渗流的基本定律(达西定律)

合集下载

2 土的渗透性与达西定律

2 土的渗透性与达西定律

形成临空面,在动水力的作用下可能产生流砂现象。这时,
坑底土边挖边随水涌出,无法清除,站在坑底的人和放置的 施工设备也会陷下去。由于坑底土随水涌入基坑,使坑底土 的结构破坏,强度降低,将来会使建筑物产生附加沉降。 一般情况下,施工前应做好周密地勘测工作,当基坑底 面的土层属于容易引起流砂现象的土质时,应避免采用排水 沟明排地下水,而应采用人工降低地下水位(井点降水)的
(6)土中气体
当土中存在封闭气泡时,会阻塞水的渗透,从而降低了 土的渗透性。
二、动水力及渗流破坏
1.动水力
水在土中渗流时,受到土颗粒的阻力T的作用,这个力的
作用方向与水流方向相反。根据作用力与反作用力相等的原 理,水流也必须有一个相等的力作用在土的颗粒上,我们把 水在土中渗流时,对单位体积土骨架所产生的作用力称为动 水力GD(kN/m3)。
达西定律为:
V=k(i-ib)
式中: ib---起始水头梯度(起始水力坡降)。
砾类土和巨粒土中,只有在小的水力坡降下,渗透速
度与水力坡降才呈线性关系,而在较大的水力坡降下,水 在土中的流动进入紊流状态,呈非线性关系,此时达西定 律不能适用,如上图(c)所示,需建立紊流情况下的公 式关系。
3.渗透系数的确定方法:
GD=iγw

*总结:动水力是一个渗透力,是地下水在渗流过程中对
单位体积土骨架所产生的作用力,其大小与水力坡降成正 比,其方向与渗流方向一致。
2.流砂 当水流向下流动时,动水力方向与重力方向一致,使 土颗粒压得更加紧密,对工程有利。反之,当水流向上渗 流时,动水力的方向与重力方向相反。当动水力GD的数值
方法进行施工。
井点降水
3.管涌:在渗流作用下,无粘性土体中的细小颗粒,通

渗流的基本定律(达西定律)

渗流的基本定律(达西定律)
建立实验装置
根据实验需求,设计并建立渗流装置,包括渗流管、压力源、流量 计等。
设定实验条件
设定恒定的水头压力、流量等实验条件,确保实验数据的准确性和 可靠性。
实验结果分析
01
02
03
数据记录
详细记录实验过程中的水 头压力、流量等数据,并 确保数据的准确性和完整 性。
数据处理
对实验数据进行整理、分 析和处理,绘制水头压力 与流量之间的关系曲线。
达西定律的发现可以追溯到19世纪初,由法国工程师达西通 过实验观察到流体在砂质土壤中的流动规律,并提出了该定 律。
达西定律的概述
达西定律描述了流体在多孔介质中的流动速度与压力梯度 之间的关系。具体来说,当流体在多孔介质中流动时,流 速与作用在流体上的压力梯度成正比,同时与介质的渗透 系数有关。
达西定律的数学表达式为:v = -K * grad(p),其中v是流速, K是介质的渗透系数,grad(p)是压力梯度。该公式表明流速 与压力梯度成正比,与渗透系数成反比。
达西定律与实际渗流过程的联系
01
达西定律是描述均匀、定常、不可压缩流体在多孔介质中稳态 流动的基本定律。
02
它指出,在一定条件下,流体的流量与压力梯度成正比,与介
质孔隙的阻力成反比。
达西定律适用于小孔径、低流速、高孔隙度、均质的多孔介质。
03
达西定律的局限性
1
达西定律不适用于非均匀、非定常、非线性流动, 以及大孔径、高流速、低孔隙度、非均质的多孔 介质。
渗流的基本定律(达西定律)
目录
• 引言 • 达西定律的数学表达 • 达西定律的物理意义 • 达西定律的实验验证 • 达西定律的应用实例 • 达西定律的发展与展望
01 引言

