2015秋九年级数学上册 22.1 二次函数y=ax2+bx+c的图象(第6课时)课件 (新版)新人教版

合集下载

人教版九年级上册数学 22.1.2 二次函数 y=ax2的图象和性质课件

人教版九年级上册数学 22.1.2  二次函数 y=ax2的图象和性质课件

a<0
1 -5-4-3-2-1 -1o1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 1 -10 y x2
y
2
y 2 x 2
y x2
总结性质
1.形如二次函数 y=ax2 的图象都是顶点为
( 0 , 0) ______ 的抛物线,反之,顶点在(0,0)
2 y = ax 的抛物线的形式是_________.
体验画图
抛物线的定义:
实际上,二次函数的图象是抛物线,
它们开口向上或向下,一般地,二次
函数 y ax bx c 的图象叫做抛
2 2
物线 y ax bx c .
体验画图
3. 拓展与延伸: 3 个点, (1)画二次函数的图象一般需要___
哪些点比较关键? 抛物线
yx
2
轴 对称图形,对称 是__
y 10 9 8 7 6 5 4 3 2 1 -5-4-3-2-1 O1 2 3 4 5 x
a>0
体验画图
(3)以上都是当a >0时,二次函数 y ax 的图象,
2
那么当 a<0时,试在同一直角坐标系画出二次函数:
1 2 y x ,y x ,y 2 x 2 的图象. 2
2
关于 y 轴对称 原点(0,0)
对称性
顶点
总结提高
2. 二次项系数 a 对形如 y=ax2 的函数值 y 又有
何影响?对图象又有何影响?
y=ax2
开口
a>0 开口向上
a<0 开口向下
增减性 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
LOGO

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。

通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。

但对于二次函数的图象和性质,可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。

三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。

2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.二次函数的一般形式和图象特征。

2.二次函数的增减性和对称性。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。

2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.二次函数图象和性质的相关教学素材。

3.学生分组合作学习的材料。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。

同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。

呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。

学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。

操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。

学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册22.1 《二次函数y=ax2的图象和性质》教学设计《二次函数y=ax2的图象和性质》教学设计一、教学内容分析二次函数y=ax2的图像和性质是人教版九年级数学上册第二十二章第一节第二课时的内容,是在学生学习了二次函数的基本概念之后引入的新内容,也是后面研究坐标形式和一般形式的二次函数图像性质的基础。

所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。

二、教学对象分析九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数图象和性质等内容,从学习情况看,他们对函数的理解和掌握情况并不理想。

通过课下的了解,学生们对二次函数有一定的恐惧心理,对学习非常的不利。

所以我们在教学过程中,要想方设法的调动学生的积极性,多与前面的的函数联系,帮助他们突破难点。

三、教学目标(一)知识与技能:能够准确绘制二次函数图像;通过图像发现和研究y=ax2二次函数的性质。

(二)过程与方法:经历探索和发现二次函数图像的特点和性质的过程;体会数形结合的数学思想在数学中的应用。

(三)情感、态度与价值观:经历观察,推理和交流等过程,获得研究问题与合作交流的方法x … -3 -2 -1 0 1 2 3 … y…941149…(2)描点和连线在直角坐标系中描点,然后用光滑的曲线顺次(按x 由小到大)连结各点(连线),得到函数y =x 2的图象,如图所示.提问:通过画图和观察图象,你能发现图象有什么特征? 像这样的曲线通常叫做抛物线.(二次函数的图象←→抛物线) 它有一条对称轴,(对称轴是y 轴或直线x=0) 抛物线与它的对称轴的交点叫做抛物线的顶点.(抛物线上最高或最低点←→二次函数的最大值或最小值)做一做:在同一直角坐标系中,再画出函数 和y=2x 2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?归纳:当a>0时,抛物线y=ax 2的开口向上,对称轴是y 轴,顶xy 0-4 --2 -1 1234 10 8 6 4 2-y =x 2212y x点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小。

人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)

人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)

