-2015武汉市上学期期末八年级数学试卷及答案
2015年湖北省武汉市武昌区八年级上学期期末数学试卷与解析答案
2014-2015学年湖北省武汉市武昌区八年级(上)期末数学试卷一、选择题:每小题3分,共30分.四个选项中只有一项是符合题目要求的.1.(3分)下列图形中,不是轴对称图形的是()A. B.C.D.2.(3分)若分式的值为0,则x的值为()A.2 B.﹣2 C.D.﹣3.(3分)点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)4.(3分)以下列各组长度的线段为边,能构成三角形的是()A.3,4,8 B.5,6,10 C.5,6,11 D.5,9,155.(3分)下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣36.(3分)分式与的最简公分母是()A.6y B.3y2C.6y2D.6y37.(3分)下列多项式中,能分解因式的是()A.a2+b2B.﹣a2﹣b2C.a2﹣4a+4 D.a2+ab+b28.(3分)如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF9.(3分)如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.50°C.55°D.60°10.(3分)如图,在等腰Rt△ABC中,∠ABC=90°,O是AC的中点,P,Q分别在AB,BC上(P,Q与A,B,C都不重合),OP⊥OQ,OS⊥AQ交AB于S.下列结论:①BQ=BS;②PA=QB;③S是PB的中点;④的值为定值.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题:每小题3分,共18分.11.(3分)将分式约分:=.12.(3分)禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为.13.(3分)若一个n边形的内角和为720°,则边数n=.14.(3分)若x2+mx+9是一个完全平方式,则m的值是.15.(3分)如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN的周长最小时,∠MAN的度数为.16.(3分)如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为.三、解答题:共9小题,共72分.解答时写出必要的文字说明、演算步骤或画出图形.17.(6分)计算:(a+b)2﹣2ab.18.(6分)解方程:=.19.(8分)分解因式:(1)x2﹣9(2)3ab2+6ab+3a.20.(6分)如图,∠BAC=∠DAC,∠B=∠D.求证:AB=AD.21.(6分)先化简,再求值:(+)÷,其中x=3.22.(8分)如图,已知A(1,2),B(3,1),C(4,3).(1)作△ABC关于y轴的对称图形△A1B1C1,写出点C关于y轴的对称点C1的坐标;(2)作△ABC关于直线m(直线m上各点的纵坐标都为﹣1)的对称图形△A2B2C2,写出点C关于直线m的对称点C2的坐标.23.(10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?24.(10分)如图1,在△ABC中,AB=AC,BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE的度数;(2)求证:DE=AD+DC;(3)作BP平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP的长.25.(12分)如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n >m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP 的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为:(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.2014-2015学年湖北省武汉市武昌区八年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分.四个选项中只有一项是符合题目要求的.1.(3分)下列图形中,不是轴对称图形的是()A. B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.2.(3分)若分式的值为0,则x的值为()A.2 B.﹣2 C.D.﹣【解答】解:∵分式的值为0,∴,解得x=2.故选A.3.(3分)点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣2,1)关于x轴的对称点的坐标是(﹣2,﹣1),故选:C.4.(3分)以下列各组长度的线段为边,能构成三角形的是()A.3,4,8 B.5,6,10 C.5,6,11 D.5,9,15【解答】解:A、3+4<8,不符合三角形三边关系定理,故本选项错误;B、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确;C、5+6=11,不符合三角形三边关系定理,故本选项错误;D、5+9<15,不符合三角形三边关系定理,故本选项错误;故选B.5.(3分)下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣3【解答】解:A、b3•b3=b6,原式计算错误,故本选项错误;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a5)2=a10,原式计算错误,故本选项错误;D、a2÷a5=a﹣3,计算正确,故本选项正确.故选D.6.(3分)分式与的最简公分母是()A.6y B.3y2C.6y2D.6y3【解答】解:分式与的分母分别是3y、2y2,故最简公分母是6y2;故选C.7.(3分)下列多项式中,能分解因式的是()A.a2+b2B.﹣a2﹣b2C.a2﹣4a+4 D.a2+ab+b2【解答】解:A、平方和不能分解,故A错误;B、平方的符号相同,不能因式分解,故B错误;C、平方和减积的2倍等于差的平方,故C正确;D、平方和加积的1倍,不能因式分解,故D错误;故选:C.8.(3分)如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF【解答】解:只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),故选A.9.(3分)如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.50°C.55°D.60°【解答】解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣4∠E,∵∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故选B.10.(3分)如图,在等腰Rt△ABC中,∠ABC=90°,O是AC的中点,P,Q分别在AB,BC上(P,Q与A,B,C都不重合),OP⊥OQ,OS⊥AQ交AB于S.下列结论:①BQ=BS;②PA=QB;③S是PB的中点;④的值为定值.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵Q是边长BC上的动点,∴①不正确;∵△ABC是等腰直角三角形,∠ABC=90°,O是AC的中点,∴∠OAP=∠BOQ=∠C=∠ABO=∠OBQ=45°,OB=AC=OA=OC,∠AOB=90°,∵OP⊥OQ,∴∠POQ=90°,∴∠AOP=∠BOQ,在△AOP和△BOQ中,,∴△AOP≌△BOQ(ASA),∴AP=BQ,OP=OQ,②正确;过O作OM∥BC,交AQ于M,如图所示:∴∠MOQ=∠OQC,∵∠ABC=∠POQ=90°,∴B,P,O,Q四点共圆,∴∠OQC=∠SPO=∠MOQ,∵OS⊥AQ,∴∠OQA+∠QOS=90°,∵∠POS+∠QOS=90°,∴∠POS=∠OQA,在△POS与△OQM中,,∴△POS≌△OQM(ASA),∴PS=OM,∵AO=OC,∴OM是△AQC的中位线,∴OM=CQ,∴PS=CQ,∴=2,④正确;∵△AOP≌△BOQ,同理:△BOP≌△COQ,∴PB=CQ,∴PS=PB,即S是PB的中点,③正确;正确结论的个数有3个.故选:C.二、填空题:每小题3分,共18分.11.(3分)将分式约分:=.【解答】解:=.故答案为.12.(3分)禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为 1.02×10﹣4.【解答】解:0.000102=1.02×10﹣4,故答案为:1.02×10﹣4.13.(3分)若一个n边形的内角和为720°,则边数n=6.【解答】解:由题意可得:(n﹣2)•180°=720°,解得:n=6.所以,多边形的边数为6.故答案为6.14.(3分)若x2+mx+9是一个完全平方式,则m的值是±6.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.15.(3分)如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN的周长最小时,∠MAN的度数为80°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=130°,∴∠HAA′=50°,∴∠AA′M+∠A″=∠HAA′=50°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,∴∠MAN=80°故答案为:80°.16.(3分)如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为4+4.【解答】解:将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4,CD=BD×tan∠CBD=4,∴△DMN的周长为DM+DN+MN=DM+DN+BM+CN=BD+DC=4+4,故答案为:4+4.三、解答题:共9小题,共72分.解答时写出必要的文字说明、演算步骤或画出图形.17.(6分)计算:(a+b)2﹣2ab.【解答】解:原式=a2+2ab+b2﹣2ab=a2+b2.18.(6分)解方程:=.【解答】解:去分母得:2x+2=5,解得:x=,经检验x=是分式方程的解.19.(8分)分解因式:(1)x2﹣9(2)3ab2+6ab+3a.【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=3a(b+1)2.20.(6分)如图,∠BAC=∠DAC,∠B=∠D.求证:AB=AD.【解答】证明:如图,在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴AB=AD.21.(6分)先化简,再求值:(+)÷,其中x=3.【解答】解:原式=•=,当x=3时,原式==2.22.(8分)如图,已知A(1,2),B(3,1),C(4,3).(1)作△ABC关于y轴的对称图形△A1B1C1,写出点C关于y轴的对称点C1的坐标;(2)作△ABC关于直线m(直线m上各点的纵坐标都为﹣1)的对称图形△A2B2C2,写出点C关于直线m的对称点C2的坐标.【解答】解:(1)所作图形如图所示:C1的坐标为(﹣4,3);(2)所作图形如图所示:C2的坐标为(4,﹣5).23.(10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.24.(10分)如图1,在△ABC中,AB=AC,BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE的度数;(2)求证:DE=AD+DC;(3)作BP平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP的长.【解答】解:(1)∵△ABC中,AB=AC,∠BAC=30°,∴∠ABC=∠ACB==75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,∵AB=AC,DB=DC,∴AD所在直线垂直平分BC,∴AD平分∠BAC,∴∠BAD=∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°;(2)如图1,在线段DE上截取DM=AD,连接AM,∵∠ADE=60°,DM=AD,∴△ADM是等边三角形,∴∠ADB=∠AME=120°∵AE=AB,∴∠ABD=∠E,在△ABD和△AEM中,,∴△ABD≌△AEM(AAS),∴BD=ME,∵BD=CD,∴CD=ME,∵DE=DM+ME,∴DE=AD+CD;(3)如图2,过点P作PQ⊥BE于Q,∵BP平分∠ABE,∠BAE=90°,∴PA=PQ,设PA=PQ=x,∵∠AEB=45°,∴PE=x,∴AB=AE=AP+PE=(1)x,∵EF⊥BP,∴∠PFE=90°,∴∠PFE=∠BAE,∵∠APB=∠EPF,∴△ABP∽△EFP,∴=,∴PF=3(﹣1),∴PE2=PF2+EF2=+32=,解得:x=3,∴AB=3•(+1),∴PB2=+=36,∴PB=6.25.(12分)如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n >m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP 的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为:(n,m+n)(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.【解答】(1)解:过C点作CE⊥y轴于点E,∵CE⊥y轴,∴∠BEC=90°,∴∠BEC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO,在△AOB与△BEC中,,∴△AOB≌△BEC(AAS),∴CE=OB=n,BE=OA=m,∴OE=OB+BE=m+n,∴点C的坐标为(n,m+n).故答案为:(n,m+n);(2)证明:∵△AOB≌△BEC,∴BE=OA=OP,CE=BO,∴PE=OB=CE,∴∠EPC=45°,∠APC=90°,∴∠1=∠2,在△ABM与△CBN中,,∴△ABM≌△CBN(ASA),∴BM=BN;(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,∴AD=AC,AG=AC,∴AD=AG,∵∠1=∠5,∠1=∠6,∴∠5=∠6,在△DAH与△GAH中,,∴△DAH≌△GAH(SAS),∴D,G关于x轴对称.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-a1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aaBE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
湖北省武汉市八年级上学期数学期末试卷
湖北省武汉市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)计算:(﹣3x2y)•(﹣2x2y)的结果是()A . 6x2yB . ﹣6x2yC . 6x4y2D . ﹣6x4y22. (2分)(2016·徐州) 下列图案中,是轴对称图形但不是中心对称图形的是()A .B .C .D .3. (2分)(2020·黄石模拟) 使代数式有意义的x的取值范围是()A . 且B .C . 且D .4. (2分) (2018八上·港南期中) 下列图形不具有稳定性的是()A . 正方形B . 等腰三角形C . 直角三角形D . 钝角三角形5. (2分)(2020·岳阳) 下列运算结果正确的是()A .B .C .D .6. (2分)如图,∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A . ∠E=∠BB . ED=BCC . AB=EFD . AF=CD二、填空题 (共8题;共8分)7. (1分) (2020八下·新昌期中) 已知多边形的内角和等于外角和的三倍,则边数为________.8. (1分)(2019·岳阳模拟) 分解因式:a3b-2a2b+ab=________.9. (1分) (2017七上·杭州期中) 如下图是一个简单的数值运算程序,当输入x的值是-8,输出y的值是________.10. (1分)(2019八上·昭通期中) 如图,在中,平分于点,则的度数是________11. (1分) (2019八上·西岗期末) 如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.12. (1分)不改变分式的值,把分子分母的系数化为整数:=________ .13. (1分)如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=________度,若△ADE的周长为19cm,则BC=________ cm.14. (1分) (2020八下·北京月考) 如图,菱形ABCD的周长为16,∠ADC=120º,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________.三、解答题 (共12题;共64分)15. (5分) (2019八上·海淀期中) 计算:(8x2y﹣4x4y3)÷(﹣2x2y)16. (5分) (2019八上·长春期中) 已知m2﹣3m=4,求2m3﹣6m2﹣8m+5的值.17. (5分)(2019·萍乡模拟)(1)计算:(2)解方程:18. (5分) (2015八上·平罗期末) 如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.19. (5分)(2020·营口) 先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.20. (2分) (2015八上·宜昌期中) 如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.21. (5分) (2020八上·郑州期末) 某校学生利用春假时间去距离学校10km的静园参观。
