陕西省西安市长安区第一中学2017-2018学年高二数学下学期期末考试试题文

合集下载

陕西省西安市2017-2018学年高二下学期期末考试数学(文)试题(解析版)

陕西省西安市2017-2018学年高二下学期期末考试数学(文)试题(解析版)

陕西省西安市2017-2018学年高二下学期期末考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1.A. 0B. 2C.D. 1【答案】B【解析】解:.故选:B.直接利用平方差公式求解.本题考查复数代数形式的乘除运算,是基础的计算题.2.设集合,0,,则A. 0,B. 0,1,C. D. 0,【答案】A【解析】解:集合,0,,0,.故选:A.利用并集定义直接求解.本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.设命题P:,,则¬为A. ,B. ,C. ,D. ,【答案】A【解析】解:因为全称命题的否定是特称命题,所以,命题P:,,则¬为:,.故选:A.利用全称命题的否定是特称命题,写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.设非零向量满足,则A. B.C. D.【答案】D【解析】解:;;,;;.故选:D.由可得出,而的大小关系得不出,也得不出,从而判断出A,B,C都错误,只能选D.考查向量垂直的充要条件,向量数量积的运算,向量长度的概念.5.抛物线方程为,则此抛物线的准线为A. B. C. D.【答案】C【解析】解:抛物线方程为,即为,可得,即,即有准线方程为,即.故选:C.化抛物线方程为标准方程,由准线方程,可得所求方程.本题考查抛物线的方程和性质,主要是准线方程的求法,考查运算能力,属于基础题.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为则该几何体的俯视图可以是A. B. C. D.【答案】C【解析】解:解法1:由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选C.解法2:当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是,高为1,则体积是;当俯视是C时,该几何是直三棱柱,故体积是,当俯视图是D时,该几何是圆柱切割而成,其体积是.故选:C.解法1:结合选项,正方体的体积否定A,推出正确选项C即可.解法2:对四个选项A求出体积判断正误;B求出体积判断正误;C求出几何体的体积判断正误;同理判断D的正误即可.本题是基础题,考查几何体的三视图的识别能力,作图能力,依据数据计算能力;注意三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.7.等差数列的前n项和为,若,则等于A. 52B. 54C. 56D. 58【答案】A【解析】解:等差数列中,,,解得,.故选:A.等差数列中,由,解得,再由等差数列的通项公式和前n 项和公式能求出.本题考查等差数列的前n项和的应用,是基础题解题时要认真审题,仔细解答.8.有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶是黑色的概率A. B. C. D.【答案】C【解析】解:有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,设红瓶墨水为H,蓝瓶墨水为,,黑瓶墨水为,,某同学从中随机任取出两瓶,设事件A表示“取出的两瓶中有一瓶是蓝色”,某同学从中随机任取出两瓶,取出的两瓶中有一瓶是蓝色,包含的基本事件有7种,分别为:,,,,,,,取出的两瓶中有一瓶是蓝色,另一瓶是黑色,包含的基本事件有4种,分别为:,,,,取出的两瓶中有一瓶是蓝色,另一瓶是黑色的概率.故选:C.设红瓶墨水为H,蓝瓶墨水为,,黑瓶墨水为,,某同学从中随机任取出两瓶,利用列举法求出包含的基本事件有7种,取出的两瓶中有一瓶是蓝色,另一瓶是黑色,包含的基本事件有4种,由此能求出取出的两瓶中有一瓶是蓝色,另一瓶是黑色的概率.本题考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.如图是计算值的一个程序框图,其中判断框内应填入的条件是A. B. C. D.【答案】C【解析】解:算法的功能是计算值,共循环5次,跳出循环体的n值为12,k值为6,判断框内应填的条件是或.故选:C.根据算法的功能确定循环的次数是5,确定跳出循环体的n值为12,k值为6,由此可得判断框内应填的条件.本题考查了循环结构的程序框图,根据算法的功能确定循环的次数,从而求得跳出循环体的k值是关键.10.在中,已知,那么一定是A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 正三角形【答案】B【解析】解:由知,..,和B是三角形的内角,.故选:B.根据三角形三个内角和为,把角C变化为,用两角和的正弦公式展开移项合并,公式逆用,得,因为角是三角形的内角,所以两角相等,得到三角形是等腰三角形.在三角形内会有一大部分题目出现,应用时要抓住三角形内角和是,就有一部分题目用诱导公式变形,对于题目中正用、逆用两角和的正弦和余弦公式,必须在复杂的式子中学会辨认公式应用公式.11.如图是1,2两组各7名同学体重单位:数据的茎叶图设1,2两组数据的平均数依次为和,标准差依次为和,那么注:标准差,其中为,,,的平均数A. ,B. ,C. ,D. ,【答案】C【解析】解:由茎叶图,得第1组的7名同学的体重分别为53 56 57 58 61 70 72,第1组的7名同学体重的平均数为:因此,第1组的7名同学体重的方差为:,同理,第2组的7名同学体重的平均数为:因此,第2组的7名同学体重的方差为:,且故选:C.将题中的茎叶图还原,结合平均数、方差计算公式,分别算出第1组7位同学和第2组7位同学的平均数和方差,再将所得结果加以比较,即得本题的答案.本题给出茎叶图,要我们求出数据的平均数和方差,着重考查了茎叶图的认识、样本特征数的计算等知识,属于基础题.12.已知函数,若存在,使得成立,则实数a的取值范围是A. B.C. D. ,【答案】A【解析】解:函数,若存在,使得成立,即:存在,成立.令,即成立.令,即,,当时,不存在x.当时,存在x.,当时,,时,,时,,解得:,,实数a的取值范围是,故选:A.分别讨论a的取值范围,构造新函数,结合导数研究函数的最值即可得到结论.本题考查了导数的运算法则和函数的最值问题,以及不等式的解法,属于中档题二、填空题(本大题共4小题,共20.0分)13.函数的最大值为______.【答案】【解析】解:函数,其中,可知函数的最大值为:.故答案为:.利用辅助角公式化简函数的解析式,通过正弦函数的有界性求解即可.本题考查三角函数的化简求值,正弦函数的有界性的应用,考查计算能力.14.若变量x,y满足约束条件,则的最大值为______.【答案】1【解析】解:作出变量x,y满足约束条件可行域如图,由知,,所以动直线的纵截距取得最大值时,目标函数取得最大值.由得.结合可行域可知当动直线经过点时,目标函数取得最大值.故答案为:1.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.设曲线在点处的切线方程为,则______.【答案】3【解析】解:的导数,由在点处的切线方程为,得,则.故答案为:3.根据导数的几何意义,即表示曲线在处的切线斜率,再代入计算.本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.16.已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为______.【答案】【解析】解:抛物线的焦点坐标为抛物线的焦点与双曲线的一个焦点重合,,故答案为:先确定抛物线的焦点坐标,可得双曲线的焦点坐标,从而可求双曲线的离心率.本题考查抛物线的标准方程,考查抛物线与双曲线的几何性质,属于基础题.三、解答题(本大题共7小题,共82.0分)17.在中,角A,B,C的对边分别是a,b,c,若,,成等差数列.Ⅰ求;Ⅱ若,,求的面积.【答案】解:Ⅰ,,成等差数列,,由正弦定理知:,,,代入上式得:,即.又,,即.而,,及,得.Ⅱ由余弦定理得:,,又,,,即,.【解析】Ⅰ由,,成等差数列,可得,利用正弦定理、和差公式即可得出;利用余弦定理与三角形的面积计算公式即可得出.本题考查了等差数列、正弦定理、和差公式、余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.18.某校有教职工130人,对他们进行年龄状况和受教育情况只有本科和研究生两类的调查,其结果如下:随机抽取一人,是35岁以下的概率为,求a,b的值;从50岁以上的6人中随机抽取两人,求恰好只有一位研究生的概率.【答案】解:由已知得:,解得分故,即分将50岁以上的6人进行编号:四位本科生为:1,2,3,4,两位研究生为5,6.从这6人中任取2人共有15种等可能发生的基本事件,分别为:12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共有15种抽法,分其中恰好有一位研究生的有8种,分别为:15,16,25,26,35,36,45,46,共有8种抽法,故所求的事件概率为:分【解析】由已知得:,由此解得a的值,再根据总数为130求出b的值.从这6人中任取2人,用列举法一一列举,共有15种等可能发生的基本事件其中恰好有一位研究生的抽法有8种,由此求得所求的事件的概率.本题考查古典概型及其概率计算公式,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.19.如图,三棱柱中,底面为正三角形,平面ABC,且,D是BC的中点.Ⅰ求证:平面;Ⅱ求证:平面平面;Ⅲ在侧棱上是否存在一点E,使得三棱锥的体积是,若存在,求CE长;若不存在,说明理由.【答案】解:Ⅰ连接交于点O,连接OD.三棱柱中,平面ABC,四边形为矩形,可得点O为的中点.为BC中点,得DO为中位线,.平面,平面,平面分Ⅱ底面ABC正三角形,D是BC的中点平面ABC,平面ABC,.,平面,平面,平面平面分Ⅲ假设在侧棱上存在一点E,使三棱锥的体积是,设三棱锥的体积,得.,即在侧棱上存在一点E,当时,三棱锥的体积是分【解析】Ⅰ连接交于点O,连接可得DO为中位线,,结合线面平行的判定定理,得平面.由平面ABC,得正三角形ABC中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.假设在侧棱上存在一点E且,满足三棱锥体积是,利用作为底、AD为高,得三棱锥的体积,即为三棱锥的体积,建立等式即可解出m的值,所以在侧棱上存在点E,使三棱锥的体积是.本题给出直三棱柱,求证线面平行、面面垂直并探索三棱锥的体积,着重考查了空间线面平行、线面垂直的判定与性质,考查了锥体体积公式的应用,属于基础题.20.已知函数.Ⅰ求函数的极值;Ⅱ若函数在定义域内为增函数,求实数a的取值范围.【答案】解:Ⅰ由已知,得,,令,得或,当时,,当时,,在,上为增函数,在上为减函数.极小值,极大值;Ⅱ,,由题意,知恒成立,即.时,,当且仅当时等号成立.故,.【解析】Ⅰ由已知得到,求其导函数,解得导函数的零点,由导函数的零点对定义域分段,求得函数的单调区间,进一步求得极值;Ⅱ由函数在定义域内为增函数,可得恒成立,分离参数a,利用基本不等式求得最值得答案.本题考查利用导数研究函数的单调性,训练了分离参数法及构造函数求最值,是中档题.21.在直角坐标系xOy中,椭圆:的左、右焦点分别为,,也是抛物线:的焦点,点M为,在第一象限的交点,且.求的方程;平面上的点N满足,直线,且与交于A,B两点,若,求直线l的方程.【答案】解:的焦点,,,,代入抛物线方程,有,,椭圆的方程为点N满足,易知N与M关于原点对称,,设直线l方程:,联立直线和椭圆方程得到:,设,,,,代入韦达定理有,,直线l方程为【解析】先利用是抛物线:的焦点求出的坐标,再利用以及抛物线的定义求出点M的坐标,可以得到关于椭圆方程中参数的两个等式联立即可求的方程;先利用,以及直线得出直线l与OM的斜率相同,设出直线l的方程,把直线方程与椭圆方程联立得到关于A,B两点坐标的等式,整理代入,即可求出直线l的方程.本题是对椭圆与抛物线以及直线与椭圆位置关系的综合考查直线与圆锥曲线的位置关系,由于集中交汇了直线,圆锥曲线两章的知识内容,综合性强,能力要求高,还涉及到函数,方程,不等式,平面几何等许多知识,可以有效的考查函数与方程的思想,数形结合的思想,分类讨论的思想和转化化归的思想,因此,这一部分内容也成了高考的热点和重点.22.在直角坐标系xOy中,曲线C的参数方程为,为参数,直线l的参数方程为,为参数.求C和l的直角坐标方程;若曲线C截直线l所得线段的中点坐标为,求l的斜率.【答案】解:曲线C的参数方程为为参数,转换为直角坐标方程为:.直线l的参数方程为为参数.转换为直角坐标方程为:.把直线的参数方程代入椭圆的方程得到:整理得:,则:,由于为中点坐标,当直线的斜率不存时,.无解故舍去.当直线的斜率存在时,由于和为A、B对应的参数所以利用中点坐标公式,则:,解得:,即:直线l的斜率为.【解析】直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.利用直线和曲线的位置关系,在利用中点坐标求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.23.设函数.当时,求不等式的解集;若,求a的取值范围.【答案】解:当时,.当时,,解得,当时,恒成立,即,当时,,解得,综上所述不等式的解集为,,,,,,解得或,故a的取值范围.【解析】去绝对值,化为分段函数,求出不等式的解集即可,由题意可得,根据据绝对值的几何意义即可求出本题考查了绝对值的不等式和绝对值的几何意义,属于中档题。

