湖北省鄂州市第五中学2017届九年级上学期第二次月考数学试题
2017中考数学真题湖北鄂州数学(含答案)
鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC的解析式,再求CD的中点坐标N(,),过点N作NP∥AC,可求直线NP的解析式为,联立,解得解法二:过直线AC上方抛物线的点P作PM⊥轴交AC于点F,交轴于点M,设M()则先求直线AC的解析式,F(),P()∴∴∴∴∴……………………… 9分(4)………………………………… 12分。
2017年湖北省鄂州市中考数学试卷(后附答案解析)
2017年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.0 D.﹣1.0101012.(3分)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×1093.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x44.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.(3分)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°7.(3分)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a=.12.(3分)若y=+﹣6,则xy=.13.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;=S△ACD,求点P的坐标;(3)在直线AC上方的抛物线上找一点P,使S△ACP(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M 的坐标.2017年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•鄂州)下列实数是无理数的是()A.B.C.0 D.﹣1.010101【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣1.0101是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)(2017•鄂州)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2.3亿用科学记数法表示为:2.3×108.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•鄂州)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•鄂州)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.5.(3分)(2017•鄂州)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解【分析】确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,3故选A.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(3分)(2017•鄂州)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°【分析】先根据EC=EA.∠CAE=30°得出∠C=30°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.7.(3分)(2017•鄂州)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.【分析】观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.【解答】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选C.【点评】本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.8.(3分)(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min 小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27﹣22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.【解答】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选D.【点评】本题考查了一次函数的应用,观察图形,逐一分析四条结论的正误是解题的关键.9.(3分)(2017•鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(3分)(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【分析】如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB 于K.作BT⊥AD于T.由△BCF≌△GDF,推出BC=DG,BF=FG,由△FBC≌△FBH,△FAH≌△FAD,推出BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,可得(x+4)2=42+(4﹣x)2,推出x=1,推出BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,根据AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,可得42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由此求出y即可解决问题.【解答】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK ⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②由①②可得y=,∴S=×5×=,△ABE故选D.【点评】本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.二、填空题(每小题3分,共18分)11.(3分)(2017•鄂州)分解因式:ab2﹣9a=a(b+3)(b﹣3).【分析】根据提公因式,平方差公式,可得答案.【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.12.(3分)(2017•鄂州)若y=+﹣6,则xy=﹣3.【分析】根据分式有意义的条件即可求出x与y的值.【解答】解:由题意可知:,解得:x=,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣3【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.13.(3分)(2017•鄂州)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.【分析】因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为3.另一个未知数利用平均数定义求得,从而根据中位数的定义求解.【解答】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+2+2+3+3+c)=2,解得c=0,将这组数据按从小到大的顺序排列:0、1、2、2、3、3、3,位于最中间的一个数是2,所以中位数是2,故答案为:2.【点评】本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•鄂州)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8π.【分析】根据题意可以去的圆锥的母线长,然后根据圆锥的侧面展开图是一个扇形,由扇形的面积公式S=lr即可解答本题.【解答】解:圆锥的主视图如右图所示,直径BC=8,AD=6,∴AC==2,∴圆锥的侧面积是:=8π,故答案为:8π.【点评】本题考查圆锥的计算,解答本题的关键是明确题意,知道圆锥的侧面展开图是扇形和扇形的面积计算公式.15.(3分)(2017•鄂州)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=2,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k的值.【解答】解:如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=2,∴Rt△CBE中,CE=3,又∵AC=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴|k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.【点评】本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.解题时注意分类思想的运用.16.(3分)(2017•鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8,故答案为:2≤m≤8.【点评】本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B,D的坐标代入是解题关键.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)(2017•鄂州)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵不等式有意义时x≠±1、0,∴x=2,则原式=0.【点评】本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.18.(8分)(2017•鄂州)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD 于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.【分析】(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE ﹣S△AEF=×4×8﹣×4×3=10.【点评】本题考查了翻折变换﹣折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算,熟练掌握折叠的性质是解题的关键.19.(8分)(2017•鄂州)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.【分析】(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.20.(8分)(2017•鄂州)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.21.(9分)(2017•鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.【分析】(1)设DE=x,可得EF=DE﹣DF=x﹣2,从而得AF==(x﹣2),再求出CD==x、BC==2,根据AF=BD可得关于x的方程,解之可得;(2)延长NM交DB延长线于点P,知AM=BP=3,由(1)得CD=x=2、BC=2,根据NP=PD且AB=MP可得答案.【解答】解:(1)如图,设DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF===(x﹣2),又∵CD===x,BC===2,∴BD=BC+CD=2+x由AF=BD可得(x﹣2)=2+x,解得:x=6,∴树DE的高度为6米;(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=x=×6=2,BC=2,∴PD=BP+BC+CD=3+2+2=3+4,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+4,∴NM=NP﹣MP=3+4﹣2=1+4,∴食堂MN的高度为1+4米.【点评】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.22.(9分)(2017•鄂州)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O 的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC 上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.【点评】本题考查切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.23.(10分)(2017•鄂州)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.24.(12分)(2017•鄂州)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;。
