138305126 王奇多因素方差分析
医学统计学课件:第十六讲 多因素方差分析
正交设计
➢ 在日常工作中,经常会遇到多因素试验问题,在 实际中不需要进行各种水平组合的全面试验,只 需从各种不同搭配情况中,选取一小部分来进行 就可以了。那么怎样选取以及如何分析试验结果, 才能科学的回答如下问题:
各因素对指标的影响,哪个因素重要?哪个因素次之? 每个因素中,哪个水平为好? 各个因素和水平依哪种情况搭配可使试验结果最佳?
➢ 正交表
用于正交设计试验的一整套规则的设计表格,一般表示为Ln(pr), 用 L为正交表的代号,n为试验的次数,p为水平数,r为列数,也
就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,
最多可观察4个因素,每个因素均为3水平。
21
正交设计的基本思想
➢ 考虑进行一个三因素、三水平的试验,如果作全面试验, 需作33=27次。
➢由于因素间二级以上的交互作用有时在专 业意义上难以解释,所以实际分析中,一 般仅考虑一级交互作用。
18
正交设计
➢析因设计
优点:
可以充分观察各因素的主效应以及因素间的交互作 用,设计严谨、考虑周到
缺点
当因素个数较多时,试验实施及数据处理均过于复 杂,效率较低(多数交互作用并不需要研究)
为了克服析因设计效率低下的缺点,可以采用 正交设计(析因设计的简化版)
多因素试验资料的方差分析多因素试验资料的方差分析掌握掌握析因设计和正交设计的概念及特点析因设计和正交设计的概念及特点析因设计和正交设计的区别与联系析因设计和正交设计的区别与联系重复测量设计的概念及特征重复测量设计的概念及特征熟悉熟悉析因设计资料的方差分析析因设计资料的方差分析正交设计资料的方差分析正交设计资料的方差分析重复测量设计资料的方差分析重复测量设计资料的方差分析了解了解嵌套设计嵌套设计裂区设计裂区设计析因设计析因设计正交设计正交设计重复测量设计重复测量设计方差分析方差分析单因素方差分析单因素方差分析推断不同水平2某因素对结果的影响不同剂量某药物治疗某种疾病的疗效是否有差异拉丁方设计资料的方差分析拉丁方设计
多因素方差分析结果解读
多因素方差分析结果解读多因素方差分析(MultivariateAnalysisofVariance,简称MANOVA)是一种用于检验多个自变量对一个因变量的影响的统计分析方法,它主要应用于研究多个自变量的整体影响,以及多个自变量之间的交互影响。
在多因素方差分析中,研究者需要对自变量、因变量、因素、水平、抽样设计和拟合统计模型等参数进行合理安排并给出具体分析方法、统计检验方法以及分析结果解读方法,以便得出准确的分析结果。
本文主要就如何正确解读多因素方差分析结果做一个讨论。
首先要明确的是,多因素方差分析结果从两个角度进行解读:整体的影响和交互的影响。
在解读多因素方差分析结果的整体影响时,关键是检验多个自变量对因变量的影响,这通常是通过检验拟合模型的F统计量来实现的,如果F统计量达到显著性水平(一般认为是α=0.05),则可以得出多个自变量对因变量有统计学意义的整体影响的结论,但不能准确判断具体哪个自变量对因变量最有影响力,需要进一步解读它们之间的交互影响。
多因素方差分析的另一个重点是检验多个自变量之间的交互影响,它是检验多个自变量对因变量的影响的补充,可以更精确地判断出多个自变量之间的某种特定关系。
这里有几种常用的检验交互影响的方法:F检验、Wilks’检验、Hotelling-Lawley Trace检验以及Bartlett-Box F检验、Roy’s大F检验等,其中F检验用于检验各个因素与交互因素之间的关系;Wilks’检验和Hotelling-Lawley Trace检验用于检验因素之间以及因素与交互因素之间的关系;Bartlett-Box F检验和Roy’s大F检验则用于检验因素、交互因素与因变量之间的关系。