渗流力学第四章

渗流力学第四章

第四章油气渗流力学基础§4-1 油气层渗流的基本概念一、油气渗流的基本知识流体在孔隙中的流动叫渗流。

由于油层中渗流的流道非常小而又特别复杂,因而渗流的阻力很大,所以渗流的速度是十分缓慢的。

(一)单相渗流在油层的孔隙中,如果渗流仅能满足单一流体的要求,即只有石油或天然气,其渗流状况可称为单相渗流。

由于储油岩层绝大多数是在水体中沉积的,因此在岩石的孔隙中,首先是充满了水,油气是以后运移进来的。

这些后期进来的油气,只有把原来充填在岩石孔隙中的水排挤出去,气才有存储之处。

但是岩石孔隙中的水是不能完全排挤出去的,总有一部分残留在孔隙中,叫做束缚水。

束缚水在油层中的含量,大约占油层孔隙体积的20%左右,它们总是附着在岩石颗粒的表面,不能流动。

因此,所谓石油或天然气在油层孔隙中的单相流动,实际上是在被束缚水占据而变小了的岩石孔隙中渗流。

(二)油、气两相渗流当油层压力高于饱和压力时,天然气完全溶解在油中,此时油层内只有油的单相渗流(束缚水是不能流动的)。

当油田没有外来能量的补充时,在开发过程中,油层本身能量不断被消耗,压力不断下降,以致油层平均压力低于饱和压力,油层孔隙中就会有油、气两种流体的流动,称为油、气两相渗流。

为了进一步了解油、气两相渗流的一些规律,下面介绍几个有关的概念:1.贾敏效应假若在岩石孔隙中渗流的液体里只含有一个小气泡,由于表面张力的作用,这个气泡要终保持它的圆球形状。

当这个气泡的体积小于孔隙的喉道很多时,气泡通过这些喉道是不费力的。

而当其截面积接近于孔隙喉道截面积时,在通过这些不是圆形的喉道截面,或喉道面积稍小于气泡截面积时,就必然要改变气泡的形状。

改变气泡的形状需要一定的力,这力是阻碍油流的阻力。

改变一个气泡不需要多大的力,而大量的气泡就会变成阻碍油流的大阻力,它消耗油藏驱动的能量,促使油层压力进一步降低。

气泡对油流造成阻碍作用的现象叫做贾敏效应。

2.吸留气泡实验证明,当油气层内气体的饱和度低于20%时,气体的相渗透率等于零,即油层孔里没有气体的渗流。

渗流力学达西定律公式

渗流力学达西定律公式

渗流力学中的达西定律公式是描述液体在多孔介质中流动的重要公式。

公式如下:
q=-K*A*(ΔP/L)
其中,q表示流速,K表示多孔介质的渗透率,A表示多孔介质的横截面积,ΔP表示压力差,L表示渗流路径的长度。

这个公式表明,流速与压力差成正比,与渗流路径的长度和多孔介质的渗透率成反比。

它基于一系列物理假设,包括液体是不可压缩的,多孔介质是各向同性的,流动是稳态的,以及忽略重力和惯性力的影响。

值得注意的是,达西定律公式只适用于层流状态,不适用于湍流状态。

在层流条件下,液体在多孔介质中流动时,流速与压力差成正比,并且流量与横截面积和压力差的乘积成正比。

在湍流条件下,流速和压力差之间的关系更为复杂,需要考虑更多的因素。

此外,渗透率K是描述多孔介质性质的重要参数。

它反映了多孔介质对液体流动的阻力,并与多孔介质的孔隙率、孔隙大小和分布等因素有关。

在多孔介质中,渗透率越大,表示阻力越小,流速越大。

在实际应用中,达西定律公式被广泛应用于石油、水文地质等领域。

通过测量多孔介质的渗透率、横截面积、压力差等参数,可以计算出流速和流量等参数,从而更好地了解液体在多孔介质中的流动规律。

这有助于优化资源开发、提高能源利用效率、保护生态环境等方面的工作。

渗流的基本定律(达西定律)

渗流的基本定律(达西定律)