湖北省武汉市硚口区2015-2016学年度上学期期末测试八年级数学试卷(有答案)
A B C D 2015~2016学年度第一学期期末考试八年级数学试卷一.选择题(共10小题,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.若分式122+-x x 的值为0,则x 的值为 A .2B .-2C .21D .-21 2.以下列各组长度的线段为边,能构成三角形的是A .3,4,8B .5,6,10C .5,6,11D .5,9,153.分式y x 3与223yx的最简公分母是 A .6y B .3y2C .6y2D .6y 34.下列平面图形中,不是..轴对称图形的是5.下列计算正确的是A. 2x 2-4x 2=-2B. 3x +x =3x 2C. 3x ×x =3x 2D. 4x 6÷2x 2=3x 36.下列四个整式:①x 2-4x+4; ②6x 2+3x+1; ③4x 2+4x+1; ④x 2+4xy+2y 2.其中是完全平方式的是A.①③B.①②③C.②③④D.③④7. 如图,等腰△ABC 中,AB=AC , AB 的垂直平分线MN 交AC 于点D ,∠DBC=15°, 则∠A 的度数是A .35°B .40°C .50°D .55°8.已知a-b=10,ab=5,则a 2+b 2的值为A .110B .95C .90D .105 9. AD 是△ABC 的中线,若AB =5,AC =9,则AD 的值不.可能的是 A .3 B .4 C .5 D .810.如图,在四边形ABDC 中, 对角线AD 、BC 交于点O, 90=AC ∠B , 90=DC ∠B ,BD=CD,AB =2,AC =4,记△AO C 的面积为S 1、△BO D 的面积为S 2,则S 1 -S 2的值为A .1B .1.5C .2D .2.5二.填空题(共6小题,共18分) 11.将分式约分:253x x =________12.禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为________.13.若一个n 边形的内角和为720°,则边数n =________. 14. 已知a m=2, a n=3, 则2m na+ 的值是 .15.如图,AD ,BE 为锐角△ABC 的高,若BF = AC ,BC = 7,CD = 2, 则AF 的长为_____. 16.如图,△ABC ≌△A’ BC’,∠ABC=90°,∠A’=30°.(0°<∠AB A’≤60°),A’C’与AC交于点F ,与AB 交于点E ,连接BF .当△BEF 为等腰三角形时,则∠AB A’的角度为______.三.解答题(共8小题,共72分) 17.(本题8分)解方程: xx 332=-18.(本题8分)如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF. 求证:(1)△ABC ≌△DEF ;(2)AB ∥DE.19.(本题8分)因式分解AE CDBF(1) 2mx 2-2my 2(2) (2x +4)2-162x20.(本题8分)计算(1) ()()2324322a a a aa ⋅⋅++-(2) [(a +2b)2-(a +2b)( a -2b)-7b 2]÷2b,21.(本题8分)如图,在平面直角坐标系中,已知A (1,2)、B (3,1)、C (4,3). (1) 直接写出点C 关于y 轴的对称点的坐标;(2) 作△ABC 关于直线m (直线m 上各点的纵坐标都为-1)的对称图形△A 1B 1C 1,写出点C 关于直线m 的对称点C 1的坐标;(3)点P 是坐标轴上一点,使△ABP 是等腰三角形,则符合条件的点P 的个数有_______.22.(本题10分)列方程解应用题 (1)甲、乙两人生产相同的零件,甲比乙每小时多生产30个,甲生产900个所用的时间与乙生产600个所用的时间相等,求甲、乙两人每小时各生产多少个零件?(2)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?23.(本题10分)在平面直角坐标系中,点A在y轴正半轴上.(1)如图1,以OA为底边向第一象限作等腰△OAK,直线BC∥y轴,交AK,OK分别于点B,C.求证:AB=OC;(2)如图2,点D(2a,0),(a>0),点P(a,b)在线段AD上,连接PB,PC,求证:PB=PC;(3)如图3(示意草图),已知A(0,2),E(6,3),M(m,0),N(m+1,0),若AM+MN+NE最小,请在备用图中画出线段MN(保留主要画图痕迹),并求出点M的坐标.24.(本题12分)已知:点D,E分别是等边△ABC的边BC,AB上的点,∠ADE=60°.(1)如图1,当点D是BC的中点时,求证:AE=3BE;(2)如图2,点M在AC上,满足∠ADM=60°,求证:BE=CM;(3)如图3,作CF∥AB交ED的延长线于点F,探究线段BE,CF,CD之间的数量关系,并给出证明.2015---2016学年度第一学期期末考试八年级数学考答案1.A 2.B 3.C 4.A5.C6.D7.D8.B9.D 10.A10题详细答案作DE ⊥AB 于E,作DF ⊥AC 于F,△DEB ≅DFC AB+AC=AE+AF S ABCD =SAEDF=2AE =9 S △ABC=4 S △BDC=5 S △DBO:S △DOCS △ABO:S △AOC=AB:AC=1:2 S △AOC=38 S △BOD=35 11.331x 12. 41002.1-⨯ 13.6 14.3615.316.200,400(全对,得3分;否则,每对一个答案得1分)17.解:去分母,方程两边同乘以x(x – 3) 得 ………2分 2x= 3(x – 3) ………4分∴x = 9 ……… 6分 检验:x=9时, x(x – 3)≠0 . ………7分 ∴ 原方程的解是x=9. ………8分 18.证明:(1)∵BE =CF∴ BE+EC =CF+EC, 即 BC=EF ………2分 在△ABC ≌△DEF 中,AB =DE ,AC =DF ,BC=EF ………4分 ∴ △ABC ≌△DEF ………6分(2)由(1)△ABC ≌△DEF 得∠B =∠DEC ………7分∴AB ∥DE. ………8分19.(1)原式=2m(x 2-y 2) ………2分=2m(x+y)(x-y)………4分 (2)原式= (2x +4+4x)(2x +4-4x)………6分=(x+2)2(x-2)2………8分20.(1) 原式=a 6+a 6-8a 6………3分=-6a 6………4分(2) 原式=(a 2+4ab+4b 2-a 2+4b 2-7b 2)÷2b ………7分=(4ab+b 2)÷2b=2a+b 21………8分 21.(1) (-4,3) ………2分 (2)画图略,C 1(4,-5) ………6分 (3)5………8分 22.(1)解:设甲每小时生产x 个零件,则乙每小时生产(x-30)个零件,依题意,得30600900-=x x ………3分 解方程得: x=90 ………4分经检验,原方程的解是x=90 答:甲、乙两人每小时各生产90,60个零件 .………5分(2)解:设提速前这次列车的平均速度为x km/h ,则根据行驶时间的等量关系,得:50s s v x v+=+………7分 方程两边乘()x x v +,得: ()(50)s x v x s +=+ 解得:50sv x =………9分检验:由v ,s 都是正数,当50sv x =时()0x x v +≠,所以,原分式方程的解为50sv x =答:提速前列车的平均速度为50sv km/h .………10分23.(1)证明:依题意AK=OK,得∠KAO=∠KOA, ……1分∵BC ∥y 轴 ∴∠KBC=∠KAO=∠KOA=∠KCB∴KB=KC ……2分 ∴AK-KB=KO-KC, 即AB=OC ; ……3分 (2)连接OP, 过P 作P E ⊥OD 于E ,∵点D (2a ,0),点P(a ,b)∴OD=2a,OE=a, ∴OE=ED, ∴PO=PD ……4分∴∠POD=∠PDO又∵∠POD+∠POA=∠PDO+∠DAO=900∴∠POA=∠PAO ……5分∴ PA=PO, ∠PAB=∠POC 又∵AB=OC ,∴△PAB ≌△POC , ∴PB=PC ……6分 (3)将点E (6,3)向左平移一个单位长度至点E 1(5,3), ……7分 作点A (0,2)关于x 轴的对称点A 1(0,-2) ……8分 连接E 1 A 1交于x 轴点M, 作 E 1 H ⊥A 1A 于H,得E 1 H=5= A 1 H∴∠E 1A 1H=450 ∴∠OMA 1=450 ……9分∴OM=OA 1=2 即点M 的坐标为(2, 0). ……10分24. (1)证明:∵点D 是等边△ABC 的边BC 的中点,∠ADE=60°∴∠ADB= 90°,∠BDE=∠BAD=30° , ∠BED =90° ……1分 在Rt △BED 与Rt △ABD 中∴BD=2BE , AB=2BD =4BE ……2分∴ AE=AB-BE=3BE ……3分(2)作AF ⊥ED 于F ,作AH ⊥DM 于H, ∴∠AFE=∠AHM= 90°∵ ∠ADE=∠ADM=60° ∴ AF=AH ……4分又∵ ∠BAC =60° ,四边形 AEDM 的内角和=3600∴∠AED+∠AMD = 180°, 又∵∠AMH+∠AMD = 180°,∴∠AED =∠AMH ……5分∴△AEF ≌△AMH∴ AE=AM ……6分∵ AB=AC ∴ AB-AE=AC –AM, 即BE=CM. ……7分 方法二延长DE 至G,使DG=AD,则△ADG 是等边三角形 ,△AGE ≌△ADM AE=AM方法三,延长DM至Q,使DQ=AD ,△ADE≌△ADQ AE=AQ 再证AM=AQ(3)延长CF至点N使FN=BE,连接NB,EN.∵CF∥AB∴∠BEN=∠ENF,∠BCF =∠ABC= 60°又∵EN=NE ∴△BEN≌△FNE……8分∴∠BNE=∠FEN∴ EF∥BN∴∠CDF=∠CBN……10分又∵∠ADE+∠ADC +∠CDF= 180°, ∠ACD+∠ADC +∠CAD= 180°∠ADE=∠ACB= 60°∴∠CDF=∠CAD又∠CDF=∠CBN∴∠CAD=∠CBN ……11分又CA=CB, ∠BCF=∠ACB=600 ∴△ACD≌△BCN∴ CD=CN=CF+BE. ……12分方法二在AB上截取EM=CF 由CF∥BM EM=CF 得 EF∥CM ∠BMC=∠BED ∠BED +∠BDE= 60°, ∠BDE+∠ADC = 60°∠BED=∠ADC 再证△BMC≌△CDA 方法三作∠ADP= 60°交AC于P,作∠CDG= 60°交AC于G,由(2)知BE=CP ∠GDP +∠PDC= 60°, ∠CDF+∠PDC = 60°∠GDP=∠CDF △DGP≌△DCF GP=CF CD=GC=GP+PC=CF+BE。
【解析版】2014-2015学年武汉市汉阳区八年级上期末数学试卷
2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±23.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 204.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= .12.计算:(2m+3n)(3n﹣2m)= .13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= .14.若,则= .15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n=2时对应第1个式子,…)16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为.三、解答题(共72分)17.解分式方程:.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.20.计算(1)(2).21.已知x+=4,求(1)x2+;(2)(x﹣2)2.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:线段、角、等腰三角形一定为轴对称图形,直角三角形不一定为轴对称图形.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±2考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须使分式分子的值为0,并且分母的值不为0.解答:解:∵|x|﹣2=0,∴x=±2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0;x=2时分母x﹣2=0,分式没有意义.故选C.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 20考点:等腰三角形的性质.分析:设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.解答:解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为20°或120°.故选:B.点评:本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.4.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.专题:因式分解.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:A、5a3﹣a3=4a3,计算正确,故本选项错误;B、(a2b)3=a6b3,计算正确,故本选项错误;C、(a﹣b)3(b﹣a)2=(a﹣b)5,计算正确,故本选项错误;D、2m•3n≠6m+n,计算错误,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.解答:解:∵x m=6,x n=3,∴x2m﹣n=(x m)2÷x n=62÷3=12.故选C.点评:本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m)2÷x n是解题的关键.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x考点:分式的值.专题:计算题.分析:根据分式的值为负数,求出x的范围即可.解答:解:根据题意得:<0,即5x+2<0,解得:x<﹣.故选B.点评:此题考查了分式的值,熟练掌握不等式的解法是解本题的关键.8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天考点:分式方程的应用.专题:工程问题.分析:首先设工作总量为1,未知的规定日期为x.则甲单独做需x+1天,乙队需x+4天.由工作总量=工作时间×工作效率这个公式列方程易求解.解答:解:设工作总量为1,规定日期为x天,则若单独做,甲队需x+1天,乙队需x+4天,根据题意列方程得3(+)+=1,解方程可得x=8,经检验x=8是分式方程的解,故选B.点评:本题涉及分式方程的应用,难度中等.考生需熟记工作总量=工作时间×工作效率这个公式.9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°考点:线段垂直平分线的性质.分析:首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,继而求得答案.解答:解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣4∠E,∵∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故选B.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°考点:轴对称-最短路线问题.分析:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.解答:解:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°﹣2×50°=80°,∴∠AOB=40°,故选A.