湖北鄂州数学(含答案) 2017年中考数学真题试卷
鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E. (1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图经常参加课外体育锻炼的学生 最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD 的中点坐标N (,),过点N 作NP ∥AC ,可求直线NP 的解析式为,联立,解得解法二:过直线AC 上方抛物线的点P 作PM ⊥轴交AC 于点F ,交轴于点M ,设M ()则先求直线AC 的解析式,F (),P ()∴ ∴ ∴ ∴∴ ……………………… 9分(4)………………………………… 12分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=-C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别6.如图,用尺规作图作AOC AOB交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2D E A D C M =⋅;④点N为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点. 下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.。
2016-2017学年人教版九年级(上册)第二次月考数学试卷及答案
2016-2017学年九年级(上)第二次月考数学试卷一、选择题(每小题3分,共42分)1.计算()2的结果是()A.3 B.9 C.±3 D.±92.若成立,那么a的取值范围是()A.a≤0 B.a≥0 C.a<0 D.a>03.下列计算中,正确的是()A. B.C.D.4.方程x2=42的解是()A.x1=x2=4 B.x1=x2=16 C.x1=﹣2,x2=2 D.x1=﹣4,x2=45.下列各组长度的线段,成比例线段的是()A.1cm,cm,cm,cm B.3cm,4cm,5cm,6cmC.2cm,4cm,6cm,8cm D.10cm,5cm,6cm,4cm6.将一元二次方程x2﹣2x﹣5=0化成(x+a)2=b的形式,则b等于()A.1 B.5 C.6 D.97.下列事件是必然发生的是()A.明天是星期一 B.十五的月亮象细钩C.早上太阳从东方升起D.上街遇上朋友8.下列说法:①所有的等腰直角三角形都相似;②所有的矩形都相似;③所有的菱形都相似;④所有的正方形都相似;⑤所有的正六边形都相似.其中,正确命题的个数为()A.1 B.2 C.3 D.49.如图,在△ABC中,∠C=90°,sinB=,则cosB等于()A.B.C.D.10.掷两枚普通硬币一次,落地后出现两个正面都朝上的概率是()A.B.C.D.11.如图,△ADB与△AEC相似,AB=3,DB=2,EC=6,则BC等于()A.9 B.6 C.5 D.412.如图,把一个长方形划分成三个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形长和宽之比为()A.3:1 B.:1 C.2:1 D.:113.如图,修建抽水站时,沿着坡度为i=1:的斜坡铺设水管,若测得水管A处铅垂高度为6m,则所铺设水管AC的长度为()A.8m B.10m C.12m D.18m14.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.B.C.D.二、填空题(每小题4分,共16分)15.计算:=.16.化简:=.17.如图,AD垂直平分BC,DE∥AB,若AB=5,则DE的长为.18.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为.三、解答题(共62分)19.计算(1)(2).20.解方程与化简(1)解方程:3x2+x﹣1=0 (用公式法)(2)cos30°﹣3tan60°+2.21.一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.(1)用画树形图或列表的方法,求取出的两个小球上的数字之和为3的概率;(2)求取出的两个小球的数字之和大于4的概率.22.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.23.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,﹣2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB 的相似比为2:1,并写出点A的对应点A1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2,并写出点A2的坐标;(3)判断△OA1B1与△O2A2B2,能否是关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.24.已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.两个动点P、Q分别从B、C两点同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ 的长度等于5厘米?(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.(3)经过几秒时以C、P、Q为顶点的三角形与△ABC相似?2016-2017学年九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.计算()2的结果是()A.3 B.9 C.±3 D.±9【考点】二次根式的乘除法.【分析】直接利用二次根式乘法运算法则求出即可.【解答】解:()2=9.故选:B.2.若成立,那么a的取值范围是()A.a≤0 B.a≥0 C.a<0 D.a>0【考点】二次根式的性质与化简.【分析】根据二次根式的性质得到=|a|,则|a|=﹣a,然后根据绝对值的意义确定a的范围.【解答】解:∵,而=|a|,∴|a|=﹣a,∴a≤0.故选A.3.下列计算中,正确的是()A. B.C.D.【考点】二次根式的加减法;二次根式的乘除法.【分析】同类二次根式可以直接加减,在进行根式的乘除法时,根号里面的数可以直接乘除,由此可判断各选项.【解答】解:A、3﹣=2,故本选项错误;B、≠,故本选项错误;C、×=2,故本选项正确;D、÷=,故本选项错误.故选C.4.方程x2=42的解是()A.x1=x2=4 B.x1=x2=16 C.x1=﹣2,x2=2 D.x1=﹣4,x2=4【考点】解一元二次方程-直接开平方法.【分析】两边开方,即可得出两个一元一次方程,即可得出选项.【解答】解:x2=42,∴x2=16,∴x=±4,即x1=4,x2=﹣4.故选D.5.下列各组长度的线段,成比例线段的是()A.1cm,cm,cm,cm B.3cm,4cm,5cm,6cmC.2cm,4cm,6cm,8cm D.10cm,5cm,6cm,4cm【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:A、1×=×,故本选项正确;B、3×5≠4×6,或3×6≠4≠5.故本选项错误;C、2×6≠4×8或2×8≠4×6,故本选项错误;D、10×4≠5×6,故本选项错误;故选:A.6.将一元二次方程x2﹣2x﹣5=0化成(x+a)2=b的形式,则b等于()A.1 B.5 C.6 D.9【考点】解一元二次方程-配方法.【分析】方程常数项移动右边,两边都加上1即可得到结果.【解答】解:方程变形得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6,则b=6.故选C7.下列事件是必然发生的是()A.明天是星期一 B.十五的月亮象细钩C.早上太阳从东方升起D.上街遇上朋友【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:明天是星期一是随机事件;十五的月亮象细钩是不可能事件;早上太阳从东方升起是必然事件;上街遇上朋友是随机事件,故选:C.8.下列说法:①所有的等腰直角三角形都相似;②所有的矩形都相似;③所有的菱形都相似;④所有的正方形都相似;⑤所有的正六边形都相似.其中,正确命题的个数为()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据等腰直角三角形的性质和三角形相似的判定方法对①进行判断;利用反例对②进行判断;根据菱形的性质对③进行判断;根据正方形和正六边形的性质和相似的定义可对④⑤进行判断.【解答】解:所有的等腰直角三角形都相似,所以①正确;所有的矩形不一定都相似,如边长为1和2的矩形与边长为1和1的矩形不相似,所以②错误;所有的菱形不一定相似,所以③错误;所有的正方形都相似,所以④正确;所有的正六边形都相似,所以⑤正确.故选C.9.如图,在△ABC中,∠C=90°,sinB=,则cosB等于()A.B.C.D.【考点】同角三角函数的关系.【分析】根据sin2B+cos2B=1及∠B为锐角,可得出cosB的值.【解答】解:∵sin2B+cos2B=1,sinB=,∴cosB=±,∵∠B为锐角,∴cosB=.故选D.10.掷两枚普通硬币一次,落地后出现两个正面都朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.【解答】解:一共有4种情况,两个正面向上的有1种情况,∴这两个正面向上的概率是,故选A.11.如图,△ADB与△AEC相似,AB=3,DB=2,EC=6,则BC等于()A.9 B.6 C.5 D.4【考点】相似三角形的性质.【分析】根据相似三角形的性质列出比例式,计算即可.【解答】解:∵△ADB∽△AEC,∴=,即=,解得,BC=6,故选:B.12.如图,把一个长方形划分成三个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形长和宽之比为()A.3:1 B.:1 C.2:1 D.:1【考点】相似多边形的性质.【分析】设出小长方形的边长,根据图形表示出大三角形的边长,再根据两图形相似,计算出比值.【解答】解:如图:设AB=y,BE=x,则BC=3x,∵每一个小长方形与原长方形相似,∴=,∴3x2=y2,∴=,∴==:1,故选B.13.如图,修建抽水站时,沿着坡度为i=1:的斜坡铺设水管,若测得水管A处铅垂高度为6m,则所铺设水管AC的长度为()A.8m B.10m C.12m D.18m【考点】解直角三角形的应用-坡度坡角问题.【分析】首先根据坡度的概念求得BC的长度,然后根据勾股定理求出AC的长度.【解答】解;∵该斜坡的坡度为i=1:,∴AB:BC=1:,∵AB=6m,∴BC=6m,则AC===12(m).故选C.14.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.B.C.D.【考点】相似三角形的判定与性质;平行线之间的距离;全等三角形的判定与性质;等腰直角三角形.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC===5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴=,=,解得CD=,在Rt△BCD中,∵CD=,BC=5,∴BD===.故选A.二、填空题(每小题4分,共16分)15.计算:=6.【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则计算.【解答】解:==6.故答案为:616.化简:=1.【考点】二次根式的混合运算;平方差公式.【分析】利用平方差公式的形式进行化简计算,即可得出答案.【解答】解:原式=﹣12=1.故答案为:1.17.如图,AD垂直平分BC,DE∥AB,若AB=5,则DE的长为.【考点】线段垂直平分线的性质.【分析】根据平行线分线段成比例定理求出E为AC中点,根据三角形的中位线性质得出DE=AB,代入求出即可.【解答】解:∵AD垂直平分BC,∴BD=DC,∵DE∥AB,∴AE=CE,∵AB=5,∴DE=AB=,故答案为:.18.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为135°.【考点】梯形.【分析】证明三角形相似,由根据相似三角形的对应角相等即可得出.【解答】解:∵△ABD∽△DCB,∴∠BAD=∠BDC,又∠BAD=180°﹣45°=135°,∴∠BDC=135°,故答案为:135°.三、解答题(共62分)19.计算(1)(2).【考点】二次根式的混合运算.【分析】(1)先把化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后约分即可.【解答】解:(1)原式=﹣=;(2)原式==4.20.解方程与化简(1)解方程:3x 2+x ﹣1=0 (用公式法)(2)cos30°﹣3tan60°+2.【考点】解一元二次方程-公式法;实数的运算;特殊角的三角函数值.【分析】(1)先找出a ,b ,c ,求出△=b 2﹣4ac 的值,再代入求根公式即可;(2)把cos30°=,tan60°=代入原式化简求值即可.【解答】解:∵a=3,b=1,c=﹣1,△=b 2﹣4ac=1+12=13,∴x==,∴x 1=,x2=; (2)cos30°﹣3tan60°+2=﹣3+2=﹣.21.