影响渗透系数大小的因素
f(孔隙大小 多少、液体性质) 孔隙大小、 K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定, 由流体的物理性质决定,与γ成正比,与μ成 成正比, 反比.流体的物理性质与所处的温度、压力有关。 反比.流体的物理性质与所处的温度、压力有关。
vx = Kxx Jx + Kxy Jy vy = Kyx Jx + Kyy Jy
v = Kε Jε ε ε v = K η Jη η η
si θ n co θ s
o c sθ 设R为旋转矩阵 R = −si θ n
设R为旋转矩阵
vx v ε =[R ] v η vy Jx Jε =[R ] J η Jy
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). 我们把孔隙岩层称为多孔介质 •多孔介质特性 多孔介质特性: 多孔介质特性 8彼此连通的网络,几何形态及连通情况异常复杂, 彼此连通的网络,几何形态及连通情况异常复杂, 彼此连通的网络 难以用精确的方法来描述。 难以用精确的方法来描述。 8由固体骨架和孔隙组成,孔隙通道是不连续的。 由固体骨架和孔隙组成,孔隙通道是不连续的。 由固体骨架和孔隙组成
z
a. 一维流:仅沿一个方向存在流速 一维流: b. 二维流:沿两个方向存在分流速 二维流: 分:平面二维流、剖面二维流) 平面二维流、剖面二维流) c. 三维流: 三维流: 三个方向均存在分流速
图 1-2-8a
x y
一维流
岩层按渗透性分类
6. 按岩层渗透性随空间和方向变化特点,分 均质各向同性、均质各向异性、 均质各向同性、均质各向异性、 非均质各向同性、 非均质各向同性、非均质各向异性 几个概念: 各向同性、各向异性、均质、非均质

第一篇 第五章 渗流力学基础

第一篇 第五章 渗流力学基础

188 第五章 渗流力学基础第一节 油气层渗流的达西定律油气层渗流的基本规律是达西定律。

1856年法国水利工程师达西在研究城市供水问题时,欲测得获得一定的流量需要消耗的能量,于是达西运用填满砂的管子做实验,得到了水流速与管截面积、入口与出口压头之间的关系式,后人为纪念他,将这一定律称达西定律。

一、达西实验及结果达西实验装置如图1—ll 所示,液体经过进水管a 进入模型主体。

再透过砂层,经节流阀门流入量杯。

节流阀可以控制流速,量杯D 测取流量Q 。

测压管可以分别测出过水断面1-1,2-2上的压力p 1、p 2。

稳压管b 可以使模型内液面稳定在b 管的位置上。

显然,节流阀开度不同时,将得到不同的流量和不同的测压管高度。

实验结果发现:流量大小与管于截面积A ;入口及出口压力差p 2-p 1成正比,与填满砂粒的管子长度△L 成反比,将上述关系写成等式,需加上比例系数K 。

即:Lp p KAQ ∆-=12 (1—6) 式中 K ——渗透率,它表征多孔介质和液体的渗透能力。

二、达西定律的导出(一)由管路水力学导出达西定律由普通水力学可知,任意过水断面上的总能量表示成下列形式:gv pZ H 22++=γ (1-7)式中 H-——总水头;Z ——位置水头;γp---压力水头; gv 22---流速水头。

189由于渗流速度v 很小,可以忽略gv 22项,于是总水头可表示为:γpH =+Z (1-8)断面1—1,2—2上的水头差可表为:⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=-=∆H γγ221121p Z p Z H H (1-9)达西通过实验发现:通过砂层的流量Q 与水头损失△H 成正比,与渗流面积A 成正比,与渗流段长度△L 成反比。

即:LHAQ ∆∆∞= (1-10)欲将(1—10)写成等式需加一比例常数,于是我们得到:LHAK Q i ∆∆= (1-11) 式中 K i -——比例常数,称为渗流系数,它与流体及砂层的性质有关。

