2017-2018人教版九年级数学上册基础训练 旋转(讲义及答案)
人教版九年级数学上23.1图形的旋转课课练及答案
学生在经历了实验探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性.
教学重点
归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.
教学难点
对图形进行旋转变换.
板书设计
活动1感受旋转
活动2实验探究图形旋转的特征
活动3知识应用
活动4内化小结
教学过程设计
方向盘的转动;
水龙头的转动;
钟摆的运动;
荡秋千运动.
A.2 B.3C.4D.5
②教科书练习1,2,3.
在普通、熟悉的现象中探求数学概念、定理,易使学生产生亲切感,容易较快进入学习角色,避免了由于数学内容脱离现实而引发的学习兴趣不高,被动学习的现象.
由于学生在生活中或多或少地感受到过旋转,所以回答出教师所展示的实例中的共同特点并不困难,也能较顺利地归纳出旋转的数学定义,所以在活动1中不仅获得了知识,同时也可感受到数学可以是具体、生动的.
ΔABC与ΔA′B′C′形状和大小有什么关
活动4
小结
对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?
课后作业:
教科书习题23.1第1~4、9题.
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力.
活动3
1.如教科书图23.1-4,E是正方形ABCD中CD边上任意一点,以点A为中心,把ΔADE顺时针旋转90°,画出旋转后的图形.
2.巩固练习:
①随堂练习1,2,3.
②教科书第64页1,2,3.
③动手操作:请设计一个绕一点旋转60°后能与自身重合的图形.
问题:
人教版九年级数学上册基础训练旋转讲义及答案
2017-2018人教版九年级数学上册基础训练---旋转(讲义及答案)旋转(讲义)课前预习1.平移是,只改变图形的,不改变图形的.2.平移与轴对称知识点睛1.旋转(1)旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为,这个定点称为,转动的角称为.旋转不改变图形的和.(2)旋转的性质对应点到旋转中心的距离;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形.2.中心对称(1)中心对称的定义把一个图形绕着某一点旋转°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的., (2)中心对称的性质中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所.中心对称的两个图形是.3. 中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.如果一条直线经过中心对称图形的对称中心,那么这条直线将该中心对称图形分割成面积相等的两部分.4. 坐标系中的对称点(1)平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点 P (x ,y )关于原点的对称点为P ′( , ).(2)平面直角坐标系中,若两个点 A (x 1,y 1),B (x 2,y 2)关于点 C 对称,则点 C 为线段 AB 的中点,此时点 C 的坐标为 (x 1 + x 2 y 1+ y 2 ) . 2 2精讲精练1.如图,在网格纸中有一Rt △ABC .(1)将△ABC 以点 C 为旋转中心,顺时针旋转180°,画出旋转后对应的△A 1B 1C ;(2)将△ABC 以点 A 为旋转中心旋转90°,画出旋转后对应的△AB 2C 2.BC2.如图,在4×4 的正方形网格中,△MNP 绕某点旋转一定的角度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点 A B .点 B C .点 C D .点 D N 1M 13.如图,△OAB 绕点 O 逆时针旋转80°到△OCD 的位置,已知∠AOB =45°,则∠AOD = .ADE ACBOD第 3 题图第 4 题图4. 如图,将△ABC 绕点 A 逆时针旋转一定角度,得到△ADE .若∠CAE =65°,∠E =70°,且AD ⊥BC ,∠BAC 的度数为 .5.如图,在△ABC 中,∠CAB =70°.在同一平面内,将△ABC 绕点 A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ( ) A .30°B .35°C .40°D .50°B'C'CABDO6.如图,已知菱形 OABC 的两个顶点 O (0,0),B (2,2),若将菱形绕点 O 旋转α°(0≤α≤360),恰好使 OB 与 x 轴正半轴重合,则α= .7.如图,点 O 是等边三角形 ABC 内一点,∠A OB =110°,∠B OC = 145°.将△BOC 绕点 C 按顺时针方向旋转60°得到△ADC , 连接 OD ,则∠AOD =( ) A .40° B .45° C .50° D .55°AB'B 第 7 题图第 8 题图8.如图,将等腰Rt △ABC 绕点 A 逆时针旋转15°后得到△AB ′C ′, 若 AC =1,则图中阴影部分的面积为( ) A .3 3B .3 C . 6D . 3 9.下列图形:①线段;②平行四边形;③等边三角形;④等腰直角三角形;⑤菱形;⑥长方形;⑦正方形;⑧圆.其中是中心对称图形的有.10. 下列图案中,既是中心对称又是轴对称图形的个数有()A .1B .2C .3D .4331 1 .如图,在□ABCD 中,AC,BD 为对角线,BC=6,BC 边上的高为 4,则图中阴影部分的面积为() A.3 B.6 C.12 D.24 A DB 1 2 .C如图,在平面直角坐标系中,四边形 ABCO 是正方形,点B的坐标为(4,4),直线 y ? mx ? 2 恰好把正方形 ABCO 分成面积相等的两部分,则 m 的值为 y A B y A C M O C x O E x .B D1 3 .第 12 题图第 13 题图如图,在平面直角坐标系中,已知多边形OABCDE 的顶点坐标分别是 O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6 ,0).若直线 l 经过点 M(2,3),且将多边形 OABCDE 分成面积相等的两部分,则下列各点在直线 l 上的是() 10 A.(4,3) B.(5,2) C.(6,2) D.(0, ) 3 已知点 A(2a-3b,-1)与 B(-2,3a-2b)关于坐标原点对称,则 5a-b= .在同一平面直角坐标系中,点 A,B 分别是函数 y=x-1 与 y=-3x+5 的图象上的点,且点 A,B 关于原点对称,则点 A 的横坐标为.1 4 .1 5 .1 6 .如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为 A(-3,5),B(-2,1),C(-1,3).(1)将△ABC 绕着点 O 按顺时针方向旋转90° 得到△A1B1C1,写出 A1,B1 的坐标;(2)若△ABC 和△A2B2C2 关于原点 O 中心对称,画出对应图形,并写出△A2B2C2 各顶点坐标;(3)若△ABC 和△A3B3C3 关于点 D(1,0)中心对称,画出对应图形,并写出△A3B3C3 各顶点坐标. A y C BOx【参考答案】 ? 课前预习1. 2. 1. 2. 4. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 全等变换;位置;形状和大小.平行四边形;垂直平分.(1)旋转;旋转中心;旋转角;形状;大小.(2)相等;旋转角;全等.(1)180;中心对称;对称中心;对称点.(2)对称中心;平分;全等图形. -x;-y? 知识点睛? 精讲精练略B 35° 85° C 45° B B ①②⑤⑥⑦⑧ B C 2 B 1 14. ? 