一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.(1)用画树形图或列表的方法,求取出的两个小球上的数字之和为3的概率;(2)求取出的两个小球的数字之和大于4的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:(1)或∴P (和为3)=;(2)因为共有9种等可能的情况,和大于4的有3种,所以P (和大于4)=.22.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.【考点】解直角三角形.【分析】(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,然后根据BC=BD+DC即可求解;(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt△ADE中根据正切函数的定义即可求解.【解答】解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE是BC边上的中线,∴CE=BC=+,∴DE=CE﹣CD=﹣,∴tan∠DAE==﹣.23.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,﹣2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB 的相似比为2:1,并写出点A的对应点A1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2,并写出点A2的坐标;(3)判断△OA1B1与△O2A2B2,能否是关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.【考点】作图-位似变换;作图-平移变换.【分析】(1)利用位似图形的性质得出对应点坐标,进而得出答案;(2)利用平移变换规律得出对应点坐标,进而得出答案;(3)利用位似图形的性质得出位似中心,进而得出答案.【解答】解:(1)如图所示:△OA1B1即为所求,A1(4,2);(2)如图所示:△O2A2B2即为所求,A2(0,2);(3)△OA1B1与△O2A2B2,是关于点M(﹣4,2)为位似中心的位似图形.24.已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.两个动点P、Q分别从B、C两点同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ 的长度等于5厘米?(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.(3)经过几秒时以C、P、Q为顶点的三角形与△ABC相似?【考点】相似三角形的判定与性质;三角形的面积;勾股定理.【分析】(1)若使其面积为4,即S△PCQ=PC•QC=4,代入数据求解即可;(2)若四边形ABPQ的面积能否等于11,即S△PCQ=﹣11=,建立方程,解方程看是否有解,若有,则存在;(3)要使三角形相似,其对应边成比例即可.【解答】解:(1)可设经x秒后其面积为4,即×(5﹣x)×2x=4,解得x=1,即经过1秒后,其面积等于4厘米2.当经过t秒后PQ=5,∵PC2+CQ2=PQ2,∵PC=5﹣t,CQ=2t,PQ=5,∴(5﹣t)2+(2t)2=52,解得:t=0或2,∴当经过0秒或2秒后PQ=5;(2)若四边形ABPQ的面积能否等于11厘米2,即S△PCQ=﹣11=,即×(5﹣x)×2x=,化简得2x2﹣10x+13=0△=b2﹣4ac=10×10﹣4×2×13<0,所以此方程无解.故四边形ABPQ的面积不能等于11厘米2.(3)若两个三角形相似,当PQ∥AB,即=,解得x=.当PQ不平行AB时,解得:x=即经过或秒后两三角形相似.2016年10月27日。
湖北鄂州数学(含答案) 2017年中考数学真题试卷
鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD 的中点坐标N (,),过点N 作NP ∥AC ,可求直线NP 的解析式为,联立,解得解法二:过直线AC 上方抛物线的点P 作PM ⊥轴交AC 于点F ,交轴于点M ,设M ()则先求直线AC 的解析式,F (),P ()∴∴∴∴∴ ……………………… 9分(4)………………………………… 12分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( )A .2B .2-C .12D .12- 2.下列运算正确的是( )A .336a a a +=B .222()a b a b -=- C .326()a a -= D .1226a a a ÷= 3.如图是某几何体的三视图,这个几何体是( )A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别6.如图,用尺规作图作AOC AOB交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩ 8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株 9.对于二次函数223y x mx =--,下列结论错误的是( )A .它的图象与x 轴有两个交点B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧 D .x m <时,y 随x 的增大而减小 10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②A M D E B M =+;③2D E A D CM =⋅;④点N为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---.18.解分式方程:2311x x x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan55 1.4︒≈,tan350.7︒≈,sin550.8︒≈,sin350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .、……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AM NE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AM MF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;。
湖北省鄂州一中2017届九年级(上)第二次月考数学试卷(12月份)(解析版)
2016-2017学年湖北省鄂州一中九年级(上)第二次月考数学试卷(12月份)一、选择题(每小题3分,共30分)1.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对2.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)3.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1 C.D.24.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6 5.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x元,则可列方程为()A.(80﹣x)=8450 B.(40﹣x)=8450C.(40﹣x)=8450 D.(40﹣x)=84506.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<28.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3 C.D.9.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<5与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<﹣1,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个10.如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值是()A.5 B.6 C.7 D.8二、填空题(每小题3分,共18分)11.点A(﹣3,m)与点A′(n,2)关于原点中心对称,则m+n的值是.12.已知关于x的方程x2+(2k+1)x+k2﹣2=0的两实根的平方和等于11,则k 的值为.13.如图,AB为⊙O直径,CD切⊙O于点D,AC⊥CD交⊙O于点E,若∠BAC=60°,AB=4,则阴影部分面积是.14.已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=时,图象的顶点在坐标轴上.15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是.16.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.三、解答题(第17-20题,每题8分,21、22题每题9分,第23题10分,第24题12人,共72分)17.解方程(1)2(x﹣3)2=x2﹣9(2)(3x﹣2)2=(2x﹣3)2.18.在如图所示的正方形格中,△ABC的顶点均在格点上请在所给直角坐标系中按要求画图和解答下列问题.(1)作出△ABC关于坐标原点O成中心对称的△A1B1C1,画出△A1B1C1写出B1坐标(2)作出△ABC绕点O逆时针旋转90°的△A2B2C2,写出B2的坐标,C经过的路径长是.19.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.20.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.21.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM、AN分别与正方形ABCD的边CB、CD的延长线交于点M、N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是②如图2,若BM≠DN,请判断①中的数量关系关系是否仍成立?并说明理由.(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM、AN 分别与直线BD交于点M、N,探究:以线段BM、DN的长度为三边长的三角形是何种三角形?并说明理由.22.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.23.某种商品的成本为每件20元,经市场调查发现,这种商品在未来40天内的日销售量m(件)与x(天)的关系如表.未来40天内,前20天每天的价格y1(元/件)与时间x(天)的函数关系式为y1=x+25(1≤x≤20且x为整数),后20天每天的价格y2(元/件)与时间x(天)的函数关系式为y2=﹣+40(21≤x≤40且x为整数).(1)求日销售量m(件)与时间x(天)之间的关系式.(2)请预测本地市场在未来40天中哪一天的日销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐款a(a≤5)元利润给希望工程,公司看过销售记录发现,前20天中每天扣除捐款后的日销售利润随时间x(天)的增大而增大,求a的取值范围.24.如图,抛物线y=﹣x2+x+2与x轴交于点A、点B,与y轴交于点C、点D 与点C关于x轴对称,点P是x轴上一动点,设点P的坐标为(m,0),过点P 作x轴的垂线l交抛物线于点Q.(1)求直线BD的解析式.(2)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时四边形CQMD是平行四边形.(3)点P在运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q坐标;若不存在,说明理由.2016-2017学年湖北省鄂州一中九年级(上)第二次月考数学试卷(12月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.2.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)【考点】坐标与图形变化-旋转.【分析】正确作出A旋转以后的A′点,即可确定坐标.【解答】解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选:A.3.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1 C.D.2【考点】圆锥的计算.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长==2π,故圆锥的底面半径为2π÷2π=1.故选:B.4.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6【考点】二次函数图象与几何变换.【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【解答】解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.5.