流体力学讲义 第十二章 渗流

流体力学讲义 第十二章  渗流

流体力学讲义第十二章渗流第十二章渗流概述一、概念1.渗流(Seepage Flow):是指流体在孔隙介质中的流动。

2.地下水流动:在土建工程中,渗流主要是指水在地表以下的土壤和岩石层中的流动,简称为地下水流动。

判断:地下水的流动与明渠流都是具有自由液面的流动。

错二、渗流理论的应用1.生产建设部门;如水利、化工、地质、采掘等部门。

2.土建方面的应用给水方面排灌工程方面水工建筑物建筑施工方面三、渗流问题确定渗流量:如确定通过闸坝地基或井等的渗流流量。

确定渗流浸润线的位置:如确定土坝坝体内的浸润线以及从井中抽水所形成的地下水面线的位置。

确定渗流压力:如确定渗流作用于闸坝底面上的压力。

估计渗流对土壤的破坏作用:计算渗流流速,估计发生渗流破坏的可能性,以便采取防止渗流破坏的措施。

四、土壤的水力特性不均匀系数:(12-1)式中:d60,d10——土壤颗粒经过筛分时分别有60%,10%重的颗粒能通过筛孔直径。

孔隙率n:是指单位总体积中孔隙所占的体积,。

沙质土:n=0.35~0.45;天然粘土、淤泥:n=0.4-0.6。

1.透水性透水性(hydraulic permeability):是指土或岩石允许水透过本身的性能。

通常用渗透系数k来衡量,k值越大,表示透水性能越强。

均质土壤(homogeneous soil):是指渗流中在同一方向上各处透水性能都一样的土壤。

非均质土壤(heterogeneous soil):是指渗流中在同一方向上各处透水性能不一样的土壤。

1各向同性土壤(isotropic soil):是指各个方向透水性都一样的土壤。

各向异性土壤(anisotropic soil):是指各个方向透水性不一样的土壤。

2.容水度容水度(storativity):是指土壤能容纳的最大水体积与土壤总体积之比,数值与土壤孔隙率相等。

3.持水度持水度(retention capacity):是指在重力作用下仍能保持的水体积与土的总体积之比。

渗流的达西定律

渗流的达西定律

渗流的达西定律
渗流的达西定律是描述液体在多孔介质中流动的规律,由法国水力工程师亨利·达西通过实验得出。

该定律指出,在渗流运动中,流速V与水力坡度J成正比,即V=KJ,其中K 为渗透系数,反映了土壤的透水性能。

达西定律适用于一维稳定流动,即流速与渗流方向保持不变的情况。

在实际应用中,对于非稳定流动的情况,如流速随时间变化的情况,或者对于非线性流动的情况,如流速与压力梯度之间的关系不是线性的情况,达西定律可能不适用。

除了达西定律,渗流研究还包括其他一些重要原理和规律,如渗流的连续性方程、能量方程、动量方程等。

这些方程描述了渗流运动的基本规律和特性,是解决实际问题的基础。

在实际应用中,达西定律被广泛应用于水文学、地下水工程、环境保护等领域。

例如,在地下水工程中,可以根据达西定律计算地下水的流量和流向,进而确定地下水的利用和防治措施。

在环境保护中,可以根据达西定律预测污染物在土壤中的扩散和迁移规律,从而制定相应的污染控制和治理方案。

总之,渗流的达西定律是描述液体在多孔介质中流动的规律,是渗流研究中的基本原理之一。

在实际应用中,需要根据具体问题的特性和要求,选择合适的理论和方法来解决实际问题。

同时,随着科学技术的发展,渗流研究也不断涌现出新的理论和方法,为解决复杂问题提供了更多选择和思路。

达西定律流速-概述说明以及解释

达西定律流速-概述说明以及解释

达西定律流速-概述说明以及解释1.引言1.1 概述概述达西定律(Darcy's Law)是描述渗流运动的基本规律之一,是在地下水领域中被广泛应用的理论模型。

它是由法国工程师亨利·达西(Henry Darcy)在19世纪中期提出的,用于解析和预测地下水在多孔介质中的流动行为。

达西定律基于达西流动实验的观察结果,它指出了渗流速度与渗透系数、梯度和孔隙度之间的关系。

在达西定律中,渗透系数反映了岩石或土壤中水分传导的能力,梯度表示了水力头(水势)随空间变化的速率,而孔隙度则是指多孔介质中包含的空隙的比例。

达西定律的公式表达为:流速=渗透系数×梯度。

根据达西定律,渗流速度正比于渗透系数和水力头梯度之间的乘积。

这意味着当渗透系数增加或者水力头梯度增大时,渗流速度也会增加。

达西定律的应用领域非常广泛。

在地下水领域,它被用于研究地下水的流动和传输规律,预测地下水的补给和排泄量,评估地下水资源的可持续利用性。

而在土力学和地质工程中,达西定律则被用于分析土壤和岩石的渗流行为,帮助设计和建造地下工程结构,例如隧道、堤坝和地下储层。

然而,达西定律也存在一些局限性。

它基于一些理想假设,例如认为渗透系数是恒定的,不考虑渗透介质的非均质性和非稳定性。

