EPA METHOD 447叶绿素测定

合集下载

叶绿素荧光测定方法

叶绿素荧光测定方法

叶绿素荧光测定方法叶绿素荧光啊,就像是植物发出的小信号,我们可以通过一些办法来测定它呢。

一种常见的方法就是调制叶绿素荧光仪测定法。

这就像是给植物做一个小小的体检仪器。

把仪器的探头靠近植物的叶片,这个探头可神奇啦,它能发射出特定的光,然后接收植物叶片反射回来的荧光信号。

就像你拿手电筒照一个东西,然后看它反射回来的光一样有趣。

这种方法能很精确地测量到叶绿素荧光的各种参数,像是最大荧光产量、初始荧光产量之类的。

通过这些参数,我们就能知道植物的光合生理状态好不好啦。

比如说,如果最大荧光产量比较低,可能就意味着植物有点“小毛病”,光合作用不太顺畅呢。

还有一种方法是利用便携式叶绿素荧光仪。

这个就更方便啦,就像一个小玩具一样可以拿着到处跑。

你可以带着它到田野里,找到你想研究的植物,轻轻把探头按在叶片上,它就能快速地给出叶绿素荧光的相关数据。

这种便携式的仪器对于在户外做调查研究的小伙伴特别友好,不用拖着个大设备到处跑。

另外呢,我们在测定叶绿素荧光的时候,也得注意一些小细节哦。

比如说测量的时间,不同的时间植物的生理状态可能会有差异,就像人在早上和晚上的状态不太一样。

一般来说,选择植物生长比较稳定的时期去测量会更准确。

还有叶片的选择也很重要,要选择健康的、完整的叶片,要是选了一片被虫子咬得破破烂烂的叶子,那测出来的数据肯定就不准啦,就好像你给一个生病的人做身体检查,结果肯定不能代表健康人的状态呀。

再就是环境因素也会影响测量结果呢。

如果周围的温度太高或者太低,光照太强或者太弱,都会对叶绿素荧光产生影响。

所以在测量的时候,要尽量让环境保持相对稳定。

这就好比你在称东西的时候,要是秤老是晃来晃去的,肯定称不准呀。

叶绿素荧光的测定就是这么个有趣又需要细心对待的事儿呢。

两种方法测定地表水中叶绿素a的比较

两种方法测定地表水中叶绿素a的比较

两种方法测定地表水中叶绿素a的比较康琦【摘要】比较了分光光度法和高效液相色谱(HPLC)法测定地表水中叶绿素a的结果.研究表明:两种方法的精密度无显著差异;叶绿素a标准样品测定结果也无显著差异;在测定地表水样品时,分光光度法测定结果高于HPLC法,差异主要由664 nm波长下有较强吸收的物质造成.分光光度法测定结果偏高但操作简单,HPLC法测定结果精准但操作复杂,分光光度法在水质监测工作中更加具有优势.%The determination results of chlorophyll a in surface water were compared between spectrophotometry and high performance liquid chromatography ( HPLC ) . The study showed that there was no significant difference in the precision of the two methods, as well as the chlorophyll a standard determination results. When it came to surface water samples, the results of spectrophotometry were higher than those of HPLC. The difference was mainly made by substances with strong absorption at 664 nm. Spectrophotometry was not accurate but easy to operate, HPLC was accurate but complicated, spectrophotometry had more advantage in monitoring water quality.【期刊名称】《广州化工》【年(卷),期】2018(046)011【总页数】3页(P71-73)【关键词】地表水叶绿素a;分光光度法;HPLC法【作者】康琦【作者单位】青浦区环境监测站,上海 201799【正文语种】中文【中图分类】X832叶绿素a存在于所有浮游植物中,且在一定程度上可以表征浮游植物的生物量[1]。

叶绿素的测定

叶绿素的测定

叶绿素的测定(分光光度计法)
1.样品的选取
在测定叶片光和作用的枝条上,随机选取3~5片叶子,用水洗净并用滤纸吸干,取其中脉两侧的叶肉组织,取其鲜重0.1g,剪碎放于试管中。

2.叶绿素的提取
在试管中加入10毫升二甲基甲酰氨,加塞,放于阴暗处提取,待样品为白色透明时即表明叶绿素提取完毕。

3.测定
把提取的上清液注入比色杯中,以二甲基甲酰氨为对照,用72G型分光光度计测定在645nm和663nm时的光密度。

4.计算
(1)叶绿素浓度的计算:以Amon公式计算
参考文献:丁圣彦编著的《常绿阔叶林演替系列比较生态学》河南大学出版社.1999年
熊庆娥编著的《植物生理学实验教程》四川科学技术出版社2003年
呼吸速率的测定
卞勇主编的《植物与植物生理》中国农业大学出版社2007。

