Klobuchar-Ionospheric-Model
一种实时双频电离层修正方法
一种实时双频电离层修正方法王先毅;孙越强;杜起飞;白伟华;吴迪;王冬伟【摘要】电离层延迟是影响GPS绝对定位的重要因素.比较常用的电离层延迟修正方法有模型方法和双频方法.模型方法和使用双频码伪距的方法精度有限.使用双频载波相位进行电离层延迟计算需要求解整周模糊度,计算复杂.提出了一种同时使用GPS双频码和载波观测量进行电离层误差修正的方法.使用卫星信号模拟器生成信号并用接收机实时接收,用此方法计算出电离层延迟值,并与真值进行比较,计算误差为厘米级.最后,接收真实卫星信号并计算了真实电离层延迟,并与使用Klobuchar 模型方法计算出的电离层延迟进行了比较.%The ionospheric delay is one of the main error sources for GPS absolute positioning. Ionospheric delay models and dual- frequency methods are commonly used. Ionospheric models are based on empirical models, and the accuracy is limited. Dual-frequency ionospheric delay calculation methods, which use code and carrier observations respectively, have their drawbacks. A method of using dual frequency code pseudorange and carrier phase measurement simultaneously are presented to eliminate the ionospheric delay of observation path. Signal simulator was used to generate GPS signal with ionospheric delay. The ionospheric delay was calculated and compared with true value. Results show that the new method have centimeter-level accuracy. In the last part of this paper, real GPS signal are received and ionospheric delay is calculated and compared with results calculated using Klobu-char model.【期刊名称】《科学技术与工程》【年(卷),期】2012(012)005【总页数】4页(P992-995)【关键词】GPS;双频;电离层延迟;码伪距;载波相位;Klobuchar模型【作者】王先毅;孙越强;杜起飞;白伟华;吴迪;王冬伟【作者单位】中国科学院国家空间科学中心,北京100190;中国科学院研究生院,北京100190;中国科学院国家空间科学中心,北京100190;中国科学院国家空间科学中心,北京100190;中国科学院国家空间科学中心,北京100190;中国科学院国家空间科学中心,北京100190;中国科学院国家空间科学中心,北京100190;中国科学院研究生院,北京100190【正文语种】中文【中图分类】P228.4GPS绝对定位受卫星星历、电离层、对流层延迟、多路径及钟差等系统误差的影响。
基于GIM的Klobuchar电离层模型的精度及影响因素分析
基于GIM的Klobuchar电离层模型的精度及影响因素分析林清莹;郭金运;闫金凤;沈毅;李旺【摘要】The Klobuchar model parameters provided by GPS broadcast ephemeris of the year of 2003-2014 were used to calculate the global ionospheric delay,and then analysed the precision of the Klobuchar model by referring high-precision global ionospheric maps (GIM) data issued by CODE,and explore the accuracy of the model correlated with the solar activity and geomagnetic activity.The results showed that Klobuchar model accuracy with solar ac-tivity and geomagnetic activity was negatively correlated according to the mean results of years’difference value.The period of Klobuchar model's precision is six-months and preci-sion of model is higher in January and July and lower in April and October according to the mea n results of months’difference value.Precision of Klobuchar model presents roughly symmetrical distribution in north-south hemispheres with low precision in the low latitudes and comparatively high precision in the mid-high latitudes in the spatial distribution,in solar and geomagnetic activity calm year,model accuracy are similar on global scale.%利用2003年-2014年的 GPS 广播星历提供的 Klobuchar 模型的参数,计算得到全球范围内的电离层延迟,以 CODE 发布的高精度的全球电离层图(GIM)数据作为参考,对 Klobuchar 模型进行时空精度分析,并探讨太阳活动和地磁活动与模型精度相关性。
GNSS电离层建模理论与方法
河南科技Henan Science and Technology 工业技术总782期第十二期2022年6月GNSS电离层建模理论与方法崔贺杰1,2吕伟才1,2(1.安徽理工大学空间信息与测绘工程学院,安徽淮南232001;2.安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心,安徽淮南232001)摘要:随着科技的不断进步,全球卫星定位导航系统(GNSS)也在逐渐完善,为研究电离层工作提供了更好的平台。
在GNSS观测中,电离层误差是影响观测结果的主要因素之一。
因此,为了能够更好地掌握电离层的活动特性,根据相应原理,采用合理的方法进行电离层建模,从而提高观测的精度。
本研究将结合电离层的相关结构和相关特性来对电离层建模的相关原理和方法进行分析,并介绍一些常用的电离层建模投影函数。
关键词:GNSS;电离层;电离层误差;电离层模型;电离层投影函数中图分类号:P352文献标志码:A文章编号:1003-5168(2022)12-0047-04 DOI:10.19968/ki.hnkj.1003-5168.2022.12.009GNSS Ionosphere Modeling Theory and MethodCUI Hejie1,2LYU Weicai1,2(1.School of Geomatics,Anhui University of Science and Technology,Huainan232001,China;2.Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring,Anhui Uni‑versity of Science and Technology,Huainan232001,China)Abstract:Along with the advance of science and technology,the global satellite positioning and navigation System(GNSS)is gradually improved,providing a better platform for us to study the ionosphere activities. In GNSS observations and observation result of the ionosphere error is a major mistake.Therefore,the study and effective grasp of the activity characteristics of the ionosphere,and according to the correspond‑ing principles to use reasonable methods for ionospheric modeling to improve the observation accuracy. This article will combine the related structure and characteristics of the ionosphere to related principle and method of the ionosphere modeling is summarized in this paper,and introduces some commonly used the ionosphere modeling projection function.Keywords:GNSS;ionosphere;ionosphere error;ionospheric model;the ionosphere projection function0引言电离层的存在对人们的生产生活有着很大的帮助。
0EMStar QUICK REFENCE GUIDE(gm-14915092 Rev 4 )
NovAtel Format CommandsCommand Syntax and Example Input(s)ID Tag DescriptionADJUST1PPS adjust1pps mode [period] [offset]adjust1pps mark 429Adjust receiver clock or transfer time between receiversANTENNA-POWERantennapower flag antennapower on98Enable/disable power from receiver’s internal power source to the low-noise amplifier of an active antennaOEMStar™ QUICK REFERENCE GUIDEASSIGN assign channel [state] prn [Doppler[window]]assign 6 28 -250 0(sv channel 6 is acquiring satellite prn28 at an offset of 250 hz only)(prn 1 to 32 for gps channels, 38 to 61for glonass, and 120 to 138 for sbas)27Aids in initialacquisition of a satelliteby allowing you tooverride the automaticsatellite/channelassignmentreacquisition processesASSIGNALL assignall [system] [state] prn[Doppler [window]]assignall gpsl1 28-250 0(L1 dedicated sv channels trying toacquire satellite prn 28 at -250 hz)28This command worksthe same way asASSIGN except that itaffects a group of SVchannelsAUTH auth [state] part1 part2 part3 part4part5 model [date]auth add 1234 5678 9abcdef0 1234 lxgmts 99013149Add or removeauthorization codesfrom the