因此,在实际应用中,需要结合实际情况和其他模型进行定量分析和预测。

总之,达西定律作为描述渗流规律的基础理论,对于地下水和地下工程领域的研究和应用具有重要意义。

通过深入研究和进一步探索,可以推动达西定律在实践中的应用,并促进地下水资源的合理管理和地下工程的安全可靠建设。

1.2文章结构1.2 文章结构本文将按照以下结构进行展开讨论达西定律的流速问题:第一部分是引言,将以概述的方式介绍达西定律流速的背景和相关概念。

我们将明确文章的目标和意义,为读者提供对整篇文章的整体了解。

第二部分是正文,将分为三个小节来探讨达西定律的定义和原理、应用领域以及局限性。

在2.1小节中,我们将详细介绍达西定律的定义和原理,解释其中的数学表达式和物理概念,并说明其在理解流体流动中的重要性。

第十章 渗流

第十章 渗流

§10~2 渗流模型,渗流流速
三 渗流流速
可以假定渗流是由许多微小流束构成,则: dQ udA
对渗流总流来讲: Q dQ udA VA
A
A
式中:A 包括土壤空隙所占面积 AP 和颗粒骨架所占的面积
AS 的设想的过水断面积。
V Q A
称为渗流流速。(假想的流速)
我们假定:“渗流模型”的流量与实际渗流的流量相同。
§10-4 地下水的渐变渗流
§10-4.1 渐变渗流的基本公式——杜比(Dupit) 公式
如图所示为非均匀渐变渗流, 取相距为ds的过水断面1-1和 2-2,则1-1、2-2断面之间任一 流线上的水头损失相同
H1 H2 dH 过水断面上各点的水力坡度相等
J dH ds
根据达西定律: V u kJ k dH ds
R以外的地下水不受影响,即 r R z H
代入式 z2 h2 0.732Q lg r
k
r0

Q 1.366 k H 2 h2 R
lg
r0
以抽水降深S代替井水深h, s H h 上 式 整 理 得 :
Q
2.732
k Hs lg R
1
s 2H
r0
§10-4.1 普通完整井

s 2H
§10~2 渗流模型,渗流流速
三、渗流分类
恒定渗流:渗流区域内任意点的运动要素不随时间而改变。 非恒定渗流:渗流区域内有一个运动要素随时间改变。 有压渗流:透水层包含在两隔水层中间时(无自由液面)。 无压渗流:具有自由液面的渗流。
§10~2 渗流模型,渗流流速
一、土壤对渗流的影响 土壤的颗粒不同,具有不同的渗透性质。了解土壤的成
b

达西定律渗流量

达西定律渗流量

达西定律渗流量
达西定律是流体力学中的一个基本定律,用于描述流体在管道中的渗流速度。

根据达西定律,管道中的渗流量与管道截面的面积、流体的密度、流速和管道的摩擦阻力有关。

达西定律的数学表达式为:
Q = A * v
其中,
Q代表渗流量,单位为立方米每秒(m³/s);
A代表管道截面的面积,单位为平方米(m²);
v代表流速,单位为米每秒(m/s)。

渗流量的大小取决于管道截面的面积和流速的乘积。

当流速较大或管道截面较大时,渗流量也相应增加。

此外,流体的密度和管道的摩擦阻力也会对渗流量产生影响,但在达西定律中被默认为常数。

需要注意的是,达西定律适用于属于定常流的情况,即流体的流速和流量在时间上保持不变。

在实际应用中,还需要考虑其他因素,例如流体的黏性、非定常流等,以获得更准确的渗流量计算结果。

达西定律

达西定律

地下水在土体孔隙中渗透时,由于渗透阻力的作用,沿程必然伴随着能量的损失。

为了揭示水在土体中的渗透规律,法国工程师达西(H.darcy)经过大量的试验研究,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。

达西定律是由砂质土体实验得到的,后来推广应用于其他土体如粘土和具有细裂隙的岩石等。

进一步的研究表明,在某些条件下,渗透并不一定符合达西定律,因此在实际工作中我们还要注意达西定律的适用范围。

大量试验表明,当渗透速度较小时,渗透的沿程水头损失与流速的一次方成正比。

在一般情况下,砂土、粘土中的渗透速度很小,其渗流可以看作是一种水流流线互相平行的流动——层流,渗流运动规律符合达西定律,渗透速度v与水力梯度i的关系可在v-i坐标系中表示成一条直线,如图2(a)所示。

粗颗粒土(如砾、卵石等)的试验结果如图2(b)所示,由于其孔隙很大,当水力梯度较小时,流速不大,渗流可认为是层流,v-i关系成线性变化,达西定律仍然适用。

当水力梯度较大时,流速增大,渗流将过渡为不规则的相互混杂的流动形式——紊流,这时v-i关系呈非线性变化,达西定律不再适用。

图2(a)细粒土的v-i关系
图2(b)粗粒土的v-i关系
①砂土、一般粘土②颗粒极细的粘土
少数粘土(如颗粒极细的高压缩性土,可自由膨胀的粘性土等)的渗透试验表明,它们的渗透存在一个起始水力梯度ib,这种土只有在达到起始水力梯度后才能发生渗透。