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x元,则可列方程为()A.(80﹣x)=8450 B.(40﹣x)=8450C.(40﹣x)=8450 D.(40﹣x)=8450【考点】由实际问题抽象出一元二次方程.【分析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x元,每星期可多卖出8x件,从而列出方程即可.【解答】解:原来售价为每件80元,进价为每件40元,利润为为每件40元,又每件售价降价x元后,利润为每件(40﹣x)元.每降价1元,每星期可多卖出8件,所以每件售价降低x元,每星期可多卖出8x件,现在的销量为.根据题意得:(40﹣x)×=8450,故选B.6.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°【考点】切线的性质.【分析】连接BC,根据切线长定理得到PA=PB,然后根据等腰三角形的性质求得∠PAB的度数,根据切线的性质得∠PAO=90°,则∠BAC即可求得,然后利用直径所对的圆周角是直角,以及直角三角形的性质求解.【解答】解:连接BC.∵PA、PB切⊙O于A、B两点,∴PA=PB,AC⊥PA,即∠PAC=90°,∴∠PAB=∠PBA===70°,∵∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°,∵AC是直径,∴∠ABC=90°,∴∠ACB=90°﹣∠ACB=90°﹣20°=70°.故选C.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)>0,然后解一元一次不等式即可.【解答】解:根据题意得△=12﹣4(﹣a+)>0,解得a>2.故选C.8.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3 C.D.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.9.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<5与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<﹣1,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图:0<x1<1,1<x2<5,并且图象与y轴相交于点(0,﹣2),可知该抛物线开口向下即a<0,c=﹣2,①当x=2时,y=4a+2b+c>0,即4a+2b>﹣c;∵c=﹣2,∴4a+2b>2,∴2a+b>1,故①正确;②∵当x=1时,y>0,∴a+b+c>0,∵c=﹣2,∴a+b>2,故②错误;③∵0<x1<1,1<x2<5,∴1<x1+x2<6,又∵x1+x2=﹣,∴1<﹣<6,∴﹣3a<3a+b<﹣2a.∴3a+b>0,故③正确;⑤∵0<x1x2<6,x1x2=<6,又∵c=﹣2,∴a<﹣.故⑤错误.故选B.10.如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值是()A.5 B.6 C.7 D.8【考点】圆周角定理;勾股定理.【分析】连接AE,可得∠AED=∠BEA=90°,从而知点E在以AB为直径的⊙Q上,继而知点Q、E、C三点共线时CE最小,根据勾股定理求得QC的长,即可得线段CE的最小值.【解答】解:如图,连接AE,则∠AED=∠BEA=90°,∴点E在以AB为直径的⊙Q上,∵AB=10,∴QA=QB=5,当点Q、E、C三点共线时,CE最小,∵AC=12,∴QC==13,∴CE=QC﹣QE=13﹣5=8,故选:D.二、填空题(每小题3分,共18分)11.点A(﹣3,m)与点A′(n,2)关于原点中心对称,则m+n的值是1.【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(﹣3,m)与点A′(n,2)关于原点中心对称,∴n=3,m=﹣2,∴m+n=1,故答案为:1.12.已知关于x的方程x2+(2k+1)x+k2﹣2=0的两实根的平方和等于11,则k 的值为1.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【分析】由题意设方程x2+(2k+1)x+k2﹣2=0两根为x1,x2,得x1+x2=﹣(2k+1),x1•x2=k2﹣2,然后再根据两实根的平方和等于11,从而解出k值.【解答】解:设方程x2+(2k+1)x+k2﹣2=0两根为x1,x2得x1+x2=﹣(2k+1),x1•x2=k2﹣2,△=(2k+1)2﹣4×(k2﹣2)=4k+9≥0,∴k≥﹣,∵x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k≥﹣,故答案为:1.13.如图,AB为⊙O直径,CD切⊙O于点D,AC⊥CD交⊙O于点E,若∠BAC=60°,AB=4,则阴影部分面积是.【考点】切线的性质;扇形面积的计算.【分析】如图,连接ED,OE,OD,由已知条件和切线的性质易证四边形AEDO 是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】解:连接ED,OE,OD,设EO与AD交于点G,∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又∵AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEG≌△DGO,∠EOD=60°,=S△DGO,∴S△AEG∵AB=4,∴AO=OD=2,==.∴S阴影=S扇形EOD故答案为:.14.已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=2或4或14时,图象的顶点在坐标轴上.【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式,可求得其顶点坐标,再由顶点在坐标轴上,可得到关于m的方程,可求得m的值.【解答】解:∵y=x2﹣(m﹣4)x+2m﹣3=(x﹣)2﹣+4m﹣7,∴顶点坐标为(,﹣+4m﹣7),∵图象的顶点在坐标轴上,∴=0或﹣+4m﹣7=0,解得m=4或m=2或m=14,故答案为:2或4或14.15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是4﹣4.【考点】旋转的性质;等腰三角形的性质;含30度角的直角三角形.【分析】作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB==75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.【解答】解:作CH⊥AE于H,如图,∵AB=AC=6,∴∠B=∠ACB===75°.∵将△ABC绕点A逆时针旋转,使点B落在点C处,此时点C落在点D处,∴AD=AB=6,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°.在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为.16.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是﹣3<m<﹣.【考点】二次函数图象与几何变换.【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m 与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故答案是:﹣3<m<﹣.三、解答题(第17-20题,每题8分,21、22题每题9分,第23题10分,第24题12人,共72分)17.解方程(1)2(x﹣3)2=x2﹣9(2)(3x﹣2)2=(2x﹣3)2.【考点】解一元二次方程-因式分解法.【分析】(1)直接利用平方差公式分解因式,进而得出答案;(2)直接利用平方差公式分解因式求出答案.【解答】解:(1)2(x﹣3)2=x2﹣92(x﹣3)2=(x﹣3)(x+3)(x﹣3)[2(x﹣3)﹣(x+3)]=0解得:x1=3,x2=9;(2)(3x﹣2)2=(2x﹣3)2(3x﹣2+2x﹣3)(3x﹣2﹣2x+3)=0,整理得:(5x﹣5)(x+1)=0,解得:x1=1,x2=﹣1.18.在如图所示的正方形格中,△ABC的顶点均在格点上请在所给直角坐标系中按要求画图和解答下列问题.(1)作出△ABC关于坐标原点O成中心对称的△A1B1C1,画出△A1B1C1写出B1坐标(2,2)(2)作出△ABC绕点O逆时针旋转90°的△A2B2C2,写出B2的坐标(2,﹣2),C经过的路径长是π.【考点】作图-旋转变换;轨迹.【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2,然后写出B2的坐标,再利用弧长公式计算出点C经过的路径长.【解答】解:(1)如图,△A1B1C1为所作,点B1坐标为(2,2);(2)如图,△A2B2C2为所作,点B2的坐标为(2,﹣2),AC==,所以C经过的路径长==π.故答案为(2,2),(2,﹣2),.19.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.20.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据一元二次方程x2﹣2x+m﹣1=0有两个实数根,可得△≥0,据此求出m的取值范围;(2)根据根与系数的关系求出x1+x2,x1•x2的值,代入x12+x22=6x1x2求解即可.【解答】解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m﹣1)≥0,整理得:4﹣4m+4≥0,解得:m≤2;(2)∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2,∴(x1+x2)2﹣2x1•x2=6x1•x2,即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.21.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM、AN分别与正方形ABCD的边CB、CD的延长线交于点M、N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是MN=BM+DN②如图2,若BM≠DN,请判断①中的数量关系关系是否仍成立?并说明理由.(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM、AN 分别与直线BD交于点M、N,探究:以线段BM、DN的长度为三边长的三角形是何种三角形?并说明理由.【考点】四边形综合题.【分析】(1)①如图1,先利用SAS证明△ADN≌△ABM,得出AN=AM,∠NAD=∠MAB,再计算出∠NAD=∠MAB==67.5°.作AE⊥MN于E,根据等腰三角形三线合一的性质得出MN=2NE,∠NAE=∠MAN=67.5°.再根据AAS证明△ADN≌△AEN,得出DN=EN,进而得到MN=BM+DN;②如图2,将△ABM绕点A逆时针旋转90°得到△ADE,易知N、D、E三点共线.由△ANM≌△ANP,得到MN=PN,进而得到MN=BM+DN;(2)以线段BM、DN的长度为三边长的三角形是直角三角形.将△ABM绕点A 逆时针旋转90°得到△ADE,连接NE,由△AMN≌△AEN,推出MN=EN,只要证明△EDN是直角三角形,可得DN2+DE2=NE2,由此即可解决问题.【解答】解:(1)①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是MN=BM+DN.理由如下:在△ADN与△ABM中,,∴△ADN≌△ABM(SAS),∴AN=AM,∠NAD=∠MAB,∵∠MAN=135°,∠BAD=90°,∴∠NAD=∠MAB==67.5°,作AE⊥MN于E,则MN=2NE,∠NAE=∠MAN=67.5°.在△ADN与△AEN中,,∴△ADN≌△AEN(AAS),∴DN=EN,∵BM=DN,MN=2EN,∴MN=BM+DN.故答案为MN=BM+DN;②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:将△ABM绕点A逆时针旋转90°得到△ADE,易知N、D、E三点共线.∵AM=AP,∠MAE=90°∴∠EAN=360°﹣∠MAN﹣∠MAE=360°﹣135°﹣90°=135°,∴∠MAN=∠NAE,在△ANM与△ANP中,,∴△ANM≌△ANE(SAS),∴MN=EN,∵EN=DE+DN=BM+DN,∴MN=BM+DN;(2)结论:以线段BM、DN的长度为三边长的三角形是直角三角形.理由:将△ABM绕点A逆时针旋转90°得到△ADE,连接NE,∵∠MAE=90°,∠MAN=135°,∴∠NAE=360°﹣∠MAN﹣∠MAE=135°∴∠EAN=∠MAN,∵AM=AE,AN=AN,∴△AMN≌△AEN,∴MN=EN,∵∠ADE=∠ABM=∠BDA=45°,∴∠BDE=∠BDA+∠ADE=90°∴DN2+DE2=NE2,∵BM=DE,MN=EN,∴DN2+BM2=MN2∴以线段BM、MN、DN的长度为三边长的三角形是直角三角形.22.