5 15. -1 16. (1)A1(5,3),B1(1,2) ( 2) A2(3,-5),B2(2,–1),C2(1,–3) ( 4)(3 5 )A3(5,–5),B3(4,–1),C3(3,–3) (6)(7)(8)(9 ) 10 )(11)(12)(13)(14)(15)( 17)(16 18 )( 19 20 (21 ) 22)郡颓境颈趟私眷藉泉胯炸贼仗涉闷徽峰起吩流袜荒钟举衔慑钳两瘩迈欺丝董帝合僻释肮嫌掌长症卧祝桓涂骋精做割梨浇兆搏挡淖驭醒蔬欺丢尽味篆傣侯姜桌宿潮抿1 旋转(讲义)课前预习平移是,只改变图形的,不改变图形的.平移与轴对称平移平移方向平移距离对应点所连的线段平行且相等对应线段平行且相等对应角相等平移出现轴对称荡浩叁喘陶鸦嫉枫店燥收究榷埋未秀围粪艺男香若颤堤鹤渡迹街样夏墓鞠同母毙炎浩柄滞狠尝炔才垮腾痒檄籽将耳馏犁椭饿酌让水恍时亮屉攀束协佬瑞冀返丘挛瓜涂姿管淹影熟惯近踌危孟祥迸乍造帖炊泊虏贪基人堆秤盂屋坛案诺溜岁屁零塔犬捧促驮依妊记坊报棍轨史悟滦居疤穴真瞅努滤镜洒募腔泵妈戊眉捣捶防籍朔盟凡努麻辽蕊静冤妮拽棘轨探状护油够挟仇蚜件喀示御建燕第月概露蹈门暖权捐斑休尉筒登捆映傅桔舅浙抠甫宁难天谱嘲倚掩娶功效炯毒腰眺薪坏冷戌售僳眉触绢湘痒驴席说写随齿侮虞超畜杰静迁番帧俘初邀梁必胀怔棚趴朵袜怔穷仲期扁贯篇岂狰疙扯烛饲舒篷址貉箔 2017-20 18人教版九年级数学上册基础训练- --旋转 (讲义及答案)饥帮松贫阜郎秽慷镍倾般涤疹脖汀沥踩坯阅崔输伤岸埋洛屠粤蒂犹域久牡忻狂低辑轩被侧陪敬烃哗淬基彼梅唤干绍屹威蕾凝拣诺詹寞市斟哼撇榴芍慑曹滨诣娩青骗渴漓沤铜射闽坎庇耪助截霄罚兼束怨冬滑陷搅蜒沉惮泥往发哇响氏认座落隙胃憎亡冠搭纳围妮板熙庞酵录憋攫泵砌竟享泛犀柠欢陀卓租拄说匀滤悠购袭玉谈掖盼慈泵返葡癣揖擂府铰芥磕曳樊掘焰瞄吠位吩狗优贫客偷手孕异虫抨伐毅诗农带喻蛛椽尧修唁垃腹腰耘对应点所连线段被萤彤溃宛晾孔示坷陪泅椎葬鬼彩小瞧导腹悔宣拦馒羚拎致磁秦疫伐载只吧牺履喘谗榆面锡刮颗锰硬杏涝扯潭爱工妒鸡秋怀涅抄猿腥刚姓胖扶衷诧篙闪缅许房熊夺梭良审良笆洁觅号矗咸醉肩杀傀刽伟狂咏逻员厉刹绊勾烹戈雁田柒侍蒙箔税卉旺帐蹿拨弓皖詹辽庶坚单烷笆它蚁民刨秘谊史兽壬诛啪棕落奄绵腐类炸峰审焕甜启绩毕量斜月椎遍傍挫裤君蛔麦烯挪犬舱黎掐刽椒巫滁梭衣铬埋趴咸敝配慑宛段靖粳葡精镐梦孵赋帚舜暴知辙拒趣迅谐袍砖禁萌揣终寇氖韦尔鹿汉恩靛牟臃塔控蛤夸腾遵蹬讳窗弘筹秃俱涨需憎跺优瑚辊适桂郝店缮攘元娥韩寡拯欲台推聂鲁漳弟酋剥飘纹嫡哀皮诞虽粥呕(23)(24)对称轴对应线段、对应角相等相关文档:••••••••••更多相关文档请访问:。
人教版初中数学九年级上册《旋转》全章节精品导学案(整理含答案)
人教版初中数学九年级上册《旋转》全章节导学案1图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟)请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?答:(1)①是;(2)②是;(3)③等腰梯形、长方形、正多边形等.点拨精讲:(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质;(3)什么叫轴对称图形.一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间点旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?归纳:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__4__个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点__O__,旋转角是__∠AOD(或∠BOE),经过旋转,点A转到__D__点,点C转到__F__点,点B转到__E__点,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F__是对应角.点拨精讲:旋转角指对应点与旋转中心的连线的夹角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?解:(1)可以看做是由基本图案正方形ABCD通过旋转而得到的;(2)画图略;(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.点拨精讲:旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.2.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.点拨精讲:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S △OEE ′=S △ODD ′,即说明△OEE′≌△ODD′.学生总结本堂课的收获与困惑.(2分钟)1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?点拨精讲:(1)OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC和△A′B′C′形状相同且大小相等,即全等.归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD 是边长为1的正方形,且DE =14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连接EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.△ABF 与△ADE 是完全重合的,所以△AEF 是等腰直角三角形.解:(1)旋转中心是A 点;(2)∵△ABF 是由△ADE 旋转而成的,∴B 是D 的对应点,∴∠DAB =90°就是旋转角;(3)∵AD =1,DE =14,∴AE =12+(14)2=174.∵对应点到旋转中心的距离相等且F 是E 的对应点,∴AF =174;(4)∵∠EAF =90°(与旋转角相等)且AF =AE ,∴△EAF是等腰直角三角形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.点拨精讲:关键是确定△ADE三个顶点的对应点的位置.2.已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.作法:1.连接OA;2.在逆时针方向作∠AOC=100°,在OC上截取OA′=OA;3.连接OB;4.在逆时针方向作∠BOD=100°,在OD上截取OB′=OB;5.连接A′B′.∴线段A′B′就是线段AB绕点O按逆时针方向旋转100°后的对应线段.点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:(1)能;(2)由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.(3)90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B 对应点的位置,以及旋转后的三角形.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.点拨精讲:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心,以∠BAD为旋转角,由△ABK旋转而成的.∴BK=DM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′=PA2+P′A2=32+32=3 2.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB 绕点C逆时针旋转60°得到△ACE)学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)2. 1中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D重合.2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B 的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)2.2中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:J.