这类土在发生渗透后,其渗透速度仍可近似的用直线表示,即v=k(i-ib),如图2(a)中曲线②所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗流场(flow field)由固体骨架和岩石空隙中的水两部分 组成。渗流只发生在岩石空隙中。
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
§1-2 渗流的基本定律—达西定律
1856 年,法国水力学家达西(H. Darcy)通过大量的实验,得 到线性渗透定律。根据实验结果,得到下列关系式:
式中:Q——渗透流量(出口处流量,即为 通过砂柱各断面的流量) ;
ω——过水断面(在实验中相当于砂柱 横断面积) ;
h——水头损失( h =H1−H 2 ,即上下 游过水断面的水头差) ;
一、典型体元
(Representative elementary volume)
在水力学中引进质点的概念,把水看成连续介质, 则可用连续函数描述运动要素。 为了把渗流场概化为多孔介质连续体,用连续函数 描述,引进典型体元的概念。
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连
L——渗透途径(上下游过水断面的距 离) ;
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
水力梯(坡)度
水力梯度I 为沿渗透途径水头损失与相应渗透途径长度的比值。 水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水 质点之间的摩擦阻力 (这种摩擦阻力随地下水流速增加而增 大) ,从而消耗机械能,造成水头损失。因此,水力梯度可 以理解为水流通过单位长度渗透途径为克服摩擦阻力所耗失的 机械能。从另一个角度,也可以将水力梯度理解为驱动力,即 克服摩擦阻力使水以一定速度流动的力量。既然机械能消耗于 渗透途径上,因此求算水力梯度I 时,水头差必须与相应的渗 透途径相对应。
是否适用:非均匀介质,二维或三维流动, 非稳定流,层流条件?
三、变水头达西实验 非稳定流达西实验(实验一): 水自上部加入,用溢水管保持稳定水位,下部用管口出流,可 通过它测定渗流量,用两根测压管来测量水头值。 达西定理:
实验结果: 在非稳定流条件下,地下水运动仍满足 线性渗流定律
达西定律适用条件 1.临界雷诺数Re(J. Bear):
续体,这样多孔介质就处处有孔隙度了。 REV究竟有多大? REV相对于单个孔隙是相当大的,但相
对于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均 值称为地下水在P点的实际流速。
层流、紊流与过渡区流态
3. 按地下水有无自由表面,分为: 承压流、无压流、承压—无压流
4. 按岩层透水性以及对地下水所起作用,分 隔水层、含水层、透水层(弱透水层)
5. 按渗流速度在空间上变化的特点,分
一维流、二维流、三维流(见下页)
a. 一维流:仅沿一个方向存在流速 b. 二维流:沿两个方向存在分流速 分:平面二维流、剖面二维流) c. 三维流:
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
达西定律的应用条件 达西定律的上下限?
非线性渗透定律 1.1901年福希海默提出Re>10时:
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式 微分形式:
渗透系数K
从达西定律V = KI可以看出。水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等 于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。 渗透流速就愈大;渗透流速为一定值时,渗透系数愈大, 水力梯度愈小。由此可见,渗透系数可定量说明岩石的渗 透性能。渗透系数愈大,岩石的透水能力愈强。
第一章 地下水运动基本概念
重要知识点: 渗流、典型体元(REV) 地下水质点实际流速、空隙平均流速,达西流速及其关系 达西定律基本式,微分式,推广式及应用条件 渗透系数及其影响因素 渗流分类
均质、非均质,各向同性、各向异性区别下水在岩石空隙中的运动称为渗流(seepage flow/ groundwater flow)。发生渗流的区域称为渗流场。
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
渗流特点
– 通道是曲折的,质点运动轨迹弯曲; – 流速是缓慢的,多数为层流; – 水流仅在空隙中运动,在整个多孔介质中不连续; – 通常是非稳定的; – 通常为缓变流。
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
岩层按渗透性分类
同一点各方向上渗透性相同的介质称为各向同性 介质(isotropy medium); 同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; 各向同性、各向异性: 指同一点不同方向的K是否 相同。
相关文档
最新文档