叶绿素含量的测定及计算结果

叶绿素含量的测定及计算结果

叶绿素含量的测定及计算结果好啦,今天咱们聊聊叶绿素的测定,嘿嘿,听起来是不是有点高大上?其实没那么复杂。

叶绿素,这玩意儿可真是植物的“魔法药水”。

你看那些绿油油的树叶、嫩嫩的草地,都是它的功劳。

它帮助植物进行光合作用,把阳光变成美味的食物,简直就是大自然的调味师。

咱们今天就来探讨一下,怎么测定这些神奇的叶绿素含量,简单又有趣,保证让你开眼界。

咱们得知道,叶绿素主要分为两种,分别是叶绿素a和叶绿素b。

这俩小家伙虽然都是绿色的,但它们的“个性”可是大相径庭。

叶绿素a比较“高大上”,在光合作用中扮演着关键角色;而叶绿素b则像个得力助手,帮助叶绿素a吸收更多的阳光。

你想啊,俩搭档一起工作,才让植物们在阳光下茁壮成长。

就像咱们生活中,团队合作可真是关键。

没有默契的配合,谁都别想干成事儿。

咱们要测定叶绿素含量,通常会用一种叫“溶剂提取法”的方法。

这种方法简单粗暴,但效果杠杠的。

咱们需要把新鲜的叶片剪下来,然后把它们放进一小杯酒精里。

嘿,这可是个关键步骤哦!把叶子放进去之后,咱们就得耐心等待,酒精会把叶绿素慢慢“抽离”出来,像是吸尘器吸走灰尘一样。

时间一到,咱们把提取液倒出来,看这颜色,绿色得让人心情都好起来。

之后,咱们要用分光光度计来测量叶绿素的浓度,听起来有点吓人,其实就是个测颜色的仪器。

你把提取液放上去,它就能告诉你颜色的深浅,也就是叶绿素的浓度。

浓度高了,颜色就越深,反之则越淡。

想想看,就像给植物喝水,水多了,它们精神倍儿棒,水少了,叶子都发黄了。

通过这个测量,咱们就能知道植物的“健康指数”了,简单吧?有趣的是,叶绿素的含量会因为不同的环境因素而变化。

比如说,阳光照射得越足,叶绿素含量就越高,植物看起来就越生机勃勃。

反之,要是环境阴暗潮湿,叶绿素的含量可能就会减少,植物的叶子也会显得有些萎靡,真是“养不教,父之过”,这可怜的小家伙们可不容易啊!就像我们有时候工作压力大,心情不佳,哪儿有精力干活儿呢?说到这,可能有人会问,测定叶绿素含量有什么用呢?嘿,别小看这个小小的测定,它可大有文章。

如何用叶绿素测定仪测定海产品的叶绿素含量

如何用叶绿素测定仪测定海产品的叶绿素含量

如何用叶绿素测定仪测定海产品的叶绿素含量叶绿素含量对渔业的影响在海洋生态系中,鱼、虾、贝类等产量的高低与叶绿素含量的高低有密切关系,叶绿素含量高的海域,其鱼、虾、贝类等产量才会高。

不过,有些河口海域和近海水域,由于河川污染带来丰富的营养盐类,造成海带的过度生长,即通称的水质优养化(eutrophication)。

海带过度生长固然造成叶绿素含量的增高。

在这些地方养鱼不好,那些污染会进入鱼的体内,最终进入人的身体里,危害人的健康。

养鱼可以促进水体富营养化,一方面鱼类活动和摄食促进了水体营养物质的循环速度,另一方面,养鱼网箱内的投饵等使浮游植物生物量增加,两者均能促进浮游植物的光合作用。

其他研究显示养鱼处的叶绿素含量均显著高于无鱼区。

如养鱼区鱼类投饵不足,则可能引起鱼类对微型浮游植物,微微型浮游植物的摄食,从而导致养鱼区叶绿素含量偏低。

主养鱼区所养鱼类的种类、密度、对叶绿素含量也有影响,如养鱼区的养鱼密度过大,鱼类对初级生产力中的微型浮游植物和微微型浮游植物为食物,这使得养鱼区出现叶绿素含量与其他海区叶绿素含量比较偏低。

如何利用叶绿素测定仪测定海产品叶绿素含量海带,作为一种水产品,因其资源丰富,被人们广泛的食用,看似营养不多,其实不然,海带除了给人体补充盐分外,因其含有大量的叶绿素而被称为营养食物,这点可能很多人都不了解,这也不奇怪,因为很少有人去研究海带叶绿素含量,并且因为其颜色并不是绿色,更少为人关注,不过在叶绿素仪发明以后,使得人们对叶绿素测量便捷快速化,才揭开了人类对海带叶绿素的研究,下面我们了解一个海带中叶绿素含量的分析研究,更深层了解海带。

叶绿素是自然界生物光合作用的产物,它无毒可食用,所以广泛应用于食品、化装品、药物的着色,另外,在生化研究中也有非常重要的作用,故叶绿素的需要量很大,我国每年出口约1(X众。

目前叶绿素的生产,人们把精力主要集中在植物叶或以叶绿素含量较高的蚕沙上,但这要受到季节的影响,而且有些树叶含有难以分离的毒素,且陆生植物叶子中叶绿素含量约为0.3%-0.5%。

叶绿素的测定

叶绿素的测定

实验六富营养化湖中藻量的测定(叶绿素a法)一、实验目的富营养化湖由于水体受到污染,尤以氮磷为甚,致使其中的藻类旺盛生长。

此类水体中代表藻类的叶绿素a浓度常大于10微克/升。

本实验通过测定不同水体中藻类叶绿素a浓度,以考查其富营养化情况。

二、器材与用品1、分光光度计(波长选择大于750nm,精度为0.5-2nm)。

2、比色杯(1cm;4cm)。

3、台式离心机(3500r/min)4、离心管(15ml具刻度和塞子);冰箱5、匀浆器或小研钵。

6、蔡氏滤器;滤膜(0.45微克,直径47mm)。

7、真空泵(最大压力不超过300kpa)。

8、MgCO3悬液:lg MgCO3细粉悬于100ml蒸馏水中。

9、90%的丙酮溶液:90份丙酮+10份蒸馏水。

10、水样:两种不同污染程度的湖水水样各2L.三、方法和步骤1、按浮游植物采样方法,湖泊、水库采样500ml,池塘300ml。

采样点及采水时间同“浮游植物”。

2、清洗玻璃仪器:整个实验中所使用的玻璃仪器应全部用洗涤剂清洗干净,尤其应避免酸性条件下而引起的叶绿素a分解。

3、过滤水样;在蔡氏滤器上装好滤膜,每种测定水样取50-500ml 减压过滤。

待水样剩余若干毫升之前加入0.2ml MgCO3悬液、摇匀直至抽干水样。

加入MgCO3可增进藻细胞滞留在滤膜上,同时还可防止提取过程中叶绿素a被分解。

如过滤后的载藻滤膜不能马上进行提取处理,应将其置于干燥器内,放冷(4℃)暗处保存,放置时间最多不能超过48小时。

4、提取;将滤膜放于匀浆器或小研钵内,加2-3ml90%的丙酮溶液,匀浆,以破碎藻细胞。

然后用移液管将匀浆液移入刻度离心管中,用5ml90%丙酮冲洗2次,最后向离心管中补加90%丙酮,使管内总体积为10ml。

塞紧塞子并在管子外部罩上遮光物,充分振荡,放冰箱避光提取18-24小时。

5、离心:提取完毕后,置离心管于台式离心机上3500r/min,离心10min,取出离心管,用移液管将上清液移入刻度离心管中,塞上塞子,3500r/min在离心10min。