总的来说,在解读多因素方差分析结果时,要同时检验多个自变量对因变量的影响和多个自变量之间的交互影响,不仅要给出准确的分析方法和统计检验方法,而且要根据检验结果准确解读分析结果,以便正确地概括出多个自变量对因变量的整体影响及多个自变量之间的具体关系,以达到准确仿真分析实际情况的目的。
多因素方差分析讲解
多因素方差分析定义:多因素方差分析中的控制变量在两个或两个以上,研究目的是要分析多个控制变量的作用、多个控制变量的交互作用以及其他随机变量是否对结果产生了显著影响。
前提:1总体正态分布。
当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。
进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
多因素方差分析的三种情况:只考虑主效应,不考虑交互效应及协变量;考虑主效应和交互效应,但不考虑协变量;考虑主效应、交互效应和协变量。
一、多因素方差分析1选择分析方法本题要判断控制变量“组别”和“性别”是否对观察变量“数学”有显著性影响,而控制变量只有两个,即“组别”、“性别”,所以本题采用双因素分析法,但需要进行正态检验和方差齐性检验。
2建立数据文件在SPSS17.0中建立数据文件,定义4个变量:“人名”、“数学”、“组别”、“性别”。
控制变量为“组别”、“性别”,观察变量为“数学”。
在数据视图输入数据,得到如下数据文件:3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”、“性别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。
因子变量是影响因变量的因素,例如分组变量。
标注个案是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。
正态检验结果分析:表1 控制变量为“组别”的正态性检验结果,Shapiro-Wilk的p值0.884、0.793、0.343都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。
双因素和多因素方差分析
随机误差项平方和
a bn
SSe
(y ij k
y
)2
ij
i1 j 1 k 1
2、平方和的分解
与平方和相应的自由度分别为: 总自由度:dfT=abn-1 A因素处理间自由度:dfA=a-1 B因素处理间自由度:dfB=b-1 交互作用自由度:dfAB=(a-1)(b-1) 处理内自由度:dfe=ab(n-1) dfT=dfA+dfB+dfAB+dfe
8
统计量F 24.68** 15.22** 5.904**
查F分布表: F0.95 (3,6) 3.24; F0.99 (3,6) 5.29; F0.95 (9,16) 2.54; F0.99 (9,16) 3.78
所以FA、FB、FC均达极显著,所以大白鼠增重与 添加剂A、B及其交互作用都有显著关系。
第一节 双因素方差分析概述
一、双因素试验汇中的几个基本概念
1、主效应(main effect):各实验因素相对独立的 效应,该效应水平的改变会造成因素效应的改变, 如包装方式对果汁销售量的影响。
2、互作效应(interaction):两个或多个实验因素的 相互作用而产生的效应。
3、无交互作用的双因素方差分析或无重复双因素方 差分析(Two-factor without replication):两个因素 对试验结果。两个因素对试验数据的影响。
三、混合模型(以A为固定因素、B为随机因 素为例)
在混合模型中,A、B因素的效应为非可加性,
为固定i 效应,
为j 随机i j 效应
对A做检验时用随机模型,对B及AB交互效
应做检验时用固定模型。
多因素方差分析公式了解多因素方差分析的计算公式
多因素方差分析公式了解多因素方差分析的计算公式多因素方差分析公式——了解多因素方差分析的计算公式多因素方差分析是一种统计方法,用于分析多个因素对观察结果的影响。
它通过比较不同因素水平下的观察值差异来判断这些因素对实验结果的影响程度。