陕西省西安市长安区2017-2018学年高二下学期期末考试语文试题word版有答案

陕西省西安市长安区2017-2018学年高二下学期期末考试语文试题word版有答案

长安一中2017—2018学年第二学期高二级期末考试语文试题第Ⅰ卷阅读题一、现代文阅读(23分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

中国传统社会给人两个相互矛盾的印象:一方面,它十分注重平等;另一方面,它又十分注重纲常伦理,表现出严格的等级秩序。

不过,无论如何解释这种印象,它至少说明在中国传统社会中同时存在人与人之间的平等和差异两个问题。

在西方由正义原则加以处理的人与人之间平等与差异的关系问题在中国社会同样存在,而且同样也需要某种协调机制。

概而言之,从功能的角度看,中国传统社会,特别是在儒家思想中,对这一关系的处理,是通过“仁”“礼”“义”三项基本原则彼此支撑、相互为用实现的。

“仁”是对他人之爱,在儒家的价值体系中处于核心地位,所以孔子说:“志士仁人,无求生以害仁,有杀身以成仁。

”“仁”的基础则是对亲人之爱,所谓“仁者人也,亲亲为大”。

孟子进一步指出:“孩提之童,无不知爱其亲者;……亲亲,仁也。

”并且孟子认为,这种爱的基础,是“不忍人之心”,即同情心。

同情即同样的感情,是“人同此心,心同此理”这一心理事实的体现。

因此,“仁”的生发机制,是一个推己及人,由近及远的过程,即把对亲人之爱扩展为对邻人之爱,再扩展到对天下人之爱,也就是孟子所说的:“老吾老,以及人之老;幼吾幼,以及人之幼。

”与“仁”所体现的“合和”精神不同,“礼”强调的是人与人之间尊卑贵贱(纵向)、亲疏厚薄(横向)的差秩格局和纲常秩序,反映“别”与“分”的一面。

“礼”在儒家思想中的重要地位是一个众人皆知的事实,“礼,国之干也。

”“礼”提供了一套基本的政治架构,对中国传统社会的稳定有序具有举足轻重的作用,后者因此也被称为“礼治社会”。

儒家强调“礼”治,但目的不是造成一个等级森严、上下隔阂的社会,而是通过“礼”的规范与约束,实现社会的和谐和睦。

用以平衡“仁”与“礼”的就是“义”的原则。

在中国传统文献中,“义”是一个含义比较丰富的概念。

2017-2018学年陕西省西安市高二(下)期末数学试卷(文科)(解析版)

2017-2018学年陕西省西安市高二(下)期末数学试卷(文科)(解析版)