二二次次函函数数y的=图x2象的都图是象抛是物一线条,曲线它,们它的的开形口状或类者似向于上投或篮者球向 时下球.在一空般中地所,经二过次的函路数线y,=只ax是2 +这b条x +曲c线(开a≠口0)向的上图,象这叫条做曲抛 线物叫线做y =抛a物x2线+ byx=+xc2 ,
9 6 3
-3
3
实y轴际是上抛,物每线条y抛= 物x 2线的都对有称对轴称,轴抛,物抛线物y 线= x与2 对与称它轴的的对交称点轴 叫的做交抛点物(线0,的0顶)点叫.做顶抛点物是线抛y =物x线2 的的顶最点低,点它或是最抛高物点线.y = x 2 的最低点.
交点坐标
y
求抛物线与直线的 交点坐标的方法: 两解析式联列方程

y=4x2 y=3x+1
O
x
1.若抛物线y=ax²与y=4x²的形状及开口方向 均相同,则a= 4
2.下列关于二次函数y=ax²(a≠0)的说法中,错误 的是( C ) A.它的图像的顶点是原点 B.当a<0,在x=0时,y取得最大值
(2)说出函数图象的顶点坐标、对称轴、
开口方向和图象的位置;
在x轴的下方
解: (1)依题意,得 (2)2 a 3
解得
a=

3 4
∴ 该函数的解析式为 y


3 4
x2
例3、y=kx2与y=kx-2(k≠ 0)在同一坐标系中, 可能是( B )
A
B
C
D
例4、求抛物线y=4x2与直线y=3x+1的
描点法
列表、描点、连线
以0为中心 选取7个x值
画最简单的二次函数 y = x2 的图象列表

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

教材分析之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。

是前面知识的应用和拓展,又为今后学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。

充分体现了数形结合的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。

学生已经会了上一节的二次函数图像及性质。

课标要求会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

学情分析可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,不能类比一次函数的一些观察图像的方法来学习二次函数的图像。

不能从图中获取相关的信息。

由于放假的原因,学生对上下平移和左右平移的知识有很多淡忘,所以完成本节知识在理解方面会有难点。

教学目标知识目标:让学生经历二次函数y=a(x-h)2+k性质探究的过程,理解函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象的关系能力目标:通过画图象独立去探索交流图象的性质培养分析解决问题的能力。

能说出二次函数y =a(x-h)2+k的图象与二次函数y=ax2的图象的关系。

情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

教学重点:会用描点法画出二次函数y=a(x-h)2+k的图象,理解二次函数y=a(x-h)2+k的性质。

能说出顶点坐标。

教学难点:理解二次函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2关系。

教学手段导学案教学方法问答法、练习法、讨论法教学过程1、创设情境::(组织方法)复习两个上下平移及左右平移的二次数学图像,对照图像说出开口方向、对称轴、顶点坐标、最值、性质。

详见导学案。

解决哪些教学目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

学生可能出现的困难:忘记或混淆上下平移和左右平移。

数学人教版九年级上册22.1.2二次函数y=ax2的图象与性质

数学人教版九年级上册22.1.2二次函数y=ax2的图象与性质

y=-x2
1. 二次函数的图像都是抛物线.
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点. (2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点; 当a<0时,抛物线的开口向下,顶点是 抛物线的最高点; |a|越大,抛物线的开口越小 ;
y
a>0
o
x
a<0
跑的越快,遇到风的阻力越大。阻 力与成就相伴随。
没有斗狼的胆量,就不要牧羊。
望远镜---可以望见远的目标,却不 能代替你走半步。
只有脚踏实地的人,才能够说:路 ,就在我的脚下。
站在巨人的肩上是为了超过巨人。
成绩和劳动是成正比例的,有一分 劳动就有一分成绩。
你既然认准一条道路,何必去打听 要走多久。
抛物线 y= -x2在x轴下方(除顶点外),顶点 是它的最高点,开口向下,并且向下无限伸展, 当x=0时,函数y的值最大,最大值是0.
y
y x
2
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
例1.画出函数y=x2、y=2x2、y= 2 x2的图象:
1
探究
顶点坐标
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
增 减 增增 大 小 大大
(0,0) 最高点
y轴
向下
增 增 增减 大 大 大小
老师寄语:
• 老师能给你们的唯有这无形的知识,但老 师希望你们用这些无形的知识创造出有形 的世界,实现你们的中国梦,老师就是你 们的筑梦人!
一帆风顺,并不等于行驶的是一条 平坦的航线。
y=2x2
பைடு நூலகம்