在多因素方差分析中,我们需要了解与计算一些重要的公式。
1. 多因素方差分析的总平方和(SS_total)公式:SS_total = SS_between + SS_within其中,SS_total是总平方和,表示所有观测值与总均值之间的偏离程度;SS_between是组间平方和,表示不同因素水平下的观测值与总均值之间的偏离程度;SS_within是组内平方和,表示同一因素水平下的观测值与该水平下的均值之间的偏离程度。
2. 多因素方差分析的组间平方和(SS_between)公式:SS_between = ∑(ni * (μi - μ)²)其中,ni是第i组的观测值个数,μi是第i组观测值的均值,μ为所有观测值的总均值。
3. 多因素方差分析的组内平方和(SS_within)公式:SS_within = ∑∑((Xij - μi)²)其中,Xij表示第i组的第j个观测值,μi为第i组观测值的均值。
4. 多因素方差分析的组间平均平方(MS_between)公式:MS_between = SS_between / (k - 1)其中,k为不同因素水平的个数。
5. 多因素方差分析的组内平均平方(MS_within)公式:MS_within = SS_within / (N - k)其中,N为总观测值的个数。
6. 多因素方差分析的F统计量公式:F = MS_between / MS_withinF统计量用于判断不同因素水平的均值之间的差异是否显著。
若F 值大于某个临界值,则认为不同因素水平的均值存在显著差异。
通过以上公式,我们可以计算出组间平方和、组内平方和、组间平均平方、组内平均平方和F统计量,从而进行多因素方差分析。
多因素方差分析的重要公式解析
多因素方差分析的重要公式解析在统计学中,方差分析是一种重要的统计分析方法,用于检验多个变量对于一个因变量的影响是否显著。
而多因素方差分析则是对多个自变量对因变量产生的影响进行分析和比较。
在进行多因素方差分析时,我们需要了解和掌握一些重要的公式,以便正确、准确地进行分析和研究。
一、总平方和(SS_T)总平方和是指因变量的总变异程度,它包括各个观测值与所有观测值的平均值之差的平方和。
总平方和可以用以下公式来计算:SS_T = Σ((X_ij - X_bar)^2)其中,X_ij表示第i个处理条件下的第j个观测值,X_bar表示全部观测值的平均值,Σ表示求和。
二、因素平方和(SS_A、SS_B、SS_AB、SS_E)在多因素方差分析中,我们通常需要考虑多个因素对因变量的影响。
因素平方和是指各个因素对总平方和的贡献,可以用以下公式来计算:SS_A = n * Σ((X_bar_i - X_bar)^2)SS_B = m * Σ((X_bar_j - X_bar)^2)SS_AB = Σ((X_ij - X_bar_i - X_bar_j + X_bar)^2)SS_E = SS_T - SS_A - SS_B - SS_AB其中,n表示第一个自变量的水平数,m表示第二个自变量的水平数。
三、均方(MS_A、MS_B、MS_AB、MS_E)均方是指因素平方和除以相应的自由度。
均方可以用以下公式来计算:MS_A = SS_A / df_AMS_B = SS_B / df_BMS_AB = SS_AB / df_ABMS_E = SS_E / df_E其中,df_A、df_B、df_AB、df_E分别代表因素A、因素B、交互作用AB和误差的自由度。
四、F值(F_A、F_B、F_AB)F值是用来判断各个因素是否对因变量的影响具有统计显著性。
F 值可以用以下公式来计算:F_A = MS_A / MS_EF_B = MS_B / MS_EF_AB = MS_AB / MS_E根据所得的F值,我们可以参照F分布表,找出对应的临界值,从而判断因素的显著性。
多因素方差分析简介
SSw SSt SSb 579.8333 331.3333 248.5000
于是A因素组间平方和为:
2 2 (X a) (X a) SSA na na K a