2017-2018学年陕西省西安市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个符合题目要求的选项.)1.(5分)(1+i)(1﹣i)=()A.0B.2C.﹣2D.12.(5分)设集合A={x|(x﹣1)(x+1)(x+3)=0},B={﹣1,0,1},则A∪B=()A.{﹣3,﹣1,0,1}B.{﹣1,0,1,3}C.{﹣l,1}D.{﹣1,0,1}3.(5分)设命题P:∀n∈N,n2>2n,则¬p为()A.∃n∈N,n2≤2n B.∀n∈N,n2≤2n C.∃n∈N,n2<2n D.∀n∈N,n2<2n 4.(5分)设非零向量满足,则()A.B.∥C.D.5.(5分)抛物线方程为x=y2,则此抛物线的准线为()A.x=1B.y=1C.x=﹣1D.y=﹣16.(5分)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为.则该几何体的俯视图可以是()A.B.C.D.7.(5分)等差数列{a n}的前n项和为S n,若a3+a7+a11=12,则S13等于()A.52B.54C.56D.588.(5分)有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶是黑色的概率()A.B.C.D.9.(5分)如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.k≥5B.k<5C.k>5D.k≤610.(5分)在△ABC中,已知2sin A cos B=sin C,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形11.(5分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差,其中为x1,x2,…,x n的平均数)A.,s 1>s2B.,s1<s2C.,s1<s2D.,s1>s212.(5分)已知函数f(x)=x+e﹣x,若存在x∈R,使得f(x)≤ax成立,则实数a的取值范围是()A.(﹣∞,l﹣e]B.(l,+∞)C.(1﹣e,1]D.(﹣∞,1﹣e]∪(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=2cos x+sin x的最大值为.14.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为.15.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=.16.(5分)已知抛物线y2=8x的焦点与双曲线﹣y2=1的一个焦点重合,则该双曲线的离心率为.三、解答题(本大题6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)(一)必考题:共60分17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若c cos A,b cos B,a cos C成等差数列.(Ⅰ)求∠B;(Ⅱ)若a+c=,b=,求△ABC的面积.18.(12分)某校有教职工130人,对他们进行年龄状况和受教育情况(只有本科和研究生两类)的调查,其结果如下:(1)随机抽取一人,是35岁以下的概率为,求a,b的值;(2)从50岁以上的6人中随机抽取两人,求恰好只有一位研究生的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,底面为正三角形,AA1⊥平面ABC,且AA1=AB=3,D是BC的中点.(Ⅰ)求证:A1B∥平面ADC1;(Ⅱ)求证:平面ADC1⊥平面DCC1;(Ⅲ)在侧棱CC1上是否存在一点E,使得三棱锥C﹣ADE的体积是,若存在,求CE 长;若不存在,说明理由.20.(12分)已知函数f(x)=lnx+x2.(Ⅰ)求函数h(x)=f(x)﹣3x的极值;(Ⅱ)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围.21.(12分)在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线的焦点,点M为C1,C2在第一象限的交点,且.(1)求C1的方程;(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.2017-2018学年陕西省西安市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个符合题目要求的选项.)1.【解答】解:(1+i)(1﹣i)=1﹣i2=2.故选:B.2.【解答】解:∵集合A={x|(x﹣1)(x+1)(x+3)=0}={﹣3,﹣1,1},B={﹣1,0,1},∴A∪B={﹣3,﹣1,0,1}.故选:A.3.【解答】解:因为全称命题的否定是特称命题,所以,命题P:∀n∈N,n2>2n,则¬p为:∃n∈N,n2≤2n.故选:A.4.【解答】解:∵;∴;∴,;∴;∴.故选:D.5.【解答】解:抛物线方程为x=y2,即为y2=4x,可得2p=4,即p=2,即有准线方程为x=﹣,即x=﹣1.故选:C.6.【解答】解:解法1:由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选C.解法2:当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是,高为1,则体积是;当俯视是C时,该几何是直三棱柱,故体积是,当俯视图是D时,该几何是圆柱切割而成,其体积是.故选:C.7.【解答】解:等差数列{a n}中,∵a3+a7+a11=12,∴3a7=12,解得a7=4,∴S13==13a7=13×4=52.故选:A.8.【解答】解:有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,设红瓶墨水为H,蓝瓶墨水为L1,L2,黑瓶墨水为H1,H2,某同学从中随机任取出两瓶,设事件A表示“取出的两瓶中有一瓶是蓝色”,某同学从中随机任取出两瓶,取出的两瓶中有一瓶是蓝色,包含的基本事件有7种,分别为:(H,L1),(H,L2),(L1,L2),(H1,L1),(H2,L1),(H1,L2),(H2,L2),取出的两瓶中有一瓶是蓝色,另一瓶是黑色,包含的基本事件有4种,分别为:(H1,L1),(H2,L1),(H1,L2),(H2,L2),∴取出的两瓶中有一瓶是蓝色,另一瓶是黑色的概率p=.故选:C.9.【解答】解:∵算法的功能是计算值,共循环5次,∴跳出循环体的n值为12,k值为6,∴判断框内应填的条件是k>5或k≥6.故选:C.10.【解答】解:由2sin A cos B=sin C知2sin A cos B=sin(A+B),∴2sin A cos B=sin A cos B+cos A sin B.∴cos A sin B﹣sin A cos B=0.∴sin(B﹣A)=0,∵A和B是三角形的内角,∴B=A.故选:B.11.【解答】解:由茎叶图,得第1组的7名同学的体重分别为53 56 57 58 61 70 72,∴第1组的7名同学体重的平均数为:=(53+56+57+58+61+70+72)=61kg 因此,第1组的7名同学体重的方差为:s2=[(53﹣61)2+(56﹣61)2+…+(72﹣61)2]=43.00kg2,同理,第2组的7名同学体重的平均数为:=(54+56+58+60+61+72+73)=62kg 因此,第2组的7名同学体重的方差为:s2=[(54﹣62)2+(56﹣62)2+…+(73﹣62)2]=63.14kg2,∴且s 1<s2故选:C.12.【解答】解:函数f(x)=x+e﹣x,若存在x∈R,使得f(x)≤ax成立,即:存在x∈R,x+e﹣x﹣ax≤0成立.令g(x)=x+e﹣x﹣ax,即g(x)min≤0成立.∴g′(x)=1﹣a﹣令g′(x)=0,即1﹣a=,∵>0,∴当a≥1时,不存在x.当a<1时,存在x.∴x=﹣ln(1﹣a),∴当x∈(﹣∞,﹣ln(1﹣a))时,g′(x)<0,x∈(﹣ln(1﹣a),+∞)时,g′(x)>0,∴x=﹣ln(1﹣a)时,g(x)min=(a﹣1)ln(1﹣a)+(1﹣a)≤0,解得:a≤1﹣e,∵a<1,∴实数a的取值范围是(﹣∞,l﹣e],故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.【解答】解:函数f(x)=2cos x+sin x=(cos x+sin x)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.14.【解答】解:作出变量x,y满足约束条件可行域如图,由z=x﹣2y知,y=x﹣,所以动直线y=x﹣的纵截距﹣z取得最大值时,目标函数取得最大值.由得A(3,1).结合可行域可知当动直线经过点A(3,1)时,目标函数取得最大值z=3﹣2=1.故答案为:1.15.【解答】解:y=ax﹣ln(x+1)的导数,由在点(0,0)处的切线方程为y=2x,得,则a=3.故答案为:3.16.【解答】解:抛物线y2=8x的焦点坐标为(2,0)∵抛物线y2=8x的焦点与双曲线的一个焦点重合,∴a2+1=4,∴a=∴e==故答案为:三、解答题(本大题6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)(一)必考题:共60分17.【解答】解:(Ⅰ)∵c cos A,B cos B,a cos C成等差数列,∴2b cos B=c cos A+a cos C,由正弦定理知:a=2R sin A,c=2R sin C,b=2R sin B,代入上式得:2sin B cos B=sin C cos A+sin A cos C,即2sin B cos B=sin(A+C).又A+C=π﹣B,∴2sin B cos B=sin(π﹣B),即2sin B cos B=sin B.而sin B≠0,∴cos B=,及0<B<π,得B=.(Ⅱ)由余弦定理得:cos B==,∴=,又a+c=,b=,∴﹣2ac﹣3=ac,即ac=,∴S△ABC=ac sin B==.18.【解答】解:(1)由已知得:,解得a=50…(3分)故b=130﹣(50+35+25+4+2)=14,即b=14.…(6分)(2)将50岁以上的6人进行编号:四位本科生为:1,2,3,4,两位研究生为5,6.从这6人中任取2人共有15种等可能发生的基本事件,分别为:12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共有15种抽法,…(9分)其中恰好有一位研究生的有8种,分别为:15,16,25,26,35,36,45,46,共有8种抽法,故所求的事件概率为:.…(12分)19.【解答】解:(Ⅰ)连接A1C交AC1于点O,连接OD.∵三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∴四边形ACC1A1为矩形,可得点O为A1C的中点.∵D为BC中点,得DO为△A1BC中位线,∴A1B∥OD.∵OD⊆平面ADC1,A1B⊈平面ADC1,∴A1B∥平面ADC1.…(4分)(Ⅱ)∵底面ABC正三角形,D是BC的中点∴AD⊥CD∵CC1⊥平面ABC,AD⊆平面ABC,∴CC1⊥AD.∵CC1∩CD=C,∴AD⊥平面DCC1,∵AD⊆平面ADC1,∴平面ADC1⊥平面DCC1.…(9分)(Ⅲ)假设在侧棱CC1上存在一点E,使三棱锥C﹣ADE的体积是,设CE=m∵三棱锥C﹣ADE的体积V C﹣ADE=V A﹣CDE∴××CD×CE×AD=,得×××m×=.∴m=,即CE=∴在侧棱CC1上存在一点E,当CE=时,三棱锥C﹣ADE的体积是.…(14分)20.【解答】解:(Ⅰ)由已知,得h(x)=f(x)﹣3x=lnx+x2﹣3x,(x>0),令=0,得x=或x=1,∴当x∈(0,)∪(1,+∞)时,h′(x)>0,当x∈()时,h′(x)<0,∴h(x)在(0,),(1,+∞)上为增函数,在()上为减函数.∴h(x)极小值=h(1)=﹣2,;(Ⅱ)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)=,由题意,知g′(x)≥0(x>0)恒成立,即a≤.∵x>0时,2x+,当且仅当x=时等号成立.故,∴a.21.【解答】解:(1)y2=4x的焦点F(1,0),∴c=1,∵,∴,代入抛物线方程,有,∴,∴椭圆C1的方程为(2)点N满足,∴易知N与M关于原点对称,∴,设直线l方程:,联立直线和椭圆方程得到:,设A(x1,y1),B(x2,y2),∵,∴x1x2+y1y2=0,代入韦达定理有m2=3,∴,∴直线l方程为(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:x sinα﹣y cosα+2cosα﹣sinα=0.(2)把直线的参数方程(t为参数),代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,(由于t1和t2为A、B对应的参数)由于(1,2)为中点坐标,所以利用中点坐标公式,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.23.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤﹣1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).。