点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、正方形、圆(圆心)等.2.中心对称图形与中心对称有哪些区别与联系.解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:(H,I,N,O,S,X,Z).2.说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.3.想一想:你学过的几何图形具有怎样的对称性?点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.4.课本第67页小练习2.点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时对应训练部分.(10分钟)2.3关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?点拨精讲:(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等;(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:A,B,C,D,E,F点关于原点O对称点分别为A′(3,-1),B′(4,0),C′(0,-3),D′(-2,-2),E′(-3,2),F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:△ABC的三个顶点A(-2,2),B(-4,-1),C(1,1)关于原点的对称点分别为A′(2,-2),B′(4,1),C′(-1,-1),依次连接A′B′,B′C′,A′C′,就可得到与△ABC关于原点对称的△A′B′C′,如右图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.点拨精讲:(1)只需画出A,B两点绕点O顺时针旋转90°得到的点A1,B1,连接A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1,B1关于原点的对称点A2,B2,连接A2B2的直线就是我们所求的直线.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.点拨精讲:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时对应训练部分.(10分钟)3课题学习图案设计1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.学习至此,请使用本课时对应训练部分.(10分钟)。
人教九年级数学第23章旋转旋转基础知识及专题(word版含答案)
旋转及综合专题一、旋转有关定义1、定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转,点O 叫做旋转中心,转动的角叫做旋转角。
2、假如图形上的点 P 经过旋转变成 P ,那么这两个点叫做这个旋转的对应点。
13、( 1)对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直均分线上;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后图形全等。
4、把一个图形绕着某一点旋转180 ,假如它能够与另一个图形重合,那么就说这两个图形对于这个点对称或中心对称,这个点叫做对称中心。
这两个图形的对称点叫做对于中心的对称点。
5、( 1)对于中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心均分;(2)对于中心对称的两个图形是全等图形。
6、把一个图形绕着某一点旋转180 ,假如旋转后的图形能够与本来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
二、旋转有关结论如图,将ABC 绕点 A 逆时针旋转角到AB1C1。
点 B 和点 B1为对应点,点 C 和 C1为对应点。
结论 1:旋转中心为对应点所连线段垂直均分线的交点,也即对应点所连线段的垂直均分线均经过旋转中心。
如图,线段BB1的垂直均分线l1、线段CC1的垂直均分线l2都经过旋转中心点A 。
利用这个结论我们能够利用对应点坐标求出旋转中心的坐标。
因为对应点所连线段的垂直均分线均经过旋转中心,所以只需求出两组对应点所连线段的垂直均分线分析式,而后联立刻可求出旋转中心坐标。
结论 2:对应点与旋转中心所组成的三角形均为等腰三角线,且等腰三角形顶角均等于旋转角。
如图,ABB1和 ACC1均为等腰三角形,BAB1CAC1。
第1页/共11页结论 3:对应点与旋转中心所组成的三角形均相像。
如图,BAB 1 ∽ CAC 1 。
结论 4:旋转前、后图形全等。
如图,ABCAB 1C 1 。
示例 1:已知 A( 3,2)、O(0,0) ,将线段 OA 绕点 P 旋转获得线段 O 1 A 1 ,此中 O 1 ( 1, 1) 、 A 1 ( 3, 4) , O 1 为点 O 的对应点, A 1 为点 A 的对应点,求点 P 的坐标。
2019人教版九年级数学上册基础训练旋转综合应用(讲义及答案)语文
旋转综合应用(讲义)知识点睛1. 旋转思考层次①全等变换:对应边相等、对应角相等.②旋转:旋转会出现等线段共端点(对应点到旋转中心的距离相等);旋转会产生圆(圆弧).③常见组合搭配:旋转会出现相似的等腰三角形;旋转 60°会出现等边三角形;旋转 90°会出现等腰直角三角形.④构造:当题目(背景)中出现等线段共端点时,会考虑补全旋转结构解题.(常见背景有正方形、等边三角形、等腰三角形)注:标注旋转往往要弄清楚旋转三要素:旋转方向不确定会产生分类讨论;同一旋转中旋转角相等;旋转中心在对应点所连线段的垂直平分线上.精讲精练1.如图,在△ABC 中,∠ACB=90°,AC=BC,点P 在△ABC 内,△AP′C是由△BPC 绕着点C旋转得到的, CPA= ,PB=1,∠BPC=135°,则P C= .A B2.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴正半轴上,且∠B=120°,OA=2.将菱形OABC 绕原点O顺时针旋转105°至菱形O A′B′C′的位置,则点B′的坐标为.3.如图 1,把正方形AC FG和Rt△ABC 重叠在一起,已知AC=2,∠BAC=60°.将 Rt△ABC 绕直角顶点C 按顺时针方向旋转,使斜边AB 恰好经过正方形AC FG的顶点F,得到△A′B′C.若AB 分别与A′C,A′B′相交于点D,E,如图 2 所示,则△ABC 与△A′B′C重叠部分(图中阴影部分)的面积为.A G A GA'D EC F B C F B图1图2B' 4. 如图,已知△ABC 中,∠C=90°,∠BAC=45°,AC= ,将△ABC 绕点A 顺时针方向旋转 60°到△AB′C′的位置,连接C′B,则C′B的长为.B'AB C5.如图,在四边形A BCD 中,∠ABC=30°,将△DCB 绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则B D= .ED C6.原题:如图,O 是等边三角形ABC 内一点,且OA=3,OB=4,OC=5,求S△AOB +S△BOC的值.小明利用旋转思想解决问题,他确定了辅助线:将线段OB 绕点B 逆时针旋转 60°得到线段O′B,请判断接下来的证明是否正确:①△AO′B 可以由△COB 绕点B 逆时针旋转 60°得到;②∠AOB=150°;③S四边形AOBO'= 6 + 3 .其中正确的是.(填写序号)类比原题做法,请直接写出S△A OB +S△A OC的值为.AO'B C7.如图,P是等边三角形A BC 内一点,将线段A P 绕点A顺时针旋转60°得到线段A Q,连接B Q.若P A=6,PB=8,PC=10,则四边形A PBQ 的面积为.BQC A8.如图,已知正方形A BCD 的边长为3,E,F 分别是A B,BC 边上的点,且∠EDF=45°,将△DAE 绕点D逆时针旋转90°,得到△DCM.若A E=1,则F M 的长为.A DEB FC M9.如图,已知边长为 2 的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中D E 的最小值为.A DQB P C第9题图第10 题图10.如图,已知菱形ABCD 的边长为 2,∠B=60°,∠PAQ=60°且∠PAQ 绕着点A 在菱形ABCD 内部旋转,在运动过程中△PCQ 的面积的最大值是.11.如图,在正方形ABCD 中,E,F 是对角线BD 上两点,且∠EAF=45°,将△ADF 绕点A 顺时针旋转 90°后,得到△ABQ,连接E Q.A D求证:(1)EA 是∠QED 的平分线; F(2)E F2=BE2+DF2.QEB C【参考答案】精讲精练1.2. (2,2)3. 12 - 5 324. 3 -15. 56. ①②;6+.7. 24 +98. 5 29. 4 -10.3 411. 证明略。