7082 6962 7182 21222 30.3333 8 8 3
B因素平方和为:
所以 A因素F=1.10<3.55= B因素F=0.77<4.41=
F( 2, )0。 6.01 18 01
F(1, )0。 8.29 18 01
F( 2, ) 0。 ,p>0.05,保留零假设 18 05
F(1, )0。 ,p>0.05,保留零假设 18 05
F( 2, )0。 ,p<0.01,拒绝零假设 18 01
MS B 10.6666 F 0.7726 MSW 13.8056
MS AB 145.1667 F 10.5151 MSW 13.8056
第三步:统计决断
根据分子自由度、分母自由度查附表3,找到各 个临界值,即
F( 2, )0。 3.55 18 05
F(1, )0。 4.41 18 05
解:第一步:提出假设
首先,提出关于A因素的假设:
H 0 a a a
1 2
3
H1
A因素至少有两个水平的总体平均数不相等 然后,提出关于B因素的假设:
1
2
最后,提出关于A、B两个因素交互作用是否显著 的假设:
H0
A、B两个因素交互作用不显著 A、B两个因素交互作用显著
MS B F MSW
对于A因素与B因素的交互作用,检验统计量的计算 公式为:
MS AB F MSW
第三步:统计决断 根据分子和分母自由度及=0.05和=0.01两个 显著性水平查附表3寻找F临界值。然后,将实际计 算出的F值与这两个临界值相比较,若实际计算出的
多因素方差分析的重要公式详解
多因素方差分析的重要公式详解多因素方差分析是一种常用的统计分析方法,可以用于研究实验设计中多个自变量对因变量的影响。
它通过计算各种不同因素所引起的变异程度来确定因素之间的差异是否显著。
本文将详细解析多因素方差分析中的重要公式,帮助读者更好地理解和运用这一方法。
1. 总变异(SST)公式总变异是指因变量整体的变异情况,可以通过计算各观测值与总体均值之间的离差平方和来得到。
总变异公式如下:SST = Σ(yij - ȳ..)^2其中,yij表示第i个处理水平下的第j个观测值,ȳ..表示所有观测值的均值。
2. 处理效应(SSA)公式处理效应是指不同因素水平对因变量的影响程度,可以通过计算各处理水平下观测值与总体均值之间的离差平方和来得到。
处理效应公式如下:SSA = rΣ(ȳi. - ȳ..)^2其中,ȳi.表示第i个处理水平下的观测值均值,r表示每个处理水平下的观测次数。
3. 误差(SSW)公式误差是指无法被因素解释的随机因素引起的变异,可以通过计算各观测值与其所在处理水平均值之间的离差平方和来得到。
误差公式如下:S SW = Σ(yij - ȳi.)^24. 自由度(df)公式自由度是指数据集中独立变动的观测个数。
在多因素方差分析中,自由度的计算有以下几个关键公式:- 总自由度(dft) = 总处理次数 - 1 = I - 1- 处理自由度(dfa) = 处理水平数 - 1 = a - 1- 误差自由度(dfe) = 总观测次数 - 总处理次数 = N - I其中,I表示总处理次数,a表示处理水平数,N表示总观测次数。
5. 均方(MS)公式均方是指各来源变异的均值,可以通过总平方和除以相应的自由度来得到。
均方公式如下:- 处理均方(MSA) = SSA / dfa- 误差均方(MSE) = SSW / dfe6. F比值公式F比值是判断因素之间差异是否显著的依据,可以通过处理均方除以误差均方来计算。
06_多因素方差分析
比较(comparison): 对各处理水平平均数之间差异的估 价。当一个处理的主效应显著,且处理的水平多于2 时,需要进一步揭示主效应显著的意义,即那些水平 之间比较是差异显著的。 组间变异(between-group variation):接受不同处理的被 试的分数围绕总平均数的变化。 组内变异(with-group variation):每个组内被试分数围 绕组平均分数的变化。这个变异是由随机误差造成的, 将各处理组内的变异相加,即是整个实验的实验误差。 无关变量:指一个研究中除了自变量以外所有可能对 因变量产生影响的因素。