receiverCommand Syntax and Example Input(s)ID Tag DescriptionCLOCK-ADJUST clockadjust switchclockadjust disable15Enable receiver clocksteering.CLOCK-CALIBRATE clockcalibrate mode [period] [width][slope] [bandwidth]clockcalibrate auto430Adjust the controlparameters of the clocksteering loopCLOCK-OFFSET clockoffset offsetclockoffset -15596Remove a delay in thePPS outputCNOUPDATE cnoupdate ratecnoupdate 20hz 849C/No update rate andresolutionCOM com [port] bps [parity [databits[stopbits [handshake[echo[break]]]]]]com com157600n81n off on 4Configure the receiverasynchronous serialport driversCSMOOTH csmooth L1timecsmooth 500269Set carrier smoothingon code measurementsDATUM datum datumdatum csrs 160Select a datumCommand Syntax and Example Input(s)ID Tag DescriptionDGPSEPHEM-DELAY dgpsephemdelay delaydgpsephemdelay 120142Set base stationephemeris delayDGPSTIME-OUT dgpstimeout delaydgpstimeout 60127Set rover station max.age of pseudorangedifferential dataDGPSTXID dgpstxid type IDdgpstxid rtcm 2dgpstxid rtca d036144Set station ID value forthe receiver when it istransmitting correctionsDYNAMICS dynamics dynamicsdynamics foot 258Adjust receiver tomatch environmentECHO echo port [echo]echo icom1 on1247Sets port echoECUTOFF ecutoff angleecutoff 10.050Set elevation cut-offangle for satellitesCommand Syntax and Example Input(s)ID Tag DescriptionFIX fix type [param1 [param2 [param3]]]fix height 4.56744Fix parameters such asheight or positionNote: You must sendpdpfilter disableto the OEMStar for thiscommand to takeeffect.FIXPOS-DATUM fixposdatum datum [lat [lon[height]]]fixposdatum user51.11633810554-114.03839550586 1048.2343761Set position byreferencing parametersthrough a specifieddatumCommand Syntax and Example Input(s)ID Tag DescriptionFREQUENCY-OUT frequencyout [switch] [pulsewidth][period]frequencyout enable 1 2(to generate a 50% duty cycle 10 mhzsquare wave)232Set output pulse trainavailable on the VARFpin (variable frequency)FRESET freset [target]freset command 20Clear data which isstored in non-volatilememoryGGA-QUALITY ggaquality [#entries] [pos type1][qual1] [pos type2] [qual2]...ggaquality 1 waas 2691Customize NMEAGPGGA GPS qualityindicatorGLO-CSMOOTH glocsmooth L1timeglocsmooth 200830GLO Carrier smoothing forGLONASS channelsGLO-ECUTOFF gloecutoff anglegloecutoff 15.0735GLO Set elevation cut-offangle for trackedGLONASS satellitesCommand Syntax and Example Input(s)ID Tag DescriptionINTERFACE-MODE interfacemode [port] rxtype txtype[responses]interfacemode com1 rtcanovatel on3Specify what type ofdata a particular port onthe receiver cantransmit and receiveLOCKOUT lockout prnlockout 8(prn 1 to 32 for gps channels, 38 to 61for glonass, and 120 to 138 for sbas)137Prevent receiver fromusing a satellite by de-weighting its range inthe solutionLOG log [port] message [trigger[period[offset [hold]]]]log com1 bestposa ontime 72.5 hold 1Log data using severaldifferent methods oftriggering the logeventsMAGVAR magvar type [correction [stddev]]magvar correction 15 0180Navigate in agreementwith magnetic compassbearingsCommand Syntax and Example Input(s)ID Tag DescriptionMARK-CONTROL markcontrol signal switch [polarity][timebias [timeguard]]markcontrol mark1 enablenegative 50 100614Control processing ofmark 1 (MK1I) inputsMODEL model modelmodel lxgmts 22Switch receiver modelspreviously added withthe AUTH commandNMEA-TALKER nmeatalker IDnmeatalker gp861Set NMEA talker ID: gp(GPS only) or auto(GPS or GLO)NVM-RESTORE nvmrestorenvmrestore197Restore non-volatilememory (NVM)PDPFILTER pdpfilter switchpdpfilter disable(see Configurations in OM-20000126)424Enable pseudorange/delta phase (PDP)filter (normal orGL1DE®)Command Syntax and Example Input(s)ID Tag DescriptionPDPMODE pdpmode mode dynamicspdpmode relative dynamic 970Select the PDP mode:normal or relative(GL1DE)POSAVE posave [state] maxt [maxhstd[maxvstd]]posave 24 1 2173Implement base stationposition averagingPOS-TIMEOUT postimeout secpostimeout 1200612Set the time out valuefor the positioncalculation(s)PPS-CONTROL ppscontrol switch [polarity][period][pulse width]ppscontr ol enable pos iti ve0.05 1000613Control polarity, periodand pulse width PPSoutputCommand Syntax and Example Input(s)ID Tag DescriptionPSRDIFF-SOURCE psrdiffsource type IDrtksource rtcm anypsrdiffsource rtcm anysbascontrol enable auto(to enable psrdiff from rtcm, with ansbas fall-back)493Identify from whichbase station to acceptdifferential corrections(see also rtksource)RAIMMODE raimmode mode [hal] [val] [pfa]raimmode user 100 100 0.01raimmode terminal1285RAIM Configures RAIM modeRESET reset [delay]reset 12018Perform a hardwareresetRTKSOURCE RTKSOURCE type IDrtksource rtcmv3 5rtksource rtcm 6494Set the RTK correctionsourceCommand Syntax and Example Input(s)ID Tag DescriptionSAVECONFIG saveconfig(in CDU, ensure you have allwindows, other than the consolewindow, closed before using thiscommand)19Save presentconfiguration in NVMSBAS-CONTROL sbascontrol [state] [system] [prn][testmode]sbascontrol enable waas 0zerototwo652SBAS Set handling of SBAScorrectionsSELECT-CHAN-CONFIG selectchanconfig [set]selectchanconfig 21149Changes the channelconfiguration used.SEND send port datasend com1 “log com1 rtca1ontime 5”177Send ASCII printabledata from a COM\USBport to a specified portCommand Syntax and Example Input(s)ID Tag DescriptionSENDHEX sendhex port length datasendhex com1 6143ab5910d0a 178Send non-printablecharacters expressedas hexadecimal pairsSETAPPROX-POS setapproxpos lat lon heightsetapproxpos 51.116-114.038 0377Set an approximatelatitude, longitude, andheight in the receiverSETAPPROX-TIME setapproxtime week secsetapproxtime 1598 233274102Set an approximatetime in the receiverSET-BESTPOS-CRITERIA setbestposcriteria