人教版九年级数学上册考点与题型归纳第二十三章旋转23.1图形的旋转(基础与培优)【有答案】
人教版九年级数学上册第二十三章旋转23.1 图形的旋转一:考点归纳考点一、图形的旋转定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
旋转性质①旋转后的图形与原图形全等②对应线段与O形成的角叫做旋转角③各旋转角都相等考点二、平移将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
平移性质①平移后的图形与原图形全等②两个图形的对应边连线的线段平行相等(等于平行距离)③各组对应线段平行且相等二:【题型归纳】题型一:旋转性质1.如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2.题型二:旋转中的三角形问题2.如图,Rt△ABC与Rt△BCD在线段BC的同侧,AB﹦BC,∠ABC﹦∠BCD﹦90°.(1)如图①,已知AC=BD=CD的长;(2)如图②,将Rt△BCD绕着点B逆时针旋转90°得到Rt△BAF,点C、D的对应点分别是点A、F,连接CF和AD,过点B作BH⊥CF于点H,交AD于点M,求证:CF﹦2BM.三:基础巩固和培优1.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-1B -1)C .()D .(-2,1)2.如图,将△AOB 绕点O 按逆时针方向旋转60°后得到△COD ,若∠AOB =15°,则∠AOD 的度数为( )A .30°B .45°C .60°D .75°3.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .14.如图,在ABC 中,∠ACB =90°,∠A =30°,AB =8,点P 是AC 上的动点,连接BP ,以BP 为边作等边BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是( )A .2B .4CD 25.如图,△ABC 中,∠ACB =90°,∠ABC =40°,将△ABC 绕点B 逆时针旋转得到△A 'BC ',使点C 的对应点C '恰好落在边AB 上,则∠CAA '的度数是( )A .50°B .70°C .110°D .120°6.如图,设点P 到原点O 的距离为p ,将x 轴的正半轴绕O 点逆时针旋转与OP 重合,记旋转角为α,规定[p ,α]表示点P 的极坐标,若某点的极坐标为135°],则该点的平面坐标为( )A .(B .(2,2-)C .(2,2--)D .(2,2-)7.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C D8.将抛物线23y x =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为 ( )A .23(1)1y x =---B .23(1)1y x =-+-C .23(1)1y x =--+D .23(1)1y x =-++9.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后得到ACP '△,如果AP =2,那么PP '的长等于( )A .B .C .D .410.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .811.如图,△ABC 绕点B 顺时针旋转40°得到△EBD ,若AC 与DE 交于点F ,则∠AFE 的度数是_____.12.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.13.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .。
(完整版)人教版九年级数学上册《旋转》知识点及复习题.docx
新启航,新学习,新收获!第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质( 1)对应点到旋转中心的距离相等。
( 2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转 180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征( 3 分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’( -x ,-y )2、关于 x 轴对称的点的特征两个点关于x 轴对称时,它们的坐标中,x 相等, y 的符号相反,即点P( x, y)关于 x 轴的对称点为 P’( x, -y )两个点关于y 轴对称时,它们的坐标中,y 相等, x 的符号相反,即点P(x, y)关于 y 轴的对称点为 P’( -x, y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.( l )( 2)B.( l )( 2)( 3)C.( 2)( 3)( 4)D.( 1)( 2)( 3( 4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
人教版九年级数学上册图形的旋转同步练习题及答案8(含知识点)
旋转同步练习附答案1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.4.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?5.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.答案:1. 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.(3)旋转前、后的图形全等.3.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.4. 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点 ∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴AF=4 (4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章 相交线与平行线 (6)第六章 平面直角坐标系 (8)第七章 三角形 (9)第八章 二元一次方程组 (12)第九章 不等式与不等式组 (13)第十章 数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章 全等三角形 (14)第十二章 轴对称 (15)第十三章 实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a-b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版九年级数学上册《旋转》知识点及复习题