叶片叶绿素含量的测定方法

叶片叶绿素含量的测定方法

叶片叶绿素含量的测定方法《聊聊叶片叶绿素含量的测定方法那些事儿》嘿,朋友,你可知道叶片里那神奇的叶绿素吗?那可是植物的“魔法颜料”,让叶子变得绿油油的。

今天啊,咱就来唠唠这叶片叶绿素含量的测定方法。

说到这测定方法啊,那真的是“五花八门”。

咱先说说那个最经典的分光光度法吧。

说起来还真有点像变魔术,把叶片捣鼓捣鼓,提取出叶绿素,然后往那个仪器里一放,“嘀”的一下,数值就出来了。

就好像能透过现象看到本质一样,可神奇了。

还有一种方法就比较有趣了,叫比色法。

想象一下,拿着各种颜色的标准溶液,和咱们提取出来的叶绿素溶液比来比去,就像是在玩一场颜色的“连连看”,还真挺有意思。

不过啊,做这个测定可不是闹着玩的,得特别认真才行。

有一次我做实验的时候,一不小心把提取液洒了一地,那场面,简直就是个“绿色灾难”。

我一边手忙脚乱地收拾,一边苦笑,心想这叶绿素可真是和我开了个玩笑。

但是呢,当你成功地测出了叶绿素的含量,看到那个靠谱的数字时,心里的成就感简直爆棚。

就好像自己解开了一个植物的小秘密一样,那感觉,甭提多爽了。

有时候我就在想,这小小的叶片里藏着这么多学问。

咱们通过这些测定方法,像是在和植物进行一场深入的对话。

了解它们的生长状态,知道它们需要什么,不需要什么。

而且啊,这些测定方法还不仅仅是在实验室里好玩。

对于农民伯伯们来说,那可太重要了。

他们可以通过测定叶绿素含量来判断庄稼的生长情况,什么时候该施肥,什么时候该浇水,都能心里有数。

总之呢,叶片叶绿素含量的测定方法虽然听起来有点专业有点枯燥,但实际上真的很有趣。

它就像一把打开植物世界大门的钥匙,让我们能更深入地了解这些绿色的小精灵们。

所以啊,下次见到一片绿油油的叶子,你可别只觉得好看,要想想那里面的叶绿素含量是多少哦!哈哈!。

叶绿素含量测定方法(精)

叶绿素含量测定方法(精)

叶绿素含量测定方法---丙酮法由于微藻的生长周期比较复杂,包括无性繁殖阶段和有性繁殖阶段,其在不同阶段的生理形态不同,有时藻细胞会聚集在一起,以片状或团状形式存在,在显微镜下难以确定其所包含的细胞数量。

藻细胞中叶绿素的含量(特别是叶绿素a的含量)通常随与细胞的生长呈较好的线性关系,因此可通过测定藻细胞中叶绿素含量变化来反映微藻的生长情况。

叶绿素测定采用丙酮研磨提取法。

取适量藻液于10 mL离心管中在4000 rpm转速下离心10 min,弃去上清液,藻泥中加入适量的100 %的丙酮。

采用丙酮提取法时在试管研磨器中冰浴研磨5 min,4000 rpm离心后,上清液转入10 mL容量瓶中。

按上述方法对藻体沉淀进行萃取,直至藻体沉淀呈白色为止。

定容后,采用722S型可见分光光度计分别测定645 nm和663 nm下萃取液的吸光值,叶绿素含量用以下公式进行计算(Amon,1949):叶绿素a含量用以下公式进行计算:Chlorophyll a (mg/L) = (12.7×A663 nm-2.69×A645 nm)×稀释倍数叶绿素b含量用以下公式进行计算:Chlorophyll b (mg/L) = (22.9×A645 nm-4.64×A663 nm)×稀释倍数叶绿素总含量用以下公式进行计算:Chlorophyll a+b (mg/L) = (20.2×A645 nm+8.02×A663 nm)×稀释倍数由于丙酮的沸点较低,较高温度下挥发很快。

此外,叶绿素稳定性较差,见光易分解,因此,本实验中叶绿素的提取和测定均在低温黑暗条件下进行,以减少提取过程中的损失。

叶绿素提取方法提取液:本试验用DMSO/80%丙酮(l/2,v/v)提取的叶绿素,谭桂英周百成底栖绿藻叶绿素的二甲基亚砜提取和测定法* 海洋与湖沼 1987 18(3)295--300.一、直接浸提法:1、准确量取10ml藻液,加到15ml离心管中,放在台式离心机离心,3500r/min (根据不同的藻选择不同那个的离心转速)离心5min倒上清;留藻泥。

叶绿素的检测方法标准

叶绿素的检测方法标准

叶绿素的检测方法标准嘿,咱今儿就来说说叶绿素的检测方法标准。

你知道不,叶绿素就像是植物的小魔法,让它们充满生机和活力。

那怎么检测这个神奇的玩意儿呢?咱先说说最常见的分光光度法。

这就好比是给叶绿素来个特别的“拍照”,通过光的照射和分析,来确定叶绿素的含量。

想象一下,光就像个小精灵,在叶绿素那里跳来跳去,然后我们就能根据它的表现知道叶绿素有多少啦。

是不是很有意思?还有荧光分析法呢!这就好像是给叶绿素装上了一盏小灯,通过观察它发出的荧光来了解情况。

这可神奇啦,就像在黑暗中发现了一颗会发光的宝贝。

再说说高效液相色谱法,这个可厉害了。

它就像是个超级侦探,能把叶绿素的各种成分都分得清清楚楚,一点都不含糊。

是不是很牛?那这些方法标准有啥用呢?这可重要啦!就像医生给病人看病,得有准确的诊断方法一样。

如果检测不准确,那可就像盲人摸象,啥都搞不清楚啦。

比如说,在农业上,我们得知道植物里的叶绿素够不够,才能判断它们长得好不好呀。

要是检测错了,那施肥浇水不就都乱套啦?在科研领域,准确的叶绿素检测更是关键,科学家们得靠这个来研究植物的各种奥秘呢。

检测叶绿素的时候,可得认真仔细,不能马虎。

就像你做一件特别重要的事情,得全神贯注才行。

而且,不同的植物、不同的环境,检测方法可能还得调整呢。

咱可不能小看了这小小的叶绿素检测,它背后可有着大学问呢。

想想看,如果没有这些标准和方法,我们怎么能更好地了解植物,怎么能让我们的世界变得更绿更美呢?所以啊,一定要重视叶绿素的检测方法标准,这可不是闹着玩的哟!总之,叶绿素的检测方法标准就像是打开植物秘密之门的钥匙,让我们能更深入地了解植物的世界。