type delaysetbestposcriteria pos2d 5839Set criteria for theBESTPOS logSETIONO TYPE setionotype modelsetionotype klobuchar711Set the ionosphericmodel for the receiverCommand Syntax and Example Input(s)ID Tag DescriptionSETNAV setnav from-lat from-lon to-lat to-lontrack offset from-point to-pointsetnav 51.1516 -114.1626351.16263 -114.1516 -125.23start end 162Enter a set ofnavigation waypointsSETRTCM RXVERSION setrtcmrxversion versionsetrtcmrxversion v231216Enable interpreting thereceived RTCM correc-tions as RTCM 2.2 orRTCM 2.3SETRTCM16setrtcm16 textsetrtcm16 “base stationwill shut down in 1 hour”131Transfer ASCII textfrom a base to a roverSETRTCM36setrtcm36 extdtextsetrtcm36 “quick\d166\d146\d174\d144\d140”880GLO Enter ASCII text thatincludes Cyrillic orRussian characters.e.g. “quick ШTOPM”Command Syntax and Example Input(s)ID Tag DescriptionSETTIME BASE settimebase primarysystem num-ber of backup systems secondarysystem] [timeout]settimebase gps 1 glonass101237Set the time base thatthe receiver should useSETUTCLEAP SECONDS setutcleapseconds [seconds]setutcleapseconds 151150Used to calculate UTCtimeSTATUS-CONFIG statusconfig type word maskstatusconfig set status0028a51d95Configure status maskfields in theRXSTATUSEVENT logUNASSIGN unassign channelunassign 1129Cancel a previouslyissued ASSIGNcommandUNASSIGN-ALL unassignall [system]unassignall gpsl130Cancel previousASSIGN commands forall SV channelsCommand Syntax and Example Input(s)ID Tag DescriptionUNDULATION undulation option [separation]undulation user -5.5999999orundulation table 214Enter a specific geoidalundulation value or usethe internal table ofgeoidal undulationsUNLOCKOUT unlockout prnunlockout 8(prn 1 to 32 for gps channels, 38 to 61for glonass, and 120 to 138 for sbas)138Reinstate a previouslylocked out satelliteUNLOCKOUT-ALL unlockoutallunlockoutall139Reinstate all previouslylocked out satellitesUNLOG unlog [port] datatypeunlog com1 bestposa 36Remove a specific logrequest from systemUNLOGALL unlogall [port]unlogall com238Disable all logs on thespecified port onlyCommand Syntax and Example Input(s)ID Tag DescriptionUSERDATUM userdatum semimajor flattening dxdy dz rx ry rz scaleuserdatum 6378206.400294.97869820000 -12.0000 147.0000 192.00000.0000 0.0000 0.00000.00000000078Enter customizedellipsoidal datumparametersCommand Syntax and Example Input(s)ID Tag DescriptionUSEREXP-DATUM userexpdatum semimajor flatteningdx dy dz rx ry rz scale xvel yvel zvelxrvel yrvel zrvel scalev refdateuserexpdatum 6378137.000298.257223562800.000000000 0.0000000000.000000000 0.0000000000.000000000 0.0000000000.000000000 0.0000000000.000000000 0.0000000000.000000000 0.0000000000.000000000 0.0000000000.000000000783Enter customizedellipsoidal expandeddatum parametersUTMZONE utmzone command parameterutmzone set 10749Set UTM persistence,zone #, or meridianWAAS-ECUTOFF waasecutoff anglewaasecutoff -2505SBAS Set SBAS satellites’elevation cut-off angleCommand Syntax and Example Input(s)ID Tag DescriptionWAAS-TIMEOUT waastimeout set [delay]waastimeout set 100(the auto default is 180 s)851SBAS Set amount of timereceiver remains in anSBAS position if itstops receiving SBASCommand Syntax and Example Input(s)ID Tag DescriptionNovAtel Format LogsLog Description and fields after header ID Tag Input ExampleALMANAC Current GPS almanac info#msgs,prn, week, seconds,ecc,,ωo, ω, mo, afo, af1,n, a, inc-angle, sv config,hlth-prn, hlth-alm, antspf,next prn...73log almanacaonchangedAVEPOS Position averaginglat, lon, ht, latσ, lonσ,hgtσ, posave, ave time,samples 172log aveposaonchangedω°BESTPOS Position datasol status, pos type, lat,lon, hgt, undulation,datum id#, latσ, lonσ, hgtσ,stn id, diff_age, sol_age,#SV, #solnSV, #ggl1, rsrvd,rsrvd,ext sol stat, rsrvd, sig mask 42log bestposa ontime1BESTUTM Best available UTM positionsol status, pos type, z#,zletter, northing, easting,hgt, undulation, datum id#,nσ, eσ, hgtσ, stn id,diff_age, sol_age, #SV,#solnSV, #ggl1, rsrvd, rsrvd,ext sol stat, rsrvd,sig mask 726log bestutma ontime1Log Description and fields after header ID Tag Input ExampleBESTVEL Velocity datasol status, vel type,latency, age, hor spd, trkgnd, vert spd, rsrvd 99log bestvela ontime1BESTXYZ Cartesian coordinate positionp-solstat, p-type, p-x, p-y,p-z, p-xσ, p-yσ, p-zσ,v-solstat, v-type, v-x, v-y,v-z, v-xσ, v-yσ, v-zσ, stnid,v-latency, diff_age,sol_age, #SV, #solnSV, #ggl1,rsrvd, rsrvd,ext sol stat, rsrvd, sig mask 241log bestxyza ontime1CHAN-CONFIGLIST Available channel configurationsset in use, num sets, channelper signal type [num sets x[num configuration x2]]1146log chanconfiglistaonceLog Description and fields after header ID Tag Input ExampleCLOCK-MODEL Clock model matricesclockstat, reject, noiset,updatet, params[1x3],covdata[3x3], rangebias,rangebiasrate, change16log clockmodelaontime 1CLOCK-MODEL2Clock bias for each satellite systemclockmodel quality, rate,#systems, system, bias,biasstddev, next system...1170log clockmodel2aontime 1CLOCK-STEERING Clock steering statussource, steeringstate,period, pulsewidth,bandwidth, slope, offset,driftrate26log clocksteeringaonchangedLog Description and fields after header ID Tag Input ExampleCOM-CONFIG Current COM port config#ports, port, baud, parity,databits, stopbits,handshake, echo, breaks,rxtype, txtype, response317log comconfiga onceGLMLA GLONASS almanac data$glmla, #alm, alm#, slot, N,hlth & freq, ecc, ΔTdot, ω,τ16msb, ΔT, tλ, λ, Δi, τ12lsb, t859GLO log glmla onchangedGLO-ALMANAC Decoded GLONASS almanac#recs, week, time a, slot,freq, sat type, health,tlambda n, lambda n,delta i, ecc, arg perigee,delta t, delta td, tau,next message...718GLO log gloalmanacaonchangedLog Description and fields after header ID Tag Input