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.【考点】圆的综合题.【分析】(1)首先连接OC,由PE是⊙O的切线,AE和过点C的切线互相垂直,可证得OC∥AE,又由OA=OC,易证得∠DAC=∠OAC,即可得AC平分∠BAD;(2)由AB是⊙O的直径,PE是切线,可证得∠PCB=∠PAC,即可证得△PCB∽△PAC,然后由相似三角形的对应边成比例与PB:PC=1:2,即可求得答案;(3)首先过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比例,求得OC的长,再由△PBC∽△PCA,证得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可求得BC的长,继而求得答案.【解答】(1)证明:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴,∴PC2=PB•PA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3PB;(3)解:过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴,∵AB=3PB,AB=2OB,∴OB=PB,∴=,∴OC=,∴AB=5,∵△PBC∽△PCA,∴,∴AC=2BC,在Rt△ABC中,AC2+BC2=AB2,∴(2BC)2+BC2=52,∴BC=,∴AC=2,=AC•BC=5.∴S△ABC23.某种商品的成本为每件20元,经市场调查发现,这种商品在未来40天内的日销售量m(件)与x(天)的关系如表.未来40天内,前20天每天的价格y1(元/件)与时间x(天)的函数关系式为y1=x+25(1≤x≤20且x为整数),后20天每天的价格y2(元/件)与时间x(天)的函数关系式为y2=﹣+40(21≤x≤40且x为整数).(1)求日销售量m(件)与时间x(天)之间的关系式.(2)请预测本地市场在未来40天中哪一天的日销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐款a(a≤5)元利润给希望工程,公司看过销售记录发现,前20天中每天扣除捐款后的日销售利润随时间x(天)的增大而增大,求a的取值范围.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)分1≤x≤20和21≤x≤40两种情况,根据“总利润=单件利润×销售量”列出函数解析式,结合二次函数的性质可得;(3)根据前20天的售价由“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式结合二次函数的性质和a≤5可得答案.【解答】解:(1)通过图表可知m与x之间的关系式为一次函数设一次函数为m=kx+b,把(1.94)和(3.90)代入,解得k=﹣2,b=96∴m=﹣2x+96;(2)设销售利润为W,当1≤x≤20时,W==当x=14W有最大值578当21≤x≤40时W==(x﹣44)2﹣16∵当x<44时,W随x增大而减小,∴x=21时,W最大=513,∴未来40天中第14天日销售利润最大,最大利润578元;(3)由题意W==二次函数开口向下,对称轴是x=2(a+7),要使日销售利润随时间x的增大而增大,必须2(a+7)≥20,∴a≥3,又a≤5,∴3≤a≤5.24.如图,抛物线y=﹣x2+x+2与x轴交于点A、点B,与y轴交于点C、点D 与点C关于x轴对称,点P是x轴上一动点,设点P的坐标为(m,0),过点P 作x轴的垂线l交抛物线于点Q.(1)求直线BD的解析式.(2)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时四边形CQMD是平行四边形.(3)点P在运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)可先求得C 点坐标,再根据对称可求得D 点坐标,再结合抛物线解析可求得B 点坐标,利用待定系数法可求得直线BD 解析式;(2)用P 点坐标可分别表示出M 、Q 的坐标,利用平行四边形的性质可得到关于m 的方程,可求得m 的值;(3)由(2)中点Q 的坐标,利用勾股定理可分别表示出BQ 、BD 、DQ ,再利用直角三角形的判定可得到关于m 的方程,可求得点Q 的坐标.【解答】解:(1)在y=﹣x 2+x +2中,令x=0可得y=2,∴C (0,2),∵C 与D 关于x 轴对称,∴D (0,﹣2),令y=0可得﹣x 2+x +2=0,解得x 1=﹣1,x 2=4,∴B (4,0),设BD 解析式为y=kx +b ,则,解得,∴直线BD 解析式为y=x ﹣2;(2)∵P (m ,0),∴M (m , m ﹣2),Q (m ,﹣m 2+m +2),∵CQMD 是平行四边形,∴QM ∥CD ,∴QM=CD=4,当点P 在OB 上运动时QM=﹣m 2+m +2﹣(m ﹣2)=﹣m 2+m +4=4, 解得m 1=0(舍去),m 2=2,∴当m=2时,四边形CQMD 为平行四边形;(3)由(2)可知Q (m ,﹣m 2+m +2),且B (4,0),D (0,﹣2),∴BQ 2=(m ﹣4)2+(﹣m 2+m +2)2,DQ 2=m 2+[(﹣m 2+m +2)+2]2,BD 2=20, ①当以点B 为直角顶点时,则有DQ 2=BQ 2+BD 2,∴m2+[(﹣m2+m+2)+2]2=(m﹣4)2+(﹣m2+m+2)2+20,解得m1=3,m2=4,∴点Q坐标为(4,0)(舍)或(3,2);②当以D为直角顶点时,同理可求m3=﹣1,m4=8,∴点Q坐标为(﹣1,0)或(8,﹣18);综上可知存在满足条件的点Q,其坐标为(3,2)(﹣1,0)或(8,﹣18).2017年2月10日。
[数学试卷试题]2017届九年级上学期第二次月考数学试题
∵由 A (﹣ 2, 1), B (8, 16)可求得
AB
2
=325 .
设点 C( m, 0),同理可得 AC 2=( m+2) 2+12=m2+4m+5,
BC
2
=
(
m﹣8)
2+162=m
2﹣
16m+320,
①
若∠ BAC=90 °,则
AB
2+AC
2
=BC
2,即
325 +m2+4m+5=m 2 ﹣ 16m +320 ,解得:
。
13、若点 (a, 1)与 (- 2,b)关于原点对称,则 ab=
。
14、如图,△ AOB 中, AB ⊥ OB, AB = 3 , OB =1,把△ ABO
绕 O 旋转 120°后,得△ A 1B1O,则点 A 1 的坐标为
。
15、如果函数 y
( a 1) x2
3x
a
5
的图象经过平面直角坐标系的四个象限,
积;
②若 PA= 2, PB= 4,∠ APB = 135°,求 PC 的长。 (2) 如图 2,在 (1) 的条件下,若 PA2+ PC2= 2PB2,请说明点 P 必在对角线 AC 上。
24、如图,已知一条直线过点( 是- 2。 (12 分 )
0, 4),且与抛物线 y
1 x 2 交于 A ,B 两点,其中点 A 的横坐标 4
( 3)设 M ( a, a2),如图 2,设 MP 与 y 轴交于点 Q,
在 Rt△ MQN 中,由勾股定理得 MN=
= a2+1,
又∵点 P 与点 M 纵坐标相同,∴
湖北省鄂州市九年级上学期数学第二次月考试卷
湖北省鄂州市九年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·内黄期中) 方程x2-2x=0的根是()A . x1=x2=0B . x1=x2=2C . x1=0,x2=2D . x1=0,x2=-22. (2分)(2020·哈尔滨模拟) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (2分) (2017九上·抚宁期末) 已知反比例函数y= ,当x>0时,y随x的增大而增大,则关于x 的方程ax2﹣2x+b=0的根的情况是()A . 有两个正根B . 有两个负根C . 有一个正根一个负根D . 没有实数根4. (2分)下列图形中,既是轴对称又是中心对称图形的是()A .B .C .D .5. (2分)(2019·通辽) 关于的二元一次方程组的解满足,则直线与双曲线在同一平面直角坐标系中大致图象是()A .B .C .D .6. (2分) (2019九上·路南期中) 在同一坐标系中,函数与的图像可能是()A .B .C .D .7. (2分)(2016·长沙模拟) 反比例函数y=﹣的图象在()A . 第一、二象限B . 第二、三象限C . 第一、三象限D . 第二、四象限8. (2分)如图游戏:人从格外只能进入第1格,在格中,每次可向前跳1格或2格,那么人从格外跳到第6格可以有()种方法.A . 6B . 7C . 8D . 99. (2分)下列四组图形中不一定相似的是()A . 有一个角等于40°的两个等腰三角形B . 有一个角为50°的两个直角三角形C . 直角三角形被斜边上的高分成的两个直角三角形D . 有一个角是60°的两个等腰三角形10. (2分)如右图,⊙O的半径OA等于5,半径OC⊥AB于点D,若OD=3,则弦AB的长为()A . 10B . 8C . 6D . 4二、填空题 (共6题;共9分)11. (1分)在5张完全相同的卡片上分别画上等边三角形、平行四边形、等腰梯形、正方形和圆.从中随机摸出1张,这张卡片上的图形是中心对称图形的概率是________ .12. (1分)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为________13. (2分) (2018九上·顺义期末) 如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a(m)的函数关系式是________,面积S的最大值是________.14. (2分) (2016九上·宁波期末) 为美化校园,学校决定将花园边墙上的矩形门ABCD改为以AC为直径的圆弧形门,如图所示,量得矩形门宽为1m,对角线AC的长为2m,则要打掉墙体的面积为________ m2 .15. (2分) (2020七上·长宁期末) 如图,将绕着点按顺时针方向旋转得到 .若,则 ________ .16. (1分)函数y=﹣x的图象是一条过原点及(2,________)的直线,这条直线经过第________象限,当x增大时,y随之________.三、解答题 (共7题;共42分)17. (2分)(2013·钦州) 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1 ,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2 ,并写出点A2的坐标.18. (2分)(2020·青羊模拟) 如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2 ,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,求 AF长。
湖北省鄂州市数学中考二模试卷
湖北省鄂州市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2017七上·黑龙江期中) 的倒数是________;的相反数是________.比–3小9的数是________,2. (1分)(2020·香坊模拟) 把分解因式的结果是________.3. (1分) (2017八下·西安期末) 当x________时,式子有意义.4. (1分) (2018八上·上杭期中) 已知一正多边形的每个外角是,则该正多边形是________边形.5. (1分)一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.6. (1分) (2019八上·香坊月考) 已知△ABC中,AB=AC,且有一个内角等于30°,点B关于直线AC的对称点为E,连接BE和CE,则∠BEC=________.二、选择题 (共8题;共16分)7. (2分) (2019九上·思明期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8. (2分)(2017·费县模拟) 2016年山东省高考报名人数位居全国第三,约有696000人报名,将696000用科学记数法表示为()A . 69.6×104B . 6.96×105C . 6.96×106D . 0.696×1069. (2分)如图,空心圆柱的左视图是()A .B .C .D .10. (2分) (2019八下·湖北期末) 某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.52323.52424.5销售量/双354030178通过分析上述数据,对鞋店业主的进货最有意义的是A . 平均数B . 众数C . 中位数D . 方差11. (2分)(2016·黔东南) 小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费()A . 64元B . 65元C . 66元D . 67元12. (2分) (2019八下·永年期末) 已知函数y=2x+k-1的图象经过第一、三、四象限,则k的值可以是()A . 3B . 2C . 1D . 013. (2分)(2017·徐汇模拟) 如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A .B .C .D .14. (2分)(2018·随州) 我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A . 