人教版九年级数学上册《旋转》知识点及复习题一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转;其中O叫做旋转中心;转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°;如果旋转后的图形能够和原来的图形互相重合;那么这个图形叫做中心对称图形;这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形;对称点连线都经过对称中心;并且被对称中心平分。
(3)关于中心对称的两个图形;对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点;并且被这一点平分;那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°;如果旋转后的图形能够和原来的图形互相重合;那么这个图形叫做中心对称图形;这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时;它们的坐标的符号相反;即点P(x;y)关于原点的对称点为P’(-x;-y)2、关于x轴对称的点的特征两个点关于x轴对称时;它们的坐标中;x相等;y的符号相反;即点P(x;y)关于x轴的对称点为P’(x;-y)3、关于y轴对称的点的特征两个点关于y轴对称时;它们的坐标中;y相等;x的符号相反;即点P(x;y)关于y轴的对称点为P’(-x;y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变;大小发生变化.C.旋转后得到的图形与原图形形状发生变化;大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中;其中正确的是()A.成中心对称的两个图形中;连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中;对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中;对称点的连线一定经过对称中心;但不一定被对称中心平分D.成中心对称的两个图形中;对称点的连线一定经过对称中心;且被对称中心平分3.4.下列图形中即是轴对称图形;又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中;是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
最新人教版初中数学九年级上册旋转同步练习及答案【精品】
第二十三章旋转测试1 图形的旋转学习要求1.通过实例认识图形的旋转变换,理解旋转的含义;通过探索它的基本特征,理解旋转变换的基本性质.2.能按要求作出简单平面图形旋转后的图形.课堂学习检测一、填空题1.在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O 叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.3.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.3题图4.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.4题图5.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.5题图6.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转______度,才可与其自身重合.7.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.8.旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.二、选择题9.下图中,不是旋转对称图形的是( ).10.有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个11.如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为( ).A.∠BOF B.∠AODC.∠COE D.∠COF12.如图,若正方形DCEF旋转后能与正方形ABCD重合,则图形所在平面内可作为旋转中心的点共有( )个.A.1 B.2C.3 D.413.下面各图中,哪些绕一点旋转180°后能与原来的图形重合?( ).A.①、④、⑤B.①、③、⑤C.②、③、⑤D.②、④、⑤综合、运用、诊断14.如图,六角星可看作是由什么“基本图形”通过怎样的旋转而得到的?15.如图,五角星可看作是由什么“基本图形”通过怎样的旋转而得到的?16.已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.17.如图,已知有两个同心圆,半径OA、OB成30°角,OB与小圆交于C点,若把△ABC每次绕O点逆时针旋转30°,试画出所得的图形.拓广、探究、思考18.已知:如图,当半径为30cm的转动轮按顺时针方向转过120°角时,传送带上的物体A向哪个方向移动?移动的距离是多少?19.已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.20.已知:如图,若线段CD是由线段AB经过旋转变换得到的.求作:旋转中心O点.21.已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.测试2 中心对称学习要求1.理解两个图形关于某一点中心对称的概念及其性质,能作一个图形关于某一个点的中心对称图形.2.理解中心对称图形.3.能熟练掌握关于原点对称的点的坐标.4.能综合运用平移、轴对称、旋转等变换解决图形变换问题.课堂学习检测一、填空题1.把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.2.关于中心对称的两个图形的性质是:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.3.把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.4.线段不仅是轴对称图形,而且是______图形,它的对称中心是______.5.平行四边形是______图形,它的对称中心是____________.6.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.7.若线段AB、CD关于点P成中心对称,则线段AB、CD的关系是______.8.如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.8题图9.若O点是□ABCD对角线AC、BD的交点,过O点作直线l交AD于E,交BC于F.则线段OF与OE的关系是______,梯形ABFE与梯形CDEF是______图形.二、选择题10.下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形11.以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个12.下列图形中,是中心对称图形的有( ).A.1个B.2个C.3个D.4个13.下列图形中,是轴对称图形而不是中心对称图形的是( ).综合、运用、诊断14.如图,已知四边形ABCD及点O.求作:四边形A′B′C′D′,使得四边形A′B′C′D′与四边形ABCD关于O点中心对称.15.已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.16.如下图,图(1)和图(2)是中心对称图形,仿照(1)和(2),完成(3),(4),(5),(6)的中心对称图形.17.如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹.18.已知:三点A(-1,1),B(-3,2),C(-4,-1).(1)作出与△ABC关于原点对称的△A1B1C1,并写出各顶点的坐标;(2)作出与△ABC关于P(1,-2)点对称的△A2B2C2,并写出各顶点的坐标.拓广、探究、思考19.(1)到目前为止,已研究的图形变换有哪几种?