点评:本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= 30 .考点:因式分解-提公因式法.分析:将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.解答:解:∵x﹣y=5,xy=6,∴x2y﹣xy2=xy(x﹣y)=6×5=30.故答案为:30.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.计算:(2m+3n)(3n﹣2m)= 9n2﹣4m2.考点:平方差公式.专题:计算题.分析:先整理得到原式=(3n+2m)(3n﹣2m),然后利用平方差公式计算.解答:解:原式=(3n+2m)(3n﹣2m)=9n2﹣4m2.故答案为9n2﹣4m2.点评:本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= 3 .考点:含30度角的直角三角形.分析:求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.解答:解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.点评:本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解此题的关键是得出BC=2BD和AB=2BC,难度适中.14.若,则= 7 .考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=2xy,原式变形后代入计算即可求出值.解答:解:∵﹣==﹣2,∴x﹣y=2xy,则原式===7.故答案为:7点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n﹣1)(n+1)+1=n2(n≥2,且n 为正整数)(n=2时对应第1个式子,…)考点:规律型:数字的变化类.分析:观察不难发现,比n小1的数与比n大1的数的积加上1的和等于n的平方,依此可以求解.解答:解:n=2时,l×3+1=22,即(2﹣1)(2+1)+1=22,n=3时,2×4+1=32,即(3﹣1)(3+1)+1=32,n=4时,3×5+1=42,即(4﹣1)(4+1)+1=42,n=5时,4×6+1=52,即(5﹣1)(5+1)+1=52,…n=n时,(n﹣1)(n+1)+1=n2,故答案为(n﹣1)(n+1)+1=n2(n≥2,且n为正整数).点评:此题主要考查了数字变化规律,根据已知数据得出数据的变与不变是解题关键.16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为75°.考点:等腰三角形的判定;坐标与图形性质.分析:根据△DOA为等腰三角形,分三种情况:①OD=AD;②OD=OA③OA=OD分别求得各边的长度,再利用三角函数即可得出答案.解答:解:如图,∵D在第一象限,且DO=DB,△DOA为等腰三角形,∴点D分三种情况:①OD1=AD1;②OD2=OA;③OA=OD3;∴∠OBD1=45°,∠OBD2=60°,∠OBD3=15°+60°=75°,故答案为:75°点评:本题考查了等腰三角形的判定以及坐标与图形的性质,熟练利用等腰三角形的性质是解题关键.三、解答题(共72分)17.解分式方程:.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣1+2x+2=7,移项合并得:3x=6,解得:x=2,经检验x=2是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.考点:因式分解的应用.分析:(1)首先利用整式的乘法计算,进一步整理后分解因式即可;(2)利用平方差公式因式分解计算即可.解答:解:(1)原式=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2);(2)原式=(755+255)×(755﹣255)=1010×500=50005000.点评:此题考查因式分解的运用,掌握平方差公式是解决问题的关键.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.考点:等腰三角形的性质.专题:计算题.分析:(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.解答:(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.点评:本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.计算(1)(2).考点:分式的加减法;分式的乘除法.专题:计算题.分析:(1)原式约分即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=•=2;(2)原式=+==.点评:此题考查了分式的加减法,以及分式的乘除法,熟练掌握运算法则是解本题的关键.21.已知x+=4,求(1)x2+;(2)(x﹣2)2.考点:分式的混合运算;完全平方公式.专题:计算题.分析:(1)原式利用完全平方公式变形,把已知等式代入计算即可求出值;(2)原式利用完全平方公式化简,把已知等式变形后代入计算即可求出值.解答:解:(1)把x+=4两边平方得:(x+)2=x2++2=16,即x2+=14;(2)把x+=4,去分母得:x2﹣4x+1=0,即x2﹣4x=﹣1,原式=x2﹣4x+4=﹣1+4=3.点评:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则是解本题的关键.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.考点:分式方程的应用.分析:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,根据相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,列方程求解.解答:解:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.答:动车提速后的平均速度为200km/h.点评:本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)利用平行线的性质结合全等三角形的判定与性质得出即可;(2)过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.解答:(1)证明:如图1,过点P作PF∥BC交AC于点F;∵PF∥BC,∴△APF∽△ABC,∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,∵,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=2,∴DE=1.点评:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.考点:四边形综合题.专题:压轴题.分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解答:解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系MN=BM﹣AN ;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=Q N,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB﹣AE﹣GE代入数据进行计算即可求出BG,从而得到BM的长.解答:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD﹣∠MDN=120°﹣60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2)MN+AN=BM.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB﹣∠ADM﹣∠BDP=120°﹣∠ADM﹣∠ADN=120°﹣∠MDN=120°﹣60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH﹣MG=MN﹣BM=AN,即AN=GH,∵在△ANE和△GHE中,,∴△ANE≌△GHE(AAS),∴AE=EG=1,∵AC=5,∴AB=AC=5,∴BG=AB﹣AE﹣EG=5﹣1﹣1=3,∴BM=BG=3.点评:本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN=GH是解题的关键,也是本题的难点.。
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
2015-2016学年湖北省武汉市武昌区八年级〔上〕期末数学试卷一、选择题〔共10小题,每题3分,共30分〕1.〔3分〕〔2015秋•武昌区期末〕以下几何图形不一定是轴对称图形的是〔〕A.角B.等边三角形C.等腰三角形D.直角三角形2.〔3分〕〔2015秋•武昌区期末〕假设分式有意义,则x满足的条件是〔〕A.x=1 B.x=3 C.x≠1 D.x≠33.〔3分〕〔2015秋•武昌区期末〕假设等腰三角形的两边长分别是2和10,则它的周长是〔〕A.14 B.22 C.14或22 D.124.〔3分〕〔2015秋•武昌区期末〕以下运算中正确的选项是〔〕A.〔a2〕3=a5 B.a2•a3=a5C.a6÷a2=a3 D.a5+a5=2a105.〔3分〕〔2015秋•武昌区期末〕以下分式与分式相等的是〔〕A.B. C.D.﹣6.〔3分〕〔2015秋•武昌区期末〕以下因式分解结果正确的选项是〔〕A.x2+3x+2=x〔x+3〕+2 B.4x2﹣9=〔4x+3〕〔4x﹣3〕C.x2﹣5x+6=〔x﹣2〕〔x﹣3〕D.a2﹣2a+1=〔a+1〕27.〔3分〕〔2015秋•武昌区期末〕已知图中的两个三角形全等,则∠1等于〔〕A.72°B.60°C.50°D.58°8.〔3分〕〔2014•南开区二模〕石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为〔〕×10﹣9×10﹣9×10﹣10×10﹣119.〔3分〕〔2015秋•阎良区期末〕如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC 于点D,AB=10,S△ABD=15,则CD的长为〔〕A.3 B.4 C.5 D.610.〔3分〕〔2015秋•武昌区期末〕如果满足条件“∠ABC=30°,AC=1,BC=k〔k>0〕”的△ABC是唯一的,那么k的取值时〔〕A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1二、填空题〔本大题共6个小题,每题3分,共18分〕11.〔3分〕〔2010•泉州〕计算:=______.12.〔3分〕〔2015春•鄞州区期末〕一个n边形的内角和是540°,那么n=______.13.〔3分〕〔2016•东莞市校级模拟〕假设x2+2x+m是一个完全平方式,则m=______.14.〔3分〕〔2015秋•武昌区期末〕如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.假设∠DBC=33°,∠A的度数为______.15.〔3分〕〔2015秋•武昌区期末〕如图,把△ABC沿EF对折,折叠后的图形如下图.假设∠A=60°,∠1=96°,则∠2的度数为______.16.〔3分〕〔2015秋•武昌区期末〕D为等腰Rt△ABC斜边BC上一点〔不与B、C重合〕,DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=______时,△DEF为等腰直角三角形.三、解答题〔共8题,共72分〕17.〔9分〕〔2015秋•武昌区期末〕〔1〕计算:〔x+1〕〔x+2〕〔2〕分解因式:x2y+2xy+y.18.〔9分〕〔2015秋•武昌区期末〕解分式方程:〔1〕;〔2〕.19.〔9分〕〔2015秋•武昌区期末〕如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.20.〔9分〕〔2015秋•武昌区期末〕先化简,再求值:÷〔1+〕,其中x=﹣4.21.〔9分〕〔2015秋•武昌区期末〕如图,已知A〔﹣2,4〕,B〔4,2〕,C〔2,﹣1〕〔1〕作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;〔2〕P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标〔保留作图痕迹〕.22.〔9分〕〔2015秋•武昌区期末〕甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.〔1〕1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?〔2〕1月10日甲与丙去攀登另一座a米高的山,甲保持第〔1〕问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?〔用含a的代数式表示〕23.〔9分〕〔2015秋•武昌区期末〕已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.〔1〕如图1,假设∠BAC=60°,点F与点C重合,求证:AF=AE+AD;〔2〕如图2,假设AD=AB,求证:AF=AE+BC.24.〔9分〕〔2015秋•武昌区期末〕如图,在平面直角坐标系中,A〔8,0〕,点B在第一象限,△OAB为等边三角形,OC⊥AB,垂足为点C.〔1〕直接写出点C的横坐标______;〔2〕作点C关于y轴的对称点D,连DA交OB于E,求OE的长;〔3〕P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH 最短时,求点H的横坐标.2015-2016学年湖北省武汉市武昌区八年级〔上〕期末数学试卷参考答案一、选择题〔共10小题,每题3分,共30分〕1.D;2.D;3.B;4.B;5.B;6.C;7.D;8.C;9.A;10.A;二、填空题〔本大题共6个小题,每题3分,共18分〕11.1;12.5;13.1;14.38°;15.24°;16.或1;三、解答题〔共8题,共72分〕17.;18.;19.;20.;21.;22.;23.;24.〔6,2〕;。
武汉市八年级数学上册期末测试卷(含答案)
湖北省武汉市八年级(上)期末测试数学试卷一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°6.(3分)以下图形中对称轴的数量小于3的是()A. B. C. D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20 8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣110.(3分)下列分式中,最简分式是()[来源:]二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 度.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.14.(3分)分解因式:(2a+b)2﹣(a+2b)2= .15.(3分)若代数式与的值相等,则x= .16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.18.(4分)解方程:19.(8分)计算:21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值./-/-/-//-/-/-/湖北省武汉市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误; B、因为2+4<6,所以不能构成三角形,故B错误; C、因为3+4<8,所以不能构成三角形,故C错误; D、因为3+3>4,所以能构成三角形,故D正确.故选:D.2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°【解答】解:∵在四边形ABCD中,∠A+∠B+∠C+∠D=360°,且∠A+∠B+∠C=260°,/-/-/-//-/-/-/∴∠D=100°,故选:C.4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B./-/-/-//-/-/-/6.(3分)以下图形中对称轴的数量小于3的是() A.B.C.D.【解答】解:A、有4条对称轴; B、有6条对称轴; C、有4条对称轴; D、有2条对称轴.故选:D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 【解答】解:A、x2+x2=2x2,故此选项错误; B、2x3﹣x3=x3,正确; C、x2•x3=x5,故此选项错误; D、(x2)3=x6,故此选项错误;故选:B.9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣1【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误; B、(x﹣y)2=x2﹣2xy+y2,故此选项错误; C、(x+1)(x﹣1)=x2﹣1,正确;/-/-/-//-/-/-/D、(x﹣1)2=x2﹣2x+1,故此选项错误;故选:C.10.