33B . 301C . 386D . 571三、解答题 (共9题;共83分)15. (5分)(2020·咸阳模拟) 计算: .16. (5分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.17. (16分)(2017·河北) 编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.18. (10分)(2018·建湖模拟) 小王和小李都想去体育馆,观看在我县举行的“市长杯”青少年校园足球联赛,但两人只有一张门票,两人想通过摸球的方式来决定谁去观看,规则如下:在两个盒子内分别装入标有数字 1,2,3,4 的四个和标有数字 1,2,3 的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于 6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.19. (10分)(2017·溧水模拟) 已知:二次函数y=ax2+bx的图象经过点M(1,n)、N(3,n).(1)求b与a之间的关系式;(2)若二次函数y=ax2+bx的图象与x轴交于点A、B,顶点为C,△ABC为直角三角形,求该二次函数的关系式.20. (10分) (2020七下·衡阳期末) 超市购进一批A、B两种品牌的饮料共320箱,其中A品牌比B品牌多80箱.此两种饮料每箱的进价和售价如下表所示:品牌A B进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B品牌的饮料获得的利润是多少元?(注:利润=售价-进价)(2)问该商场购进A、B两种品牌的饮料各多少箱?(3)受疫情影响,该商场调整销售策略,A品牌的饮料每箱打折销售,B品牌的饮料每箱售价改为38元.为使新购进的A、B两种品牌的饮料全部售出且利润不少于700元,问A种品牌的饮料每箱最低打几折出售?21. (2分)(2019·朝阳模拟) 如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E 为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.22. (10分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)54003500售价(月/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?23. (15分) (2019九上·阳新期末) 抛物线y=ax2+bx+c(a>0)经过点A(-3 ,0)、B( ,0),它与y轴相交于点C,且∠ACB≥90°,设该抛物线的顶点为D,△BCD的边CD上的高为h.(1)求实数a的取值范围;(2)求高h的取值范围;(3)当(1)的实数a取得最大值时,求此时△BCD外接圆的半径.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共83分)15-1、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
湖北省鄂州市2017年中考数学试题真题卷(word版,含答案)
鄂州市2017年初中毕业生学业考试数学试题学校:________考生姓名:________准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x ≤76C. 此不等式组有5个整数解D. 此不等式组无解 6.如图AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC =EA ,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°7.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mn y x= 的图象可能是( )(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min)之(第6题图)间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个(第8题图)C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A(2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若6y=则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x x x x ---+÷++ 其中x 的值从不等式组23,241x x -⎧⎨-<⎩≤ 的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(本题满分8分)关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2 ,存不存在这样的实数k ,使得12x x -=k 值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC的解析式,再求CD的中点坐标N(,),过点N作NP∥AC,可求直线NP的解析式为,联立,解得解法二:过直线AC上方抛物线的点P作PM⊥轴交AC于点F,交轴于点M,设M()则先求直线AC的解析式,F(),P()∴∴∴∴∴……………………… 9分(4)………………………………… 12分。
湖北省鄂州市中考数学第二次考查试题(素质班)
湖北省鄂州市2017届中考数学第二次考查试题(素质班)一、选择题(每题5分,共40分)1.若27m m ++是完全平方数,则满足条件的所有整数m 的积是( ) A.84 B.86 C.88 D.902.如图,A 、B 分别为反比例函数()()280,0y x y x x x=-<=>图像上的点,且OA OB ⊥,则sin ABO ∠的值为( ) A.25 B. 35 C.55 D.753.已知二次函数2y x x a =-+的图像与x 轴的两个不同交点到原点的距离之和不超过5,则实数a 的取值范围是( ) A. 104a ≤<B. 60a -≤<C.154a -<≤D.164a -≤< 4.如图:O 为ABC ∆的外心,,,OD BC OE AC OF AB ⊥⊥⊥,则OD:OE:OF=( )A. ::a b cB.111::a b cC. cos :cos :cos A B CD. sin :sin :sin A B C 5.已知a 、b 为实数,则222a ab b a b ++--的最小值为( ) A. -2 B. -1 C. 1 D. 26.已知实数,,x y z 满足5,3x y z xy yz zx ++=++=,则z 的最大值与最小值之和( ) A.73 B. 83 C. 103 D. 1137.在一列数123,,x x x K 中,已知11,x =且当2k ≥时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(取整数符号[a]表示不超过实数a 的最大整数,例如[2.3]=2,[0.4]=0),则2017x 等于( ) A. 1 B. 2 C. 3 D.48.如图,ABCD Y 中,AE=EF=FB,CE 交DF,DB 于M,N,则EM :MN:NC=( ) A.5:4:12 B.5:3:12 C.4:3:5 D.2:1:4第8题 图第2题 图第4题 图二、填空题(每题6分,共24分)9.已知,,a b c 为ABC ∆的三边,所对角分别为,,A B C ∠∠∠,且69C ∠=︒,a a bb a b c+=++, 则A ∠=10.已知G 为ABC ∆的重心,过G 的直线交AB 于P ,交AC 于Q ,设,AP AQa b PB QC==, 则11a b +=.11.已知,,x y z 为实数,且233x y z -+=,则()2221x y z +-+的最小值为 12.已知112y x x =-+-的最大值为a ,最小值为b ,则22a b += 三、解答题(每题12分,共36分)13.定义:到定点M (a,b )的距离等于定长的点的集合是圆,设P (x,y )为圆上任意一点,则有方程()222()x a y b R -+-=(R 为P 到M 的距离)。
湖北省鄂州市九年级数学第二次月考试卷(无答案) 新人教版
选择题1.下列等式一定成立的是( )A. B. C. × = D. 2.下列平面图案中,既是轴对称又是中心对称的是( )A .B .C .D .3.已知a <b,化简二次根式 的结果正确的是( )A. –aB. –aC. aD. a4.两实根之积为3的方程是( )A. x2+2x+3=0B. 2x2—2x+3=0C. —2x2+5x+6=0D. x2+5x+3=05.①等弧所对的弦相等 ②在同圆或等圆中,相等的两条弦所对的圆周角相等 ③平分弦的直径垂直于弦 ④ =x —1不是一元二次方程 ⑤正三角形至少绕中心旋转60º与自身重合,上面正确的个数为( )A. 1B. 2C. 3D. 4 6.已知点P(x, y)满足等式x2+y2—4x+6y+13=0, 则点P 关于原点对称的点的坐标为( ) A. (—2, 3) B. (—2. —3) C. (2, —3) D. (2, 3)7.已知x 是实数且满足(x2+3x )2+2(x2+3x )—3=0, 那么x2+3x 的值为( ) A. 3 B. —3或1 C. 1 D. —1或3 8.如图,把△ABC 绕点C 顺时针旋转某个角度θ后得到△A′B′C,若∠A=30°,∠1=70°,则旋转角θ可能等于下列哪一个角度( ) A .4A. 40B .50°C .70°D .100º9.已知⊙O 过正方形的顶点A, B 且与CD 相切,若正方形的边长为2,则该圆的半径为( )A. B. C. D. 1 10.十年后,某班同学聚会,见面时相互间均握了一次手,好事者统计,一共握了780次,则这次聚会的同学共有( )人. A. 38 B. 39 C. 40 D. 41(第8题图) (第9题图)填空题ba 3-ab -ab ab ab-x 2344525F E D C B A 169169+=+ba b a --22=4994⨯)(b a b a +=+211.y= 中x 的取值范围是____________________12.若x, y 为实数,且y= +3, 则 =______________.13.已知方程x2+bx+a=0有一根是—a ,(a ≠0), 则a —b=________. 14. 若关于x 一元二次方程(m —1)x2+ x+1=0有两个实数根,则m 的取值范围是___________.15.Rt △ABC 中,已知∠C=90º, ∠B=50º,点D 在边BC 上,且BD=2CD,把△ABC 绕点D 逆时针旋转m(0<m <180º﹚度后,如果点B 刚好落在初始Rt △ABC 的边上,那么m=______________. 16. 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC=5cm ,弦DE=8cm ,则直尺的宽度___________________17. 以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点F ,交AB 边于点E ,若△CDE 的周长为12,则直角梯形ABCE 周长为_______________.(第15题图) (第16题图) (第17题图)18. 观察下列各式: , , , …请你将猜想的规律用含自然数n(n ≥1)的代数式表示出来_________________.19. 设m, n 是方程x2—x —2001=0的两个实数根,则m2+2mn+n 的值为______________ 20.已知AB 是半径为20cm 的⊙O 中的一条弦,∠AOB=120º, 点C 在⊙O 上,且到 弦AB 所在直线的距离为10cm,则∠CAB 的度数是______________________.解答题 21. 化简与计算① —﹙ ﹚-1+3﹙3-1﹚-2008º-︱3-2︱②先化简再求值 ﹙21+x -1﹚÷-41222x x x ++, 其中x=3—2(第23题图)22 . 已知关于x 的方程x2+2(a —1)x+a2—7a —4=0的两根为x1, x2, 且满足x1x2—3x1—3x2—2=0, 求 2-1x x +xx -26-3+y x1+m 2143-1=32951=-542591=-431671=-2510-2+a a 1233OGEDC BA D C BA∣1—a∣+ 的值。
湖北省鄂州市九年级数学中考二模试卷