西安市长安区2017-2018学年高二下期末考试数学试题(理)含答案

西安市长安区2017-2018学年高二下期末考试数学试题(理)含答案

长安2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ( ) A .}12|{<≤-x x B .}22|{≤≤-x x C .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为( )①在复平面内,复数z 对应的点位于第二象限 ②复数z 的虚部是-2 ③复数z 是纯虚数 ④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则( )A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ) A .-1 B .0 C. 12 D. 225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c ,若3a =,B A 2=,则B cos 等于( ) A .33 B .43 C.53 D. 63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A.18 B.24 C.30 D.367. 若下框图所给的程序运行结果为=35S,那么判断框中应填入的关于k 的条件是( )俯视图534 3A.7k =B.6k ≤C.6k <D.6k > 8.若某几何体的三视图(单位:cm )如图所示,则该几何体的 体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题 D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( )A.()0,+∞B.()(),03,-∞+∞C.()(),00,-∞+∞D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为 .15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为 . 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. (本小题共12分)设数列10,10,}{11+=+n n n n a a S n a 项和为的前 9,9991++=+n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ;(Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的 成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.FE C 1B 1A 1CBA20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦245的直线l 过点F .(Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.21. (本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2:2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(22,4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值.23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分. 13.(2,222⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n q a a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n ()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118. (本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C ,∴AF ⊥面11BB C C ,1AF B F ⊥.FE C 1B 1A 1CBA设11AB AA ==,则11633,222B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥. 又AF EF F = ,∴ 1B F ⊥平面AEF .(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==, 则12221(0,0,0),((0,)2F A B E , 221()2AE = ,122(AB = .由(Ⅰ)知,1B F ⊥平面AEF ,∴可取平面AEF 的法向量12m FB == .设平面1B AE 的法向量为(,,)n x y z =,由12210,0,220,20222220,022x y z n AE x y z n AB x z x y z ⎧+=⎪⎧⎧=-=⎪⎪⎪⇒⇒⎨⎨⎨=-=⎪⎪⎪⎩⎩-++=⎪⎩ ∴可取(3,1,22)n =-.设锐二面角1B AE F --的大小为θ,则222222203(1)12262cos |cos ,|||||20()13(1)(22)2m nm n m n θ⨯+⨯-+⨯=<>===+-+⨯+-+. ∴所求锐二面角1B AE F --6 19. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,CC E第3组的频率为c =300.300100=, 频率分布直方图如右:(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分 第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴20. (本小题共12分)解:(Ⅰ)抛物线x y 42=的焦点为)0,1(F ,准线方程为1-=x ,∴ 122=-b a ①又椭圆截抛物线的准线1-=x 2∴ 得上交点为)22,1(-,∴ 121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴ 该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M ,ξ 012P又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=- ()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x > 时, ()0f x '>,0x <时, ()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时, ()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭ ()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.x g x e x tx =---()'12.x g x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥ 即2(),f x tx ≥12t ∴≤时符合题意。

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题-含答案

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题-含答案

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ( ) A .}12|{<≤-x x B .}22|{≤≤-x x C .}21|{≤<x x D .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为( )①在复平面内,复数z 对应的点位于第二象限 ②复数z 的虚部是-2 ③复数z 是纯虚数 ④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则( )A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos2θ等于( ) A .-1 B .0 C. 12 D. 225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c ,若2a =,B A 2=,则B cos 等于( ) A .33 B .43 C.53 D. 63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A.18 B.24 C.30 D.367. 若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )俯视图A.7k =B.6k ≤C.6k <D.6k > 8.若某几何体的三视图(单位:cm )如图所示,则该几何体的 体积等于( )A.310cmB.320cm C.330cm D.340cm 9.下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ω+φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin (∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原的12,纵坐标不变. D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A.()0,+∞ B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为 . 15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为 . 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. (本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ; (Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.FE C 1B 1A 1CBA20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的,倾斜角为45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.21. (本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围; (Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩ (t 为参数).曲线C 22240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分. 13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n qa a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n ()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118. (本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C , ∴AF ⊥面11BB C C ,1AF B F ⊥.FE C 1B 1A 1CBA设11AB AA ==,则113,222B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥.又AFEF F =,∴ 1B F ⊥平面AEF .(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),(,0,0),(0,(0,)2222F A B E -,1()2AE =-,1(AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,,1)2m FB ==. 设平面1B AE 的法向量为(,,)n x y z =,由110,0,0,222020,022x y z n AE z nAB z x y z ⎧--+=⎪⎧=+-=⎪⎪⇒⇒⎨⎨=-=⎪⎪⎩-++=⎪⎩∴可取(3,1,n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|6||||m nmn m n θ⨯-+⨯=<>===. ∴所求锐二面角1B AE F --19. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,CC E第3组的频率为c =300.300100=, 频率分布直方图如右(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为第3组306360⨯=人,… 6分 第4组206260⨯=人, …7分 第5组106160⨯=人, …8分 所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴20. (本小题共12分)解:(Ⅰ)抛物线=的焦点为)0,1(F ,准线方程为1-=x ,∴ 122=-b a ①又椭圆截抛物线的准线1-=x∴ 得上交点为)22,1(-,∴ 121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴ 该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=- ()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时, ()0f x '>,0x <时, ()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时, ()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444l n 1l n333f ⎛⎫=-- ⎪⎝⎭()41441141l n 1l n l n 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭ ()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.xg x e x tx =---()'12.x g x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g =于是当0x ≥时,()0,g x ≥即2(),f x tx ≥12t ∴≤时符合题意。

陕西省西安市第一中学2017-2018学年高二下学期期末考试数学(理)试题 Word版含答案

陕西省西安市第一中学2017-2018学年高二下学期期末考试数学(理)试题 Word版含答案

西安市第一中学2017-2018学年度第二学期末考试高二数学试题(理)一、 选择题(本大题共12小题,每小题3分,共36分)1. 将5封信投入3个邮筒,不同的投法有( ) A .35种B .53种C .3种D .15种2.若M 点的极坐标为,则M 点的直角坐标是( ) A .(﹣,1)B .(﹣,﹣1)C .(,﹣1)D .(,1)3.已知x 与y则y 与x 的线性回归方程y ^=b x +a 必过点( )A .(2,2)B .(1.5,0)C .(1,2)D .(1.5,4)4.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( ) A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的D .至多有2只是坏的5.关于x 的二项式(ax -2)n的展开式中,二项式系数的和为128,所有项系数的和为1,则a =( )A .1B .-1C .3D .1或36. 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.97. 对标有不同编号的16件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次也摸到次品的概率是( )A .15B .395 C .319D .1958.如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有( )种A .72B .60C .48D .249. 设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .1510. 某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a 、b 、c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A .13B .12C .112D .1611. 直线:(为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心12.一个盒子里装有6张卡片,上面分别写着如下6个定义域为R 的函数:f 1(x )=x ,f 2(x )=x 2,f 3(x )=x 3,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=2.现从盒子中逐一抽取卡片,且每次取出后不放回,若取到一张记有偶函数的卡片,则停止抽取,否则继续进行,则抽取次数ξ的数学期望为( )A .74B .7720C .34D .73二、填空题(本大题共5小题,每小题4分,共20分)13. 已知随机变量ξ的分布列如下:则P (2≤ξ14.已知随机变量X 服从正态分布N (0,σ2)且P (-2≤X ≤0)=0.4,则P (X >2)=____________.15.将一颗骰子连掷100次,则点6出现次数X 的均值E (X )=________. 16.将极坐标方程2cos ρθ=化成直角坐标方程为 17.如图,以过原点的直线的倾斜角θ为参数,则圆2220x y y +-=的参数方程为__________.三、解答题(本大题共4小题,共44分)18. (本小题10分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.19.(本小题10分)在直线坐标系xoy 中,圆C 的方程为(x+6)2+y 2=25. (I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;αcos t x =(II )直线l 的参数方程是(t 为参数),l 与C 交于A 、B 两点,αsin t y =∣AB ∣=10,求l 的斜率。