(3分)下列分式中,最简分式是() A.B.C. D.【解答】解:A、原式为最简分式,符合题意; B、原式==,不合题意; C、原式==,不合题意;D、原式==,不合题意,故选:A.二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是 3 .【解答】解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③6cm,8cm,10cm;④4cm,8cm,10cm,∵5+6=11,∴②不能够成三角形,故只能画出3个三角形.故答案为:3.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 35 度./-/-/-//-/-/-/【解答】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠A,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【解答】解:∵AD⊥BC于D,BE⊥AC于 E ∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45./-/-/-//-/-/-/14.(3分)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【解答】解:(2a+b)2﹣(a+2b)2 =(2a+b+a+2b)(2a+b﹣a﹣2b) =(3a+3b)(a﹣b) =3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).15.(3分)若代数式与的值相等,则x= 4 .【解答】解:根据题意得: =,去分母得:6x=4(x+2),移项合并同类项得:2x=8,解得:x=4.故答案为:4.16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为 6 .【解答】解:由题意可得,当CD⊥OM时,CD取最小值,∵OB平分∠MON,AE⊥ON于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,/-/-/-//-/-/-/∵A为OB的中点,∴AB=AO,在△ADO与△ABC中,∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故答案为:6.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).18.(4分)解方程:+1=.【解答】解;方程两边都乘以x﹣2得:x﹣3+x﹣2=﹣3,解得:x=1,检验,把x=1代入x﹣2≠0,所以x=1是原方程的解,即原方程的解为x=1.19.(8分)计算:(1)(﹣2a2b)2•(ab)3(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【解答】解:(1)原式=4a4b2•a3b3=a7b5;(2)原式=2x2+x﹣2x﹣1﹣2x2﹣4x+10x+20 =5x+19./-/-/-//-/-/-/20.(8分)先化简,再求值:(﹣)÷(﹣1),其中x=2.【解答】解:当x=2时,∴原式=(+)÷=×==21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.【解答】解:(1)△AOB的面积=3×3﹣×3×1﹣×3×2﹣×2×1 =9﹣1.5﹣3﹣1 =3.5.故△AOB的面积是3.5;(2)如图,由题意得C(﹣1,3),D(3,﹣2),四边形ABCD的面积=5×4﹣×5×4﹣×2×1 =20﹣10﹣1 =9.故四边形ABCD的面积是9./-/-/-//-/-/-/22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【解答】解:△BEF为等腰三角形,理由如下:连CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△CBE,∴∠DCF=∠BEC,CD=CE,∵CD=CE,∴∠CDF=∠CED,又∠BFE=∠CDF+∠DCF,∠BEF=∠BEC+∠CED,∴∠BFE=∠BEF,∴BF=BE,即△BEF为等腰三角形.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A/-/-/-//-/-/-/型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:A型车 B型车进货价格(元)11001400 销售价格(元)今年的销售价格2000【解答】解:(1)设去年售价为a,销售量为b,则今年售价为(a﹣400),销售量为b,依据题意可得,解得a=2000元,b=25辆∴今年A型车每辆售价为1600元.(2)设购进A型车x辆,则购进B型车60﹣x辆,依题意可得 500x+600(60﹣x)≧33000,解得x≤30,∴A型车至多购进30辆.24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC 外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM 的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 DF=2EC ;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.【解答】解:(1)如图1,DF=2EC,理由是:延长BA、CM交于点N,/-/-/-//-/-/-/∵∠BAC=∠BEC=90°,∠AFB=∠EFC,∴∠ABE=∠ACM=∠ABC,∴BE平分∠ABC,∵BE⊥CN,∴BC=BN,∴E是CN的中点,∴NC=2CE,∵AB=AC,∠BAC=∠CAN=90°,∴△BAF≌△CAN,∴BF=CN,∴BF=2EC,即DF=2EC;(2)仍然成立,DF=2EC;理由如下:如图2,作∠PDE=22.5,交CE的延长线于P点,交CA的延长线于N,∵DE⊥PC,∠ECD=67.5,∴∠EDC=22.5°,∴∠PDE=∠EDC,∠NDC=45°,∴∠DPC=67.5°,在△DPE和△DEC中,,∴△DPE≌△DEC(AAS),∴PD=CD,PE=EC,∴PC=2CE,∵∠NDC=45°,∠NCD=45°,∴∠NCD=∠NDC,∠DNC=90°,∴△NDC是等腰直角三角形∴ND=NC且∠DNC=∠PNC,在△DNF和△PNC中,,∴△DNF≌△PNC(ASA),/-/-/-//-/-/-/∴DF=PC,∴DF=2CE.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.【解答】(1)①证明:如图1中,/-/-/-//-/-/-/∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK./-/-/-//-/-/-/∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CBF=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4 ∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.。
武汉开发区2014-2015学年度上学期期末考试八年级数学模拟试题(word版)
武汉开发区2014-2015学年度上学期期末考试八年级数学模拟试题1.使分式12--x x 有意义的x 的取值范围是( ) A .x ≠-1B .x ≠0C .x ≠1D .x ≠2 2、若式子1x +在实数范围内有意义,则x 的取值范围是A .x ≠1B .x ≥1C .x ≤-1D .x ≥-13、下列图案中,不是轴对称图形的是3.下列计算正确的是( )A.52332a a a =+B.()2263a a = C.222)(b a b a +=+ D.53222a a a =∙ 5·下列各式中计算正确的是6.已知5,10==-ab b a ,则22b a +的值为( )A 、80B 、100C 、110D 、1207.如图,点D 在AC 的垂直平分线上,AB ∥CD ,若∠BAC=25°,则∠D 的度数是( )A 、120°B 、130°C 、140°D 、150°8..如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB ,若AB =9,AC =5,则AM =A .5B .6C .7D .89计算2)12(-+y x 的结果是( ) A 、1422++y xB 、1422-+y xC 、y x xy y x --+++221422D 、y x xy y x 2441422--+++10.如图,在△ABC 中,AC =BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连接CD ,给出四个结论:① ∠ADC =45°;② BD =21AE ;③ AC +CE =AB ;④ AB -BC =2MC ;其中正确的结论有( ) A .1个B .2个C .3个D .4个二、填空题11.如果a x =2,a y =3,则a 2x -3y =________12.已知点P (a ,b )与P 1(8,-2)关于y 轴对称,则a +b =_________13.多项式x 2+mx +9是完全平方式,则m =_________14.关于x 的式子162-+-x x ,当x= 时,式子有最 值,且这个值为 。
2015-2016武汉市武昌区八年级(上)期末数学试卷及答案
2015-2016武汉市武昌区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列几何图形不一定是轴对称图形的是()A.角B.等边三角形C.等腰三角形D.直角三角形2.(3分)若分式有意义,则x满足的条件是()A.x=1 B.x=3 C.x≠1 D.x≠33.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.124.(3分)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10 5.(3分)下列分式与分式相等的是()A.B.C.D.﹣6.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)27.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.(3分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11 9.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.(3分)如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值是()A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:=.12.(3分)一个n边形的内角和是540°,那么n=.13.(3分)若x2+2x+m是一个完全平方式,则m=.14.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为.15.(3分)如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为.16.(3分)D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA 于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=时,△DEF为等腰直角三角形.三、解答题(共8题,共72分)17.(9分)(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.18.(9分)解分式方程:(1);(2).19.(9分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.20.(9分)先化简,再求值:÷(1+),其中x=﹣4.21.(9分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.(9分)甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)23.(9分)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.24.(9分)如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH最短时,求点H的横坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1.D.2.D.3.B.4.B.5.B.6.C.7.D.8.C.9.A.10.A.二、填空题(本大题共6个小题,每小题3分,共18分)11.1 12.5 13.1 14.38° 15. 24°.16.或1.三、解答题(共8题,共72分)17.(1)(x+1)(x+2)(2)x2y+2xy+y.18.(1)x=﹣3,(2)x=是增根,分式方程无解.19.略20.,﹣.21.(1)C1(2,1).(2)(2,0).22 .解:(1)设乙的攀登速度为x米/分,则甲的速度为1.2x米/分,+30=,解得x=10,检验:x=10是原分式方程的解,所以1.2x=12,答:甲的平均攀登速度是每分钟12米;(2)设丙的攀登速度为y米/分,依题意得:+60=,解得,检验:是原分式方程的解.所以=.所以甲的平均攀登速度是丙的倍.23.(证明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在FA上截取FM=AE,连接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.24.解:(1)如图1所示:过点B作BF⊥OA,垂足为F.∵OB=AB,BF⊥OA,∴OF=AF=4.∵△OAB为等边三角形,∴∠BOF=60°.∴FB=OB sin60°=8×=4.∴点B的坐标为(4,4).∵AO=OB,OC⊥AB,∴BC=AC.由中点坐标公式可知点C的坐标为(6,2).故答案为:6.(2)设OB的解析式为y=kx,将点B的坐标代入得:4k=4,解得:k=.∴直线OB的解析式为y=.∵点C与点D关于y轴对称,∴点D的坐标为(﹣6,2).设DA的解析式为y=k1x+b.将点A和点D的坐标代入得:,解得:k1=﹣,b=.∴直线DA的解析式为y=.将y=代入y=得:.解得:x=1.∴y=.∴点E的坐标为(1,).由两点间的距离公式可知:OE==2.(3)如图3,连接PB.∵∠HAO+∠PAO=∠BAP+∠PAO=60°,∴∠HAO=∠PAB,在△HAO和△PAB中,∴△HAO≌△PAB(SAS),∴OH=PB,当BP⊥y轴时,PB有最小值为4,此时,∠AOH=∠ABP=120°,∴∠COH=60°过点H作HC⊥x轴于C,∵OH=4,∠COH=60°,∴OC=2,即H点横坐标为﹣2.。
【解析版】2014-2015学年武汉市汉阳区八年级上期末数学试卷
一、选择题(பைடு நூலகம்题 3 分,共 30 分) 1.下列几何图形不一定是轴对称图形的是( )
A. 线段 B. 角 C. 等腰三角形 D. 直角三角形
2.当分式
的值为零时,x 的值为( )
A. 0 B. 2 C. ﹣2 D. ±2
3.若等腰三角形的两内角度数比为 1:4,则它的顶角为( A. 36或 144 B. 20或 120 C. 120 D. 20
23.如图 1,P 为等边△ABC的边 AB上一点,Q 为 BC延长线上一点,且 PA=CQ,连 PQ交 AC 边于 D. (1)证明:PD=DQ. (2)如图 2,过 P 作 PE⊥AC于 E,若 AB=2,求 DE的长.
24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个 四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.
3.若等腰三角形的两内角度数比为 1:4,则它的顶角为( A. 36或 144 B. 20或 120 C. 120 D. 20
)度.
考点: 等腰三角形的性质. 分析: 设两个角分别是 x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶 角的度数. 解答: 解:设两个角分别是 x,4x ①当 x 是底角时,根据三角形的内角和定理,得 x+x+4x=180°,解得 x=30°,4x=120°, 即底角为 30°,顶角为 120°; ②当 x 是顶角时,则 x+4x+4x=180°,解得 x=20°,从而得到顶角为 20°,底角为 80°; 所以该三角形的顶角为 20°或 120°.