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析《二次函数y=ax^2+bx+c的图象和性质》这一节是人教版数学九年级上册的教学内容。

本节课的主要内容是让学生了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

通过本节课的学习,学生能够掌握二次函数图象的特点,理解二次函数的性质,并能够运用这些性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了二次函数的定义和一般形式,对二次函数有了初步的认识。

但是,学生对二次函数的图象和性质可能还比较陌生,需要通过本节课的学习来进一步理解和掌握。

同时,学生可能对一些概念和性质的理解还不够深入,需要通过教师的引导和学生的自主探索来加深理解。

三. 教学目标1.了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

2.能够运用二次函数的性质解决实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.二次函数的图象和性质的理解和掌握。

2.运用二次函数的性质解决实际问题的能力的培养。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索。

2.采用案例分析的教学方法,通过具体的例子来讲解和展示二次函数的性质。

3.采用小组合作的学习方式,让学生在小组内进行讨论和交流,共同解决问题。

六. 教学准备1.准备相关的教学案例和实例,用于讲解和展示二次函数的性质。

2.准备教学课件和板书,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提出问题:“二次函数的图象和性质有哪些?”引导学生思考和探索。

2.呈现(10分钟)通过教学课件和板书,呈现二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

同时,通过具体的例子来讲解和展示这些性质。

3.操练(10分钟)让学生通过观察和分析一些具体的二次函数图象,来识别和判断其性质。

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

第二十二章 22.1.3二次函数y=ax2+k的图象和性质知识点:二次函数y=ax2+k的图象及其性质二次函数y=ax2+k的性质与二次函数y=ax2的性质很多都相同,只是图象顶点坐标及最值有所区别,但也可以由二次函数y=ax2的图象的顶点平移得到二次函数y=a x2+k的图象的顶点的坐标,因而学习二次函数y=ax2+k的性质,可在熟记二次函数y=ax2的性质的基础上类比学习.二次函数图象开口方向顶点坐标对称轴增减性最大(小)值y=ax2+ka>0k>0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=ka>0k<0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=k a<0k>0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k a<0k<0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k 二次函数的解析式中常数项的变化与其图象移动的关系:上加下减.考点1:二次函数y=ax2+k的图象【例1】小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图),若投中篮框中心,则他与篮底的距离l是( )A.3.5 mB.4 mC.4.5 mD.4.6 m答案:B点拨:由题意令y=3.05,可得3.05=-x2+3.5,解得x=±1.5(负值不符合题意,舍去),所以他与篮底的距离l=1.5+2.5=4(m).考点2:二次函数y=ax2+k的性质【例2】将抛物线y=-3x2向上平移1个单位后,得到的抛物线对应的函数解析式是.答案:y=-3x2+1点拨:由“上加下减”的规律知,该抛物线向上平移1个单位后得到的抛物线对应的函数解析式为y=-3x2+1.感谢您的支持,我们会努力把内容做得更好!。

人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质

人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质
解:(1) y = x2 − 2x + 1 = (x − 1)2,顶点坐标为(1,0). (2) y = 2x2 − 4x + 6 = 2(x −1)2 + 4,顶点坐标为(1,4).
问题1 你能说出 y 1 (x 6)2 3 的对称轴及顶点坐标吗
?答:对称轴是直线
2 x=
6,顶点坐标是
(6,3).
(1)a、b 同号;
(2)当 x = -1 和 x = 3 时,函数值相
等;
(3)4a + b = 0;
–1 O
(4)当 y = -2 时,x 的值只能取 0. –2
其中正确的是 (2) .
x 3
x=1
4. 已知抛物线 y = 2x2 - 12x + 13. (1)当 x 为何值时,y 有最小值?最小值是多少? (2)当 x 为何值时,y 随 x 的增大而减小? (3)将该抛物线向右平移 2 个单位长度,再向上平移 2 个单位长度,请直接写出新抛物线的解析式. 解:∵ y = 2x2 − 12x + 13 = 2(x − 3)2 − 5, ∴抛物线开口向上,顶点为(3,−5),对称轴为直线x =为 −5. (2)当 x<3 时,y 随 x 的增大而减小. (3)新抛物线的解析式为 y = 2(x − 5)2 − 3.
5 当 x>6 时,y 随 x 的增大而增大.
O
5 10 x
要点归纳 二次函数 y = ax2 + bx + c 的图象和性质
1.一般地,二次函数 y = ax2 + bx + c 可以通过配方化成
y = a(x - h)2 + k 的形式,即
y ax2 bx c
a