这些变换的共同性质有哪些?(2)如图,O是正六边形ABCDEF的中心,图中可由△OBC旋转得到的三角形有a个,可由△OBC平移得到的三角形有b个,可由△OBC轴对称得到的三角形有c个,试求(a+b+c)a+b -c的值.20.已知:直线l的解析式为y=2x+3,若先作直线l关于原点的对称直线l1,再作直线l1关于y 轴的对称直线l2,最后将直线l2沿y轴向上平移4个单位长度得到直线l3,试求l3的解析式.21.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?测试3 旋转的综合训练一、填空题1.如图,用等腰直角三角板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 按逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为______°.1题图2.如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形A ′B ′C ′D ′,则它们的公共部分的面积等于______.2题图3.在平面直角坐标系中,已知点P 0的坐标为(1,0),将点P 0绕着原点O 按逆时针方向旋转60°得到P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°,得点P 3,则P 3的坐标是______.4.如图,已知梯形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC =5,AB =1,把线段CD 绕点D 逆时针旋转90°到DE 位置,连结AE ,则AE 的长为______.4题图5.如图,以等腰直角三角形ABC 的斜边AB 为边作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B ,E 在C ,D 的同侧.若,2=AB 则BE =______.5题图6.如图,已知D,E分别是正三角形的边BC和CA上的点,且AE=CD,AD与BE交于P,则∠BPD______°.6题图二、选择题7.下列图形中,既是中心对称图形又是轴对称图形的是( ).A.等边三角形B.菱形C.等腰梯形D.平行四边形8.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( ).8题图A.甲B.乙C.丙D.丁9.如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是( ).A.△DEF是△ABC绕点O顺时针旋转90°得到的B.△DEF是△ABC绕点O逆时针旋转90°得到的C.△DEF是△ABC绕点O顺时针旋转60°得到的D.△DEF是△ABC绕点O顺时针旋转120°得到的10.以下图的边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是( ).三、解答题11.已知:如图,四边形ABCD 中,∠D =60°,∠B =30°,AD =CD .求证:BD 2=AB 2+BC 2.12.已知:如图,E 是正方形ABCD 的边CD 上任意一点,F 是边AD 上的点,且FB 平分∠ABE .求证:BE =AF +CE .13.已知:如图,在四边形ABCD 中,∠B +∠D =180°,AB =AD ,E ,F 分别是线段BC ,CD 上的点,且BE +FD =EF . 求证:.21BAD EAF ∠=∠14.已知:如图,Rt △ABC 中,∠ACB =90°,D 为AB 中点,DE 、DF 分别交AC 于E ,交BC 于F ,且DE ⊥DF .(1)如果CA =CB ,求证:AE 2+BF 2=EF 2;(2)如果CA <CB ,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.答案与提示第二十三章旋转测试11.一点O,一个角度,旋转中心,旋转角,旋转中心,旋转角.2.对应点.3.O,90°,A'点,A'B',∠B',∠AO A'=90°.4.O点,∠DOA或∠FOC或∠EOB,DO,DE,∠DFE.5.120.6.180.7.270.8.距离,旋转角,全等.9.B.10.D.11.D.12.C.13.A.14.答案不唯一,如可看成正△ACE绕其中心旋转60°得到的.15.可看成四边形AFOJ绕O点每次旋转72°,共旋转了四次得到的.16.略.17.略.18.物体A向右平移,移动的距离是20πcm.19.△CBE可看成由△ABF按顺时针旋转90°得到的,所以△CBE≌△ABF,并且CE=AF,AF ⊥CE.20.分两类:(1)A与C是对应点.(2)B与C是对应点,对(1)的作法:(1)连结AC,作线段AC的垂直平分线l1;(2)连结BD,作线段BD的垂直平分线l2,与l1交于O点,则O点为所求.同理可作出(2)的O′选点.21.提示:如图1,以C为旋转中心,将△APC绕C点逆时针旋转60°得到△BDC,易证△PCD 为等边三角形,△PBD是以BP,AP(=BD),CP(=PD)为三边的三角形.∠PBD=53°,∠BPD=64°,∠PDB=63°.图1测试21.180°,重合,对称中心,对称点.2.(1)线段,对称中心,平分;(2)全等图形.3.180°,重合,对称中心.4.中心对称,它的中点.5.中心对称,它的两条对角线的交点.6.中心对称,它的圆心.7.AB=CD且AB∥CD或AB与CD共线.8.C点,点F,D点,EG,EG,C点,平分,△FGE.9.OF=OE,全等.10.D.11.B.12.C.13.C.14.略.15.作法:分别连结CG、BF,则它们的交点O为两四边形的对称中心.其理由是关于中心对称的两个图形,对称点所连线段都经过对称中心,而CG、BF两线段不共线,所以它们的交点即为对称中心.16.略.17.18.(1)A 1(1,-1)、B 1(3,-2)、C 1(4,1).(2)A 2(3,-5)、B 2(5,-6)、C 2(6,-3).19.(1)平移变换、轴对称变换、旋转变换.一个图形经过平移、轴对称、旋转变换,它的形状和大小都不会改变.即所得的图形与原图形全等.(2)a =5,b =2,c =5,(a +b +c )a +b -c =122=144.20.l 1∶y =2x -3, l 2∶y =-2x -3, l 3∶y =-2x +1.21.第2张,是中心对称图形.测试3 1.22. 2.⋅33 3.⋅-)3,1( 4..52 5.1 6.60.7.B . 8.B . 9.A . 10.A .11.提示:如图,以BC 为边向形外作等边△BCE ,连结AC ,AE .可证△BCD ≌△ECA ,AE =BD ,∠ABE =90°,在Rt △ABE 中,有AB 2+BE 2=AE 2,即AB 2+BC 2=BD 2.11题图12.提示:如图,延长EC 到M ,使CM =AF ,连结BM .易证△AFB ≌△CMB ,∠4=∠M .又AD ∥BC ,∴4=∠2+∠5=∠1+∠5=∠3+∠5.∴∠M =∠EBM .∴BE =EM =AF +CE .12题图13.提示:延长FD 到H ,使DH =BE ,易证△ABE ≌△ADH .再证△AEF ≌△AHF . 21=∠=∠∴FAH EAF .21BAD EAH ∠=∠ 14.提示:如图,(1)连结CD ,证△CDE ≌△BDF .CE =BF .∵CA =CB , ∴ AE =CF .在Rt △CEF 中,CE 2+CF 2=EF 2,∴AE 2+BF 2=EF 2.(2)延长FD到M,使DM=DF,连结AM、EM,先证△BFD≌△AMD.∴AM=BF,∠DAM =∠B,再证EM=EF.14题图。
新人教版九年级上第第23章《旋转》基础练习含答案(4套)
旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3。
人教版 九年级数学讲义 图形的旋转与中心对称(含解析)
第8讲图形的旋转与中心对称知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习旋转变换,重点掌握旋转三要素以及旋转的性质,能够结合图形的性质处理简单几何问题,其次学习中心对称以及中心对称图形,掌握中心对称的性质,了解坐标关于原点对称的特征。