ExampleGLOCLOCK GLONASS clock informationrsrvd, rsrvd, rsrvd,sat type, n4, tau gps, na,tau_c, b1, b2, kp 719GLO log gloclocka ontime1GLO-EPHEMERIS GLONASS ephemeris datasloto, freqo, sat type,rsrvd, e week, e time,t offset, Nt, rsrvd, rsrvd,issue, health, posx, posy,posz, velx, vely, velz,ls accx, ls accy, ls accz,tau_n, delta_tau_n, gamma,tk, p, ft, age, flags723GLO log gloephemerisaonchangedGLORAW-ALM Raw GLONASS almanacweek, time a, #recs, string,rsrvd, next rec...720GLO log glorawalmaonchangedLog Description and fields after header ID Tag Input ExampleGLORAW-EPHEM Raw GLONASS ephemeris datasloto, freqo, sigchan, week,time a, #recs, string, rsrvd,next rec...792GLO log glorawephemaonchangedGLORAW-FRAME Raw GLONASS frame dataframe#, sloto, freqo, week,time a, frame decode, sigchan,#recs, string, rsrvd, nextrec...721GLO log glorawframeaonchangedGLORAW-STRING Raw GLONASS string dataslot, freq, string, rsrvd722GLO log glorawstringaonchangedLog Description and fields after header ID Tag Input ExampleGPALM Almanac data$gpalm, #msgs,msg#,prn,gps wk,sv health, ecc,alm ref time, incl angle,omegadot, rt axis, omega,long asc node, m o, a f0, a f1,next msg...217log gpalmonchangedGPGGA GPS fix data and undulation$gpgga, utc, lat, lat dir,lon, lon dir, gps qual,#sats, hdop, alt, alt units,undulation,undulation units, age,stn id 218log gpgga ontime 1Log Description and fields after header ID Tag Input ExampleGPGGA-LONG Fix data and undulation with extraprecision$gpgga, utc, lat, lat dir,lon, lon dir, gps qual,#sats, hdop, alt, alt units,undulation,undulation units, age,stn id521log gpggalongontime 1GPGLL b Geographic position - lat/lon$gpgll, lat, lat dir, lon,lon dir, utc, data status,mode ind219log gpgll ontime 1GPGRS b GPS range residuals for each satellite$gpgrs, utc, mode, res, res,res, res, res, res, res, res,res, res, res, res 220log gpgrs ontime 1Log Description and fields after header ID Tag Input ExampleGPGSA b GPS DOP and active satellites$gpgsa, mode man/auto,mode 123, prn, prn, prn, prn,prn, prn, prn, prn, prn, prn,prn, prn, pdop, hdop, vdop221log gpgsa ontime 1GPGST b Pseudorange measurement noisestats$gpgst, utc, rms, smjr std,smnr std, orientation,lat std, lon std, alt std222log gpgst ontime 1GPGSV b GPS satellites in view$gpgsv, #msgs, msg#, #sats,prn, elev, azimuth, snr,next sat...223log gpgsv ontime 1Log Description and fields after header ID Tag Input ExampleGPRMB b Generic navigation info$gprmb, data status, xtrack,dir, origin id, dest id, destlat, lat dir, dest lon, londir, range, bearing, vel, arrstatus, mode ind224log gprmb ontime 1GPRMC b GPS specific info$gprmc, utc, pos status, lat,lat dir,lon,lon dir, speedkn,track true,date, mag var,mag var dir,mode ind 225log gprmc ontime 1Log Description and fields after header ID Tag Input ExampleGPSEPHEM GPS ephemeris dataprn, tow, health, iode1,iode2, week, z week, toe, a,dn, m0, ecc, w, cuc, cus,crc, crs, cic, cis, i0, i0,w0, , iodc, toc, tgd, af0,af1, af2, as, n, ura 7log gpsephemaonchangedGPVTG b Track made good and ground speed$gpvtg, track true, t ind,track made good,m track ind,speed kn,n speed ind,speed km,k speed ind,mode ind226log gpvtg ontime 1GPZDA UTC time and date$gpzda, utc, day, month,year, rsrvd, rsrvd 227log gpzda ontime 1Log Description and fields after header ID Tag Input Example ω°IONUTC Ionospheric/UTC infoa0, a1, a2, a3, b0, b1, b2,b3, utcwn, tot, a0, a1,wnlsf, dn, deltat ls,deltat utc, rsrvd 8log ionutcaonchangedLOGLIST A list of system logs#logs, port, message, messagetype, rsrvd, trigger, period,offset, hold, next log...5log loglista onceMARKPOS Position at mark in eventsolstat, postype, lat, lon,hgt, undulation, datumid#,latσ, lonσ, hgtσ, stnid,diffage, solage, #SV,#solnSV, #ggl1, rsrvd, rsrvd,ext sol stat, rsrvd,sig mask 181log markposa onnewLog Description and fields after header ID Tag Input ExampleMARKTIME Time of mark input eventweek, s, offset, offsetstd,utcoffset, status 231log marktimeaonnewNAVIGATE Navigation waypoint statussolstat, ptype, vtype,navtype, dist, bearing,atrack,xtrack,eta wk, eta s 161log navigatea ontime1PASSCOMn (n=1,2) PASSUSBn (n=1,2,3)Port pass-through logs to redirect data#bytes, data, next byte...233-234607-609log passusb2aonchangedPASSXCOMn (n=1,2,3)V irtual pass-through logs redirect dataas passcom above405-406,795log passxcom1onchangedLog Description and fields after header ID Tag Input ExamplePDPPOS PDP filter positionsol stat, pos type, lat, lon,hgt, undulation, datum id#,lat σ, lon σ, hgt σ, stn id,diff_age, sol_age, #sats,#sats soln, rsrvd, rsrvd,rsrvd, rsrvd, rsrvd, rsrvd 469log pdpposa ontime1PDPVEL PDP filter velocitysol stat, vel type, latency,age, hor spd, trk gnd,height, rsrvd 470log pdpvela ontime 1Log Description and fields after header ID Tag Input ExamplePDPXYZ PDP Cartesian position and velocityp-sol stat, pos type,p-x, p-y, p-z, p-x σ, p-y σ,p-z σ, v-sol stat, vel type,v-x, v-y, v-z, v-x σ, v-y σ,v-z σ, stn id, v-latency,diff_age, sol_age, #sats,#sats soln, rsrvd, rsrvd,rsrvd, rsrvd, rsrvd, rsrvd 471log pdpxyza ontime1PORTSTATS COM or USB port statistics#ports, port, rx chars,tx chars, acc rx chars,dropped chars, interrupts,breaks, par err, fram err,overruns, next port...72log portstatsa onceLog Description and fields after header ID Tag Input ExamplePSRDOP DOPs of current SVsgdop, pdop, hdop, htdop,tdop, cutoff, #prns, prn,next prn...174log psrdopaonchangedPSRDOP2PSRPOS solution DOPgdop, pdop, hdop, vdop,#sys-tem type, tdop 1163log psrdop2aonchanged 1PSRPOS Pseudorange positionsolstat, postype, lat, lon,hgt, undltn, datumid#, latσ,lonσ, hgtσ, stnid, diff age,sol age, #SV, #solnSV, rsrvd,rsrvd, rsrvd,ext sol stat, rsrvd, sig mask 47log psrposa ontime1PSRTIME Time offsets