人教版数学九年级上册22.1《二次函数的图象和性质(2)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(2)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(2)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(2)》是本册教材的重要内容,是在学生已经掌握了二次函数的图象和性质(1)的基础上进行进一步学习的。

本节内容主要让学生进一步理解二次函数的图象和性质,能够熟练运用二次函数的图象和性质解决一些实际问题。

教材通过一些生动的实例,引导学生进一步探索二次函数的图象和性质,培养学生的观察能力、分析能力和解决问题的能力。

二. 学情分析九年级的学生已经学习过二次函数的图象和性质(1),对二次函数的基本概念、图象和性质有了一定的了解。

但是,由于这部分内容比较抽象,学生可能对一些细节的理解还不够深入,需要通过进一步的练习和讲解来加深理解。

同时,学生已经具备了一定的观察能力、分析能力和解决问题的能力,能够通过实例来进一步探索二次函数的图象和性质。

三. 教学目标1.让学生进一步理解二次函数的图象和性质,能够熟练运用二次函数的图象和性质解决一些实际问题。

2.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.重点:让学生进一步理解二次函数的图象和性质。

2.难点:如何引导学生运用二次函数的图象和性质解决实际问题。

五. 教学方法1.采用实例教学法,通过具体的实例让学生进一步理解二次函数的图象和性质。

2.采用问题驱动法,引导学生通过解决问题来深入理解二次函数的图象和性质。

3.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作能力。

六. 教学准备1.准备一些与二次函数相关的实例,用于引导学生进一步理解二次函数的图象和性质。

2.准备一些练习题,用于巩固学生对二次函数的图象和性质的理解。

七. 教学过程1.导入(5分钟)通过一个具体的实例,引导学生进一步理解二次函数的图象和性质。

例如,可以给学生展示一个抛物线的图象,让学生观察和分析这个抛物线的性质,如开口方向、对称轴、顶点等。

人教版九年级上数学教案 22.1.4 二次函数y=ax2+bx+c的图象和性质

人教版九年级上数学教案 22.1.4   二次函数y=ax2+bx+c的图象和性质

第6课时 二次函数y =ax 2+bx +c 的图象和性质一、基本目标【知识与技能】1.能通过配方把二次函数y =ax 2+bx +c(a ≠0)化成y =a(x -h)2+k 的形式.2.能正确求二次函数y =ax 2+bx +c(a ≠0)的对称轴和顶点坐标.3.掌握利用二次函数y =ax 2+bx +c(a ≠0)解决函数增减性问题的方法;会利用对称性画出二次函数的图象.【过程与方法】经历由y =a(x -h)2+k 的图象与性质求二次函数y =ax 2+bx +c(a ≠0)的图象与性质的探究过程,渗透类比法、配方法和数形结合的思想方法.【情感态度与价值观】通过解决实际问题,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.二、重难点目标【教学重点】掌握二次函数y =ax 2+bx +c(a ≠0)的图象与性质.【教学难点】用配方法确定抛物线y =ax 2+bx +c(a ≠0)的顶点坐标和对称轴.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P37~P39的内容,完成下面练习.【3 min 反馈】1.二次函数y =a (x -h )2+k 的顶点坐标是__(h ,k )__,对称轴是__x =h __,当a __>0__时,开口向上,此时二次函数有最 __小__ 值,当x __>h __ 时,y 随x 的增大而增大,当x __<h __时,y 随x 的增大而减小;当a __<0__时,开口向下,此时二次函数有最 __大__ 值,当x __<h __时,y 随x 的增大而增大,当x __>h __时,y 随x 的增大而减小.2.