湖北省鄂州市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果|﹣2a|=﹣2a,则a的取值范围是()A . a>0B . a≥0C . a≤0D . a<02. (2分) (2016七下·槐荫期中) 下列计算中,运算正确的是()A . (a﹣b)(a﹣b)=a2﹣b2B . (x+2)(x﹣2)=x2﹣2C . (2x+1)(2x﹣1)=2x2﹣1D . (﹣3x+2)(﹣3x﹣2)=9x2﹣43. (2分)(2018·奉贤模拟) 在△ABC中,点D,E分别在AB,AC上,如果AD:BD=1:3,那么下列条件中能够判断DE∥BC的是()A .B .C .D .4. (2分) (2019九上·深圳期末) C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,将100万用科学记数法表示为()A . 1×106B . 100×104C . 1×107D . 0.1×1085. (2分) (2019九上·秀洲期中) 抛物线把抛物线向右平移2个单位,则所得抛物线的表达式为A .B .C .D .6. (2分)下列说法:(1)在同一平面内,不相交的两条直线一定平行.(2)在同一平面内,不相交的两条线段一定平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.其中,正确说法的个数是()A . 1个B . 2个C . 3个D . 4个7. (2分) (2017九上·孝义期末) 已知反比例函数y= ,如果在这个函数图象所在的每一个象限内,y 的值都随x的增大而增大,那么k的取值可能是()A . 0B . 2C . 3D . 48. (2分) (2017八下·无棣期末) 某工厂共有60名员工,他们的月工资方差是s2 ,现在给每个员工的月工资增加300元,那么他们的新工资的方差()A . 变为s2+300B . 不变C . 变大了D . 变小了9. (2分)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A . 1B . 2C .D .10. (2分)给出下列命题及函数y=x与y=x2和的图象:①如果>a>a2 ,那么0<a<1;②如果a2>a>,那么a>1或﹣1<a<0;③如>a2>a,那么﹣1<a<0;④如果a2>>a,那么a<﹣1.则()A . 正确的命题只有①B . 正确的命题有①②④C . 错误的命题有②③D . 错误的命题是③④二、填空题 (共8题;共10分)11. (1分) (2018九上·长沙期中) 分解因式:2a2–4a+2=________.12. (1分)(2016·上海) 函数y= 的定义域是________.13. (1分)(2016·阿坝) 抛掷一枚质地均匀的硬币,落地后正面朝上的概率是________.14. (1分)(2016·新疆) 关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是________.15. (1分)(2016·贵阳模拟) 如图,已知等边△ABC,D是边BC的中点,过D作DE∥AB于E,连接BE交AD于D1;过D1作D1E1∥AB于E1 ,连接BE1交AD于D2;过D2作D2E2∥AB于E2 ,…,如此继续,若记S△BDE 为S1 ,记为S2 ,记为S3…,若S△ABC面积为Scm²,则Sn=________cm²(用含n与S的代数式表示)16. (1分)(2017·锡山模拟) 已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为________.17. (1分)(2017·鹤壁模拟) 如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A 优弧上一点,则∠OBC的余弦值为________.18. (3分) (2017八上·金华期中) 如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题 (共10题;共70分)19. (5分)(2017·广陵模拟) 计算:(1);(2)先化简,再选一个你喜欢的数求值.(1)(﹣2016)0+| ﹣2|+ +3tan30°(2)先化简(a2﹣a)÷ ,再选一个你喜欢的数求值.20. (5分)(2019·五华模拟) 先化简,再求值:,其中a=20190﹣()﹣121. (5分) (2019八下·朝阳期中) 图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形顶点叫做格点,图①中的△ABC的顶点都在格点上,图①中的△ABC的顶点都在格点上.(1)沿BC边上的高将△ABC分成两个全等的三角形,用这两个三角形在图②、图③中个拼成一个与△ABC面积相等的平行四边形,所拼得的两个平行四边形不完全重合;(2)直接写出(1)中所拼得的平行四边形较长的对角线的长.22. (10分)(2016·兴化模拟) 宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1) A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?23. (2分)(2019·驻马店模拟) 某公司为了庆祝开业一周年,准备从公司大楼的楼顶处向下斜挂一些条幅,小张将高为 1.5米的桩杆竖立在楼前处(条幅的下端钉在桩杆顶端),在桩杆端处观测到,为了多留出一些活动场地,小张沿方向前进5米到达处,测得,已知、、三点在同一水平线上,,求大楼的高度及条幅的长度.(参考数据:,,,,结果精确到0.1米).24. (2分)(2018·东莞模拟) 企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为________人,请补全条形统计图________;(2)在扇形统计图中,求100元所对应扇形的圆心角的度数;(3)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?25. (11分)(2017·武汉模拟) 直线y= x与双曲线y= 的交点A的横坐标为2(1)求k的值(2)如图,过点P(m,3)(m>0)作x轴的垂线交双曲线y= (x>0)于点M,交直线OA于点N①连接OM,当OA=OM时,直接写出PN﹣PM的值②试比较PM与PN的大小,并证明你的结论.26. (10分) (2019九上·无锡月考) 如图l,在中,点,分别在边和上,点,在对角线上,且, .(1)求证:四边形是平行四边形:(2)若,, .①当四边形是菱形时,的长为________;②当四边形是正方形时,的长为________;③当四边形是矩形且时,的长为________.27. (5分)已知:如图①、②,解答下面各题:(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数.(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(4)如果一个角的两边分别平行于另一个角的两边,则这两个角是什么关系?(请画图说明结果,不需要过程)28. (15分) (2018·青羊模拟) 已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示);(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ 与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共70分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、28-1、28-2、28-3、。
湖北省鄂州市九年级上学期数学第二次月考试卷
湖北省鄂州市九年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列函数是二次函数的是()A . y=2x-3B . y=+1C . y=-2D . y=-2. (2分)(2019·慈溪模拟) 在一次中国诗词大会中,百人团选手得分情况如表:人数30402010分数80859095那么这百人团选手所得分数的中位数和众数分别是()A . 85和82.5B . 85.5和85C . 85和85D . 85.5和803. (2分)(2014·贺州) 下列图形中既是轴对称图形,又是中心对称图形的是()A . 等腰梯形B . 平行四边形C . 正方形D . 正五边形4. (2分) (2016九下·巴南开学考) 已知一组数据:12,5,9,5,14,下列说法不正确的是()A . 平均数是9B . 极差是5C . 众数是5D . 中位数是95. (2分)下列说法中错误的是().A . 某种彩票的中奖率为1%,买100张彩票一定有1张中奖B . 从装有10个红球的袋子中,摸出1个白球是不可能事件C . 为了解一批日光灯的使用寿命,可采用抽样调查的方式D . 掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是6. (2分) (2020九上·昭平期末) 下列二次函数的开口方向一定向上的是()A . y=-3x2-1B . y=- x2+1C . y= x2+3D . y=-x2-57. (2分) (2019八上·句容期末) 小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用时 .小东骑自行车以的速度直接回家,两人离家的路程与各自离开出发地的时间之间的函数图象如图所示,下列说法正确的有几个.()①家与图书馆之间的路程为;②小玲步行的速度为;③两人出发以后8分钟相遇;④两人出发以后,、时相距 .A . 1B . 2C . 3D . 48. (2分)已知抛物线y=ax2(a>0)过A(﹣2,y1),B(1,y2)两点,则下列关系式中一定正确的是()A . y1>0>y2B . y1>y2>0C . y2>0>y1D . y2>y1>0二、填空题 (共8题;共8分)9. (1分) (2016九上·徐闻期中) 请写出一个开口向上,且其图象经过原点的抛物线的解析式________.10. (1分) (2017八下·江海期末) 已知一组数据1、2、x的平均数为4,那么x的值是________.11. (1分)(2016·钦州) 某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是________队.(填“甲”或“乙”)12. (1分)(2018·盐城) 一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13. (1分)(2018·崇明模拟) 抛物线向左平移2个单位长度,得到新抛物线的表达式为________.14. (1分) (2019九上·海珠期末) 如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围________.15. (1分) (2019九上·宁波期中) 已知二次函数的部分图象如图所示,则关于的一元二次方程的根为________.16. (1分)已知二次函数y=(x﹣3)2图象上的两点A(3,a)和B(x,b),则a和b的大小关系是a________b.三、解答题 (共10题;共75分)17. (10分)已知函数y=(m2+m).⑴当函数是二次函数时,求m的值;________;⑵当函数是一次函数时,求m的值.________.18. (6分) (2016九上·洪山期中) 如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B 的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.(1)求抛物线的解析式;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.19. (7分) (2020八上·辽阳期末) 某校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛(满分100分),如下表所示:解答下列问题:(1)请填写下表:(2)请从以下两个不同的角度对三个班级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个班级成绩好);②从平均数和中位数相结合看(分析哪个班级成绩好);(3)如果在每个班级参加决赛的选手中选出3人参加总决赛,你认为哪个班级的实力更强一些,请简要说明理由.20. (10分) (2017九上·台江期中) 二次函数中y=ax2+bx﹣3的x、y满足表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.21. (11分)(2018·平顶山模拟) 为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图:请根据以上信息,解答下列问题(1)这次接受调查的家长总人数为________人;(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?22. (2分)(2018·潜江模拟) 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).(1)求证无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.23. (10分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标。
九年级数学上学期期中联考试题2
CB为半径的圆交AB于点D,连接CD,那么∠ACD=___________
14.假设是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,
则m的值为___________
15.如图,等边△ABC中,D、E为BC边上的点,BD=2CE,∠DAE=30°,
A.y=(x-1)2+3B.y=(x+1)2+3C.y=(x+2)2D.y=(x+1)2-1
9.如图,把边长为3的正方形ABCD绕点A顺时针旋转45°取得正方形AB′C′D′,边BC与D′C′交
于点O,那么四边形ABOD′的周长是( )