from pseudorange filter#recs, system, offset, offsetstdv, next system...881log psrtimea ontime1Log Description and fields after header ID Tag Input ExamplePSRVEL Pseudorange velocitysolstat, vtype, latency, age,horspd, trkgnd, vertspd,rsrvd100log psrvela ontime 1PSRXYZ Pseudorange Cartesian positionp-solstat, postype, p-x,p-y, p-z, p-xσ, p-yσ, p-zσ,v-solstat, v-type, v-x, v-y,v-z, v-xσ, v-yσ, v-zσ, stnid,v-latency, diff age, sol age,#SV, #solnSV, rsrvd, rsrvd,rsrvd,ext sol stat, rsrvd, sigmask 243log psrxyza ontime 1Log Description and fields after header ID Tag Input ExampleRAIMSTATUS RAIM statusraim mode, integrity status,hpl status, hpl, vpl status,vpl, #of excluded svs,system, id, next excludedid...1286RAIM log raimstatusaontime 0.5RANGE Satellite range info# obs, prn/slot c, glofreq,psr, psr std, adr, adr std,dopp, c/no, locktime,ch-tr-status, next obs...43log rangea ontime30RANGECMP Compressed RANGE log#obs,1st range record, nextobs...140log rangecmpaontime 10Log Description and fields after header ID Tag Input ExampleRAWALM Raw almanacrefweek, refsecs,#subframes, svid, data,next subframe...74log rawalmaonchangedRAWEPHEM Raw ephemerisprn, refweek, refsecs,subframe1, subframe2,subframe341log rawephemaonchangedRAWGPS-SUBFRAME Raw subframe datadecode#, prn, subfr id, data,chan25lograwgpssubframeaonnewRAWGPS-WORD Raw navigation wordprn, nav word407log rawgpswordaonnewRAWWAAS-FRAME Raw SBAS frame datadecode#, prn, waas msg id,data, chan287SBAS log rawwaasframeaonnewLog Description and fields after header ID Tag Input ExampleRTCA1Type 1 differential GPS corrections10DGPS_Tx log com2 rtca1ontime 10 3 RTCAEPHEM Ephemeris and time information347DGPS_Tx log com2 rtcaephemontime 10 7RTCM1Type 1 differential GPS corrections107DGPS_Tx log rtcm1 ontime 103RTCM9Type 9 partial differential corrections275DGPS_Tx log rtcm9 ontime 10 RTCM15Type 15 ionospheric corrections307DGPS_Tx log rtcm15 ontime10RTCM16Type16 special message129DGPS_Tx log rtcm16 onceRTCM31Type 31 GLONASS differentialcorrections 864DGPS_Tx& GLOlog rtcm31 ontime 2RTCM36Type 36 special message875DGPS_Tx& GLOlog rtcm36 onceRTCM59GLO Proprietary GLONASS differential903DGPS_Tx& GLO log rtcm59glo ontime 2Log Description and fields after header ID Tag Input ExampleRXCONFIG Receiver config statusembedded header,embedded msg, embedded crc,next embedded command...128log rxconfiga onceRXSTATUS Self-test statuserror, #stats, rxstat, rxstatpri, rxstat set, rxstatclear, aux1stat, aux1statpri, aux1stat set, aux1statclear, aux2stat, aux2statpri, aux2stat set, aux2statclear, aux3stat, aux3statpri, aux3stat set, aux3statclear, next stat...93log rxstatusaonchangedRXSTATUS-EVENT Status event indicatorstatus, bit pos, event,descrip94log rxstatuseventaonchangedLog Description and fields after header ID Tag Input ExampleSATVIS Satellite visibilitysatellite visibility?,complete gps almanac?, #sats,prn/slot c, glofreq, health,elev, az, true dop, apparentdop, next sat...48log satvisa ontime60SATXYZ ECEF satellite Cartesian posrsrvd, #sats, prn/slot c, x,y, z, clk corr, iono corr,tropo corr, rsrvd, rsrvd,next sat...270log satxyza ontime 1TIME Receiver time informationclock status, offset,offset std, utc offset,utc year, utc month,utc day, utc hour, utc min,utc ms, utc status 101log timea ontime 1Log Description and fields after header ID Tag Input ExampleTRACKSTAT Satellite tracking statussol status, pos type,ecutoff, #chans, prn/slot c,glofreq, ch-tr-status, psr,dop, cno, locktime, psr res,reject code, psr weight,next chan...83log trackstata ontime1VALID-MODELS Receiver model/expiry date#mods, model, expyear,expmonth, expday, next mod...206log validmodelsaonceVERSION Receiver version numbers#components, type, model,psn, hw version, sw version,boot version, compile date,compile time,next component...37log versiona onceLog Description and fields after header ID Tag Input ExampleWAAS0Which PRN to remove from solutionprn 290SBAS log waas0aonchangedWAAS1PRN mask assignmentprn, mask, iodp 291SBAS log waas1aonchangedWAAS2Fast corrections slots 0-12prn,iodf,iodp,prc0,prc1,prc2,prc3,prc4,prc5,prc6,prc7,prc8,prc9,prc10,prc11,prc12,udre0,udre1,udre2,udre3,udre4,udre5,udre6,udre7,udre8,udre9,udre10,udre11,udre12296SBAS log waas2aonchangedLog Description and fields after header ID Tag Input ExampleWAAS3Fast corrections slots 13-25prn, iodf, iodp, prc13,prc14,prc15,prc16,prc17,prc18,prc19,prc20,prc21,prc22,prc23,prc24,prc25,udre13,udre14,udre15,udre16,udre17,udre18,udre19,udre20,udre21,udre22,udre23,udre24,udre25 301SBAS log waas3aonchangedWAAS4Fast corrections slots 26-38prn,iodf,iodp,prc26,prc27,prc28,prc29,prc30,prc31,prc32,prc33,prc34,prc35,prc36,prc37,prc38,udre26,udre27,udre28,udre29,udre30,udre31,udre32,udre33,udre34,udre35,udre36,udre37,udre38302SBAS log waas4aonchangedLog Description and fields after header ID Tag Input ExampleWAAS5Fast corrections slots 39-50prn,iodf,iodp,prc39,prc40,prc41,prc42,prc43,prc44,prc45,prc46,prc47,prc48,prc49,prc50,prc51 (do notuse),udre39,udre40,udre41,udre42,udre43,udre44,udre45,udre46,udre47,udre48,udre49,udre50,udre51(do not use)303SBAS log waas5aonchangedLog Description and fields after header ID Tag Input ExampleWAAS6Integrity messageprn,iodf2,iodf3,iodf4,iodf5,udre0,udre1,udre2,udre3,udre4,udre5,udre6,udre7,udre8,udre9,udre10,udre11,udre12,udre13,udre14,udre15,udre16,udre17,udre18,udre19,udre20,udre21,udre22,udre23,udre24,udre25,udre26,udre27,udre28,udre29,udre30,udre31,udre32,udre33,udre34,udre35,udre36,udre37,udre38,udre39,udre40,udre41,udre42,udre43,udre44,udre45,udre46,udre47,udre48,udre49,udre50,udre51(invalid)304SBAS log waas6aonchangedLog Description and fields after header ID Tag Input ExampleWAAS7Fast correction degradationprn,latency,iodp,spare bits,ai(0),ai(1),ai(2),ai(3),ai(4),ai(5), ai(6), ai(7),ai(8),ai(9), ai(10),ai(11),ai(12),ai(13),ai(14),ai(15),ai(16),ai(17),ai(18),ai(19),ai(20),ai(21),ai(22),ai(23),ai(24),ai(25),ai(26),ai(27),ai(28),ai(29),ai(30),ai(31),ai(32),ai(33),ai(34),ai(35),ai(36),ai(37),ai(38),ai(39),ai(40),ai(41),ai(42),ai(43),ai(44),ai(45),ai(46),ai(47),ai(48),ai(49),ai(50),ai(51)(invalid, do not use)305SBAS log waas7aonchangedLog Description and fields after header ID Tag Input Example。