精编西安市长安区高二下期末考试数学试题(文)有答案

精编西安市长安区高二下期末考试数学试题(文)有答案

高二第二学期期末考试数 学 试 题 (文科)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( )A .-1B .0C .1D .-1或12.已知集合{lg(1)0}A x x =-≤,{13}B x x =-≤≤,则A B =I ( )A .[1,3]-B .[1,2]-C .(1,3]D .(1,2]3.在△ABC 中,“A B >”是“sin sin A B >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件4.设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A . []x = |x|B .[]x ≥2xC .[]x >-xD .[]x > 1x - 5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .422+ C.442+ D .462+6. 某程序框图如图所示,若3a =,则该程序运行后,输出的x 的值为( )A. 33 B .31 C .29 D .277.命题p :若1y x <<,01a <<,则 11x y a a<,命题q :若1y x <<,0a <,则a a x y <.在命题①p 且q ②p 或q ③非p ④非q 中,真命题是( ).A .①③B .①④C .②③D .②④8.设函数()()(2)(3)f x x x k x k x k =++-,且(0)6f '=,则k =( )A . 0B .-1C .3D .-69.若两个正实数y x ,满足141=+y x ,且不等式m m y x 342-<+ 有解,则实数m 的取值范围是( ) A.)1,4(- B.)4,1(- C.),4()1,(+∞⋃--∞ D .),3()0,(+∞⋃-∞10.已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若0)(>-a af ,则实数a 的取值范围是( ) A .(1,0)(0,1)-⋃ B .(,1)(1,)-∞-⋃+∞C .(1,0)(1,)-⋃+∞D .(,1)(0,1)-∞-⋃11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()y f x =,满足(3)()f x f x -=,3()'()02x f x -<,若12x x <,且123x x +>,则有( )A .12()()f x f x <B .12()()f x f x >C .12()()f x f x =D .不确定二、填空题(共4小题,每小题5分,共20分.)13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是__14.数列{}n a 的前n 项和n S ,若1(1)n a n n =+,则5S =_________. 15.已知向量45(2sin ,cos )36a ππ=r ,(),1b k =r .若//a b r r ,则k = . 16.定义在(,0)(0,)-∞+∞U 上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“等比函数”.现有定义在(,0)(0,)-∞+∞U 上的如下函数:①()2xf x =;②2()log f x x =;③2()f x x =;④()ln 2x f x =,则其中是 “等比函数”的()f x 的序号为三、解答题 (共6小题,共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)已知函数2()2cos sin 2f x x x =-.(1)求函数()f x 的最小正周期和值域;(2)已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若2,2a b ==,且()12A f =, 求ABC ∆的面积18.(12分)如图,已知三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:平面ABC ⊥平面APC ;(2)若4,20BC AB ==,求三棱锥D BCM -的体积.19.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是12,B B ,且12MB MB ⊥.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在异于M的定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.21.(12分)已知m R ∈,函数1()ln m f x mx x x -=--,1()ln g x x x=+ (1)求()g x 的最小值;(2)若()()y f x g x =-在[1,)+∞上为单调增函数,求实数m 的取值范围; (3)证明:2ln 2ln3ln 4ln 2342(1)n n n n ++++<+L (*n N ∈) 选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos :sin x t C y t αα=⎧⎨=⎩,(t 为参数,且0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:C C ρθρθ==.(1)求2C 与3C 交点的直角坐标;(2)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(Ⅰ)解不等式:()5g x <;(Ⅱ)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.数学试题(文科)答案一、 选择题:ADCDC,BCB CA,,BB二、填空题 13.(][)2,22,2--⋃ 14. 5615. 2 16.(3)(4) 三.解答17.(1)2()2cos sin 2f x x x =- 1cos2sin 2x x =+-2cos(2)14x π=++ 所以函数()f x 的最小正周期22T ππ==,值域为[21,21]-++∵2,2a b ==∴22sin sin 4B π=,∴1sin 2B =. ∵a b >,∴A B >∴6B π=,∴712C A B ππ=--= ∴1172613sin 2222212ABC S ab C π∆++==⨯== 18.证明:(1)由已知得, MD 是ABP ∆的中位线,∴//MD AP ,∵MD ⊄面APC ,AP ⊂面APC∴//MD 面APC ;(2)∵PMB ∆为正三角形,D 为PB 的中点,∴MD PB ⊥,∴AP PB ⊥,又∵AP PC ⊥,PB PC P =I ,∴AP ⊥面PBC ,∵BC ⊂面PBC ,∴AP BC ⊥又∵BC AC ⊥,AC AP A =I ,∴BC ⊥面APC ,∵BC ⊂面ABC ,∴平面ABC ⊥平面APC ,(3)由题意可知,三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形.MD ⊥面PBC ,4,20,10,53BC AB MB DM ====,10,10016221PB PC ==-=, ∴MD 是三棱锥D BCM -的高,11422122122BCD S ∆=⨯⨯⨯=, ∴115322110733M DBC V Sh -==⨯⨯=19、(本小题满分12分)解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2………………………..2分其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =………………..6分 (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =………………………………………….. 12分 20.解: (1)由222222519a b a e a b -===-,得23b a = 又12MB MB ⊥,知12MB B ∆是等腰直角三角形,从而2,3b a ==,所以椭圆C 的方程是22194x y +=. (2)设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+由222194x my x y =+⎧⎪⎨+=⎪⎩得22(49)16200m y my ++-=,所以1221649m y y m -+=+ ①,1222049y y m -=+② 若PM 平分APB ∠,则直线,PA PB 的倾斜角互补,所以0PA PB k k +=,设(,0)P n ,则有12120y y x n x n+=--, 将112x my =+,222x my =+代入上式,整理得12122(2)()0my y n y y +-+=,将①②代入得(29)0n m -+=,由于上式对任意实数都成立,所以92n =. 综上,存在定点9(,0)2P ,使平分PM 平分APB ∠.21.(1)函数()g x 的定义域为(0,)+∞,'22111()x g x x x x -=-+=. 当(0,1)x ∈,'()0g x <,当(1,)x ∈+∞,'()0g x >,∴1x =为极小值点,极小值(1)1g =.(2)∵112ln 2ln m m y mx x mx x x x x -=---=--. ∴'220m y m x x =+-≥在[1,)+∞上恒成立,即221x m x ≥+在[1,)x ∈+∞上恒成立. 又222111x x x x=≤++,所以1m ≥,所以,所求实数m 的取值范围为[1,)+∞. (3)由(2),取1m =,设1()()()2ln (1)0h x f x g x x x h x =-=--≥=, 则12ln x x x ≤-,即2ln 11(1)2x x x ≤-,于是2ln 11(1)2n n n≤-*()n N ∈. ∴2232ln1ln 2ln 3ln 1111111111[()][()]12321232122334(1)n n n n n n n ++++≤-++++<-++++•••+L L L 211111111[(1)](1)22231212(1)n n n n n n n =--+-++-=-+=+++L . 所以2ln 2ln3ln 4ln 2342(1)n n n n ++++<+L *()x N ∈. 22. (1)曲线2C 的直角坐标方程2220x y y +-=,曲线3C的直角坐标方程为220x y +-=,联立两方程解得,00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标(0,0),3()22. (2)曲线1C 极坐标方程为θα=(,0)R ρρ∈≠,其中0απ≤<,因此点A 的极坐标为(2sin ,)αα,点B的极坐标为,)αα,所以2sin 4sin()3AB πααα=-=-,当56πα=时AB 取得最大值,最大值为4. 23.(本小题满分10分)解:(Ⅰ)由125x -+<得5125x -<-+< 713x ∴-<-< 得不等式的解为24x -<<……………………5分 (Ⅱ)因为任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立, 所以{|()}{|()}y y f x y y g x =⊆=, 又()223|(2)(23)||3|f x x a x x a x a =-++≥--+=+, ()|1|22g x x =-+≥,所以|3|2a +≥,解得1a ≥-或5a ≤-,所以实数a 的取值范围为1a ≥-或5a ≤-.……………………10分。

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ( )A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为( )①在复平面内,复数z 对应的点位于第二象限 ②复数z 的虚部是-2 ③复数z 是纯虚数 ④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则( )A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ) A .-1 B .0 C. 12 D. 225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c ,若a =,B A 2=,则B c os 等于( )A .33 B .43 C.53 D. 63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A.18 B.24 C.30 D.367. 若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )A.7k =B.6k ≤C.6k <D.6k > 8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题 D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( )A.()0,+∞B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________ 14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为 .15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为 .16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17. (本小题共12分)设数列109,10,}{11+==+n n n n a a S n a 项和为的前 9,991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ; (Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.FE C 1B 1A 1CBA20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.21. (本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2: 2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分.13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a ,当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n q a a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n ()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118. (本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C ,∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则1132B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥.FE C 1B 1A 1CBA又AFEF F =,∴ 1B F ⊥平面AEF .(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),(0,)2F A B E ,1()222AE =--,1(22AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,m FB ==. 设平面1B AE 的法向量为(,,)n x y z=,由110,0,0,222020,0x y z n AE z nAB z x z ⎧--+=⎪⎧=+-=⎪⎪⇒⇒⎨⎨=-=⎪⎪⎩+=⎪⎩∴可取(3,1n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|||||m nmn m n θ⨯+-+⨯=<>===. ∴所求锐二面角1B AE F -- 19. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=, 频率分布直方图如右:(2)因为第3、4、5组共有60名学生, 所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分CC第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分 所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴抛物线x y 42=的焦点为20. (本小题共12分)解:(Ⅰ))0,1(F ,准线方程为1-=x ,∴ 122=-b a ①又椭圆截抛物线的准线1-=x∴ 得上交点为)22,1(-,∴ 121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴ 该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1x f x e '=- ()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10x f x e '=-=0x =0x >时, ()0f x '>,0x <时, ()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时, ()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭ ()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.x g x e x tx =---()'12.x g x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立,故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥ 即2(),f x tx ≥12t ∴≤时符合题意。

陕西省西安市2017_2018学年高二数学下学期期末考试试卷文(含解析)

陕西省西安市2017_2018学年高二数学下学期期末考试试卷文(含解析)