)度.
4.下列各式由左边到右边的变形中,是分解因式的为( ) A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题3分,共30分)
1.(3分)下列几何图形不一定是轴对称图形的是()
A.角B.等边三角形C.等腰三角形D.直角三角形【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,
故选:D.
有意义,则x满足的条件是()
2.(3分)若分式x−1
x−3
A.x=1 B.x=3 C.x≠1 D.x≠3
有意义,得
【解答】解:分式x−1
x−3
x﹣3≠0.
解得x≠3,
故选:D.
3.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.12
【解答】解:∵等腰三角形的两边分别是2和10,
∴应分为两种情况:①2为底,10为腰,则2+10+10=22;
②10为底,2腰,而2+2<10,应舍去,
∴三角形的周长是22.
故选:B.
4.(3分)下列运算中正确的是()
A.(a2)3=a5B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10【解答】解:A、(a2)3=a6,故本选项错误;
B、a2•a3=a5,故本选项正确;
C、a6÷a2=a4,故本选项错误;
D、a5+a5=2a5,故本选项错误.
故选:B.
5.(3分)下列分式与分式2y
相等的是()
x
第1页(共14页)。
2014-2015武汉市上学期期末八年级数学试卷及答案
2014-2015学年度第一学期期末考试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A .线段B .角C .等腰三角形D .直角三角形 2. 分式||22x x --的值为零,则x 的值为( ) A . 0 B .2 C .-2 D .2或-2 3.若等腰三角形的两内角度数比为1:4,则它的顶角为( )度 A . 36或144 B . 20或120 C . 120 D . 20 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-5.下列计算错误的是( )A .33345a a a =- B .()3632b a b a =C .()()()523b a a b b a -=-- D .nm n m +=⋅6326.已知m 6x =,3nx =,则2m n x -的值为( )A .12B . 43C .9D .347.若代数式253+x 的值是负数,则x 的取值范围是( ) A . 25- x B . 52- x C . 25- x D .52- x8.一项工程需在规定的日期完成,如果甲队单独做,就要超规定的日期1天,如果乙队单独做,要超过规定的日期4天,现在由甲、乙两队各做3天,剩下的工程由乙队单独做,刚好在规定的日期完成,则规定日期为( )天.A. 6B. 7C. 8D. 99.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是( )A .45°B .50°C . 55°D .60°10. 如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠OPM=50°,则∠AOB=( )A.40°B. 45°C. 50°D.55°.PA第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.若 ,则 的值是____________12. 计算: =____________ 13. 如图,△ABC 中,∠ACB=90°,CD 是高,若∠A=30°,BD=1,则AD=____________ 14. 若 则=____________ 15. 观察:l ×3+1=22 2×4+1=32 3×5+1=424×6+1=52……,请把你发现的规律用含正整数n (n≥2)的等式表示为____________ (n=2时对应第1个式子,……)16. 在平面直角坐标系中,A (4,0),B (0,4),D 在第一象限,且DO=DB,△DOA 为等腰三角形,则∠OBD 的度数为_____________三、解答题 (共72分)17.(本题满分6分)解分式方程:1712112-=-++x x x 18.(本题满分6分)(1) 分解因式 p p p 3)1)(4(++- (2)利用因式分解计算:22255755-19.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°. (1)求∠DAC 的度数;(2)证明:AB=CD . 20.(本题满分7分)计算(1) 24244422-+∙++-x x x x x (2)29631a a --+ 21.(本题满分7分)已知,41=+xx 求(1)221x x + (2)2)2(-x22.(本题满分8分)某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km , 提速后比提速前多行驶50km ,求动车提速后的平均速度.23.(本题满分10分)如图23-1,P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D.(1)证明:PD=DQ.(2)如图23-2,过P 作PE ⊥AC 于E ,若AB=2,求DE 的长.24.(本题满分10分)若一个四边形的一条对角线(相对顶点的连线段)把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)如图24-1,在四边形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求证:BD 是四边形第19题图D CBA第13题图第23-1图第23-2图,211-=-yx yxy x y xy x ---+232)23)(32m n n m -+(6,5==-xy y x 22xy y x -ABCD 的和谐线;(2)如图24-2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A 、B 、C 均在格点上,请在扇形内外各找一个格点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线(分别标在答题卷给出的两个网格图上),并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,请画出图形,并直接写出∠BCD 的度数.25.(本题满分12分)四边形ACBD 是由等边△ABC 和顶角为120°的等腰△ABD 拼成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点. (1) 当E 、F 分别在边AB 上时,如图25-1,求证:BM+AN=MN ;(2) 当E 边BA 的延长线上时,如图25-2,直接写出线段BM 、AN 、MN 之间的等量关系; (3) 在(1)的条件下,若AC=5,AE=1,求BM 的长.2014-2015学年八年级第一学期数学期末考试参 考 答 案一、选择 二、填空11、30; 12、2249m n -; 13、3;14、7; 15、21)1)(1(n n n =++-; 16、15°或45°或60°. 三、解答题17、去分母…… 1分 去括号…… 2分 解方程…… 4分 验最简公分母是否为0……5分 交代方程的根……6分18、(1)展开、整理、分解各1分 (2)用平方差1分,计算2分19、(1)求出中间量∠CDA=75°或∠CAB=120°……2分 求出∠DAC=75°……4分 (2) 证明AC=CD ……5分 AB=CD ……6分20、 (1)三项因式分解各1分,结果=2 1分 (2)最简公分母找对1分,通分后分子正确1分,结果=31-a 1分第25-2图第25-1图第24-1图第24-2图21、(1)2)11222-+=+xx x x (……2分 代值=14……3分 (2)条件变形为0142=+-x x ……5分结论展开为442+-x x ……6分 结果=3 ……7分22.解:提速前动车的速度为xkm/h ,则提速后动车的速度为(x+50)km/h .…1分5050150++=x …… 3分 解得x=150, …… 5分经检验知x=150是原方程的解, ...... 6分 则x+50=200, ...... 7分 所以提速后动车的速度为200km/h. (8)分 作PG ∥BC ,交AC 于G ,……1分 易知△APG 23.(1)是等边三角形,……2分∴AP=PG ,∵AP=CQ ,∴PG=CQ ,……3分可证∴△PGD ≌△QCD ,……4分 ∴PD=DQ ……5分(2)∵PE⊥A C ,△APG 是等边三角形, ∴EG=AE=AG/2,……7分由△PGD≌△QCD,有DG=CD=CG/2,……9分∴DE=EG+DG=AG/2+CG/2=AC/2=1……10分24.解:(1)证明△ADB 是等腰三角形.……1分 证明△BCD 为等腰三角形.……2分∴BD 是梯形ABCD 的和谐线.……3分(2)由题意作图为:图2,图3(图2……4分 图3……6分)(3)如图4,当AD=AC 时,∴∠BCD=60°+75°=135°.如图5,当AD=CD 时,∴∠BCD=90°如图6,当AC=CD 时,∴∠BCD=15°×3=45°. 一种情况给一分,图形全画对给一分。
湖北省武汉市硚口区2015-2016学年度上学期期末测试八年级数学试卷(有答案)
A B C D 2015~2016学年度第一学期期末考试八年级数学试卷一.选择题(共10小题,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.若分式122+-x x 的值为0,则x 的值为 A .2B .-2C .21D .-21 2.以下列各组长度的线段为边,能构成三角形的是A .3,4,8B .5,6,10C .5,6,11D .5,9,153.分式y x 3与223yx的最简公分母是 A .6y B .3y2C .6y2D .6y 34.下列平面图形中,不是..轴对称图形的是5.下列计算正确的是A. 2x 2-4x 2=-2B. 3x +x =3x 2C. 3x ×x =3x 2D. 4x 6÷2x 2=3x 36.下列四个整式:①x 2-4x+4; ②6x 2+3x+1; ③4x 2+4x+1; ④x 2+4xy+2y 2.其中是完全平方式的是A.①③B.①②③C.②③④D.③④7. 如图,等腰△ABC 中,AB=AC , AB 的垂直平分线MN 交AC 于点D ,∠DBC=15°, 则∠A 的度数是A .35°B .40°C .50°D .55°8.已知a-b=10,ab=5,则a 2+b 2的值为A .110B .95C .90D .105 9. AD 是△ABC 的中线,若AB =5,AC =9,则AD 的值不.可能的是 A .3 B .4 C .5 D .810.如图,在四边形ABDC 中, 对角线AD 、BC 交于点O, ο90=AC ∠B , ο90=DC ∠B ,BD=CD,AB =2,AC =4,记△AO C 的面积为S 1、△BO D 的面积为S 2,则S 1 -S 2的值为A .1B .1.5C .2D .2.5二.填空题(共6小题,共18分) 11.将分式约分:253x x =________12.禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为________.13.若一个n 边形的内角和为720°,则边数n =________. 14. 已知a m=2, a n=3, 则2m na+ 的值是 .15.如图,AD ,BE 为锐角△ABC 的高,若BF = AC ,BC = 7,CD = 2, 则AF 的长为_____. 16.如图,△ABC ≌△A’ BC’,∠ABC=90°,∠A’=30°.(0°<∠AB A’≤60°),A’C’与AC交于点F ,与AB 交于点E ,连接BF .当△BEF 为等腰三角形时,则∠AB A’的角度为______.三.解答题(共8小题,共72分) 17.(本题8分)解方程: xx 332=-18.(本题8分)如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF. 求证:(1)△ABC ≌△DEF ;(2)AB ∥DE.19.(本题8分)因式分解FEA'C'AE CDBF(1) 2mx 2-2my 2(2) (2x +4)2-162x20.(本题8分)计算(1) ()()2324322a a a aa ⋅⋅++-(2) [(a +2b)2-(a +2b)( a -2b)-7b 2]÷2b,21.(本题8分)如图,在平面直角坐标系中,已知A (1,2)、B (3,1)、C (4,3). (1) 直接写出点C 关于y 轴的对称点的坐标;(2) 作△ABC 关于直线m (直线m 上各点的纵坐标都为-1)的对称图形△A 1B 1C 1,写出点C 关于直线m 的对称点C 1的坐标;(3)点P 是坐标轴上一点,使△ABP 是等腰三角形,则符合条件的点P 的个数有_______.22.(本题10分)列方程解应用题 (1)甲、乙两人生产相同的零件,甲比乙每小时多生产30个,甲生产900个所用的时间与乙生产600个所用的时间相等,求甲、乙两人每小时各生产多少个零件?(2)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?23.(本题10分)在平面直角坐标系中,点A在y轴正半轴上.(1)如图1,以OA为底边向第一象限作等腰△OAK,直线BC∥y轴,交AK,OK分别于点B,C.求证:AB=OC;(2)如图2,点D(2a,0),(a>0),点P(a,b)在线段AD上,连接PB,PC,求证:PB=PC;(3)如图3(示意草图),已知A(0,2),E(6,3),M(m,0),N(m+1,0),若AM+MN+NE最小,请在备用图中画出线段MN(保留主要画图痕迹),并求出点M的坐标.24.(本题12分)已知:点D,E分别是等边△ABC的边BC,AB上的点,∠ADE=60°.(1)如图1,当点D是BC的中点时,求证:AE=3BE;(2)如图2,点M在AC上,满足∠ADM=60°,求证:BE=CM;(3)如图3,作CF∥AB交ED的延长线于点F,探究线段BE,CF,CD之间的数量关系,并给出证明.2015---2016学年度第一学期期末考试八年级数学考答案1.A 2.B 3.C 4.A5.C6.D7.D8.B9.D 10.A10题详细答案作DE ⊥AB 于E,作DF ⊥AC 于F,△DEB ≅DFC AB+AC=AE+AF S ABCD =SAEDF=2AE =9 S △ABC=4 S △BDC=5 S △DBO:S △DOCS △ABO:S △AOC=AB:AC=1:2 S △AOC=38 S △BOD=35 11.331x 12. 41002.1-⨯ 13.6 14.3615.316.200,400(全对,得3分;否则,每对一个答案得1分)17.解:去分母,方程两边同乘以x(x – 3) 得 ………2分 2x= 3(x – 3) ………4分∴x = 9 ……… 6分 检验:x=9时, x(x – 3)≠0 . ………7分 ∴ 原方程的解是x=9. ………8分 18.