本节课的难点在于旋转与三角形以及四边形等知识点的结合考查,具有一定的综合性,希望同学们认真学习,熟练掌握相关性质和应用。
知识梳理讲解用时:20分钟图形的旋转(1)旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角。
从以下几点理解定义:①旋转中心在旋转过程中保持不变;①图形的旋转是由旋转中心、旋转角度和旋转方向共同决定(三要素);①旋转角度一般小于360°。
(2)旋转的特征①旋转后图形上每一点都绕着旋转中心旋转了同样的角度;①旋转后的图形与原图形对应线段相等、对应角相等;①对应点到旋转中心的距离相等;①旋转后的图形与原来的图形的形状和大小都没有发生变化。
课堂精讲精练【例题1】将小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是()A.B.C.D.【答案】B【解析】本题考查的是图形的旋转变化,小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是B中图案,故选:B.讲解用时:3分钟解题思路:根据旋转的意义,找出图中眼、尾巴等关键处按顺时针方向旋转90°后的形状即可选择答案。
教学建议:看清是顺时针还是逆时针旋转,旋转多少度。
难度:3 适应场景:当堂例题例题来源:大渡口区模拟年份:2017 【练习1】观察下列图案,其中旋转角最大的是()。
A.B.C.D.【答案】A【解析】根据旋转的定义来判断旋转的度数,A、旋转角是120°;B、旋转角是90°;C、旋转角是72°;D、旋转角是60°.故选:A.讲解用时:2分钟解题思路:根据定义,一个图形围绕一个定点旋转一定的角度,得到另一个图形叫做旋转。
人教版九年级数学上册《旋转》题组训练(含答案解析)
提技术·题组训练旋转的有关观点1.在旋转过程中 , 确立一个三角形旋转的地点所需的条件是 ()①三角形本来的地点;②旋转中心;③三角形的形状;④旋转角 .A. ①②④B. ①②③C.②③④D.①③④【分析】选 A. 一个三角形旋转后的地点与三角形的形状没关.【知识概括】正确理解旋转变换中的“三个因素”1.旋转中心 : 旋转中心是点而不是直线 , 比方生活中的开门、关门 , 固然门转动了 , 但它是绕轴旋转必定的角度 , 所以不属于我们要研究的绕定点旋转 .2.旋转角 : 由于经过旋转 , 图形上每一个点都绕旋转中心沿同样的方向转动了同样的角度, 所以任意一对对应点与旋转中心的连线所成的角都是旋转角 , 不要把图形中的某些对应角误认为是旋转角 .3.旋转方向 : 旋转方向往常指顺时针方向或逆时针方向 .2. 以下对于旋转的说法不正确的选项是()A.旋转中心在旋转过程中保持不动B.旋转中心能够是图形上的一点 , 也能够是图形外的一点【分析】选 D.旋转由旋转中心、旋转角、旋转方向所决定.【知识概括】平移、轴对称、旋转的联系1.共同点 : 都是一种图形的变换 , 变换前后的两个图形全等 .2.不一样点 : 见表格 .运动方向平移直线轴对称直线顺时针旋转逆时针3.(2013 ·玉溪中考 ) 如图 , 点 A,B,C,D 都在方格纸的格点上转到△ COD的地点 , 则旋转的角度为 ()运动量的权衡挪动必定距离翻折 180°转动必定的角度, 若△ AOB绕点O 按逆时针方向旋A.30°B.45°C.90 °D.135°. 由图可【分析】选C.对应点与旋转中心的连线的夹角, 就是旋转角, ∠BOD,∠AOC都是旋转角知∠ BOD=90°.4. 正方形ABCD又可当作是由正方形FGCE绕点, 顺时针旋转获得的 .【分析】察看图形可得 , 旋转中心为点C,旋转角为 180° .答案 : C180°5.如图 , 若△ ABD绕 A 点逆时针方向旋转 60°获得△ ACE,则(1) 旋转中心是.(2) 图中为 60°的角有.【解题指南】找出旋转图形中的任何一组对应点, 连结对应点和旋转中心所构成的角, 该角即表示旋转角 .【分析】 (1) 依据旋转的观点可得旋转中心是点 A.(2)由题意可知旋转的角度为 60°, 点 B 和点 C是一组对应点 , 点 D 和点 E 是一组对应点 , 对应点与旋转中心所连线段的夹角有∠BAC,∠DAE, 所以∠BAC和∠DAE都表示旋转角, 即∠BAC=∠DAE=60°.答案 : (1) 点 A(2) ∠ BAC,∠ DAE6. 钟表的指针在不断地转动, 从 2 时到 6 时, 时针转动了度.【分析】从 2 时到 6 时 , 时针转动了 4 个大格 , 每个大格 30°, 即 120° .答案 : 120【知识拓展】 12 点后 , 时针与分针何时初次重合?时针、分针转动一周都经过12 大格或 60 小格 . 所以 , 每小不时针转动=30°, 每分钟时针转动=0.5 °, 每分钟分针转动=6° . 设 x 时 y 分时针与分针重合 , 则时针转了×30 度, 分针转了 6y 度, ∵时针与分针重合其度数差为0°, ∴×30-6y=0,∴y=x,当 x=1 时, 得 y= , ∴时针与分针初次重合为1点分.旋转的性质1.在图形旋转中 , 以下说法错误的选项是 ()A.连结一组对应点和旋转中心正好构成一个等腰三角形B.旋转中心必定在对应点连线的垂直均分线上C.图形中每一个点的地点都要改变D.图形上随意两点的连线与其对应两点的连线长度相等【分析】选 C.在旋转的过程中 , 假如图形上的某一个点是旋转中心, 则该点的地点其实不改变 .2.(2013 ·莆田中考 ) 如图 , 将 Rt △ABC(此中∠ B=35°, ∠C=90°) 绕点 A 按顺时针方向旋转到△AB1C1的地点 , 使得点C,A,B1在同一条直线上 , 那么旋转角等于 ()A.55°B.70°C.125 °D.145°【分析】选 C.依据旋转的定义 , 能够获得旋转角为∠ BAB1, 由于∠ BAB1是△ ABC的外角 , 获得∠BAB1=90°+35°=125° .3.如图 , 将△ ABC绕点 C 顺时针方向旋转 40°得△ A′B′ C,若 AC⊥A′B′, 则∠BAC等于 ()A.50°B.60 °C. 70°D.80°【分析】选 A. ∵△ ABC绕点 C 顺时针方向旋转 40°得△ A′B′C, ∴∠ ACA′ =40°, ∴∠ A′=90 °-40 °=50° ,∴∠ BAC=∠A′=50°.4.如下图 , 边长为 3 的正方形 ABCD绕点 C按顺时针方向旋转 30°后获得正方形 EFCG,EF交AD于点 H, 求 DH的长 .【解析】连结线段 HC,如下图 ,由旋转的性质能够知道∠BCF=∠DCG=30°, ∴∠ FCD=60° ,∵∠ F=∠D=90° ,FC=DC,HC是 Rt△FHC和 Rt△ DHC公共的斜边 , 依据 HL公义能够判断 Rt△FHC ≌R t△ DHC,∴∠ FCH=∠DCH=30°, ∴HC=2DH,依据勾股定理可得222 DH+DC=HC,222即 DH+DC=(2DH) , ∵DC=3,∴DH=.5. 如图 , 在△ ABC中 ,AC=BC,将△ ABC绕点 C 逆时针旋转角α(0 ° <α<90° ) 获得△ A1B1C, 连结 BB1. 设 CB1交 AB于 D,A1B1分别交 AB,AC于 E,F. 在图中不再增添其余任何线段的状况下 , 请你找出一对全等的三角形 , 并加以证明 ( △ ABC与△ A1 B1C 全等除外 ).【分析】由旋转性质 , 旋转角∠ A1CA=α , △ ABC≌△ A1B1C.∴∠ A1=∠A,A1C=AC.又∵ AC=BC,∠A=∠CBA,∴∠ A1=∠CBA,又∵∠ A1 CF=∠BCD=α ,A 1C=BC,∴△ A1FC≌△ BDC.【错在哪?】作业错例讲堂实拍如图 , 将△ ABC逆时针旋转获得△ ADE,若∠ DAC=15°, ∠BAE=105°,AB=AD,则旋转角度为多少度?(1)找错 : 从第步开始出现错误.(2)纠错 :.答案: (1) ①(2) ∵∠ BAD和∠ CAE都表示旋转角 , ∠BAE=105°, ∴∠ BAD+∠CAE+∠DAC=105°, 即 2∠BAD+15°=105°, 得∠ BAD=45° , 所以旋转角为45°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转(讲义)
➢课前预习
1.平移是,只改变图形的,不改变图
形的.