2017—2018学年度第二学期期末考试高二数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个符合题目要求的选项.)1.()A. 0B. 2C.D. 1【答案】B【解析】【分析】由题意运用复数的乘法法则展开求出结果【详解】故选B【点睛】本题主要考查了复数的代数形式的乘法运算,属于基础题,注意不要在数字运算上出错2.设集合,,则()A. B. C. D.【答案】A【解析】【分析】先求出集合,然后利用并集的定义即可求得答案【详解】,,,则故选A【点睛】本题主要考查了集合的并集的运算,属于基础题3.设命题为()A. B.C. D.【答案】A【解析】【分析】全称命题的否定为特称命题,即可得到答案【详解】命题是全称命题根据全称命题否定的定义可得为故选【点睛】本题主要考查了含有全称量词命题的否定,属于基础题4.设非零向量满足,则()A. B.∥ C. D.【答案】D【解析】【分析】由向量垂直结合向量的模进行判定【详解】已知,对于A,题目中没有给出向量的模,故不一定成立,故错误,排除A对于B,故∥错误,排除B对于C,题目中没有给出向量的模故无法判断模的大小,所以不成立故排除C对于D,由向量加法、减法法则可知,故D正确故选D【点睛】本题考查了向量之间的关系,较为简单5.抛物线方程为,则此抛物线的准线为()A. B. C. D.【答案】C【解析】【分析】先将抛物线方程转化为标准方程,然后利用抛物线的准线为即可求得答案【详解】抛物线方程为,则可得抛物线的准线为故选C【点睛】本题主要考查了求抛物线的准线方程,由抛物线的标准方程即可得到结果,较为简单6.如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为.则该几何体的俯视图可以是()【答案】C【解析】试题分析:由已知条件该几何体是一个棱长为的正方体沿对角面截去一半后的三棱柱,底面为直角边长为的直角三角形.故选C.考点:空间几何体的三视图、直观图.【此处有视频,请去附件查看】7.等差数列的前n项和为,若,则等于()A. 52B. 54C. 56D. 58【答案】A【解析】分析:由题意,根据等差数列的性质先求出,再根据数列中项的性质求出S13的值.详解:因为等差数列,且,,即.又,所以.故选A..点睛:本题考查等差数列的性质,熟练掌握性质,且能做到灵活运用是解答的关键.8.有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶是黑色的概率()A. B. C. D.【答案】D【解析】【分析】由古典概率求出结果【详解】记事件A为“两瓶中有一瓶是蓝色,另一瓶是黑色”,则,故选D 【点睛】本题主要考查了古典概率及其计算公式,属于基础题。

陕西省西安中学2017_2018学年高二数学下学期期末考试试题理(含解析)

陕西省西安中学2017_2018学年高二数学下学期期末考试试题理(含解析)

西安中学2017-2018学年度第二学期期末考试高二理科数学(平行班)试题一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一项是符合题意)1. 设为虚数单位,则复数 ( )A. B. C. D.【答案】D【解析】【分析】由复数的乘除运算即可求得结果【详解】故选【点睛】本题主要考查了复数的除法运算,解题的关键是要掌握复数四则运算法则,属于基础题。

2. 乘积可表示为()A. B. C. D.【答案】A【解析】【分析】根据对排列公式的认识,进行分析,解答即可【详解】最大数为,共有个自然数连续相乘根据排列公式可得故选【点睛】本题是一道比较基础的题型,主要考查的是排列与组合的理解,掌握排列数的公式是解题的关键3. ( )A. B. C. 1 D.【答案】A【解析】试题分析:因为,故选A.考点:定积分的运算.4. 是函数的导函数,的图象如图所示,的图象最有可能的是()A. B.C. D.【答案】C【解析】【分析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值,然后判断选项即可【详解】由的图象可知,当,或时,,故函数是增函数,时,函数是减函数,是函数的极大值点,是函数的极小值点所以函数的图象只能是故选【点睛】本题主要考查了利用导数研究函数的单调性,属于基础题,解题的关键是利用导函数看正负,原函数看增减。

5. 现有小麦、大豆、玉米、高粱种不同农作物供选择,在如图所示的四块土地上行种植,要求有公共边界的两块地不能种同一种农作物,则不同的种植方法共有()A. 36种B. 48种C. 24种D. 30种【答案】B【解析】【分析】需要先给右边的一块地种植,有种结果,再给中间上面的一块地种植,有种结果,再给中间下面的一块地种植,有种结果,最后给左边的一块地种植,有种结果,相乘即可得到结果【详解】由题意可知,本题是一个分步计数的问题先给右边的一块地种植,有种结果再给中间上面的一块地种植,有种结果再给中间下面的一块地种植,有种结果最后给左边的一块地种植,有种结果根据分步计数原理可知共有种结果故选【点睛】本题主要考查的知识点是分步计数原理,这种问题解题的关键是看清题目中出现的结果,几个环节所包含的事件数在计算时要做到不重不漏。

最新陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案-精品

最新陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案-精品

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ()A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为()①在复平面内,复数z 对应的点位于第二象限②复数z 的虚部是-2 ③复数z 是纯虚数④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则()A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos2θ等于( ) A .-1 B .0 C.12 D.225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c,若a =,B A 2=,则B cos 等于() A .33 B .43 C.53 D.63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.367.若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )A.7k =B.6k ≤C.6k <D.6k >8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是()A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为()A.()0,+∞B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为. 15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为. 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ; (Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且,倾斜角为45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,FE C 1B 1A 1CBA若存在,求出点M 的坐标,若不存在,说明理由.21.(本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2: 2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分.13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n qa a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n ()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118.(本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C , ∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则1132B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥.又AFEF F =,∴1B F ⊥平面AEF .FE C 1B 1A 1CBA(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),(,0,0),(0,(0,)2222F A B E -,1()2AE =-,1(AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,m FB ==. 设平面1B AE 的法向量为(,,)n x y z =,10,0n AE n AB ⎧⎪⎧=⎪⎪⇒⎨⎨=⎪⎪⎩⎪⎩由∴可取(3,1,n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|||||m nm n m n θ⨯+-+⨯=<>===. ∴所求锐二面角1B AE F --的余弦值为619. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=, 频率分布直方图如右:(2)因为第3、4、5组共有60名学生, 所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分CC所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴抛物线x y 42=的焦点为)0,1(F ,20. (本小题共12分)解:(Ⅰ)准线方程为1-=x ,∴122=-b a ①又椭圆截抛物线的准线1-=x,∴得上交点为)22,1(-,∴121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵倾斜角为45的直线l 过点F ,∴直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(2011100000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=-()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时,()0f x '>,0x <时,()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时,()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.xg x e x tx =---()'12.xg x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥即2(),f x tx ≥12t ∴≤时符合题意。

陕西省西安市长安区第一中学2017-2018学年高二数学下学期期末考试试题 文

陕西省西安市长安区第一中学2017-2018学年高二数学下学期期末考试试题 文

2017-2018学年度高二第二学期期末考试数学试题(文科)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( )A .-1B .0C .1D .-1或12.已知集合{lg(1)0}A x x =-≤,{13}B x x =-≤≤,则AB =( ) A . B .C .D .3.在△中,“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件4.设表示不超过的最大整数,对任意实数,下面式子正确的是( )A . = |x|B .≥C .>D .>5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B . C. D .6. 某程序框图如图所示,若,则该程序运行后,输出的的值为( )A. 33 B .31 C .29 D .277.命题:若,,则 ,命题:若,,则.在命题①且②或③非④非中,真命题是( ).A .①③B .①④C .②③D .②④8.设函数,且,则( )A . 0B .-1C .3D .-69.若两个正实数满足,且不等式 有解,则实数的取值范围是( )A. B. C. D .10.已知函数,若,则实数的取值范围是( )A. B.C. D.11.已知定义在上的函数对任意都满足,且当时,,则函数的零点个数为( )A.2 B.3 C.4 D.512.定义在R上的函数,满足,,若,且,则有( )A. B.C. D.不确定二、填空题(共4小题,每小题5分,共20分.)13.函数的定义域为,则函数的定义域是__14.数列的前项和,若,则_________.15.已知向量,.若,则.16.定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“等比函数”.现有定义在上的如下函数:①;②;③;④,则其中是“等比函数”的的序号为三、解答题(共6小题,共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)已知函数.(1)求函数的最小正周期和值域;(2)已知的内角所对的边分别为,若,且,求的面积18.(12分)如图,已知三棱锥中,,为中点,为中点,且为正三角形.(1)求证:平面平面;(2)若,求三棱锥的体积.19.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.20.(12分)已知椭圆的离心率为,定点,椭圆短轴的端点是,且.(1)求椭圆的方程;(2)设过点且斜率不为0的直线交椭圆于两点,试问轴上是否存在异于的定点,使平分?若存在,求出点的坐标;若不存在,说明理由.21.(12分)已知,函数,(1)求的最小值;(2)若在上为单调增函数,求实数的取值范围;(3)证明:()选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线,(为参数,且),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线.(1)求与交点的直角坐标;(2)若与相交于点,与相交于点,求最大值.23.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式:;(Ⅱ)若对任意的,都有,使得成立,求实数的取值范围.2017-2018学年度高二第二学期期末考试数学试题(文科)答案一、选择题:ADCDC,BCB CA,,BB二、填空题13. 14. 15. 2 16.(3)(4)三.解答17.(1)所以函数的最小正周期,值域为∵,由正弦定理得∴,∴.∵,∴∴,∴∴18.证明:(1)由已知得,是的中位线,∴,∵面,面∴面;(2)∵为正三角形,为的中点,∴,∴,又∵,,∴面,∵面,∴又∵,,∴面,∵面,∴平面平面,(3)由题意可知,三棱锥中,,为中点,为中点,且为正三角形.面,,,∴是三棱锥的高,,∴19、(本小题满分12分)解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2………………………..2分其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为………………..6分(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为…………………………………………..12分20.解:(1)由,得又,知是等腰直角三角形,从而,所以椭圆的方程是.(2)设,,直线的方程为由得,所以①,②若平分,则直线的倾斜角互补,所以,设,则有,将,代入上式,整理得,将①②代入得,由于上式对任意实数都成立,所以.综上,存在定点,使平分平分.21.(1)函数的定义域为,.当,,当,,∴为极小值点,极小值.(2)∵.∴在上恒成立,即在上恒成立.又,所以,所以,所求实数的取值范围为.(3)由(2),取,设,则,即,于是.∴.所以.22. (1)曲线的直角坐标方程,曲线的直角坐标方程为,联立两方程解得,或,所以与交点的直角坐标,.(2)曲线极坐标方程为,其中,因此点的极坐标为,点的极坐标为,所以,当时取得最大值,最大值为4.23.(本小题满分10分)解:(Ⅰ)由得得不等式的解为……………………5分(Ⅱ)因为任意,都有,使得成立,所以,又,,所以,解得或,所以实数的取值范围为或.……………………10分欢迎您的下载,资料仅供参考!。