证明:(1)∵BE =CF∴ BE+EC =CF+EC, 即 BC=EF ………2分 在△ABC ≌△DEF 中,AB =DE ,AC =DF ,BC=EF ………4分 ∴ △ABC ≌△DEF ………6分(2)由(1)△ABC ≌△DEF 得∠B =∠DEC ………7分∴AB ∥DE. ………8分19.(1)原式=2m(x 2-y 2) ………2分=2m(x+y)(x-y)………4分 (2)原式= (2x +4+4x)(2x +4-4x)………6分=(x+2)2(x-2)2………8分20.(1) 原式=a 6+a 6-8a 6………3分=-6a 6………4分(2) 原式=(a 2+4ab+4b 2-a 2+4b 2-7b 2)÷2b ………7分=(4ab+b 2)÷2b=2a+b 21………8分 21.(1) (-4,3) ………2分 (2)画图略,C 1(4,-5) ………6分 (3)5………8分 22.(1)解:设甲每小时生产x 个零件,则乙每小时生产(x-30)个零件,依题意,得30600900-=x x ………3分 解方程得: x=90 ………4分经检验,原方程的解是x=90 答:甲、乙两人每小时各生产90,60个零件 .………5分(2)解:设提速前这次列车的平均速度为x km/h ,则根据行驶时间的等量关系,得:50s s v x v+=+………7分 方程两边乘()x x v +,得: ()(50)s x v x s +=+ 解得:50sv x =………9分检验:由v ,s 都是正数,当50sv x =时()0x x v +≠,所以,原分式方程的解为50sv x =答:提速前列车的平均速度为50sv km/h .………10分23.(1)证明:依题意AK=OK,得∠KAO=∠KOA, ……1分∵BC ∥y 轴 ∴∠KBC=∠KAO=∠KOA=∠KCB∴KB=KC ……2分 ∴AK-KB=KO-KC, 即AB=OC ; ……3分 (2)连接OP, 过P 作P E ⊥OD 于E ,∵点D (2a ,0),点P(a ,b)∴OD=2a,OE=a, ∴OE=ED, ∴PO=PD ……4分∴∠POD=∠PDO又∵∠POD+∠POA=∠PDO+∠DAO=900∴∠POA=∠PAO ……5分∴ PA=PO, ∠PAB=∠POC 又∵AB=OC ,∴△PAB ≌△POC , ∴PB=PC ……6分 (3)将点E (6,3)向左平移一个单位长度至点E 1(5,3), ……7分 作点A (0,2)关于x 轴的对称点A 1(0,-2) ……8分 连接E 1 A 1交于x 轴点M, 作 E 1 H ⊥A 1A 于H,得E 1 H=5= A 1 H∴∠E 1A 1H=450 ∴∠OMA 1=450 ……9分∴OM=OA 1=2 即点M 的坐标为(2, 0). ……10分24. (1)证明:∵点D 是等边△ABC 的边BC 的中点,∠ADE=60°∴∠ADB= 90°,∠BDE=∠BAD=30° , ∠BED =90° ……1分 在Rt △BED 与Rt △ABD 中∴BD=2BE , AB=2BD =4BE ……2分∴ AE=AB-BE=3BE ……3分(2)作AF ⊥ED 于F ,作AH ⊥DM 于H, ∴∠AFE=∠AHM= 90°∵ ∠ADE=∠ADM=60° ∴ AF=AH ……4分又∵ ∠BAC =60° ,四边形 AEDM 的内角和=3600∴∠AED+∠AMD = 180°, 又∵∠AMH+∠AMD = 180°,∴∠AED =∠AMH ……5分∴△AEF ≌△AMH∴ AE=AM ……6分∵ AB=AC ∴ AB-AE=AC –AM, 即BE=CM. ……7分 方法二延长DE 至G,使DG=AD,则△ADG 是等边三角形 ,△AGE ≌△ADM AE=AM方法三,延长DM至Q,使DQ=AD ,△ADE≌△ADQ AE=AQ 再证AM=AQ(3)延长CF至点N使FN=BE,连接NB,EN.∵CF∥AB∴∠BEN=∠ENF,∠BCF =∠ABC= 60°又∵EN=NE ∴△BEN≌△FNE……8分∴∠BNE=∠FEN∴ EF∥BN∴∠CDF=∠CBN……10分又∵∠ADE+∠ADC +∠CDF= 180°, ∠ACD+∠ADC +∠CAD= 180°∠ADE=∠ACB= 60°∴∠CDF=∠CAD又∠CDF=∠CBN∴∠CAD=∠CBN ……11分又CA=CB, ∠BCF=∠ACB=600 ∴△ACD≌△BCN∴ CD=CN=CF+BE. ……12分方法二在AB上截取EM=CF 由CF∥BM EM=CF 得 EF∥CM ∠BMC=∠BED ∠BED +∠BDE= 60°, ∠BDE+∠ADC = 60°∠BED=∠ADC 再证△BMC≌△CDA 方法三作∠ADP= 60°交AC于P,作∠CDG= 60°交AC于G,由(2)知BE=CP ∠GDP +∠PDC= 60°, ∠CDF+∠PDC = 60°∠GDP=∠CDF △DGP≌△DCF GP=CF CD=GC=GP+PC=CF+BE。
2015-2016学年湖北省武汉市汉阳区八年级(上)期末数学试卷-(附解析答案)
2015-2016学年湖北省武汉市汉阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.有意义,则x的取值应满足()2.(3分)要使分式1x+2A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣2有意义,得【解答】解:由分式1x+2x+2≠0,解得x≠﹣2,故选:D.3.(3分)某种微粒的直径为0.00000508米,那么该微粒的直径用科学记数法可以表示为()A.0.508×10﹣7米B.5.08×10﹣7米C.50.8×10﹣7米D.5.08×10﹣6米【解答】解:0.00000508米,那么该微粒的直径用科学记数法可以表示为5.08×10﹣6米,故选:D.4.(3分)一个长方体的长、宽、高分别为3x﹣4、2x和x,则它的体积为()A.3x3﹣4x2B.6x3﹣8 C.6x3﹣8x2D.6x2﹣8x【解答】解:由题意知,V长方体=(3x﹣4)•2x•x=6x3﹣8x2.故选:C.5.(3分)下列因式分解正确的是()A.x2+4x+4=(x+4)2B.4x2﹣2x+1=(2x﹣1)2C.9﹣6(m﹣n)+(m﹣n)2=(3﹣m﹣n)2D.﹣a2﹣b2+2ab=﹣(a﹣b)2【解答】解:A、x2+4x+4=(x+2)2,本选项错误;B、4x2﹣2x+1不满足完全平方公式的条件,而4x2﹣4x+1=(2x﹣1)2,本选项错误;C、9﹣6(m﹣n)+(m﹣n)2=[3﹣(m﹣n)]2=(3﹣m+n)2,本选项错误;D、﹣a2﹣b2+2ab=﹣(a2+b2﹣2ab)=﹣(a﹣b)2,本选项正确.故选:D.6.(3分)下列等式成立的是()A .1a +2b =3a+bB .22a+b =1a+bC .abab−b 2=aa−b D .a−a+b =﹣aa+b【解答】解:A 、原式=b+2a ab,错误;B 、原式不能约分,错误;C 、原式=abb(a−b)=aa−b,正确;D 、原式=a−(a−b)=﹣aa−b ,错误, 故选:C .7.(3分)解分式方程2x−1+x+21−x=3时,去分母后变形正确的是( )A .2+(x+2)=3(x ﹣1)B .2﹣x+2=3(x ﹣1)C .2﹣(x+2)=3D .2﹣(x+2)=3(x ﹣1)【解答】解:方程变形得:2x−1﹣x+2x−1=3, 去分母得:2﹣(x+2)=3(x ﹣1), 故选:D .8.(3分)已知等腰三角形的一边长为4,另一边长为8,则它的周长是( ) A .12B .16C .20D .16或20【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8, (1)当4是腰时,4+4=8,不能构成三角形;(2)当8是腰时,不难验证,可以构成三角形,周长=8+8+4=20. 故选:C .9.(3分)如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为()A.3cm B.4cm C.4.5cm D.5cm【解答】解:由折叠可得AD=A′D;AE=A′E,∴阴影部分图形的周长为AB+BC+AC=3cm.故选:A.10.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,=72°,∴∠ABC=∠C=180°−∠A2∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(每题3分,共18分)11.(3分)若分式x2−1x+1的值为0,则x=1.【解答】解:分式x 2−1x+1的值为0,得x2﹣1=0且x+1≠0.解得x=1,故答案为:1.12.(3分)计算59.9×60.1= 3599.99 . 【解答】解:原式=(60﹣0.1)(60+0.1) =602﹣0.12 =3600﹣0.01 =3599.99. 故答案为3599.9913.(3分)一个等腰三角形的一个角为50°,则它的顶角的度数是 50°或80° . 【解答】解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°. 故填50°或80°.14.(3分)如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 a 2﹣b 2=(a+b )(a ﹣b ) .【解答】解:a 2﹣b 2=(a+b )(a ﹣b ).15.(3分)若关于x 的方程2x−2+x+m2−x =2的解为正数,则m 的取值范围是 m <6且m ≠0 .【解答】解:∵关于x 的方程2x−2+x+m2−x=2有解,∴x ﹣2≠0, ∴x ≠2,去分母得:2﹣x ﹣m=2(x ﹣﹣2), 即x=2﹣m3,根据题意得:2﹣m3>0且2﹣m3≠2, 解得:m <6且m ≠0. 故答案是:m <6且m ≠0.16.(3分)如图,在△ABC 中,∠A=105°,AD ⊥BC ,垂足为D ,且AB+BD=CD ,则∠C 的度数是 25° .【解答】解:延长DB 至E ,使BE=AB ,连接AE . ∵AB+BD=CD (已知),∴BE+BD=CD (等量代换),即DE=CD ∴∠C=∠E ; ∵BE=AB ,∴∠ABD=2∠E (外角定理); ∵∠BAC=105°,∴∠C=25°(三角形内角和定理).故答案是:25°.三、解答题(共8个小题,共72分)17.(8分)(1)计算:a2•a4+(a2)3﹣2a6;(2)因式分解:3x3﹣12x2+12x.【解答】解:(1)原式=a6+a6﹣2a6=0;(2)原式=3x(x2﹣4x+4)=3x(x﹣2)2.18.(8分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.(1)求证:∠CBE=∠BAD;(2)当△ABC满足什么条件时,AE=CE.直接写出条件.【解答】(1)证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD .(2)当△ABC 满足是等边三角形的条件时,AE=CE .19.(8分)(1)化简∠2∠−1+11−∠; (2)先化简,再求值:(x ﹣2﹣12∠+2)÷4−∠∠+2,其中x 2=4.【解答】解:(1)原式=∠2∠−1﹣1∠−1=∠2−1∠−1 =(∠−1)(∠+1)∠−1=x+1;(2)原式=(∠2−4∠+2﹣12∠+2)•∠+24−∠=(∠−4)(∠+4)∠+2•∠+24−∠=﹣x ﹣4. ∵x 2=4, ∴x=±2,当x=﹣2时,分式无意义,则x=2; 当x=2时,原式=﹣2﹣4=﹣6.20.(8分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护的微型动物首脑会议,蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一张纸条后提前2小时独自先行,蚂蚁王按既定时间出发,结果他们同时到达,已知蜗牛神的速度是蚂蚁王的14,求它们各自的速度.【解答】解:设蜗牛神的速度为x 米/小时,则蚂蚁王的速度为4x 米/小时,根据题意得:16∠﹣164∠=2,解得:x=6.经检验,x=6是分式方程的解,且符合题意, ∴4x=24.答:蜗牛神的速度为6米/小时,蚂蚁王的速度为24米/小时.21.(10分)(1)观察下列各式11×2=1﹣12,12×3=12﹣13,13×4=13﹣14,14×5=14﹣15,…,请根据规律写出第n 个等式;(2)若1(2∠−1)(2∠+1)=∠2∠−1+∠2∠+1,对任意自然数n 都成立,则a= 12 ,b= ﹣12 ; (3)根据(2)的结论,计算11×3+13×5+15×7+…+197×99.【解答】解:(1)第n 个等式为1∠(∠+1)=1∠﹣1∠+1;(2)∵∠2∠−1+∠2∠+1=∠(2∠+1)+∠(2∠−1)(2∠−1)(2∠+1)=2(∠+∠)∠+∠−∠(2∠−1)(2∠+1)=1(2∠−1)(2∠+1),∴{∠+∠=0∠−∠=1, 解得:{∠=12∠=−12,故答案为:12,﹣12;(3)原式=12(1﹣13+13﹣15+15﹣17+…+197﹣199) =12×(1﹣199)=12×9899=4999.22.(8分)如图,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在射线CB 上,且ED=EC ,以CE 为边作等边△CEF ,连接EF .(1)求证:BE=AF ;(2)猜想线段AB ,DB ,AF 之间的数量关系,并证明你的猜想.【解答】(1)证明:∵△ABC ,△CEF 都是等边三角形,∴CB=CA ,CE=CF ,∠BCA=∠ECF=60°,∴∠BCE=∠ACF ,在△BCE 和△ACF 中,{∠∠=∠∠∠∠∠∠=∠∠∠∠∠∠=∠∠,∴△BCE ≌△ACF .∴BE=AF .(2)解:结论AB ﹣AF=BD .理由:作DM ∥AC 交AB 的延长线于M .∴∠M=∠CAE=∠ABC=∠DBM=60°,∴△DBM是等边三角形,∴DM=BM=BD,∵ED=EC,∴∠EDC=∠ECD,∵∠EBC=∠EDC+∠DEM=60°,∠ECB+∠ACE=60°,∴∠DEM=∠ACE,∴△EDM≌△CAE,∴DM=AE,EM=AC=AB,∴AE=BM=BD,∵BE=AF,∴AB﹣AF=AB﹣BE=AE=BD,∴AB﹣AF=BD.23.(10分)有足够多的如图所示的正方形和长方形的卡片.(1)选取1号、2号、3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式(a+b)2=a2+2ab+b2成立,请画出这个正方形;(2)小明想用类似(1)的方法解释多项式乘法(a+b)(2a+3b)=2a2+5ab+3b2,那么用2号卡片3张,3号卡片5张;(3)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是(a+2b)(a+b)=a2+3ab+2b2.【解答】解:(1)如图所示,;(2)1号正方形的面积为a2,2号正方形的面积为b2,3号长方形的面积为ab,所以需用2号卡片3张,3号卡片5张.故答案为:3,5;(3)根据题意画图如下:这个等式是(a+2b)(a+b)=a2+3ab+2b2;故答案为:(a+2b)(a+b)=a2+3ab+2b2.24.