大家可都要好好记住这些方法呀,说不定啥时候就用上了呢!这可不是开玩笑的哟!。

水质叶绿素a的测定分光光度法编制说明

水质叶绿素a的测定分光光度法编制说明

⽔质叶绿素a的测定分光光度法编制说明附件3《⽔质叶绿素a的测定分光光度法》(征求意见稿)编制说明《⽔质叶绿素a的测定分光光度法》标准编制组⼆○⼀五年⼋⽉项⽬名称:⽔质叶绿素a的测定分光光度法项⽬统⼀编号:939承担单位:辽宁省环境监测实验中⼼编制组主要成员:王秋丽、赵丽娟、王琳、丁振军、刘畅、徐天赐、姜永伟、秦⾬、郭杨、朱⼴钦、叶明、贺业菊标准所技术管理负责⼈:周⽻化、雷晶、张虞标准处项⽬负责⼈:张朔⽬录1项⽬背景 (1)1.1任务来源 (1)1.2⼯作过程 (1)2标准制订的必要性分析 (3)2.1叶绿素A的环境危害 (3)2.2相关环保标准和环保⼯作的需要 (4)3国内外相关分析⽅法研究 (5)3.1主要国家、地区及国际组织相关分析⽅法研究 (5)3.2国内相关分析⽅法研究 (8)4标准制订的基本原则和技术路线 (10)4.1标准制订的基本原则 (10)4.2标准制订的技术路线 (10)5⽅法研究报告 (12)5.1⽅法研究的⽬标 (12)5.2⽅法原理 (13)5.3试剂和材料 (13)5.4仪器和设备 (16)5.5样品的采集和保存 (17)5.6分析步骤 (21)5.7结果计算 (31)5.8质量保证和质量控制 (34)5.9注意事项 (34)6⽅法验证 (35)6.1⽅法验证⽅案 (35)6.2⽅法验证过程 (36)7与开题报告的差异说明 (38)8本标准实施的建议 (39)9参考⽂献 (39)《⽔质叶绿素a的测定分光光度法》编制说明1项⽬背景1.1任务来源(1)2006年6⽉,根据《关于下达2006年度国家环境保护标准制订项⽬计划的通知》(环办函[2006]371号),原国家环保总局办公厅下达了制订《⽔质叶绿素a的测定分光光度法》国家环保标准制修订计划,项⽬统⼀编号为:939。

(2)《⽔质叶绿素a的测定分光光度法》项⽬承担单位为:辽宁省环境监测实验中⼼。

1.2 ⼯作过程1.2.1 前期调研⼯作(1)成⽴标准编制组2006年7⽉,辽宁省环境监测中⼼承接了《⽔质叶绿素a的测定分光光度法》制修订任务以后,成⽴了标准编制组。

叶绿素及叶绿素酶测定方法

叶绿素及叶绿素酶测定方法

叶绿素及叶绿素酶测定方法叶绿素及叶绿素酶测定方法1叶绿素测定将烟叶鲜叶片剪碎混匀,称取0.1g放入具塞玻璃试管中,然后迅速加入10ml 95%乙醇到试管中,加盖置于黑暗的环境中浸提至叶片全部发白,在此期间摇晃几次,最后在665nm、649nm和470nm的波长下测定提取液的吸光值。

叶绿素a浓度(mg/mL)=13.95A665-6.88A649叶绿素b浓度(mg/mL)=24.96A649-7.32A665类胡萝卜素浓度(mg/mL)=(1000A470-2.05Ca-114Cb)/2452 叶绿素酶测定方法:叶绿素酶chlorophyllase 存在于叶绿体中,能将叶绿素水解成为羧酸的脱植基叶绿素和高级一价醇叶绿素(植醇)的酶,是酯酶的一种。

系统名为叶绿素-脱植基叶绿素水解酶。

(chlorophyll chlorophyllido-hydrolase)。

EC3.1.1.14。

一旦使在甲醇或乙醇的水溶液中发生作用,就会发生酯的置换,从而生成易于结晶的甲基或乙基脱植基叶绿素。

叶绿素酶的测定方法试剂:丙酮、石油醚、pH8.0的0.2mol磷酸缓冲液.实验步骤1. 酶的纯化:取鲜烟叶3g,加预冷80%丙酮20ml,匀浆后抽虑,用预冷丙酮10、5、5ml三次洗涤固形物,室温干燥粉碎,转入带塞离心管中冷藏备用。

2. 测定:每组丙酮粉离心管中加入2ml底物1ml pH8.0磷酸缓冲液,室温(25度)保温12小时,立即加入3ml预冷石油醚充分振摇,3500r/min,低温离心2~5min,记取石油醚的体积,吸取上层清液,在667nm波长下测定吸光度。

(整个过程在黑暗中操作)保温到时间后,用同样粉末样品的平行反应作为对照.3. 标准曲线的制作:以不同浓度的叶绿素a的石油醚(石油醚事先经等体积的含66%丙酮的磷酸缓冲液饱和)作标准曲线,求得石油醚萃取层中的叶绿素a的含量。