一般地,二次函数y =ax 2+bx +c (a ≠0)可以通过配方法化成y =a (x -h )2+k 的形式,即y =__a ⎝⎛⎭⎫x +b 2a 2+4ac -b 24a __.因此,抛物线y =ax 2+bx +c 的对称轴是直线__x =-b 2a __,顶点坐标是__⎝⎛⎭⎫-b 2a ,4ac -b 24a __. 3.从二次函数y =ax 2+bx +c (a ≠0)的图象可以看出:如果a >0,当x <-b 2a,y 随x 的增大而__减小__,当x >-b 2a ,y 随x 的增大而__增大__;如果a <0,当x <-b 2a,y 随x 的增大而__增大__,当x >-b 2a,y 随x 的增大而__减小__. 4.已知二次函数y =-x 2+4x +5化为y =a (x -h )2+k 的形式为__y =-(x -2)2+9__,对称轴是直线__x =2__,顶点是__(2,9)__.环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】求二次函数y =2x 2-x -1的开口方向、对称轴及顶点坐标.【互动探索】(引发学生思考)二次函数y =ax 2+bx +c (a ≠0)图象与性质是什么?【解答】∵y =2x 2-x -1=2⎝⎛⎭⎫x -142-98,∴二次函数y =2x 2-x -1的开口向上,对称轴是直线x =14,顶点坐标为⎝⎛⎭⎫14,-98. 【互动总结】(学生总结,老师点评)二次函数y =ax 2+bx +c (a ≠0)可以通过配方法化成y =a (x -h )2+k 的形式,即y =a ⎝⎛⎭⎫x +b 2a 2+4ac -b 24a ,其对称轴是x =-b 2a ,顶点是⎝⎛⎭⎫-b 2a,4ac -b 24a . 【活动2】 巩固练习(学生独学)1.抛物线y =-x 2+4x -7的开口方向__向下__,对称轴是直线__x =2__ ,顶点坐标是__(2,-3)__.当x =__2__时,函数y 有最__大__值,其值为__-3__.2.已知二次函数y =ax 2+2x +c (a ≠0)有最大值,且ac =4,则二次函数的顶点在第__四__象限.3.已知二次函数y =-12x 2-2x +6. (1)求函数图象的顶点坐标和对称轴;(2)自变量x 在什么范围内时,函数值y >0?y 随x 的增大而减小?解:(1)∵y =-12x 2-2x +6=-12(x 2+4x )+6=-12[(x +2)2-4]+6=-12(x +2)2+8,∴顶点坐标为(-2,8),对称轴为直线x =-2.(2)令y =0得到-12x 2-2x +6=0,解得x =-6或2,∴观察图象可知,-6<x <2时,y >0,当x >-2时,y 随x 的增大而减小.【活动3】 拓展延伸(学生对学)【例2】已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?【互动探索】(引发学生思考)求解实际问题中的最值问题的关键是建立函数模型,此题中的函数解析式应该怎么建立?【解答】设该直角三角形的一条直角边为x ,面积是S ,则另一直角边为8-x .根据题意,得S =12x (8-x )(0<x <8), 配方,得S =-12(x -4)2+8. ∴当x =4时,即两条直角边各为4时,此时三角形的面积最大,最大面积是8.【互动总结】(学生总结,老师点评)解决实际问题的关键是建立数学模型,建立数学模型的关键是找出题中的等量关系.环节3 课堂小结,当堂达标(学生总结,老师点评)二次函数y =ax 2+bx +c 的图象与性质:(1)开口方向:当a >0时,向上;当a <0时,向下;(2)对称轴:直线x =-b 2a; (3)顶点坐标:⎝⎛⎭⎫-b 2a,4ac -b 24a ; (4)增减性:如果a >0,当x <-b 2a ,y 随x 的增大而减小,当x >-b 2a,y 随x 的增大而增大;如果a <0,当x <-b 2a ,y 随x 的增大而增大,当x >-b 2a,y 随x 的增大而减小.请完成本课时对应练习!。