琉基葡聚糖凝胶分离富集-二溴对甲偶氮羧微乳液分光光度法测定微量镍
0 3 0mg L 围 内 符 合 比尔 定 律 , 出 限为 0 0 06mgL 生 活 垃 圾 、 、 .2 / 范 检 .0 / , 水 土壤 样 品 测 定 的 R D为 2 1 ~ . % , 标 回 收 S .% 5 2 加
率 为 9 . % ~1 4 。 66 0% 关 键 词 : ; 基 葡 聚 糖 凝 胶 ; 溴 对 甲偶 氮 羧 ; 光 光 度 法 镍 琉 二 分 中 图 分 类 号 : 6 7 3 0 5 .2 文 献标 识 码 : B 文 章 编 号 :0 6— 0 9 2 0 ) 3— 0 1— 4 10 2 0 ( 0 8 0 0 3 0
C 的显 色 反 应 , p 值 为 9 0 A) 在 H . 7的 N 一H 1 冲 溶 液 中 , 与 试 剂 形 成 淡 红 色 配 合 物 , 大 吸 收 峰 位 于 50 n 波 aB 0 C缓 镍 最 6 m 长 处 , 观 摩 尔 吸 光 系 数 £为 2 8×1 L ( o ・c 。 优 化 了 试 验 条 件 , 察 了共 存 离 子 的 影 响 , 法 在 0 0 2 I / 表 . 0 / m l m) 考 方 . 0 I L~ T g
M i r e uli n- p c r pho o e r c De e m i to fM i r c lwih co m so s e t o t m t i t r na i n o c o Ni ke t
Di o o- m e hy r x a o a t r Se a a i n a br m P- t lCa bo y z f e p r to nd
5 0 n a d2 8 ×1 L mo e )rs e t ey h et aa tr r pi z da dif e c f o xs i 6 m n . 0 /( l・ m ep ci l .T ets p rmeesweeo t e n n u n eo e i — v mi l c t
卫星导航相关术语速查表
Bureau International des Poids et Mesures (BIPM)
Butterworth filter
双相移键控(BPSK) 比特移位寄存器
BlockI,II,IIA,IIR,IIR-M,IIF(型)卫星 BOC(m,n)码 boxcar 滤波器
国际时间局
巴特沃思(Butterworth)滤波器
粗捕获(C/A)码 载噪比(C/N0) 载波相位测量 载波跟踪环
载波消除 铯原子钟 特征方程(式)
码片 码率 片式原子钟(CSAC) 园误差概率 钟噪声 闭环转移函数 码-载波发散 码钟 码分多址(CDMA) 码发生器 码相位测量 码转换 码消除 相干信号跟踪 冷启动 梳状函数 共视时间传递 复指数 结构干涉 辐射(方向)图可控天线 控制段 控制段误差 传统惯性参考系统 传统陆地参考系统
带宽,零点至零点 带宽扩展 基带 基带采样 基线 基本函数 北斗
双相偏置载频(BOC)
binary phase shift keying (BPSK) bit shift register
Block I, II, IIA, IIR, IIR-M, IIF satellites BOC(m,n) codes boxcar filter
卫星导航系统接收机原理与设计——之十(上)
058卫星导航系统的基本原理是测量出已知位置的卫星和用户接收机之间的距离,接收机可以根据星历数据算出卫星发射电文时所处位置,然而,由于用户接收机时钟与卫星星载时钟不可能完全同步,所以除了求解用户的三维坐标x、y、z外,还要引进卫星与接收机之间的时间差作为未知数,当接收机分别测量出与四颗以上卫星之间的距离时,就能建立含有4 个伪距方程方程组,并由此解算出解算出用户所在的位置坐标和系统时间。
简要说明如下:(1)伪距方程转化GNSS的定位解算是在ECEF坐标系下完成的。
定位解向量是 ,即接收机的位置解包含ECEF坐标三个方向的独立分量和时钟偏移量。
由每一个伪距测量值都可以建立一个方程,其中 是卫星 在ECEF坐标系下的坐标。
当有 颗卫星时,定位解算可以通过解下列方程组得到,Satellite classroom 卫星课堂卫星导航系统接收机原理与设计——之十(上)+ 刘天雄4 工作原理4.1.1 载波信号(Carrier signal)4.2 导航信号生成4.3 导航信号接收处理基本原则Principle 4.4 数字信号处理数学模型Mathematical Model 4.5 基带数字信号处理4.6 导航处理卫星导航定位原理是卫星不间断地发送自身的星历参数和时间信息,用户机接收到这些信息后,求解用户三维位置坐标。
应用处理模块提取信号处理通道的观测量(伪码测距值和载波相位测距值)以及导航电文(卫星轨道星历、卫星原子钟钟差、电离层延迟等信息),并由此解算出用户位置(Position)、速度(Velocity)和时间(Timing)。
一些导航接收机还需要处理一些辅助参数,例如:时间和频率传递(T i m e a n d f r e q u e n c y transfer)、静态和动态测量(Static and kinematic surveying)、大气电离层参数监测(Ionospheric parameters monitoring)、卫星导航系统差分参考(Differential GNSS reference stations )、卫星导航系统信号完好性监测(GNSS signal integrity monitoring),以满足特殊的科研用途。
丙酸改性提高电石渣捕集CO2性能的动力学分析
2017年第36卷第6期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·2325·化 工 进展丙酸改性提高电石渣捕集CO 2性能的动力学分析孙荣岳,叶江明,毕小龙,陈凌海(南京工程学院能源与动力工程学院,江苏 南京 211167)摘要:在双固定床反应器和热重分析仪上研究了丙酸改性对电石渣循环捕集CO 2性能的影响规律。
结果表明,丙酸改性提高了电石渣循环碳酸化转化率,并且延缓了随循环次数增加碳酸化转化率的衰减。
利用离子反应模型从碳酸化反应动力学角度分析了丙酸改性提高电石渣循环捕集CO 2性能的机理。
相同循环次数条件下,丙酸改性电石渣快速反应阶段化学反应速率常数k 和本阶段最终碳酸化转化率X u 均高于电石渣,碳酸化速率达到最大值时的时间t 0短于电石渣。
丙酸改性电石渣碳酸化反应速率更快,能以一个较短的时间取得更高的碳酸化转化率。
丙酸改性优化了煅烧后电石渣的孔隙结构,提高了20~100nm 范围内的孔面积和比孔容,降低了扩散阻力,这是其表现优于电石渣动力学特性参数的原因。
关键词:钙循环;电石渣;改性;CO 2捕集;动力学中图分类号:X511 文献标志码:A 文章编号:1000–6613(2017)06–2325–06 DOI :10.16085/j.issn.1000-6613.2017.06.051Kinetic analysis on CO 2 capture performance of carbide slag modified bypropionic acidSUN Rongyue ,YE Jiangming ,BI Xiaolong ,CHEN Linghai(School of Energy and Power Engineering ,Nanjing Institute of Technology ,Nanjing 211167,Jiangsu ,China )Abstract :The CO 2 capture capacity of carbide slag modified by propionic acid was investigated in a dual fixed-bed reactor and a TGA. The result shows that modification by propionic acid can improve the cyclic carbonation conversion of carbide slag and delay the decays of carbonation conversion with number of cycles. An ion reactive adsorption model was employed to describe the mechanism why modification by propionic acid can improve the CO 2 capture capacity of carbide slag. With the same number of cycles ,the values of k and X u of carbide slag modified by propionic acid are higher than those without modification ,while the value of t 0 is shorter. The modified carbide slag shows higher carbonation rate and can achieve a relative higher carbonation conversion with a shorter time. Modification by propionic acid improves the microstructure of the carbide slag after calcination. The pore area and pore volume in the range of 20—100nm are increased and the resistance of diffusion is reduced. That’s why the modified carbide slag shows favorable kinetics parameters superior to carbide slag without modification.Key words :calcium looping process ;carbide slag ;modification ;CO 2 capture ;kinetics由于全球气候变暖,CO 2捕集与封存近年来受到学者的广泛关注[1-2],钙循环捕集CO 2技术是一种可行的大规模减少燃煤电厂CO 2排放的技术之 一[3-5]。
GNSS电离层建模及硬件延迟分析-上海天文台
Prof. Jun-Ping Chen
February, 2014
GNSS
电 离 层 建 模 及 硬 件 延 迟 分 析 谢 益 炳
The ionospheric parameter is normally determined using the differential observations between different frequencies. Thus the Differential Code Bias(DCB) can reach 7ns or 9~30 Tecu. Hence, the determination of DCB has important effect for the precisely acquirement about the Ionospheric TEC. It can participate in positioning as the known values, reduce the necessary number of observations, and increase redundant observations when the total number of satellites is insufficient, thereby improving the reliability of satellite navigation, integrity and continuity.