在上述反应条件下,以1h内水解1ug 叶绿素a的酶量为一个酶活性单位(U)。

叶绿素测定的实验报告

叶绿素测定的实验报告

一、实验目的1. 了解叶绿素在植物光合作用中的作用。

2. 掌握叶绿素提取和测定的方法。

3. 通过实验,掌握分光光度法测定叶绿素含量的原理和操作步骤。

二、实验原理叶绿素是植物进行光合作用的重要色素,其含量直接影响植物的光合作用效率。

本实验采用分光光度法测定叶绿素含量,通过测定叶绿素a和叶绿素b的吸光度,计算出叶绿素的总含量。

分光光度法测定叶绿素含量的原理:叶绿素a和叶绿素b对光的吸收具有选择性,在一定波长范围内,其吸光度与叶绿素含量成正比。

通过测定特定波长下的吸光度,可以计算出叶绿素含量。

三、实验材料1. 新鲜植物叶片(如菠菜、生菜等)。

2. 95%乙醇溶液。

3. 0.1mol/L硫酸铜溶液。

4. 0.1mol/L氢氧化钠溶液。

5. 分光光度计。

6. 移液器。

7. 烧杯。

8. 试管。

9. 移液管。

四、实验步骤1. 准备实验材料:取适量新鲜植物叶片,洗净、擦干,剪成小块备用。

2. 叶绿素提取:取10g植物叶片,加入50mL 95%乙醇溶液,用研钵研磨至匀浆。

将匀浆转移到50mL容量瓶中,用95%乙醇溶液定容至刻度。

3. 吸光度测定:取适量叶绿素提取液,分别加入0.1mol/L硫酸铜溶液和0.1mol/L氢氧化钠溶液,配制成叶绿素a和叶绿素b溶液。

4. 标准曲线绘制:取一系列已知浓度的叶绿素a和叶绿素b标准溶液,分别测定其在特定波长下的吸光度,以吸光度为纵坐标,浓度对数值为横坐标,绘制标准曲线。

5. 样品测定:取适量叶绿素提取液,按照标准曲线绘制步骤,测定其吸光度。

6. 计算叶绿素含量:根据样品的吸光度,从标准曲线上查得对应的叶绿素a和叶绿素b浓度,计算叶绿素的总含量。

五、实验结果与分析1. 标准曲线绘制:绘制叶绿素a和叶绿素b的标准曲线,相关系数R²均大于0.99,表明标准曲线线性关系良好。

2. 样品测定:根据样品的吸光度,从标准曲线上查得叶绿素a和叶绿素b的浓度,计算叶绿素的总含量。

3. 结果分析:通过对不同植物叶片的叶绿素含量测定,可以发现不同植物叶片的叶绿素含量存在差异,这与植物的种类、生长环境等因素有关。

叶绿素含量的测定

叶绿素含量的测定
2.3 仪器与器皿: 分光光度计、台秤、剪刀、研钵、移液管、 漏斗、大试管
三. 实验步骤
1.取样:清洗叶片并擦干,称取0.5g叶片, 剪碎后放入研钵中。(在正规实验中应
各重复3次,本实验为减少乙醇或丙酮向
环境中的排放,故不设重复)。注意取
样时要避开大的叶脉。
2.研磨提取:向研钵中加入96%乙醇或80%丙酮 2ml,以及少许CaCO3 (中和酸性,防止叶绿素 酯酶分解叶绿素) 和石英砂,研磨成匀浆,至

叶绿素不溶于水,溶于有机溶剂,可用 多种有机溶剂,如丙酮、乙醇或二甲基 亚砜等研磨提取或浸泡提取。叶绿色素 在特定提取溶液中对特定波长的光有最 大吸收,用分光光度计测定在该波长下 叶绿素溶液的吸光度(也称为光密度),再 根据叶绿素在该波长下的吸收系数即可 计算叶绿素含量。
叶绿素a、b在长波的最大吸收峰分别在663nm、 645nm,据Lamber-Beer 定律,可得浓度C与光密 度D间的关系式: D663=82.04Ca +9.27Cb D645=16.75Ca +45.6Cb
入比色皿中,液面高度约为比色皿高度的4/5,
将撒在比色皿外面的溶液用滤纸吸掉(注意不 能擦),再用擦镜纸擦干擦净。
将比色皿放入仪器的比色皿架上,注意不要将 溶液撒入仪器内。第一个位置放盛有96%乙醇或
80%丙酮的比色皿,做为空白对照。将仪器波长分
别调至663、646、470nm处,以96%乙醇或80%丙
实验二. 叶绿素含量的测定
高等植物光合作用过程中利用的光能是 通过叶绿体色素(光合色素)吸收的。叶绿 体色素由叶绿素a、叶绿素b、胡萝卜素 和叶黄素组成。 在植物光合生理、发育生理和抗性生理 研究中经常需要测定叶绿素含量。叶绿 素含量也是指导作物栽培生产和选育作 物品种的重要指标。

植物叶绿素测定方法(精)

植物叶绿素测定方法(精)

叶绿素含量的测定一、原理根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。

根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。

当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。

各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。

如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。

这就是吸光度的加和性。

今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。

在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。

二、材料、仪器设备及试剂(一)材料:新鲜(或烘干)的植物叶片。

(二)仪器设备:1)分光光度计;2)电子顶载天平(感量0.01g);3)研钵;4)棕色容量瓶; 5)小漏斗;6)定量滤纸;7)吸水纸;8)擦境纸;9)滴管。

(三)试剂:1)95%乙醇(或80%丙酮)(v丙酮:v乙醇=2:1的95%水溶液);2)石英砂;3)碳酸钙粉。

暗中2h,0.5g,25ml三、实验步骤1)取新鲜植物叶片(或其它绿色组织)或干材料,擦净组织表面污物,剪碎(去掉中脉),混匀。

2)称取剪碎的新鲜样品 0.2g ,共3份,分别放入研钵中,加少量石英砂和碳酸钙粉及2~3ml 95%乙醇,研成均浆,再加乙醇10ml,继续研磨至组织变白。

静置3~5min。

3)取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到25ml棕色容量瓶中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。

4)用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入容量瓶中。

叶绿素含量的测定

叶绿素含量的测定

叶绿素含量的测定一、原理根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。

根据朗伯—比尔定律,某有色溶液的吸光度A 与其中溶质浓度C 和液层厚度L 成正比,即A =αCL式中:α比例常数。

当溶液浓度以百分浓度为单位,液层厚度为1cm 时,α为该物质的吸光系数。

各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。

如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。

这就是吸光度的加和性。

今欲测定叶绿体色素混合提取液中叶绿素a 、b 和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A ,并根据叶绿素a 、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。

在测定叶绿素a 、b 时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。

已知叶绿素a 、叶绿素b 的80%丙酮溶液在红外区的最大吸收峰分别位于663、645nm 处。

已知在波长663nm 下叶绿素a 、叶绿素b 在该溶液中的吸光系数的分别为82.04和9.27;在波长645nm 处的吸光系数分别为16.75和45.60。

根据加和性原则列出以下关系式:A663=82.04Ca+9.27Cb (1) A645=16.76Ca+45.60Cb (2)式(1) (2)A 663nm 和A645nm 为叶绿素溶液在663nm 和645nm 处的吸光度,C a C b 分别为叶绿素a 、叶绿素b 的浓度,以mg/L 为单位。

