
由道尔顿分压定理 空气压强
M pV m1 mol 1 RT
M pV M pV m2 mol 2 m3 mol 3 3 RT RT m1 m2 ( p1 p2 )V 可用天数 N m3 p3V3
对象:宏观物体(大量分子、原子系统)
或物体系 — 热力学系统 。 外界 系统
外界

内容: 与热现象有关的性质和规律。 宏观上说是与温度 T 有关 热现象 微观上说是与热运动有关
解忧 © 版权所有
11
宏观量是相应的微观量的统计平均值
解忧 © 版权所有

大学物理答案第七章

大学物理答案第七章
系统吸热为
(3)若沿过程曲线从a到c状态,内能改变为
应用热力学第一定律,系统所作的功为
7-3 2mol的氮气从标准状态加热到373 K,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?
分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.
分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率 .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.
解等温过程中系统所作的功为
7-92 m3的气体等温地膨胀,压强从 变到 ,求完成的功.
第七章热力学基础
7-1 假设火箭中的气体为单原子理想气体,温度为2000 K,当气体离开喷口时,温度为1000 K,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率 .已知一个原子质量单位=1.6605×10-27kg;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.
p
p22
p0等温线
1
p1
OV2V1V
图7-12
分析对于双原子理想气体,热容比 .不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.

气体动理论

气体动理论

A1上的压强
m F 2 p vix l2l3 l1l2l3 i
Nm v1x v2 x vNx V N
2 2
2
nm vx
2 2
2
1 2 vx v y vz v 3
2
1 2 p nmv 3
1 2 p nmv 3
2 1 2 2 p n mv n k 3 2 3
体分子对器壁碰撞的宏观表现。(力学描述) 换算: 单位: 5 帕斯卡Pa—牛/米2(N·-2) 1atm=1.01325×10 P a=76 m
标准大气压—atm
cmHg
T —气体冷热程度的量度,反映物质内部分子运动的
剧烈程度。(热学描述) 规定较热的物体有较高的温度。
温标 (温度的分度方法):
华氏温标:1714年荷兰华伦海特建立,以水结
x'
x
2.气体分子的自由度
常温下可不考虑分子的振动
平动自由度 计 单原子分子
转动自由度

双原子分子 三原子以上分子
3 3 3
0 2 3
3 5 6
二.能量按自由度均分原理(玻尔兹曼假设) 1 2 3 2 3 结论:共有三个 k mv mvx kT 2 2 1 2 平动自由度,每 1 1 2 2 2 mvx mv y mvz 1 kT 分子在平动中的 2 2 2 2 平动动能3kT/2,
2.热力学的研究方法:
从能量守恒和转换的角度 来研究热运动的规律。
方法:根据由观察和实验所总结出的基本规律(热 一、二律)运用逻辑推理的方法,研究物体的宏观 性质以及在物质状态变化过程中,有关热功转换的 关系和条件。
方法的特点:只处理宏观量之间的关系,不涉及物 质的微观结构。

大学物理电子教案-气体动理论

大学物理电子教案-气体动理论

气体动理论内容:理想气体模型理想气体的压强和温度理想气体内能麦克斯韦速率分布律范德瓦耳斯方程气体内的输运过程:热传导过程、扩散过程和黏性现象6.1理想气体模型6.1.1气体的分子状况1.分子具有一定的质量和体积宏观物体是由大量分子或原子组成的,物质的量为1mol的任何物质都包含有N0=6.022X1023(N0为阿伏伽德罗常量)个分子。

2.一切物质的分子都在永不停歇地做无规则运动1827年,布朗在显微镜下观察到悬浮在液体中的花粉颗粒分子总是在无规则地、永不停息地运动着。

这就是著名的布朗运动。

它能能够直观的表明:气体、液体、固体中都有扩散现象。

是分子运动的有力证明。

精确的实验表明,在排除一切外界干扰时,布朗运动仍然存在。

对于这种现象,只能用大量无规则热运动的液体分子不断地撞击悬浮微粒来解释。

3.分子间存在分子力在物体的内部,分子与分子之间有着很强的作用力,这个力的大小为r t式中,r是两个分子的中心距,尢、丫、s和t都为正数(这可由相关实验求证)。

在上式中,第一项为正值,表示的是分子间斥力的大小;第二项为负值,表示的是分子间引力的大小。

由于一般情况下,参数s和t的数值都比较大(例如,对于非极性分子s=20,t=9),所以分子力的大小随分子间距的增大而急剧减小。

由分子力F与分子间的距离r的关系曲线可以看出:当r<r0(r0~10-10m)时,斥力大于引力,此时分子间的作用力表现为斥力,并且斥力随r 的减小斥力剧烈增大;当r=r0时,斥力与引力相等,相互抵消,此时分子间的作用力为零;当r>r0时,引力大于斥力,此时分子间的作用力表现为引力,并且引力随r的增大分子力迅速减小。