III
Tongji University Master of Philosophy Abstract
国际上著名的从事药剂学研究的专家
Intra Oral Delivery (口腔内传递)直接由口腔黏膜吸收,瞬间进入血液循环,有效成分不流失。
Universities, Departments,FacultiesResearchersButler University College of Pharmacy and Health Sciences Health Sciences USA Associate Professor Nandita G. DasMain focus on her research facilities are about peformulation, biopharmaceutics, drug targeting, anticancer drug delivery.Purdue University School of Pharmacy and Pharmacal Sciences Department of Industrial and Physical Pharmacy (IPPH) USA Professor Kinam ParkControlled Drug Delivery, Glucose-Sensitive Hydrogels for Self-Regulated Insulin Delivery, Superporous Hydrogel Composites, Oral Vaccination using Hydrogel Microparticles, Fractal Analysis of Pharmaceutical Solid Materials.St. John's University School of Pharmacy and Allied Health ProfessionsUSA Professor Parshotam L. MadanControlled and targeted drug delivery systems; Bio-erodible polymers as drug delivery systemsThe University of Iowa College of Dentistry Department of Oral Pathology, Radiology, and Medicine USA Professor Christopher A. Squierpermeability of skin, and oral mucosa to exogenous substances, including alcohol and tobacco, and drug deliveryThe University of Iowa College of Pharmacy Department of Pharmaceutics USA Associate Professor Maureen D. DonovanMucosal drug delivery especially via the nasal, gastrointestinal and vaginal epithelia; and mechanisms of drug absorption and disposition.The University of Texas at San Antonio College of Engineering Department of Biomedical Engineering USA Professor Jeffrey Y. ThompsonDental restorative materials and implantsThe University of Utah Pharmaceutics & Pharmaceutical Chemistry USA Professor John W. MaugerDr. Maugner is mainly focused on dissolution testing and coating technology of orally administered drug products with bitter taste about which he is one of the inventors of a filed patent.University of Kentucky College of Pharmacy Pharmaceutical Sciences USA Professor Peter CrooksDr. Crooks is internationally known for his research work in drug discovery, delivery, and development, which includes drug design and synthesis, pharmacophore development, drug biotransformation studies, prodrug design, and medicinal plant natural product research. His research also focuses on preclinical drug development, including drug metabolism and pharmacokinetics in animal models, dosage form development, and drug delivery assessment using both conventional and non-conventional routes, and preformulation/formulation studies.Associate Professor Russell MumperDr. Mumper's main research areas are thin-films and mucoadhesive gels for (trans)mucosal delivery of drugs, microbicides, and mucosal vaccines, and nanotemplate engineering of nano-based detection devices and cell-specific nanoparticles for tumor and brain targeting, gene therapy and vaccines.West Virginia University School of Pharmacy Department of Basic Pharmaceutical Sciences USA Associate Professor Paula Jo Meyer StoutDr. Stout's research areas are composed of dispersed pharmaceutical systems, sterile product formulation DDS for dental diseases and coating of sustained release formulations.Monash University Victorian College of Pharmacy Department of Pharmaceutics Australia Professor Barrie C. FinninTransdermal Drug Delivery. Physicochemical Characterisation of Drug Candidates. Topical Drug Delivery. Drug uptake by the buccal mucosaProfessor Barry L. ReedTransdermal Drug Delivery. Topical Drug Delivery. Formulation of Dental Pharmaceuticals.University of Gent Faculty of Pharmaceutical Sciences Department of Pharmaceutics Belgium Professor Chris Vervaet-Extrusion/spheronisation - Bioadhesion - Controlled release based on hot stage extrusion technology - Freeze-drying - Tabletting and - GranulationPh.D. Els AdriaensMucosal drug delivery (Vaginal and ocular) Nasal BioadhesionUniversity of Gent Faculty of Pharmaceutical SciencesLaboratory of Pharmaceutical Technology Belgium Professor Jean Paul Remonbioadhesive carriers, mucosal delivery, Ocular bioerodible minitablets, Compaction of enteric-coated pellets; matrix-in-cylinder system for sustained drug delivery; formulation of solid dosage forms; In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy; hot-melt extruded mini-matricesDanish University of Pharmaceutical Sciences Department of Pharmaceutics Denmark Associate Professor Jette JacobsenLow soluble drugs ?in vitro lymphatic absorption Drug delivery to the oral cavity ?in vitro models (cell culture, diffusion chamber) for permeatbility and toxicity of drugs, in vivo human perfusion model, different formulation approaces, e.g. iontophoresis.。
GPS期末考试双语版B
(Please write down the answers on the answer sheet!) Good luck !
Part One. Fill in the blanks. (1 ’× 20=20’)
1. The Global Navigation Satellite Systems are constituted by four independent systems --- GPS system established by America, GLONASS system established by Russia, ______ system established by European Union, and ______ system established by China. 2. The total message is divided into _____ sub-frame, and each sub-frame is transmitted in ____ seconds. 3. The signal of GPS satellite contains three components, which are__________, ___________, and _________. 4. The GPS observable types include _________, __________ and _________. 5. The correction forms of DGPS can be divided into _______corrections and _____ corrections. 6. The signal processing technique is to reconstruct carrier. The common techniques include _________technique, ________ technique, _________ technique and squaring technique. 7. Klobuchar model is used to correct _________ refraction and Hopfield model is used to correct _______ refraction. 8. Two single-frequency receivers are used for static relative positioning, and the distance of the two stations is 10 m. If 10 epochs’ observables are obtained and 6 satellites are tracking without loss of lock in these epochs, answer the following questions (Only use carrier phase for data processing) How many raw carrier phase observables can be used? How many independent double-differenced observables can be used? How many unknown parameters need to be solved? ___________ ___________ ___________
不同NeQuick电离层模型参数的应用精度分析
不同NeQuick电离层模型参数的应用精度分析王宁波;袁运斌;李子申;李敏;霍星亮【摘要】Galileo adopts NeQuick model for single-frequency ionospheric delay corrections.For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS).In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed.The accuracy of Global Position System (GPS) broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC) provided by global ionospheric maps (GIM), GPS test stations and JASON-2 altimeter.The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay.NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.%Galileo采用NeQuick作为全球广播电离层模型,其实际应用中以有效电离水平因子Az代替太阳活动指数作为NeQuick 的输入参数,并利用二次多项式拟合得到广播星历中播发的3个电离层参数.本文在总结和讨论NeQuick模型参数估计方法及其变化特征的基础上,分别以全球电离层格网、GPS基准站及JASON-2测高卫星提供的电离层TEC为参考,分析不同NeQuick模型参数(包括以太阳活动参数F10.7为输入的NeQuick2、以本文解算参数为输入的NeQuickC和以Galileo广播电离层参数为输入的NeQuickG)在全球大陆及海洋地区的应用精度,并与GPS广播的Klobuchar模型对比.结果表明,NeQuickG在全球范围内的修正精度为54.2%~65.8%,NeQuickC的修正精度为71.1%~74.2%,NeQuick2的修正精度与NeQuickG相当,略优于GPS广播星历中播发的Klobuchar模型.【期刊名称】《测绘学报》【年(卷),期】2017(046)004【总页数】9页(P421-429)【关键词】Galileo;NeQuick模型;电离层延迟;总电子含量【作者】王宁波;袁运斌;李子申;李敏;霍星亮【作者单位】中国科学院光电研究院,北京 100094;中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北武汉 430077;中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北武汉 430077;中国科学院光电研究院,北京 100094;中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北武汉 430077;中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北武汉 430077【正文语种】中文【中图分类】P228空间电离层是影响全球导航卫星系统(global navigation satellite system,GNSS)应用最棘手的误差源之一。
科罗索酸的研究进展_李海艳
大量实验研究表明科罗索酸具有明确的抗肥胖及降血 糖作用,并作为降糖药物已进入美国 FDAⅢ期临床实验, 而对其抗肿瘤方面的研究则相对较少。科罗索酸为植物中 天然存在的化合物,植物药运用于临床肿瘤防治不仅可改 善患者体质,提高患者生存质量,还可以延长生存期,其抗 肿瘤疗效明显而且不良反应小,提取、分离植物药中具有抗 肿瘤疗效的药物成分,通过研究其结构可以为中医药的临 床应用提供理论依据,也可以为大量人工合成含相似结构 的抗肿瘤化学药物提供筛选模板[20]。另外,可能由于植物 中不同化合物间的相加作用或协同作用,使其比单用其中 某一提取物疗效好,这也为科罗索酸协同其他化疗药物防 治肿瘤提供研究方向[28]。
[3] Xiaoan Wen,Jun Xia,Keguang Cheng,et al. Pentacyclic triterpenes. Part 5: Synthesis and SAS study of corosolic acid derivatives as inhibitors of glycogen phosphorylases [J]. Bioorg Med Chem Lett,2007,17: 5777 - 5782.
电离层日变化特性研究简述
东西向电场或等离子体垂直漂移是决定低纬电 离层输运的重要因素. 最近的个例观测研究 (Aggson et al., 1995; Kelley et al., 2014)报道了赤 道电离层电场日出增强特征. 赤道电场日出增强成 为电离层电动力学重要的新问题.