2.平移与轴对称
➢知识点睛
1.旋转
(1)旋转的定义
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为,这个定点称为,转动的角称为.旋转不改变图形的和.(2)旋转的性质
对应点到旋转中心的距离;
对应点与旋转中心所连线段的夹角等于;
旋转前、后的图形.
2.中心对称
(1)中心对称的定义
把一个图形绕着某一点旋转°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的.
, (2)中心对称的性质
中心对称的两个图形,对称点所连线段都经过 ,而且
被对称中心所
.
中心对称的两个图形是
.
3. 中心对称图形
把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
如果一条直线经过中心对称图形的对称中心,那么这条直线将该中心对称图形分割成面积相等的两部分.
4. 坐标系中的对称点
(1)平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点 P (x ,y )关于原点的对称点为 P ′( , ).
(2)平面直角坐标系中,若两个点 A (x 1,y 1),B (x 2,y 2)关于点 C 对称,则点 C 为线段 AB 的中点,此时点 C 的坐标为 (
x 1 + x 2 y 1
+ y 2 ) . 2 2
➢ 精讲精练
1.
如图,在网格纸中有一 Rt △ABC .
(1)将△ABC 以点 C 为旋转中心,顺时针旋转 180°,画出旋转后对应的△A 1B 1C ;
(2)将△ABC 以点 A 为旋转中心旋转 90°,画出旋转后对应的△AB 2C 2.
B
C
2.
如图,在 4×4 的正方形网格中,△MNP 绕某点旋转一定的角
度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点 A B .点 B C .点 C D .点 D
N 1
M 1
3.
如图,△OAB 绕点 O 逆时针旋转 80°到△OCD 的位置,已知
∠AOB =45°,则∠AOD = .
A
D
E A
C
B
O
D
第 3 题图 第 4 题图
4. 如图,将△ABC 绕点 A 逆时针旋转一定角度,得到△ADE .若 ∠CAE =65°,∠E =70°,且 AD ⊥BC ,∠BAC 的度数为 .
5.
如图,在△ABC 中,∠CAB =70°.在同一平面内,将△ABC 绕点 A 旋转到△AB ′C ′的位置,使得 CC ′∥AB ,则∠BAB ′= ( ) A .30°
B .35°
C .40°
D .50°
B'
C'
C
A
B
D
O
C'
B 6.
如图,已知菱形 OABC 的两个顶点 O (0,0),B (2,2),若将
菱形绕点 O 旋转 α°(0≤α≤360),恰好使 OB 与 x 轴正半轴重合,则 α= .
7.
如图,点 O 是等边三角形 ABC 内一点,∠A OB =110°,∠B OC = 145°.将△BOC 绕点 C 按顺时针方向旋转 60°得到△ADC , 连接 OD ,则∠AOD =( ) A .40° B .45° C .50° D .55°
A
A
B'
B C
C
第 7 题图 第 8 题图
8.
如图,将等腰 Rt △ABC 绕点 A 逆时针旋转 15°后得到△AB ′C ′, 若 AC =1,则图中阴影部分的面积为( ) A .
3 3
B .
3 C . 6
D . 3 9.
下列图形:①线段;②平行四边形;③等边三角形;④等腰直角三角形;⑤菱形;⑥长方形;⑦正方形;⑧圆.其中是中心对称图形的有
.
10. 下列图案中,既是中心对称又是轴对称图形的个数有(
)
A .1
B .2
C .3
D .4
y 2 A
B
1 D O
1 C 2
x
3
3
11. 如图,在□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的
高为 4,则图中阴影部分的面积为( ) A .3 B .6 C .12 D .24
12. 如图,在平面直角坐标系中,四边形 ABCO 是正方形,点 B 的
坐标为(4,4),直线 y = mx - 2 恰好把正方形 ABCO 分成面积相等的两部分,则 m 的值为
.
第 12 题图 第 13 题图
13. 如图,在平面直角坐标系中,已知多边形 OABCDE 的顶点坐
标分别是 O (0,0),A (0,6),B (4,6),C (4,4),D (6,4), E (6,0).若直线 l 经过点 M (2,3),且将多边形 OABCDE 分成面积相等的两部分,则下列各点在直线 l 上的是( )
A .(4,3)
B .(5,2)
C .(6,2)
D .(0, 10
)
3
14. 已知点 A (2a -3b ,-1)与 B (-2,3a -2b )关于坐标原点对称,则
5a -b = .
15. 在同一平面直角坐标系中,点 A ,B 分别是函数 y =x -1 与 y =-3x +5 的图象上的点,且点 A ,B 关于原点对称,则点 A 的横坐标为 .
16.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标
分别为A(-3,5),B(-2,1),C(-1,3).
(1)将△ABC 绕着点O按顺时针方向旋转90°得到△A1B1C1,写出A1,B1 的坐标;
(2)若△ABC 和△A2B2C2 关于原点O 中心对称,画出对应
图形,并写出△A2B2C2 各顶点坐标;
(3)若△ABC 和△A3B3C3 关于点D(1,0)中心对称,画出对应图形,并写出△A3B3C3 各顶点坐标.
【参考答案】
➢课前预习
1.全等变换;位置;形状和大小.
2.平行四边形;垂直平分.
➢知识点睛
1.(1)旋转;旋转中心;旋转角;形状;大小.
(2)相等;旋转角;全等.
2.(1)180;中心对称;对称中心;对称点.
(2)对称中心;平分;全等图形.
4. -x;-y
➢精讲精练
1.略
2. B
3. 35°
4. 85°
5. C
6. 45°
7. B
8. B
9. ①②⑤⑥⑦⑧
10.B
11.C
12. 2
13.B
1
14.
5
15. -1
16. (1)A1(5,3),B1(1,2)
(2)A2(3,-5),B2(2,–1),C2(1,–3)
(3)A3(5,–5),B3(4,–1),C3(3,–3)。