(12分)直角三角形有一个重要的性质:在Rt△ABC中,∠C=90°,∠A=30°,则AB:BC:AC=2:1:√3,运用该性质可解决下面问题.已知等边△ABC的边长为2√3.(1)如图1,过等边△ABC的顶点A,B,C依次作AB、BC、CA的垂线围成△MNG.①求证:△MNG是等边三角形;②求MN的长.(2)在等边△ABC内取一点,过点O分别作OD⊥AB,OE⊥BC,OF⊥BC垂足分别为点D、E、F.①如图2,若点O是△ABC的三条高的交点,我们可利用三角形面积公式或等边三角形性质得到两个猜想(不必证明);猜想1:OD+OE+OF的值为3;猜想2:AD+BE+CF的值为3√3②如图3,若点O是等边△ABC内任意一点,则①中的两个猜想是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.【解答】(1)①证明:∵△ABC为等边三角形,∴∠ABC=60°.AB=BC=AC,∵BC⊥MN,BA⊥MG,∴∠CBM=∠BAM=90°.∴∠ABM=90°﹣∠ABC=30°.∴∠M=90°﹣∠ABM=60°.同理:∠N=∠G=60°.∴△MNG 为等边三角形.②解:在Rt △ABM 中,BM=∠∠∠∠∠∠=√3√32=4,在Rt △BCN 中,BN=∠∠∠∠∠∠=√3√3=2,∴MN=BM+BN=6.(2)解:①∵△ABC 是等边三角形,点O 是△ABC 的三条高的交点, ∴OD=OE=OF=12OB ,AD=BE=CF=12AC=√3,∴OD+OE+OF=BF=√∠∠2−∠∠2=√(2√3)2−(√3)2=3;AD+BE+CF=3√3;故答案为:3;3√3;②①中的两个猜想仍然成立;理由如下:连接OA 、OB 、OC ,如图所示:由①得:△ABC 的面积=12×2√3×3=3√3,又∵△ABC 的面积=△OAB 的面积+△OBC 的面积+△OAC 的面积=12AB•OD +12BC•OE +12AC•OF=12(OD+OE+OF )•AB=3√3,∴OD+OE+OF=√323=3;设AB=BC=AC=a ,根据勾股定理得:BE 2+OE 2=OB 2=BD 2+OD 2①,CF 2+OF 2=OC 2=CE 2+OE 2②,AD 2+OD 2=AO 2=AF 2+OF 2③,①+②+③得:BE 2+CF 2+AD 2=BD 2+CE 2+AF 2,∴BE 2+CF 2+AD 2=(a ﹣AD )2+(a ﹣BE )2+(a ﹣CF )2=a 2﹣2AD•a +AD 2+a 2﹣2BE•a +BE 2+a 2﹣2CF•a +CF 2整理得:2a (AD+BE+CF )=3a 2∴AD+BE+CF=32a=32×2√3=3√3.。
武汉市武昌区2015-2016学年八年级上期末数学试卷含答案解析
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷 一、选择题(共10小题,每小题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A.角B.等边三角形C.等腰三角形D.直角三角形2.若分式有意义,则x满足的条件是( )A.x=1 B.x=3 C.x≠1 D.x≠33.若等腰三角形的两边长分别是2和10,则它的周长是( )A.14 B.22 C.14或22 D.124.下列运算中正确的是( )A.(a2)3=a5 B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a105.下列分式与分式相等的是( )A. B.C.D.﹣6.下列因式分解结果正确的是( )A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3) D.a2﹣2a+1=(a+1)27.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°8.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣119.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD 的长为( )A.3 B.4 C.5 D.610.如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值时( )A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:= .12.一个n边形的内角和是540°,那么n= .13.若x2+2x+m是一个完全平方式,则m= .14.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为 .15.如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为 .16.D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n= 时,△DEF为等腰直角三角形.三、解答题(共8题,共72分)17.(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.18.解分式方程:(1);(2).19.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.20.先化简,再求值:÷(1+),其中x=﹣4.21.如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)23.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.24.如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标 ;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH 最短时,求点H的横坐标.2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A.角B.等边三角形C.等腰三角形D.直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若分式有意义,则x满足的条件是( )A.x=1 B.x=3 C.x≠1 D.x≠3【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:分式有意义,得x﹣3≠0.解得x≠3,故选:D.【点评】本题考查了分式有意义的条件,利用分母不为零分式有意义是解题关键.3.若等腰三角形的两边长分别是2和10,则它的周长是( )A.14 B.22 C.14或22 D.12【考点】等腰三角形的性质;三角形三边关系.【分析】本题没有明确已知的两边的具体名称,要分为两种情况即:①2为底,10为腰;②10为底,2为腰,可求出周长.注意:必须考虑三角形的三边关系进行验证能否组成三角形.【解答】解:∵等腰三角形的两边分别是2和10,∴应分为两种情况:①2为底,10为腰,则2+10+10=22;②10为底,2腰,而2+2<10,应舍去,∴三角形的周长是22.故选B.【点评】本题考查了等腰三角形的性质及三角形三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.下列运算中正确的是( )A.(a2)3=a5 B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则求解即可.【解答】解:A、(a2)3=a6,故本选项错误;B、a2•a3=a5,故本选项正确;C、a6÷a2=a4,故本选项错误;D、a5+a5=2a5,故本选项错误.故选:B.【点评】本题主要考查了同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项,解题的关键是熟记同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则.5.下列分式与分式相等的是( )A. B.C.D.﹣【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数或(整式),结果不变,可得答案.【解答】解:A、分子乘以2y,分母乘以x,故A错误;B、分子分母都乘以x,故B正确;C、分子除以2,分母乘以2,故C错误;D、分子、分母、分式改变其中的任意两项的符号,结果不变,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零数或(整式),结果不变,注意分子、分母、分式改变其中的任意两项的符号,结果不变.6.下列因式分解结果正确的是( )A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3) D.a2﹣2a+1=(a+1)2【考点】因式分解-十字相乘法等;因式分解-运用公式法.【分析】将各自分解因式后即可做出判断.【解答】解:A、原式=(x+1)(x+2),故本选项错误;B、原式=(2x+3)(2x﹣3),故本选项错误;C、原式=(x﹣2)(x﹣3),故本选项正确;D、原式=(a﹣1)2,故本选项错误;故选:C.【点评】此题考查了因式分解﹣十字相乘法,提公因式法,以及运用公式法,熟练掌握因式分解的方法是解本题的关键.7.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.8.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD 的长为( )A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.10.如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值时( )A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1【考点】全等三角形的判定.【分析】要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k满足的条件.【解答】解:当AC<BCsin∠ABC,即1<ksin30°,即k>2时,三角形无解;当AC=BCsin∠ABC,即1=ksin30°,即k=2时,有一解;当BCsin∠ABC<AC<BC,即ksin30°<1<k,即1<k<2,三角形有2个解;当0<BC≤AC,即0<k≤1时,三角形有1个解.综上所述,k的取值范围是k=2或0<k≤1.故选:A.【点评】本题考查了全等三角形的判定、三角形个数的问题;重在分情况分类讨论.易错点在于可能漏掉k=2的情况.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:= 1 .【考点】分式的加减法.【专题】计算题.【分析】这两个分式的分母相同,直接让分子相加即可.【解答】解:原式==1.【点评】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可. 12.一个n边形的内角和是540°,那么n= 5 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.13.若x2+2x+m是一个完全平方式,则m= 1 .【考点】完全平方式.【分析】根据完全平方式得出x2+2x+m=x2﹣2x•1+12,即可求出答案.【解答】解:∵x2+2x+m是一个完全平方式,∴x2+2x+m=x2﹣2x•1+12,∴m=1,故答案为:1.【点评】本题考查了对完全平方公式的应用,注意:完全平方式有两个,是a2+2ab+b2和a2﹣2ab+b2.14.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为 38° .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到AB=AC,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【解答】解:设∠A的度数为x,∵MN是AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=x,∵AB=AC,∴∠ABC=∠C=33°+x,∴33°+x+33°+x+x=180°,解得x=38°.故答案为:38°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为 24° .【考点】翻折变换(折叠问题).【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°﹣120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°.∴∠FEB+∠EFC=360°﹣120°=240°.∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°.∴∠1+∠2=240°﹣120°=120°.∵∠1=96°,∴∠2=120°﹣96°=24°.故答案为:24°.【点评】本题主要考查的是翻折的性质、三角形的内角和定理、求得∠1+∠2=120°是解题的关键.16.D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n= 或1 时,△DEF为等腰直角三角形.【考点】等腰直角三角形.【分析】分两种情况:①当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出结果;②当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【解答】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=CD,∴n=;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.故答案为:或1.【点评】本题考查了等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解决问题的关键.三、解答题(共8题,共72分)17.(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.【考点】提公因式法与公式法的综合运用;多项式乘多项式.【专题】计算题;因式分解.【分析】(1)原式利用多项式乘以多项式法则计算,合并即可得到结果;(2)原式提取y,再利用完全平方公式分解即可.【解答】解:(1)原式=x2+2x+x+2=x2+3x+2;(2)原式=y(x2+2x+1)=y(x+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.解分式方程:(1);(2).