由于分子力是短程力,它的作用范围极小,在压力不大的情况下,分子间的作用力可以忽略不计。

一般当丫宀10-9m时分子间的作用力就可忽略不计。

4.分子之间以及分子与器壁之间进行着频繁碰撞(1)任意一个分子的速度(包括大小和方向两个方面)都与其它分子不同,并且该分子的运动速度也在时刻发生着变化;(2)对于某一个具体分子而言,它的运动轨迹是没有任何规律的,或者说是随机的,在其轨迹的每个转折点上,它与一个或多个分子发生了碰撞,或与器壁上的固体分子发生了碰撞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、理想气体的压强公式
1. 压强的实质
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均结果。
2. 压强公式的推导
m′质量理想气体处于平衡态,其体积为V,分 N 子数为N,分子质量为m,分子数密度 n 。 V 由于分子的速度各异,将所有分子按速度分 组: v 1 v 2 v 3 vi N N
i ix
ds所受冲量为
ni vixdtds 2mv ix 2mni vix dtds
2
②所有分子对ds 的作用
速度不同的各组分子与ds 相碰,施于其上的总冲量 为 2 dI Fdt 2 mn i v ix dtds
i ( v ix 0 )
因为所有分子中, vix 0和vix 0 的分子各占一半,则


B
热运动的研究方法
1.宏观法: 最基本的实验规律+能量观点
------称为热力学
优点:可靠、普遍。 缺点:未揭示热现象的微观本质。 2.微观法: 物质的微观结构 + 力学规律+统计方法 ------称为统计物理学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。
缺点:可靠性、普遍性差。
N1 N2 n1 n2 N3 n3 Ni ni