Aggson 等(1995)报道了 San Marco D 卫星在 1988 年 6 月至 9 月日出时段附近记录到 9 次磁赤 道东向电场异常增强事件. 在这些事件中,磁赤道 电场日出增强的特征与日落反转增强非常相似. Kelley 等(2014)从 C/NOFS 卫星的 F 层等离子体 漂移原位探测资料,也发现了日出时段存在赤道电 场增强的事例. 6 个连续轨道资料中,有 3 个轨道展 示了日出线东侧赤道电离层存在东向电场,幅度可 高达 3 mV/m,等离子体漂移具有高动态变化特性. 有趣的是,以往有关赤道电离层电场的统计与模型 结果中尚未呈现过赤道电场日出增强特征. Kelley 等(2014)提出日出与日落两个时段赤道电离层电 场增强的形成机理相同,均源于 F 区东向热层风.
第 52 卷 第 6 期
刘立波,等:电离层日变化特性研究简述
• 649 •
Vz/(m·s−1)
60 30 0 −30 −60
0
10 8 6 4 2
0
450
350
Jicamarca, F10.7=85, Ap=10
S-F 模型
2
4
2004-06-10
6
8
10
地方时/h
平均27天 2004-06-10
2 Mohe Observatory of Geophysics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
海藻酸钠寡糖抗氧化活性的研究
通过邻苯三酣自氧化反应 [13]检混道氧自由基的 清除能力,取不离浓度的海藻酸每每寡糖溶搜 0.2 mL,
加入 pH8.2 , 50 组mollL的 Tris-HCl 缓冲液 4.5 mL,
蒸馆7.K 4 mL.渥匀,置于 2TC 保温 HJmin ,体为试
剂 A; 取 0.3 mL 3 m血ollL的邻苯三酷溶液,置于 25 下保温 10 min ,作为试剂 B; 以试剂 A 与 0.3 mL
2, 7-二氯荧光素: Sigma 公司。
小胶质细胞隶属单核吞噬细胞族,被广泛认为是
中枢神经系统内的主要免疫效应器,在中枢神经系统
发育完成后转换为静止小胶质细胞[匀。当中枢神经系 统损伤时,静止小胶质细胞被激活成巨噬细胞,识别 抗原特性增强,吞噬异物并分泌活性成分,促进受损
1. 2
1.2.1
方法
海藻酸铀寡糖的制备
分钟。取 2 黯L 上清壤于另一试管中,加入等体积的
三氯化铁洛液,摇匀并静置 5 min 于 700 nm 下黯吸
先度。实 3金中海藻酸锅寡糖的终浓度为
(1)总抗氧化能力捡~tl 实验采窍铝酸镀法;割罢黠 i 定海藻酸锅;寡草糖的总拉氧
先能力 [1 泣 i气
50 , 100,200,400μg/mL o 对照组为维生素 C ,终被度
糖具有 一 定的抗氧化 能力 。
盐酸浓度 ( 0 . 2%~0 . 5 % , v/v ) 四个因素对降解效果的
影响 。综 合考量降解程度、寡糖产率、实验戚本等确
定了:Ø适用于实验室生产的寡糖制备条件 : 海藻酸铀
底物浓度 1 .5% ( m/v) 、盐酸浓度 0 . 3 % (v/v) 、降解
植度 90 'C 、 降 ftJlt- 时间 24 h 。 将海藻酸铀寡糖粉末溶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Klobuchar Ionospheric ModelGPS satellites broadcast the parameters of the Klobuchar ionospheric model for single frequency users. The Klobuchar model was designed to minimise user computational complexity and user computer storage as far as to keep a minimum number of coefficients to transmit on satellite-user link.This broadcast model is based on an empirical approach [Klobuchar, 1987] [1] and is estimated to reduce about the 50% RMS ionospheric range error worldwide. It is assumed that the electron content is concentrated in a thin layer at kilometres in height. Thence, the slant delay is computed from the vertical delay at the Ionospheric Pierce Point (IPP) [2] multiplying by a obliquity factor, i.e., the mapping function, see figure 1 and equation (9).Figure 1: Ionospheric Pierce Points (IPPs), Vertical and Slant delay illustration. The IPP's trajectories for a receiver inBarcelona, Spain are shown in the map. The figure at bottom right shows the obliquity factor variation with the elevationof ray.Klobuchar Algorithm equationsThe Klobuchar algorithm to run in a single frequency receiver is provided as follows (from [Klobuchar, 1987][1]):Given the user approximate geodetic latitude , longitude , elevation angle and azimuth of the observed satellite and the coefficients and broadcasted in the GPS satellite navigation message:1. Calculate the earth-centred angle (elevation in semicircles).2. Compute the latitude of the Ionospheric Pierce Point (IPP)[3].If the . If the .3. Compute the longitude of the IPP.4. Find the geomagnetic latitude of the IPP.5. Find the local time at the IPP.where ,therefore: If , subtract . If , add .6. Compute the amplitude of ionospheric delay.if , thence .7. Compute the period of ionospheric delay.if , thence .8. Compute the phase of ionospheric delay.9. Compute the slant factor (elevation in semicircles).10. Compute the ionospheric time delay.The delay is given in seconds and it is referred to the GPS L1 frequency.Note: For the L1 GPS signal, the delay corresponds to the term inAlthough this algorithm is provided to estimate the ionospheric delay in the GPS L1 frequency signal, it can be also used to estimate the ionospheric time delay in the GPS L2 frequency signal or for the GLONASS and Galileo signals, as well. Indeed, taking into account that the ionospheric delay is inversely proportional to the square of thesignal frequency, the delay for any GNSS signal transmitted on frequency is given by:Figure 2 is a layout of the Klobuchar model algorithm, showing that the vertical delays are based on a constant value at night time and a half-cosine function in daytime, which amplitude and period are given as a function of the eight parameters ( ) broadcast in the GPS navigation message. A map with the geographical variation of the vertical delay is also depicted in this figure.Figure 3 illustrates with an example the values of the GPS delays from the Klobuchar model and shows the effect of neglecting such delays in single point positioning for the horizontal and vertical error components.Figure 2: Klobuchar ionospheric model. Algorithm layout.Figure 3: Ionospheric correction: Range and position domain effectFirst row shows the horizontal (left) and vertical (right) positioning errorusing (blue) or not using (red) the Klobuchar ionospheric correction definedin 1. The variation in range is shown in the second row at leftNotes[1][Klobuchar, 1987] Klobuchar, J., 1987. Ionospheric Time-Delay Algorithms for Single-Frequency GPS Users. IEEE Transactions onAerospace and Electronic Systems (3), pp. 325-331.[2]That is the intersection of the ray with the ionospheric layer at UNIQ-math-0-236579b4aa0058fc-QINU kilometres in height.[3]That is, the latitude of the earth projection of the ionospheric intersection point with a mean ionospheric height layer atUNIQ-math-1-236579b4aa0058fc-QINU kilometres.ReferencesArticle Sources and Contributors5 Article Sources and ContributorsKlobuchar Ionospheric Model Source: /index.php?oldid=11615 Contributors: Carlos.Lopez, Jaume.SanzImage Sources, Licenses and ContributorsFile:Fundamentals_Name.png Source: /index.php?title=File:Fundamentals_Name.png License: unknown Contributors: Timo.KouwenhovenFile:Klobuchar_ IPP_slide.png Source: /index.php?title=File:Klobuchar_IPP_slide.png License: unknown Contributors: Carlos.LopezFile:Klobuchar_Klobychar_slide.png Source: /index.php?title=File:Klobuchar_Klobychar_slide.png License: unknown Contributors: Carlos.LopezFile:Klobuchar_H_Nov_ion.png Source: /index.php?title=File:Klobuchar_H_Nov_ion.png License: unknown Contributors: Carlos.LopezFile:Klobuchar_V_Nov_ion.png Source: /index.php?title=File:Klobuchar_V_Nov_ion.png License: unknown Contributors: Carlos.LopezFile:Klobuchar_Nov_iono_cor.png Source: /index.php?title=File:Klobuchar_Nov_iono_cor.png License: unknown Contributors: Carlos.Lopez。