解方程(1) (2)组得C a =12.72 A 663—2.59 A 645 (3) C b =22.88 A 645—4.67 A 663 (4) 将C a +C b 相加即得叶绿素总量C TC T = C a 十C b =20.29A 645—8.05 A 663 (5) 从公式(3)、(4)、(5)可以看出,,就可计算出提取液中的叶绿素a 、b 浓度另外,由于叶绿素a 叶绿素b 在652nm 的吸收峰相交,两者有相同的吸光系数(均为30.5),也可以在此波长下测定一次吸光度(A 652)而求出叶绿素a 、叶绿素 b 总量所测定材料的单位面积或单位重量的叶绿素含量可按下式进行计算: C T =5.341000652 A (6)有叶绿素存在的条件下,用分光光度法可同时测出溶液中类胡萝卜素的含量。

叶绿素方法选择范文

叶绿素方法选择范文

叶绿素方法选择范文叶绿素是一种广泛存在于植物、藻类和一些细菌中的绿色色素,具有光合作用的关键功能。

由于叶绿素的广泛应用和重要性,发展出了多种用于提取和检测叶绿素的方法。

本文将介绍几种常用的叶绿素方法选择。

一、光度法检测叶绿素光度法是测定叶绿素含量最常用的方法之一、该方法利用叶绿素对特定波长的光的吸收特性进行检测。

常用的光度法包括比色法和分光光度法。

1.1比色法比色法是一种常用的快速、简便的叶绿素检测方法。

该方法通过将叶绿素溶液与乙醚或乙醇溶液混合,形成混合物的绿色溶液。

然后根据绿色溶液的颜色深浅来估计叶绿素的浓度。

1.2分光光度法分光光度法是一种通过测量叶绿素在特定波长下的吸光度来定量叶绿素含量的方法。

该方法需要使用专业的分光光度计进行测量。

通过选择适当的波长,可以准确测量叶绿素的浓度。

二、高效液相色谱法(HPLC)HPLC是一种高效、灵敏的叶绿素分析方法。

该方法通过将样品溶解于适当的溶剂中,然后通过高压将样品溶液推动通过液相色谱柱,最后利用检测器测量叶绿素的浓度。

HPLC能够对多种叶绿素进行分离和定量,可以得到准确的叶绿素组成和含量信息。

三、荧光法检测叶绿素荧光法是一种非破坏性的叶绿素检测方法。

该方法利用光合作用生成的荧光信号来估计叶绿素的含量。

荧光法相对于光度法和HPLC法具有更高的灵敏度和准确性。

3.1三参数荧光法三参数荧光法是一种常用的荧光法检测叶绿素含量的方法。

该方法通过测量样品在不同波长下的荧光强度来计算叶绿素的含量。

常用的参数包括最大荧光强度(Fm),最低荧光强度(Fo),以及光状荧光强度(Fv/Fm)。

3.2快速荧光诱导动力学(FIDK)快速荧光诱导动力学(FIDK)是一种用于研究叶绿素的活性和光合效率的方法。

该方法通过测量光照条件下叶绿素的荧光特性来评估叶绿素的活性和光合效率。

FIDK能够提供对叶绿素的详细信息,如PSII最大电子传递速率、叶绿素含量、非光化学猝灭等。

综上所述,根据实际需求和仪器设备的条件,可以选择不同的叶绿素检测方法。

叶绿素测定方法

叶绿素测定方法

叶绿素测定方法一、实验原理叶绿素广泛存在于果蔬等绿色植物组织中,并在植物细胞中与蛋白质结合成叶绿体。

当植物细胞死亡后,叶绿素即游离出来,游离叶绿素很不稳定,对光、热较敏感;在酸性条件下叶绿素生成绿褐色的脱镁叶绿素,在稀碱液中可水解成鲜绿色的叶绿酸盐以及叶绿醇和甲醇。

高等植物中叶绿素有两种:叶绿素 a 和 b,两者均易溶于乙醇、乙醚、丙酮和氯仿。

叶绿素 a 和叶绿素 b 在 645nm 和 663nm 处有最大吸收,且两吸收曲线相交于652nm 处。

因此测定提取液在 645nm、 663nm、652nm 波长下的吸光值,并根据经验公式可分别计算出叶绿素 a、叶绿素 b 和总叶绿素的含量。

二、仪器、和试剂仪器:分光光度计、电子天平(0 . 01g) 、研钵、棕色容量瓶(容量瓶包锡纸代替)、小漏斗、定量滤纸、吸水纸、擦境纸、滴管。

试剂:丙酮;石英砂;碳酸钙粉三、操作步骤取新鲜蔬菜1g,洗净吸干水分,放入研钵中,加少量石英砂和碳酸钙粉及3mL80%丙酮,研成均浆,再加丙酮10mL,继续研磨至组织变白。

暗处静置3~ 5min。

取滤纸 1 张置于漏斗中,用丙酮湿润,沿玻棒把提取液倒入漏斗,滤液流至50mL容量瓶中(外包锡纸);冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。