完全随机实验设计的方差分析
• 适用条件:一个自变量,自变量有两个或多 于两个水平(P2) • 被试分配
A1 S1 S5 S9 S13 A2 S2 S6 S10 S14 A3 S3 S7 S11 S15 A4 S4 S8 S12 S16
(3)检验的假设和实验设计模型
H 0 : 1 2 p 或 H 0 : j 0, j 1,2,, p 即无处理效应 模型: ij j ij , i 1,2,, n, j 1,2,, p y
两因素完全随机实验设计的计算表
a1 b1 3 6 4 3 a1 b2 4 6 4 2 a1 b3 5 7 5 2 a2 b1 4 5 3 3 a2 b2 8 9 8 7 a2 b3 12 13 12 11
* two-factors randomized experiment anova. DATA LIST/ A 1 B 3 Y 5-6. BEGIN DATA 113 116 114 113 124 126 124 122 135 137 135 132 214
多因素方差分析的重要公式整理
多因素方差分析的重要公式整理在多因素方差分析中,有几个重要的公式需要整理和掌握。
这些公式帮助我们计算和分析数据,以揭示多个因素对于变量的影响程度和统计显著性。
以下是一些关键的多因素方差分析公式:1. 总变异公式(Total Variation Formula):总变异 = 组间变异 + 组内变异这个公式表示了数据总体的变异程度,通过将组间变异与组内变异相加得出。
组间变异是不同处理(或因素)之间的变异,组内变异则是同一处理(或因素)下不同观测值之间的变异。
2. 组间变异公式(Between-group Variation Formula):组间变异= Σ(每组均值 - 总体均值)² * 每组样本数组间变异衡量了不同处理(或因素)之间的差异程度。
这个公式将每组均值与总体均值之间的差的平方值与每组样本数相乘,然后将这些乘积相加,以获得总的组间变异。
3. 组内变异公式(Within-group Variation Formula):组内变异= Σ(每个观测值 - 对应组均值)²组内变异表示了同一处理(或因素)下不同观测值之间的差异。
这个公式将每个观测值与对应组均值之间的差的平方值相加,以获得总的组内变异。
4. 均方(Mean Square):组间均方 = 组间变异 / 自由度(组间)组内均方 = 组内变异 / 自由度(组内)均方是组间变异和组内变异除以自由度得到的。
自由度在多因素方差分析中用于调整变异量的误差,以准确评估结果的统计显著性。
5. F统计量(F-statistic):F统计量 = 组间均方 / 组内均方F统计量用于衡量组间差异与组内差异之间的比例关系。
通过将组间均方除以组内均方,我们可以得到这个统计量的值。
以上是多因素方差分析中的一些重要公式,它们提供了对数据进行统计分析和推断的基础。
熟练掌握这些公式可以帮助我们理解数据的变化规律,从而做出准确的结论和决策。
多因素方差分析ppt课件
可编辑课件PPT
17
• 第二步:将32个数据 及伴随的组别、区组依 次录入SPSS,形成32行 3列的数据集。
可编辑课件PPT
18
• 第三步:选择分析→一般线性模型→单变量
可编辑课件PPT
19
• 第四步:在单变量对话框中,因变量列表处移入 “皮质酮含量”,固定因子处移入“组别”、 “区组”。
可编辑课件PPT
14
【例1】慢性应激大鼠模型的中医证候研究, SD 雄性大鼠32只,将体重接近的大鼠配成 一个区组,共 8 个区组,然后将各区组的 4 只大鼠随机分配到各组:对照组不给药物, 其余3组分别为四逆散组、逍遥散组和四君 子汤组,分别给予不同的药物,一定时间后, 观察大鼠血清皮质酮含量(nmol/L),如表, 分析4组大鼠血清皮质酮含量是否相同?体重 对大鼠血清皮质酮含量是否有影响?