i i
i
n ni
由于平衡态下容器内压强处处相同,则在容器壁处 任取ds, 建立坐标系,令x 轴与 ds 垂直。 1.一个分子对dS 的一次碰撞 设该分子速度为 v i , 碰撞后, v iy 变为 v ,则分子动量的改变量为
ix
v ix 及 v iz 不变,
一、自由度 i 确定一个物体的空间位置 所需要的独立坐标数目。 1. 质点的自由度
在空间自由运动的质点: 位置由三个独立坐标确定 在曲面上运动的质点: 位置由二个独立坐标确定 质点沿直线或曲线运动:位置由一个独立坐标确定
自由度 i =3 自由度 i =2 自由度 i =1
2. 刚体的自由度
①质心→自由质点
设有多种相互不发生化学反应的气体在一容器中 混合,达平衡态,则混合气体压强为 2 2 P n k ( n1 n2 n3 ) k 3 3 2 2 2 n1 k n2 k n3 k P1 P2 P3 3 3 3
7-4 能量均分定理 理想气体的内能
2 2 2 2 2 2 2
vx
2
n v n
i i
2
i ix
i
1 2 v 3
2
P mn v x
1 2 2 nmv n k 3 3
分子的平均 平动动能
1 mv 2 2
意义:
1.压强方程建立了宏观量P 和微观 量 k
的关系。说明气体压强与气体单位体积内的 分子数及分子平均平动动能成正比。 2.说明了压强的微观本质,即气体的压 强表示的是大量气体分子在单位时间内施于 器壁单位面积上的平均冲量.压强是描述大 量分子集体行为平均效果的统计性量,对单 个分子讲压强无意ix 2mv ix v dt ix ds 所受冲量为 2 mv ix
2. dt 内所有分子对 ds 的作用
① v i 组分子对ds 的作用
体积为 vixdtds 的斜柱体内所有分子都与ds 相碰撞.
dt 时间内,能与面元ds相碰的速度为 v i 的分子数 为 n v dtds
三、 热力学系统 平衡态
理想气体状态方程
1. 热力学系统
热力学研究的对象,它包含极大量的分子、原子。
外界:热力学系统以外的物体,又称系统的环境。
根据系统与外界能量与物质传递的不同 热力学系统
开放系统 孤立系统 封闭系统
例:若汽缸内 气体为系统, 其它为外界。
2. 平衡态
平衡态: 在无外界影响的条件下, 系统所有可观 察的宏观性质不随时间改变的状态。
v x v y vz
2
2
2
1 2 v 3
1 1 1 1 1 1 2 2 2 2 mv x mv y mv z ( mv ) kT 2 2 2 3 2 2
气体分子沿x , y , z 三个方向运动的平均平
动动能完全相等,可以认为分子的平均平动
动能均匀分配在每个平动自由度上。
理想气体的内能 = 所有分子的热运动动能之和 i i 1mol 理想气体的内能为 E N A ( kT ) RT 2 2 m i m′质量理想气体的内能为 E RT M 2
内能仅与温度有关,当温度一定时,与压强和体积无关。
m i 温度改变量为△T,则内能改变量为 E RT M2
V1T2 2V2 450 P2 P1 3 P1 V2T1 V2 300
T2 273 177 450 K
3 ( 2 ) k kT 2
k k 2 k1
3 k ( T2 T1 ) 2
二、道尔顿分压定律
3 1.38 10 23 ( 450 300 ) 3.11 10 21 J 2
第7章 温度和气体动理论
§1 微观理论的基本概念
§2 理想气体的压强 §3 温度的微观意义 §4 麦克斯韦速率分布律 §5 能量均分定理
7.1 气体动理论基本概念
一、物质的微观结构
1. 宏观物质是不连续的,是由大量微观粒子---分 子(或原子)组成的多粒子体系。 标准状态下一摩尔任何气体的分子数都相同:
推 广
在热平衡条件下,物质(气体、液体、固体) 分子的每一个自由度都具有相同的平均动能, 1 都是 kT 。
2
—能量按自由度均分定理
若气体分子有t 个平动自由度,r 个转动自由度,s 个振
动自由度, 则分子的平均平动动能为 kt t kT,平均转
动动能为
kr kT
1 k ( t r s )kT ,分子的平均总能量 2 为 1 ( t r 2s )kT i kT k p 2 2 对于单原子分子: t = 3 ,r = s = 0 ,则 3 kT
P0V0 令 R T0
T M T0
V 、T 0 0)变
m V V 0 M 0
m PV RT M
摩尔气体常数
R 8.31J mol 1 K 1
质量
摩尔质量
遵循玻意尔定律、查理定律、盖—吕萨克定律的气体
4. 阿伏伽德罗定律
设 m′质量理想气体含有N个分子,分子的质量 为m,则m′= Nm, M N Am Nm N PV RT RT N Am NA R 令k , 称 玻尔兹曼常数。
1 2 2 dI 2 mn i v ix dtds mn i v ix dtds 2 i i
则作用在ds上的作用力 压强
dI F dt
F dI 2 P m ni v ix ds dtds i
N n ni V i
v x v y vz v v x v y vz
内能为温度的单值函数
例2 一容器内蓄有氧气,其压强为P =1.013×105Pa, 温度为27℃,求: (1) 单位体积内的分子数;(2) 氧气 的密度;(3) 氧气分子的质量;(4) 分子的平均平动动 能;(5) 分子的平均总动能。 解:氧气分子视为刚性双原子分子,i = 5
( 1 ) P nkT P 1.013 10 5 25 3 n 2 . 45 10 个 / m kT 1.38 10 23 300
指 平衡态是一种热动平衡: 处在平衡态的大量分子仍在作热运动,而 出
且因为碰撞, 每个分子的速度经常在变, 但是系统的宏观量不随时间 改变。 粒子数是宏观量 箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
3. 理想气体状态方程
设质量为 m′的理想气体由标准状态I(P0 、 化到状态II(P、V、T),则有 P0V0 PV ,将 T0 T 代入上式 PV m P0V0
例1 (1)在一个具有活塞的容器中盛有一定的气体。
如果压缩气体并对它加热,使它的温度从27℃ 升到177℃,体积减少一半,求气体压强变化多 少?
P1V1 P2V2 解: (1) T1 T2 由已知 : V1 2V2 ,T1 273 27 300 K ,
(2)这时气体分子的平均平动动能变化多少?
7-3 理想气体分子 平均平动动能
与温度的关系
一、 理想气体的温度公式
对比下列两公式
P nkT
2 P n k 3
温度是气体分 子平均平动动 能大小的量度
1 3 2 k m v kT 2 2
意义:
1.温度公式从分子运动论的角度给温度以 定义,说明气体的温度只与分子的平均 平动动能有关,是气体分子平均平动动 能的量度。 2.温度是大量分子热运动的集体表现,具 有统计意义,对单个分子讲温度无意义。
②绕质心轴的转动
2 2
③转轴的方位 , ,
i1 3 i2 1
2
z


y
cos cos cos 1
i3 2
i i1 i2 i3 6
x 平动自由度 t i1 3
转动自由度 r i2 i3 3
3. 刚性分子的自由度
刚性分子: 分子内原子间距离保持不变

同种类气体分子性质相同;气体分子视为质点。 除碰撞外,分子之间的作用力可忽略不计;重力也 忽略不计。


分子间及分子与容器壁间的碰撞是完全弹性碰撞。
统计性假设:“对大量气体分子来说,分子沿各个 方向运动的机会是均等的,任何一个方向的运动并 不比其他方向更占优势。因此,统计平均来看,任 一时刻沿各个方向运动的分子数目应相等,分子速 度在各个方向的分量的各种平均值也相等。”
相关文档
最新文档