陕西省西安市长安区第一中学2017-2018学年高二数学下学期期末考试试题 理

陕西省西安市长安区第一中学2017-2018学年高二数学下学期期末考试试题 理

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ( ) A .}12|{<≤-x x B .}22|{≤≤-x x C .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为( )①在复平面内,复数z 对应的点位于第二象限 ②复数z 的虚部是-2 ③复数z 是纯虚数 ④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则( )A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos2θ等于( ) A .-1 B .0 C. 12 D. 225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c,若2a =,B A 2=,则B cos 等于( ) A .33 B .43 C.53 D. 63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )俯视图A.18B.24C.30D.367. 若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )A.7k =B.6k ≤C.6k <D.6k > 8.若某几何体的三视图(单位:cm )如图所示,则该几何体的 体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件 10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x xe f x e >+(其中e 为自然对数的底数)的解集为( ) A.()0,+∞ B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()axx -的展开式中的常数项为 . 15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为 . 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. (本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ; (Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的FE C 1B 1A 1CBA成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦,倾斜角为45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由. 21. (本小题共12分)已知函数()1xf x e x =-- (Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩ (t 为参数).曲线C 2:2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分.13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n qa a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n ()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118. (本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C ,F E C 1B 1A 1CB∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则1132B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥.又AFEF F =,∴ 1B F ⊥平面AEF .(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),((0,,1),(0,,)2222F A B E -,1()222AE =--,1(,1)22AB =-. 由(Ⅰ)知,1B F ⊥平面AEF ,∴可取平面AEF的法向量1(0,2m FB ==. 设平面1B AE 的法向量为(,,)n x y z=,由110,0,0,222020,0x y z n AE z nAB z x z ⎧--+=⎪⎧=-=⎪⎪⇒⇒⎨⎨=-=⎪⎪⎩+=⎪⎩∴可取(3,1,n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|||||m nm n m n θ⨯+-+⨯=<>===. ∴所求锐二面角1B AE F --的余弦值为19. (本小题共12分)【解】:(1)由第1组CC E的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=, 频率分布直方图如右:(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分 第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴20. (本小题共12分)解:(Ⅰ)抛物线x y 42=的焦点为)0,1(F ,准线方程为1-=x ,∴ 122=-b a ①又椭圆截抛物线的准线1-=x,∴ 得上交点为)22,1(-,∴ 121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴ 该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=- ()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时, ()0f x '>,0x <时, ()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时, ()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭ ()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.x g x e x tx =---()'12.x g x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立,故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥ 即2(),f x tx ≥12t ∴≤时符合题意。

西安市长安区2017-2018学年高二下期末考试数学试题(理)有答案

西安市长安区2017-2018学年高二下期末考试数学试题(理)有答案

长安2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ()A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为()①在复平面内,复数z 对应的点位于第二象限②复数z 的虚部是-2 ③复数z 是纯虚数④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则()A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ) A .-1 B .0 C.12 D.225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c,若a =,B A 2=,则B cos 等于() A .33 B .43 C.53 D.63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.367.若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k的条件是( )俯视图A.7k =B.6k ≤C.6k <D.6k >8.若某几何体的三视图(单位:cm )如图所示,则该几何体的 体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是()A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为()A.()0,+∞B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为.15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为.16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F=分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ;(Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且截抛物线45的直线l 过点F . (Ⅰ)求该椭圆的方程;FE C 1B 1A 1CBA(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.21.(本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2: 2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分. 13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n q a a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n ()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118.(本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C ,∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则113222B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥. 又AFEF F =,∴1B F ⊥平面AEF .FE C 1B 1A 1CBA(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),((0,)2222F A B E -,1()2AE =-,1(AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,m FB ==. 设平面1B AE 的法向量为(,,)n x y z =,由110,0,0,222020,0x y z n AE z nAB z x z ⎧--+=⎪⎧=-=⎪⎪⇒⇒⎨⎨=-=⎪⎪⎩++=⎪⎩∴可取(3,1n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|6||||m nm nm n θ⨯-+⨯=<>===. ∴所求锐二面角1B AE F -- 19. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=,频率分布直方图如右:(2)因为第3、4、5组共有60名学生, 所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分CC第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分 所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴20. (本小题共12分)解:(Ⅰ)抛物线x y 42=的焦点为)0,1(F ,准线方程为1-=x ,∴122=-b a ①又椭圆截抛物线的准线1-=x∴得上交点为)22,1(-,∴121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵倾斜角为45的直线l 过点F ,∴直线l 的方程为)1(45tan -=x y ,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M ,又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=-()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时,()0f x '>,0x <时,()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时,()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln 333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e , 故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.x g x e x tx =---()'12.xg x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥即2(),f x tx ≥12t ∴≤时符合题意。

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ( )A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为( )①在复平面内,复数z 对应的点位于第二象限 ②复数z 的虚部是-2 ③复数z 是纯虚数 ④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则( )A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ) A .-1 B .0 C. 12 D. 225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c,若a =,B A 2=,则B cos 等于( ) A .33 B .43 C.53 D. 63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A.18B.24C.30D.367. 若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )俯视图A.7k =B.6k ≤C.6k <D.6k > 8.若某几何体的三视图(单位:cm )如图所示,则该几何体的 体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( )A.()0,+∞B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为 .15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为 .16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. (本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F=分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ;(Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且截抛物线45的直线l 过点F . (Ⅰ)求该椭圆的方程;FE C 1B 1A 1CBA(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.21. (本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2: 2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分. 13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n q a a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n ()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118. (本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C ,∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则1132B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥. 又AFEF F =,∴ 1B F ⊥平面AEF .FE C 1B 1A 1CBA(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),((0,)2222F A B E -,1()2AE =-,1(AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,m FB ==. 设平面1B AE 的法向量为(,,)n x y z =,由110,0,0,222020,0x y z n AE z nAB z x z ⎧--+=⎪⎧=-=⎪⎪⇒⇒⎨⎨=-=⎪⎪⎩++=⎪⎩∴可取(3,1n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|6||||m nmn m n θ⨯-+⨯=<>===. ∴所求锐二面角1B AE F -- 19. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=,频率分布直方图如右:(2)因为第3、4、5组共有60名学生, 所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分CC第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分 所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴20. (本小题共12分)解:(Ⅰ)抛物线x y 42=的焦点为)0,1(F ,准线方程为1-=x ,∴ 122=-b a ①又椭圆截抛物线的准线1-=x∴ 得上交点为)22,1(-,∴ 121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴ 该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y ,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M 与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=- ()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时, ()0f x '>,0x <时, ()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时, ()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭ ()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e , 故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.x g x e x tx =--- ()'12.xg x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥ 即2(),f x tx ≥12t ∴≤时符合题意。