➢ 正交设计亦称部分析因设计,它保留了析因设计 整体考虑、综合比较的优点,避免了析因设计的 全面试验、工作量大的弊病。
➢ 正交设计是根据正交性从全面试验中挑选出部分 有代表性的点进行试验,这些有代表性的点试验 具备了“均匀分散,齐整可比”的特点。
可编辑课件PPT
10
可编辑课件PPT
11
➢重复测量设计是指对同一观察对象(如人、 动物等)的同一观察指标在不同时间点上或 在同一受试对象的不同部位进行多次测量, 用于分析该观察指标的规律。
➢同一区组内要求各试验对象尽可能一致, 不同区组间的试验对象允许存在差异,每 一区组内试验对象的随机分组要独立进行, 每种处理在一个区组内只能出现一次。
可编辑课件PPT
6
➢拉丁方设计是按拉丁字母组成的方阵安排 实验的第三个因素(一般是一个处理因素、 两个配伍因素)等水平设计。
多因素方差分析 ppt课件
a
Intercept A B A* B Error Total Corrected Total
5695952.667 1040000.667 87604.167 85681.500 136387.000 7045626.000 1349673.333
ppt课件 2
复 习
2.某军区总医院欲研究A、B、C三种减肥药物对家
兔体重的影响,将36只家兔随机分为三组,均喂 以高脂饮食,其中三个试验组,分别给予不同的 减肥药物,一定时间后测定家兔体重,问四组家兔 体重是否相同?(减肥.sav)(因素,输入)
ppt课件 3
为探索丹参对肢体缺血再灌注损伤的影响,将30只纯种
ppt课件
17
析因设计的方差分析
流行病学与卫生统计学教研室 ppt课件
18
18
析 因 设 计 析因实验设计是将每个因素的所有水平都互相组合, 的 交叉分组进行实验,可寻找最佳组合。 方 差 分 析
ppt课件
19
析 因 设 计 的 方 差 分 析
2×2析因例题
利血平可以使小鼠脑中去甲肾上腺素(NE) 等递质下降,现考察某种新药 MWC 是否具 有对抗利血平使递质下降的作用,将24只小 鼠随机等分为四组,并给予不同处理后,测 定脑中NE的含量。
ppt课件
29
重复测量资料的方差分析
分析实例(重复测量资料) 为评价某试验药物与对照药物对慢性乙肝患者谷丙
转氨酶( ALT )影响,根据统一标准收治 20 名患者
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.139
dq*rq
5.981E7
4
1.495E7
20.312
.000
误差
1.325E7
18
736111.111
总计
9.230E8
27
校正的总计
7.852E7
26
a. R方= .831(调整R方= .756)
结论:利用多因素分析的方法,dq和rq的p大小于a所以不拒绝原假设得知不同地区和不同日期对
2000
6000
4000
4000
5000
6000
利用多因素方差分析方法,分析不同地区和不同日期对该商品的销售是否产生了显著影响
三实验结果及结论包括spss输出结果及分析解释
主体间因子
值标签
N
地区
1.00
地区1
9
2.00
地区2
10
3.00
地区3
8
日期
1.00
周一至周三
9
2.00
周四至周五
9
3.00
周末
该商品的销售量没有产生显著影响。
结论:dq*rq的p值小于a所以拒绝原假设所以地区和日期对该商品的销售产生交互影响
为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据
销售量
日期
周一至周三
周四至周五
周末
地区一
5000
6000
4000
6000
8000
3000
4000
7000
5000
地区二
7000
5000
5000
8000
5000
6000
8000
6000
4000
地区三
3000
6000
8000
地区三
9
主体间效应的检验
因变量:销售量
源
III型平方和
df
均方
F
Sig.
校正模型
6.527E7
8
8158564.815
11.083
.000
截距
8.574E8
1
8.574E8
1164.780
.000
dq
2641336.270
2
1320668.135
1.794
.195rq325来自923.97721626461.988
南昌航空大学经济管理学院学生实验报告
实验课程名称:统计软件及应用
专业
市场营销
班级学号
138305126
姓名
王奇
成绩
实验地点
10206
实验性质:演示性验证性综合性设计性
实验项目名称
多因素方差分析
指导教师
李晓辉
一实验目的
多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响
二实验内容实验案例