用滴管吸取丙酮,将滤纸上的叶绿体色素全部洗入容量瓶中。

直至滤纸和残渣中无绿色为止。

最后用丙酮定容至100mL,摇匀。

取叶绿体色素提取液在波长665nm、 645nm下测定吸光度,以丙酮为空白对照。

四、计算按照实验原理中提供的经验公式,分别计算植物材料中叶绿素a、 b 和总叶绿素的含量。

ρa =12.72A663-2.59A 645ρb =22.88A663-4.67A 645ρ=ρa +ρb =20.29A645+8.05A663叶绿素含量 =ρ*V /(m*1000)(mg/g)ρ:叶绿素质量浓度,mg/lV:提取液体积,mlm:样品质量,gPS:若处理干燥样品,则用80%丙酮(体积分数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Method 447.0Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength DetectionElizabeth J. ArarVersion 1.0September 1997National Exposure Research LaboratoryOffice of Research and DevelopmentU.S. Environmental Protection AgencyCincinnati, Ohio 45268447.0-1METHOD 447.0DETERMINATION OF CHLOROPHYLLS a AND b AND IDENTIFICATION OF OTHER PIGMENTS OF INTEREST IN MARINE AND FRESHWATER ALGAE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH VISIBLE WAVELENGTH DETECTION1.0Scope and Application1.1This method provides a procedure for determination of chlorophylls a (chl a) and b (chl b) found in marine and freshwater phytoplankton. Reversed-phase high performance liquid chromatography (HPLC) with detection at 440 nm is used to separate the pigments from a complex pigment mixture and measure them in the sub-microgram range. For additional reference, other taxonomically important yet commercially unavailable pigments of interest are identified by retention time.1.2This method differs from previous descriptions of HPLC methods in several respects. Quality assurance/quality control measures are described in Sect. 9.0, sample collection and extraction procedures are described in Sect. 8.0 and reference chromatograms of pure pigments and reference algae are provided. This method has also been evaluated in a multilaboratory study along with EPA Methods 445.0 and 446.0. Estimated detection limits, precision and bias are reported in Section 13.Chemical Abstracts Service Analyte Registry Number (CASRN) Chlorophyll a 479-61-8Chlorophyll b 519-62-01.3Instrumental detection limits (IDLs) of 0.7 ng chl a, and 0.4 ng chl b in pure solutions of 90% acetone were determined by this laboratory. Method detection limit (MDL) determinations were made by analyzing seven replicate unialgal samples containing the chl a and b. Single-laboratory MDLs were chl a - 7 ng and chl b - 4 ng.A multilaboratory estimated detection limit (EDL) (in mg/L of extract is reported in Section 13.1.4Most taxonomically important pigments are not commercially available, therefore, a laboratory must be willing to extract and purify pigments from pure algal cultures to quantify and qualitatively identify these very important pigments. This method contains chromatographic information of select pure pigments found either in marine or freshwater algae. The information is included to aid the analyst in qualitatively identifying individual pigments and possibly algal species in natural samples.1.5This method uses 90% acetone as the extraction solvent because of its efficiency for extracting chl a from most types of algae. (NOTE: There is evidence that certain chlorophylls and carotenoids are more thoroughly extracted with methanol or dimethyl sulfoxide.) Using(1-3)(4)high performance liquid chromatography (HPLC), Mantoura and Llewellyn found that methanol led to the(5)formation of chl a derivative products, whereas 90% acetone did not. Bowles, et al. found that for chl a 90%(3)acetone was an effective solvent when the steeping period was optimized for the predominant species present.)1.6One of the limitations of visible wavelength detection is low sensitivity. It may be preferable to use fluorometry or HPLC with fluorometric detection if (6-8)(913)high volumes of water (>4 L) must be filtered to obtain detectable quantities of chl a or b.1.7This method is for use by analysts experienced in handling photosynthetic pigments and in the operation of HPLC or by analysts under the close supervision of such qualified persons.2.0Summary of Method2.1The HPLC is calibrated with a chl a and b solution that has been spectrophotometrically quantified447.0-2 Version 1.0 September 1997according to EPA Method 446. Chlorophyll-containing reagents, or apparatus. For this method the LRB is a phytoplankton in a measured volume of sample water are blank filter that has been extracted as a sample. concentrated by filtration at low vacuum through a glassfiber filter. The pigments are extracted from the 3.6Material Safety Data Sheet (MSDS) -- Written phytoplankton into 90% acetone with the aid of a information provided by vendors concerning a chemical's mechanical tissue grinder and allowed to steep for a toxicity, health hazards, physical properties, fire, and minimum of 2 h, but not exceeding 24 h, to ensure reactivity data including storage, spill, and handling thorough extraction of the pigments. The filter slurry is precautions.centrifuged at 675 g for 15 min (or at 1000 g for 5 min) toclarify the solution. An aliquot of the supernatant is 3.7Method Detection Limit (MDL) -- The minimumfiltered through a 0.45 µm syringe filter and 50 to 200 µL is injected onto a reversed-phase column. Following separation using a ternary gradient, concentrations are reported in µg/L (ppb) or mg/L (ppm) in the whole water sample. This method is based on the HPLC work of Wright, et. al.(9)3.0Definitions3.1Calibration Standard(CAL) -- A solution prepared from dilution of a stock standard solution. The CAL solution is used to calibrate the instrument response with respect to analyte concentration or mass.3.2Calibration Check Standard(CALCHK) -- A mid-point calibration solution that is analyzed periodically in a sample set to verify that the instrument response to the analyte has not changed during the course of analysis.3.3Field Replicates -- Separate samples collected at the same time and placed under identical circumstances and treated exactly the same throughout field and laboratory procedures. Analyses of field replicates give a measure of the precision associated with sample collection, preservation and storage, as well as with laboratory procedures.3.4Instrument Detection Limit (IDL) -- The minimum quantity of analyte or the concentration equivalent that gives an analyte signal equal to three times the standard deviation of a background signal at the selected wavelength, mass, retention time, absorbance line, etc.3.5Laboratory Reagent Blank (LRB) -- An aliquot of reagent water or other blank matrices that are treated exactly as a sample including exposure to all glassware, equipment, solvents, reagents, internal standards, and surrogates that are used with other samples. The LRB is used to determine if method analytes or other interferences are present in the laboratory environment,concentration of an analyte that can be identified, measured and reported with 99% confidence that the analyte concentration is greater than zero.3.8Quality Control Sample (QCS) -- A solution of method analytes of known concentrations that is used to fortify an aliquot of LRB or sample matrix. Ideally, the QCS is obtained from a source external to the laboratory and different from the source of calibration standards. It is used to check laboratory performance with externally prepared test materials.4.0Interferences4.1Any compound extracted from the filter or acquired from laboratory contamination that absorbs