人教版九年级数学上册22.1 二次函数的图象和性质 22.1.4 二次函数y=ax2+bx+c的图象和性质②

人教版九年级数学上册22.1  二次函数的图象和性质 22.1.4  二次函数y=ax2+bx+c的图象和性质②

当已知抛物线的顶点坐标或对称 轴和最值时,通常设函数的解析式为 项点式,然后代入另一点的坐标,解 关于a的一元一次方程
(a,x1,x2为 常数,a≠0),其中是抛物 线与x轴两个交点的横坐标
当已知抛物线与x轴的两交点坐标 或一个交点的坐标和对称轴时,通常设 函数的解析式为交点式,然后代入另 一点的坐标,解关于a的一元一次方程
情景引入
请你回忆:确定一次函数的解析式需要函数图象上几 个点的坐标?这几个点需要满足什么条件? 请你猜想:确定二次函数的解析式需要几个点的坐标? 这几个点需要满足什么条件?
1
人教版九年级数学上册 第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax²+bx+c的图象和性质②
15
知识点二:根据 y=a(x -h)2+k(a≠0)求二次函数解析式
学以致用
1.二次函数 y=x²+px+q的最小值是4,且当 x=2时,y=5,则p,q
的值为( ).
A.p=-2,q=15
B.p=-2,q=5或 p=-6,q=13
C.p=-6,q=13
D.p=2,q=-5或 p=6,q=-13
对于二次函数,我们先探究下面问题.
5
知识点一:根据y= ax2 +bx+c(a≠0)求二次函数解析式
新知探究
(1)由几个点的坐标可以确定二次函数?这几个点 应满足什么条件? (2) 如果一个二次函数的图象经过(-1, 10),(1, 4), (2, 7)三 点,能求出这个二次函数的解析式吗?如果能,求出这个 二次函数的解析式.
21
知识点三:根据 y=a(x - x1)(x- x2)(a≠0)求二次函数解析式

九年级数学上册第22章二次函数22.1二次函数的图象和性

九年级数学上册第22章二次函数22.1二次函数的图象和性

10. 在同一平面直角坐标系内, 将抛物线 y=(x-1) +3 先向左 平移 1 个单位长度,再向下平移 3 个单位长度后所得抛物线的顶点 坐标为( D ) A.(2,0) B.(2,6) C.(0,6) D.(0,0)
2
第3课时 二次函数y=a(x-h)2+k的图象和性质
B 规律方法综合练
1 11.2017·盐城 如图 22-1-13,将函数 y= (x-2)2+1 的图象沿 2
3.2017·金华 对于二次函数 y=-(x-1) +2 的图象与性质, 下列说法正确的是( B ) A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
【解析】二次函数 y=-(x-1)2+2 的图象的对称轴是直线 x=1.∵-1<0, ∴抛物线开口向下,有最大值,最大值是 2.
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)列表: x … -3
1 2 y=- x 2 … -4.5
-2 -2-1 -0.5ຫໍສະໝຸດ 0 01 -0.5
2
3
4 …
… …
-2 -4.5
1 y =- (x 2 … -1)2+2