【优选】最新陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

【优选】最新陕西省西安市长安区2017-2018学年高二下学期期末考试数学(理)试题有答案

长安一中2017-2018学年度高二第二学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 是实数集R ,集合}{22M x x x =<->或,{}2430N x x x =-+<,则图中阴影部分所表示的集合是 ()A .}12|{<≤-x xB .}22|{≤≤-x xC .}21|{≤<x xD .}2|{<x x2.下面是关于复数iiz ---=131的四个命题:其中的真命题为()①在复平面内,复数z 对应的点位于第二象限②复数z 的虚部是-2 ③复数z 是纯虚数④5=zA. ①②B. ①③C. ②④D. ③④3.设0.213121log 3,,23⎛⎫=== ⎪⎝⎭a b c ,则()A .B .C .D .4.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos2θ等于( ) A .-1 B .0 C.12 D.225.在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c,若2a =,B A 2=,则B cos 等于() A .33 B .43 C.53 D.63 6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.367.若下框图所给的程序运行结果为=35S ,那么判断框中应填入的关于k 的条件是( )A.7k =B.6k ≤C.6k <D.6k >8.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A.310cmB.320cmC.330cmD.340cm 9.下列说法中,正确的是()A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0,2>-∈x x R x ”的否定是:“任意0,2≤-∈x x R x ”C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充分不必要条件10.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点 ( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为()A.()0,+∞B.()(),03,-∞+∞ C.()(),00,-∞+∞ D.()3,+∞二、填空题:本题共4小题,每小题5分,共20分.13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是________14.已知0(sin cos )a t t dt π=+⎰,则61()ax x -的展开式中的常数项为. 15.函数)1,0(log 1)(≠>+=a a x x f a 的图像恒过定点A ,若点A 在直线02=-+ny mx 上,其中,0>mn 则nm 11+得最小值为. 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)设数列10,10,}{11+==+n n n n a a S n a 项和为的前 9,9991+++n S a n n (1)求证:{}1+n a 是等比数列; (2)若数列{}n b 满足()()()*+∈+⋅+=N n a a b n n n 1lg 1lg 11,求数列{}n b 的前n 项和n T ;18.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且1,,AB AA E F =分别是1,CC BC 的中点.(Ⅰ)求证:1B F ⊥平面AEF ; (Ⅱ)求锐二面角1B AE F --的余弦值.19.某高校在2017年的自主招生考试成绩中随机抽取n 名学生的笔试成绩(被抽取学生的成绩均不低于160分,且不高于185分),按成绩分组,得到的频率分布表如下左图所示. (1) 请先求出n 、a 、b 、c 的值,再在答题纸上补全频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试, 第4组中有ξ名学生被考官A 面试,求ξ的分布列和数学期望.20.(本小题共12分)已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且,倾斜角为45的直线l 过点F . (Ⅰ)求该椭圆的方程;(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,FE C 1B 1A 1CBA若存在,求出点M 的坐标,若不存在,说明理由.21.(本小题共12分)已知函数()1x f x e x =--(Ⅰ)求()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若存在041,ln 3x ⎡⎤∈-⎢⎥⎣⎦,满足10xa e x -++<成立,求a 的取值范围;(Ⅲ)当0x ≥时,2()f x tx ≥恒成立,求t 的取值范围.选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—4:极坐标系与参数方程.在直角坐标系xoy 中,曲线C 1的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).曲线C 2: 2240x y y +-=,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,若点P 的极坐标为(4π).(I)求曲线C 2的极坐标方程; (Ⅱ)若C 1与C 2相交于M 、N 两点,求11PM PN+的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知()()2f x x m m R =+∈.(I)当m =0时,求不等式()25f x x +-<的解集;(Ⅱ)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.2017-2018学年度高二第二学期期末考试数学试题(理科)答案一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.CCABB CDBBA BA二、填空题:本题共4小题,每小题5分,共20分.13.2⎤⎡⋃--⎦⎣, 14. 25- 15. 2 16.1,(0)e三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题共12分)解:(1)依题意,992=a ,故101112=++a a , 当n S a n n n 9921+=≥-时, ①又9991++=+n S a n n ②②-①整理得:1011n 1n =+++a a ,故{}1+n a 是等比数列,(2)由(1)知,且()n n n qa a 101111=+=+-,()n a n =+∴1lg ,()11lg 1+=++n a n ()())1(11lg 1lg 11+=+⋅+=∴+n n a a b n n n()11431321211+++⨯+⨯+⨯=∴n n T n 11141313121211+-++-+-+-=n n ()*∈+=N n n n118.(本小题满分12分)(Ⅰ)连结AF ,∵F 是等腰直角三角形ABC ∆斜边BC 的中点,∴AF BC ⊥.又 三棱柱111ABC A B C -为直三棱柱, ∴面ABC ⊥面11BB C C , ∴AF ⊥面11BB C C ,1AF B F ⊥. 设11AB AA ==,则1132B F EF B E ===. ∴22211B F EF B E +=,∴1B F EF ⊥.又AFEF F =,∴1B F ⊥平面AEF .FE C 1B 1A 1CBA(Ⅱ)以F 为坐标原点,,FA FB 分别为,x y 轴建立直角坐标系如图,设11AB AA ==,则11(0,0,0),(,0,0),(0,(0,)2222F A B E -,1()2AE =-,1(AB =-.由(Ⅰ)知,1B F ⊥平面AEF , ∴可取平面AEF的法向量1(0,m FB ==. 设平面1B AE 的法向量为(,,)n x y z =,10,0n AE n AB ⎧⎪⎧=⎪⎪⇒⎨⎨=⎪⎪⎩⎪⎩由∴可取(3,1,n =-.设锐二面角1B AE F --的大小为θ,则03(1)1cos |cos ,|||||m nm n m n θ⨯+-+⨯=<>===. ∴所求锐二面角1B AE F --的余弦值为619. (本小题共12分)【解】:(1)由第1组的数据可得100050.05==n ,第2组的频率b =350.0507.0=⨯,第2组的频数为a =35507.0100=⨯⨯人,第3组的频率为c =300.300100=, 频率分布直方图如右:(2)因为第3、4、5组共有60名学生, 所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人,… 6分第4组:206260⨯=人, …7分 第5组:106160⨯=人, …8分CC所以第3、4、5组分别抽取3人、2人、1人. (3)由题意知变量ξ的可能取值是0,1,2 该变量符合超几何分布,∴∴分布列是∴抛物线x y 42=的焦点为)0,1(F ,20. (本小题共12分)解:(Ⅰ)准线方程为1-=x ,∴122=-b a ①又椭圆截抛物线的准线1-=x,∴得上交点为)22,1(-,∴121122=+ba ② 由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a∴该椭圆的方程为该椭圆的方程为22121x y += (Ⅱ)∵倾斜角为45的直线l 过点F ,∴直线l 的方程为)1(45tan -=x y,即1-=x y ,由(Ⅰ)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(2011100000x y x y ,解得⎩⎨⎧-==2100y x ,即)2,1(-M , 又)2,1(-M 满足x y 42=,故点M 在抛物线上.所以抛物线x y 42=上存在一点)2,1(-M ,使得M与1F 关于直线l 对称.21. (本小题共12分)解:(Ⅰ) ()1xf x e '=-()12f e =-()f x ∴在()()1,1f 处的切线方程为: ()()211y e e x -+=--即()11y e x =--(Ⅱ) 1x a e x <-- 即()a f x < 令()10xf x e '=-=0x =0x >时,()0f x '>,0x <时,()0f x '<()f x ∴在(),0-∞上减,在()0,+∞上增又041,ln 3x ⎡⎤∈-⎢⎥⎣⎦时,()f x ∴的最大值在区间端点处取到.()11111f e e --=-+=444ln 1ln333f ⎛⎫=-- ⎪⎝⎭()41441141ln 1ln ln 033333f f e e ⎛⎫--=-++=-+> ⎪⎝⎭()41ln 3f f ⎛⎫∴-> ⎪⎝⎭()f x ∴在41,ln 3⎡⎤-⎢⎥⎣⎦上最大值为1e ,故a 的取值范围是:a <1e .(Ⅲ)由已知得0,x ≥时210xe x tx ---≥恒成立,设()21.xg x e x tx =---()'12.xg x e tx ∴=--由(Ⅱ)知1xe x ≥+,当且仅当0x =时等号成立, 故()()'212,g x x tx t x ≥-=-从而当120,t -≥即12t ≤时,()()'00g x x ≥≥,()g x ∴为增函数,又()00,g = 于是当0x ≥时,()0,g x ≥即2(),f x tx ≥12t ∴≤时符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度高二第二学期期末考试
数学试题(文科)
一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( )
A .-1
B .0
C .1
D .-1或1
2.已知集合{lg(1)0}A x x =-≤,{13}B x x =-≤≤,则A B =( )
A .
B .
C .
D
3. )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充分必要条件
D. 既不充分又不必要条件
4.面式子正确的是( )
A .
C
5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为
A.2 B
6.
为()
A. 33 B.31 C.29 D.27
7

且②或③非
).
A.①③B.①④C.②③D.②④
8.)
A. 0 B.-1 C.3 D.-6
9.有解,则实数

10)
11.
A.2 B.3 C.4 D.5
12.定义在R
( )
不确定
二、填空题(共4小题,每小题5分,共20分.)
13.__
14.
15.
16.
.现
的序号为三、解答题(共6小题,共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)
17.(12
(1
(2
18.(12
.
(1
(2.
19.(本小题满分12分)
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
20.(12
(1
(20
.
21.(12
(1
(2
围;
(3
选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.
22. (本小题满分10分)选修4-4:坐标系与参数方程

(1
(2
. 23.(本小题满分10分)选修4-5:不等式选讲
(Ⅰ)
(Ⅱ)
.
2017-2018学年度高二第二学期期末考试
数学试题(文科)答案
一、选择题:
ADCDC,BCB CA,,BB
二、填空题
(3)(4)三.解答
17.(1
18.证明:
(1)由已知得,
(2
(3
.
19、(本小题满分12分)
解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红
1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2………………………..2分
其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为
..6分
(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,
多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜
色不同且标号之和小于4的有8种情况,所以概率为
.. 12分
20.解:
(1
(2。

相关文档
最新文档