A. B.6C. D.
10.如图,二次函数y=ax2+bx+c的图象通过点A(-1,2),且与x轴交点的横坐标别离为x1、x2,
(1)请写出降价后每礼拜销量y与降价x的关系式
(2)假设要使每礼拜的销售利润为5000元,问此商品的定价应为多少?
(3)假设降价按整元转变,那么该商品定价为多少时,每周的销售利润最大?
23.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°取得线段CQ,连结QB并延长交直线AD于点E.
3.以下说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;
④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为( )
A.2B.3C.4D.5
4.用配方式解一元二次方程x2+4x+2=0,以下变形中正确的选项是( )
A.(x+2)2=-2B.(x+2)2=2C.(x+2)2=6D.(x-2)2=2
其中-2<x1<-1,0<x2<1,以下结论:①a+b+c<0;②2a-b<0;③b2+8a<4ac;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年秋九年级第二次月考
数 学 试 题
命题人:
一、选择题(每小题3分,共30分)
1、下列方程是一元二次方程的是( )
A 、0322=-+y x
B 、032=-x
C 、9)3(22=+x
D 、4122=+x
x 2、如果关于x 的方程0)1(222=+--k x k x 有实数根α、β,那么α+β的取值范围是( )
A 、α+β≥1
B 、α+β≤1
C 、α+β≥
21 D 、α+β≤21 3、若函数12
1)2(2++++=m x m mx y 的图象与x 轴只有一个交点,那么m 的值为( ) A 、0 B 、0或2 C 、2或-2 D 、0、2或-2
4、若二次函数c x x y +-=62的图象过点A (-1,y 1)、B(2,y 2)、C (5,y 3)三点,则y 1、y 2、y 3的大小关系是( )
A 、y 1>y 2>y 3
B 、y 1>y 3>y 2
C 、y 2>y 1>y 3
D 、y 3>y 1>y 2
5、在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
A 、(4,-3)
B 、(-4,3)
C 、(0,-3)
D 、(0,3)
6、若关于x 的一元二次方程(x -2)(x -3)=a 有实数根x 1、x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3 ②a >-4
1 ③二次函数a x x x x y +--=))((21 的图象与x 轴交点坐标为(2,0),(3,0),其中正确的结论的个数是( )
A 、0个
B 、1个
C 、2个
D 、3个 7、如图,在⊙O 中,AB =AC ,∠AOB =50°,则∠ADC 的度数是( )
A 、50°
B 、40°
C 、30°
D 、25°
8、如图,Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,则它的内切
圆半径为( )
A 、1cm
B 、2cm
C 、3cm
D 、4cm
9、在如图的网格图中,每个小正方形的边长均为1,△ABC 的三个
顶点都是网格线的交点,已知B 、C 两点坐标分别为(-1,-1),
(1,-2),将△ABC 绕点C 顺时针旋转90°,则A 点的对应点
坐标为( )
A 、(4,1)
B 、(4,-1)
C 、(5,1)
D 、(5,-1) ( (
10、如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上,将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ’O ’B ,点A 的对应点A ’在x 轴上,则点O ’的坐标为( )
A 、)310,320(
B 、)3
54,316( C 、)354,320( D 、)34,316( 二、填空题(每小题3分,共24分)
11、关于x 的一元二次方程08)5(2=++-a x a x 的两实根分别为2和b ,则ab = 。
12、二次函数x x y 22+=的顶点坐标为 。
13、若点(a ,1)与(-2,b)关于原点对称,则a b = 。
14、如图,△AOB 中,AB ⊥OB ,AB =3,OB =1,把△ABO
绕O 旋转120°后,得△A 1B 1O ,则点A 1的坐标为 。
15、如果函数1
53)1(2-+++-=a a x x a y 的图象经过平面直角坐标系的四个象限, 那么a 的取值范围是 。
16、如图,AB 、CD 是⊙O 的两条直径,E 为AD 上一点,∠D =55°,则∠E = 。
17、如图,AB 是⊙O 的直径,O 是圆心,BC 与⊙O 相切于点B ,CD 交⊙O 于点D ,
且BC =8,CD =4,那么⊙O 的半径是 。
18、如图,边长为a 的等边△ACB 中,E 是对称轴AD 上一个动点,连EC ,将线段EC 绕点C 逆时针旋转60°得到MC ,连DM ,则在点E 运动过程中,DM 的最小值是 。
(16题) (17题) (18题)
三、解答题(66分)
19、解下列方程(10分)
(1)4962=+-x x (2)1322
=+x x
20、已知关于x 的方程022=-++a ax x (10分)
(1)若该方程的一个根为1,求a 的值及方程的另一根;
(2)求证:不论a 为何值,该方程都有两个不相等的实数根。
(
21、如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E。
(10分)
(1)求证:EB=EC
(2)若以点O、D、E、C为顶点的四边形是正方形,
试判断△ABC的形状,并说明理由。
22、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信
已知该商品的进价为每件30元,设销售该商品每天的利润为y元。
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?最大利润是多少?
(3)该商品在销售过程中,共有多少天每天的销售利润不低于4800元?请直接写出结果。
23、已知,点P是正方形ABCD内的一点,连接PA、PB、PC。
(12分)
(1)将△PAB绕点B顺时针旋转90°到△P’CB的位置(如图1)。
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P’CB的过程中边PA所扫过区域的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长。
(2)如图2,在(1)的条件下,若PA2+PC2=2PB2,请说明点P必在对角线AC上。
24、如图,已知一条直线过点(0,4),且与抛物线24
1x y 交于A ,B 两点,其中点A 的横坐标是-2。
(12分)
(1)求这条直线的解析式及点B 的坐标;
(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由。
(3)过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?
第二次月考数学参考答案
一、选择题
1—5 BADBC 6—10 CDADC
二、填空题
11、4 12、(-1,-1) 13、2
1 14、(1,-3) 15、a <-5 16、35° 17、6 18、4
a
三、解答题
19、(1)x 1=1,x 2=5 (2)x =
4173±- 20、(1)21=a ,另一根为2
3- (2)Δ=04)2(2>+-a 21、(1)连CD ,EC =ED ,证∠B =∠EDB EB =ED 得EB =EC
(2)∠DEB =90°,DE =BE ,△DEB 是等腰直角三角形,∠B =45° ∴△ABC 是等腰直角三角形
22、(1)51<≤x 20001802)3040)(2200(2++-=-+-=x x x x y
9050≤≤x 时 1200012)3090)(2200(2+-=--=x x y
∴⎩⎨⎧+-++-=12000
12200018022x x x y (2) 501<≤x 时,6050)45(22+--=x y x =45时,y max =6050
9050≤≤x 时,x =50,y max =6000
∴x =45时最大值6050元。
23、(1)①)(412
2b a -π ②PC =6
(2)证∠APB +∠BPC =180° (1≤x <50) (50≤x ≤90
24、解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,
∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),
设直线的函数关系式为y=kx+b,
将(0,4),(﹣2,1)代入得,
解得,∴直线y=x+4,
∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,
当x=8时,y=16,∴点B的坐标为(8,16);
(2)如图1,过点B作BG∥x轴,过点A作AG∥y轴,交点为G,∴AG2+BG2=AB2,
∵由A(﹣2,1),B(8,16)可求得AB2=325.
设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m﹣8)2+162=m2﹣16m+320,
①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;
②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;
③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;
∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)
(3)设M(a,a2),如图2,设MP与y轴交于点Q,
在Rt△MQN中,由勾股定理得MN==a2+1,
又∵点P与点M纵坐标相同,∴ +4=a2,∴x=,
∴点P的横坐标为,∴MP=a﹣,
∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,
又∵﹣2≤6≤8,
∴取到最大值18,
∴当M的横坐标为6时,MN+3PM的长度的最大值是18.。