【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=x﹣3,移项合并得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:2(2x+1)=4,去括号得:4x+2=4,移项合并得:4x=2,解得:x=,经检验x=是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定定理得到△ABC≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴∠A=∠D.【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.20.先化简,再求值:÷(1+),其中x=﹣4.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分,再除法运算化为乘法运算,然后约分得到原式=,再把x的值代入计算即可.【解答】解:原式=÷=•=,当x=﹣4时,原式==﹣.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据关于x轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.【解答】解:(1)如图1所示:∵点C与点C1关于x轴对称,∴C1(2,1).(2)如图2所示:根据图形可知点P的坐标为(2,0).【点评】本题主要考查的是轴对称变换,掌握关于x轴对称点的坐标特点是解题的关键. 22.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)【考点】分式方程的应用.【分析】(1)设乙的攀登速度为x,则甲的速度为1.2x,根据“甲比乙早30分钟到达顶峰”列出方程并解答.(2)设丙的攀登速度为y,根据“比丙晚出发1小时,结果两人同时到达顶峰”列出方程并解答.【解答】解:(1)设乙的攀登速度为x,则甲的速度为1.2x,+30=,解得x=10,检验:x=10是原分式方程的解,所以1.2x=12,答:甲的平均攀登速度是每分钟12米;(2)设丙的攀登速度为y,依题意得:+60=,解得,检验:是原分式方程的解.所以=.【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.23.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由∠BAC=∠EDF=60°,推出△ABC、△DEF为等边三角形,于是得到∠BCE+∠ACE=∠DCA+∠ECA=60°,推出△BCE≌△ACD(SAS),根据全等三角形的性质得到AD=BE,即可得到结论;(2)在FA上截取FM=AE,连接DM,推出△AED≌△MFD(SAS),根据全等三角形的性质得到DA=DM=AB=AC,∠ADE=∠MDF,证得∠ADM=∠EDF=∠BAC,推出△ABC≌△DAM (SAS),根据全等三角形的性质得到AM=BC,即可得到结论.【解答】证明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在FA上截取FM=AE,连接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.24.如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标 (6,2) ;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH 最短时,求点H的横坐标.【考点】一次函数综合题.【分析】(1)如图1所示:过点B作BE⊥OA,垂足为E.由等腰三角形三线合一的性质可知OF=AF=4、BC=AC,由等边三角形的性质可知:∠BOF=60°,由特殊锐角三角函数值可知;FB=4,从而得到点B的坐标为(4,4),由中点坐标公式可知点C的坐标为(6,2);(2)方法1:设OB的解析式为y=kx,将点B的坐标代入得:k=,于是得到直线OB的解析式为y=.由关于y轴对称的点的坐标特点可求得点D的坐标,然后依据待定系数法可求得直线AD的解析式为y=.将y=代入y=可求得点E的坐标为(1,).由两点间的距离公式可知:OE==2;方法2:连接CD,交OB于F.由关于y轴对称对称的点坐标坐标特点可知:CD∥OA,D(﹣6,2),从而得到DC=12,由题意可知△BCF为等边三角形,从而得到CF=4,然后可求得DF=12﹣4=8=OA,依据AAS可证明△DEF≌△AEO(AAS),由全等三角形的性质可知OE=EF,从而可求得OE=2;(3)如图3,连接PB.依据SAS可证明△HAO≌△PAB,由全等三角形的性质可知:OH=PB,由垂线段最短的性质可知:当BP⊥y轴时,PB有最小值为4,由PB⊥y轴可知∠AOH=∠ABP=120°,从而得到∠COH=60°,过点H作HC⊥x轴于C,由OH=4,∠COH=60°,可求得OC=2.【解答】解:(1)如图1所示:过点B作BE⊥OA,垂足为E.∵OB=AB,BF⊥OA,∴OF=AF=4.∵△OAB为等边三角形,∴∠BOF=60°.∴FB=OBsin60°=8×=4.∴点B的坐标为(4,4).∵AO=OB,OC⊥AB,∴BC=AC.由中点坐标公式可知点C的坐标为(6,2).故答案为:(6,2).(2)方法1:设OB的解析式为y=kx,将点B的坐标代入得:4k=4,解得:k=.∴直线OB的解析式为y=.∵点C与点D关于y轴对称,∴点D的坐标为(﹣6,2).设DA的解析式为y=k1x+b.将点A和点D的坐标代入得:,解得:k1=﹣,b=.∴直线DA的解析式为y=.将y=代入y=得:.解得:x=1.∴y=.∴点E的坐标为(1,).由两点间的距离公式可知:OE==2.方法2:如图2所示:连接CD,交OB于F.∵点C与点D关于y轴对称,∴CD∥OA,点D(﹣6,2).∴△BCF为等边三角形,∴CF=4,CD=12.∴DF=12﹣4=8=OA.在△DEF和△AEO中,∴△DEF≌△AEO(AAS),∴OE=EF=OF,∵BF=BC=4,∴OF=4,∴OE=2.(3)如图3,连接PB.∵∠HAO+∠PAO=∠BAP+∠PAO=60°,∴∠HAO=∠PAB,在△HAO和△PAB中,∴△HAO≌△PAB(SAS),∴OH=PB,当BP⊥y轴时,PB有最小值为4,此时,∠AOH=∠ABP=120°,∴∠COH=60°过点H作HC⊥x轴于C,∵OH=4,∠COH=60°,∴OC=2,即H点横坐标为﹣2.【点评】本题主要考查的是一次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式、全等三角形的性质和判定、特殊锐角三角函数、垂线段的性质、等边三角形的性质,证得当BP⊥y轴时,OH有最小值是解题的关键.2016年2月23日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年度第一学期期末考试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A .线段B .角C .等腰三角形D .直角三角形 2. 分式||22x x --的值为零,则x 的值为( ) A . 0 B .2 C .-2 D .2或-2 3.若等腰三角形的两内角度数比为1:4,则它的顶角为( )度 A . 36或144 B . 20或120 C . 120 D . 20 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-5.下列计算错误的是( )A .33345a a a =- B .()3632b a b a = C .()()()523b a a b b a -=-- D .nm n m +=⋅6326.已知m 6x =,3nx =,则2m n x -的值为( )A .12B . 43C .9D .347.若代数式253+x 的值是负数,则x 的取值范围是( ) A . 25- x B . 52- x C . 25- x D .52- x8.一项工程需在规定的日期完成,如果甲队单独做,就要超规定的日期1天,如果乙队单独做,要超过规定的日期4天,现在由甲、乙两队各做3天,剩下的工程由乙队单独做,刚好在规定的日期完成,则规定日期为( )天.A. 6B. 7C. 8D. 99.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是( )A .45°B .50°C . 55°D .60°10. 如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠OPM=50°,则∠AOB=( )A.40°B. 45°C. 50°D.55°第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.若 ,则 的值是____________12. 计算: =____________ 13. 如图,△ABC 中,∠ACB=90°,CD 是高,若∠A=30°,BD=1,则AD=____________ 14. 若 则=____________ 15. 观察:l×3+1=22 2×4+1=32 3×5+1=424×6+1=52……,请把你发现的规律用含正整数n (n ≥2)的等式表示为____________ (n=2时对应第1个式子,……)16. 在平面直角坐标系中,A (4,0),B (0,4),D 在第一象限,且DO=DB,△DOA 为等腰三角形,则∠OBD 的度数为_____________三、解答题 (共72分)17.(本题满分6分)解分式方程:1712112-=-++x x x 18.(本题满分6分)(1) 分解因式 p p p 3)1)(4(++- (2)利用因式分解计算:22255755-19.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°..PABO第10题图第19题图D CBA第13题图 第9题图,211-=-yx yxy x yxy x ---+232)23)(32m n n m -+(6,5==-xy y x 22xyy x -(1)求∠DAC 的度数;(2)证明:AB=CD .20.(本题满分7分)计算(1) 24244422-+∙++-x x x x x (2)29631a a --+21.(本题满分7分)已知,41=+xx 求(1)221x x + (2)2)2(-x22.(本题满分8分)某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km , 提速后比提速前多行驶50km ,求动车提速后的平均速度.23.(本题满分10分)如图23-1,P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D. (1)证明:PD=DQ.(2)如图23-2,过P 作PE ⊥AC 于E ,若AB=2,求DE 的长.24.(本题满分10分)若一个四边形的一条对角线(相对顶点的连线段)把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)如图24-1,在四边形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求第23-1图第23-2图证:BD 是四边形ABCD 的和谐线;(2)如图24-2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A 、B 、C 均在格点上,请在扇形内外各找一个格点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线(分别标在答题卷给出的两个网格图上),并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,请画出图形,并直接写出∠BCD 的度数.25.(本题满分12分)四边形ACBD 是由等边△ABC 和顶角为120°的等腰△ABD 拼成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点.(1) 当E 、F 分别在边AB 上时,如图25-1,求证:BM+AN=MN ;(2) 当E 边BA 的延长线上时,如图25-2,直接写出线段BM 、AN 、MN 之间的等量关系; (3) 在(1)的条件下,若AC=5,AE=1,求BM 的长.2014-2015学年八年级第一学期数学期末考试参 考 答 案一、选择 第25-2图第25-1图第24-1图第24-2图二、填空11、30; 12、2249m n -; 13、3;14、7; 15、21)1)(1(n n n =++-; 16、15°或45°或60°.三、解答题17、去分母…… 1分 去括号…… 2分 解方程…… 4分 验最简公分母是否为0…… 5分 交代方程的根…… 6分18、19、(1)展开、整理、分解各1分 (2)用平方差1分,计算2分20、(1)求出中间量∠CDA=75°或∠CAB=120°……2分 求出∠DAC=75°……4分 (2) 证明AC=CD ……5分 AB=CD ……6分20、 (1)三项因式分解各1分,结果=2 1分 (2)最简公分母找对1分,通分后分子正确1分,结果=31-a 1分21、(1)2)11222-+=+xx x x (……2分 代值=14……3分(2)条件变形为0142=+-x x ……5分结论展开为442+-x x ……6分 结果=3 ……7分22.解:提速前动车的速度为xkm/h ,则提速后动车的速度为(x+50)km/h .…1分 5050150++=x …… 3分 解得x=150, …… 5分经检验知x=150是原方程的解,……6分则x+50=200,……7分所以提速后动车的速度为200km/h.……8分23.(1)作PG∥BC,交AC于G,……1分易知△APG是等边三角形,……2分∴AP=PG,∵AP=CQ,∴PG=CQ,……3分可证∴△PGD≌△QCD,……4分∴PD=DQ……5分(2)∵PE⊥A C,△APG是等边三角形,∴EG=AE=AG/2,……7分由△PGD≌△QCD,有DG=CD=CG/2, (9)分∴DE=EG+DG=AG/2+CG/2=AC/2=1 (10)分24.解:(1)证明△ADB是等腰三角形.……1分证明△BCD为等腰三角形.……2分∴BD是梯形ABCD的和谐线.……3分(2)由题意作图为:图2,图3(图2……4分图3……6分)(3)如图4,当AD=AC时,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴∠BCD=90°如图6,当AC=CD时,∴∠BCD=15°×3=45°.一种情况给一分,图形全画对给一分。
25.(1)证明:延长NA到Q,使得AQ=BM,连接DQ. ……1分可证明△DAQ≌△DBM. ……2分则DM=DQ,∠ADQ=∠BDM,∴∠QDN=∠MDN=60°. ……3分可证△MND≌△QND(SAS). ……4分∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN. ……5分(2)MN+AN=BM.……8分(3)过点M作MH∥AC交AB于G,交DN于H,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH. ……9分∴GH=MH-MG=MN-BM=AN,即AN=GH.……10分可证∴△ANE≌△GHE,∴AE=EG=1,……11分∴BM=BG=3.……12分。