-2.5
0
1.5
2
1.5
0
-2.5

第3课时 二次函数y=a(x-h)2+k的图象和性质
描点、连线,如图所示:
(2)①下 x=0 ③右 1 上
(0,0)
②下
x=1 (1,2)
1)
2(或上
2 右
第3课时 二次函数y=a(x-h)2+k的图象和性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.二次函数y=ax2+bx+c (a≠0)的图象如图所示,则下列结论中 正确的是 ( B )
A.a>0
C.c <0
y -1 o
B.当-1<x <3时,y >0
D.当x≥1时,y随x的增大而增大
x X=1
总结梳理 内化目标
达标检测 反思目标
C
D
C
1 ±1
• 上交作业:教科书第41 页第6题 .
感谢关注!
1 2 1 2 x 6 3 y x 6 x 21 第一步:配方可得 2 2
的开口向上,顶点是(6,3),对称轴是直线 x = 6
用描点法直接画函数y=ax²+bx+c的图象
1 2 第二步:确定开口方向、顶点、对称轴。由此可知,抛物线 y x 6 x 21 2
例1 求抛物线y=-3x2-6x+8的对称轴和顶点坐标.
思考: 1. 如何将y=-3x2-6x+8变形为y=a(x-h)2+k的形式? 它和用配方法解一元二次方程中的将二次项系数化为1有什么 区别? 2.怎样将y=ax2+bx+c变形为y=a(x-h)2+k的形式?根 据 二次函数的一般式和顶点式如何确定抛物线的对称轴和顶 点 坐标?
合作探究 达成目标
探究点二 二次函数y=ax2+bx+c的图象的画法
1 2 如何简洁的画出 y x 6 x 21 的图象呢? 2
我们知道,像y=a(x-h)2+k这样的函数,容易确定
1 2 y x 6 x 21 2
相应抛物线的顶点为(h,k),二次函数 也能化成这样的形式吗?
合作探究 达成目标
探究点一 二次函数y=ax2+bx+c和二次函数y=a(x- h)2+k之间的关系
例1 求抛物线y=-3x2-6x+8的对称轴和顶点坐标.
配方: y 3x 6 x 8
2
提:提取二次项系数 配:加上再减去一次 项系数绝对值一半 的平方
8 3( x 2 2 x ) 3 8 3[(x 2 2 x 1) 1 ] 3 11 2 3[(x 1) ] 3 3( x 1) 2 11
第三步:接下来,利用图象的对称性列表(请填表),描点、连线。
x
y
· · ·
3
4
5
6
7
8
9
· · · · · ·
1 2 · x 6 x 21 · 2 ·y 10
7.5 5
3.5 3 3.5
y 1 2 x 6 x 21 2
5 7.5
你能得出函数 随x增大的变化 情况吗?
5
能否用平移法画出 函数图象?
则该函数图象的顶点坐标为 ( B )
A.(-3,-3)
C.(-1,-3)
B.(-2,-2)
D.(0,-6)
合作探究 达成目标
探究点三 二次函数y=ax2+bx+c的图象与性质
例.求二次函数y=ax² +bx+c的对称轴和顶点坐标.
配方:
y ax2 bx c
c 2 b a x x a a 2
5 10 x
O
归纳
用描点法直接画函数y=ax²+bx+c的图象
画法: (1)“化” :化成顶点式 ;
(2)“定”:确定开口方向、对称轴、顶 点坐标; (3)“画” :(对称性)列表、描点、连线.
3.二次函数y=ax2+bx+c的图象上部分点的坐标满足下表: x y … … -3 -3 -2 -2 -1 -3 0 -6 1 -11 … …
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
顶点坐标
对称轴 位置 开口方向
由a,b和c的符号确定
由a,b和c的符号确定
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
理:前三项化为平方 形式,后两项合并同 类项 化:去掉中括号
顶点:(-1,11)
对称轴:直线x=-1
1.将二次函数y=x2-2x+3化为y=a(x-h)2+k的形式,结果为( D )
A.y=(x+1)2+4
C. y=(x+1)2+2
B. y=(x-1)2+4
D. y=(x-1)2+2
3 2.将y=2x2-12x-12变为y=a(x-h)2+k的形式,则h=________, k=_______ -30 。
第6课时
二次函数y=ax2+bx+c的图象
创设情境 明确目标
自主学习 指向目标
1. 会用描点法画出函数y=ax2+bx+c 的图象. 2.掌握用图象或通过配方确定抛物线的开口 方向、对称轴和顶点坐标. 3.掌握二次函数y=ax2+bx+c的性质.
合作探究 达成目标
探究点一 二次函数y=ax2+bx+c和二次函数y=a(x- h)2+k之间的关系
增减性 最值
b 4ac b 2 当x 时, 最小值为 2a 4a
b 4ac b 2 当x 时, 最大值为 2a 4a
4.抛物线y=ax2+bx+c的图象先向右平移2个单位,再向下平移 3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为
( B)
A.b=2,c=-6 C.b=-6,c=8 B.b=2,c=0 D.b=-6,c=2
b 4ac b 2 a x . 化简:去掉中括+c(a≠0)的图象和性质
1.顶点坐标与对称轴
2.位置与开口方向
3.增减性与最值 根据图形填表: 抛物线
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
提取二次项系数
老师提示:
这个结果通常 称为求顶点坐 标公式.
2 b b b 2 c 配方:加上再 a x x 减去一次项系 数绝对值一半 a 2 a 2 a a 的平方 2 2 b 4ac b a x 整理:前三项化为平方形 2 2a 4a 式,后两项合并同类项
相关文档
最新文档