light at 440 nm may interfere in the accurate measurement of the method analytes.4.2Proper storage and good sample handling technique are critical in preventing degradation of the pigments.4.3Precision and recovery for any of the pigments is related to efficient extraction, i.e. efficient maceration of the filtered sample and to the steeping period of the macerated filter in the extraction solvent. Precision improves with increasing steeping periods, however, a drawback to prolonged steeping periods is the possibility of pigment degradation. The extracted sample must be kept cold and in the dark to minimize degradation.4.4Sample extracts must be clarified by filtration through a 0.45 µm filter prior to analysis by HPLC to prevent column fouling.4.5All photosynthetic pigments are light and temperature sensitive. Work must be performed in subdued light and all standards, QC materials, and filtered samples must be stored in the dark at -20C oro-70C to prevent rapid degradation.o447.0-3Version 1.0 September 19975.0Safety5.1Each chemical used in this method should be regarded as a potential health hazard and handled with caution and respect. Each laboratory is responsible for maintaining a current awareness file of Occupational Safety and Health Administration (OSHA) regulations regarding the safe handling of the chemicals specified in this method. A file of MSDS also should be made (15-18)available to all personnel involved in the chemical analysis.5.2The grinding of filters during the extraction step of this method should be conducted in a fume hood due to the volatilization of acetone by the tissue grinder.6.0Apparatus and Equipment6.1Centrifuge, capable of 675 g.6.2Tissue grinder, Teflon pestle (50 mm X 20 mm) with grooves in the tip with 1/4" stainless steel rod long enough to chuck onto a suitable drive motor and 30-mL capacity round-bottomed, glass grinding tube.6.3Filters, glass fiber, 47-mm or 25-mm nominal pore size of 0.7 µm unless otherwise justified by data quality objectives. Whatman GF/F filters were used in this work.6.4Petri dishes, plastic, 50 X 9-mm, or some other solid container for transporting and storing sampled filters.6.5Aluminum foil.6.6Laboratory tissues.6.7Tweezers or flat-tipped forceps.6.8Vacuum pump or source capable of maintaininga vacuum up to 6 in. Hg (20 KPa).6.9Labware -- All reusable labware (glass, polyethylene, Teflon, etc.) that comes in contact with chlorophyll solutions should be clean and acid free. An acceptable cleaning procedure is soaking for 4 h in laboratory grade detergent and water, rinsing with tap water, distilled deionized water and acetone.6.9.1Assorted Class A calibrated pipets.6.9.2Graduated cylinders, 500-mL and 1-L.6.9.3Volumetric flasks, Class A calibrated, 10-mL, 25-mL, 50-mL, 100-mL and 1-L capacity.6.9.4Glass rods or spatulas.6.9.5Pasteur Type pipets or medicine droppers.6.9.6Filtration apparatus consisting of 1 or 2-L filtration flask, 47-mm fritted glass disk base and a glass filter tower.6.9.7Centrifuge tubes, polypropylene or glass, 15-mL capacity with nonpigmented screw-caps.6.9.8Polyethylene squirt bottles.6.9.9Amber 2-mL HPLC autosampler vials with screw or clamp caps.6.9.10Glass syringe, 1 or 2-mL capacity.6.9.11HPLC compatible, low-volume, acetone resistant glass fiber or PTFE syringe filters.6.10Liquid Chromatograph6.10.1This method uses a ternary gradient thus requiring a programmable gradient pump with at least three pump inlets for the three different mobile phases required.A Dionex Model 4500 chromatograph equipped with a gradient pump, UV/VIS detector (cell path length, 6 mm, volume 9 µL) and PC data analysis (Dionex AI450 software, Version 3.32) system was used to generate data for this method. Tubing was made of polyether ether ketone (PEEK). A Dionex degas module was used to sparge all eluents with helium.6.10.2Helium or other inert gas for degassing the mobile phases OR other means of degassing such as sonication under vacuum.6.10.3Sample loops of various sizes (50-200 µL).6.10.4Guard Column -- A short column containing the same packing material as the analytical column placed before the analytical column to protect it from fouling by small particles. The guard column can be replaced periodically if it is noticed that system back pressure has increased over time.447.0-4 Version 1.0 September 19976.10.5Analytical Column -- A C reversed-phase the graduated cylinder and transfer to the flask or bottle18column with end capping. A J.T. Baker 4.6 mm X 250containing the water. Mix, label and store.mm, 5 µm pore size column was used to generate thedata in this method.6.10.6 A visible wavelength detector with a low volume flow-through cell. Detection is at 440 nm.6.10.7 A recorder, integrator or computer for recording detector response as a function of time.6.10.8Although not required, an autosampler (preferably refrigerated) is highly recommended.7.0Reagents and Standards7.1Acetone, HPLC grade, (CASRN 67-64-1).7.2Methanol, HPLC grade, (CASRN 67-56-1). Prepare ELUENT A, 80% (v/v) methanol/20% 0.5 M ammonium acetate, by adding 800 mL of methanol and 200 mL of the 0.5 M ammonium acetate (Sect. 7.5) to an eluent container.7.3Acetonitrile, HPLC grade, (CASRN 75-05-8). Prepare ELUENT B, 90% (v/v) acetonitrile/10% water, by adding 900 mL of acetonitrile and 100 mL of water (Sect.7.7) to an eluent container.7.4Ethyl acetate, HPLC grade, (CASRN 141-78-6). ELUENT C, 100% ethyl acetate.7.5Ammonium acetate, ACS grade (CASRN 631-61-8). Prepare a 0.5 M solution by dissolving 38.54 g in approximately 600 mL of water in a 1-L volumetric flask. After the ammonium acetate has dissolved, dilute to volume with water.7.6Chl a free of chl b and chl b substantially free of chl a may be obtained from a commercial supplier such as Sigma Chemical (St. Louis, MO).7.7Water -- ASTM Type I water (ASTM D1193) is required. Suitable water may be obtained by passing distilled water through a mixed bed of anion and cation exchange resins.7.8Aqueous Acetone Solution -- 90% acetone/10% ASTM Type I water. Carefully measure 100 mL of the water into the 1-L graduated cylinder. Transfer to a 1-L flask or storage bottle. Measure 900 mL of acetone into 7.9Chlorophyll Stock Standard Solution (SSS) --Chl a (MW = 893.5) and chl b (MW = 907.5) from a commercial supplier is shipped in amber glass ampules that have been flame sealed. The dry standards must be stored at -20 or -70E C in the dark. Tap the ampule until all the dried pigment is in the bottom of the ampule. In subdued light, carefully break the tip off the ampule. Transfer the entire contents of the ampule into a 25-mL volumetric flask. Dilute to volume with 90% acetone: (1 mg in 25 mL = 40 mg chl a/L) and (1 mg in 25 ml = 40 mg chl b/L), label the flasks and wrap with aluminum foil to protect from light. When stored in a light- and air-tight container at -20 or -70C, the SSS is stable for at least sixomonths. Dilutions of the SSS should always be confirmed spectrophotometrically using EPA Method 446.7.10Laboratory Reagent Blank (LRB) -- A blank filter that is extracted and analyzed just as a sample filter. The LRB should be the last filter extracted of a sample set. It is used to assess possible contamination of the reagents or apparatus.7.11Quality Control Sample (QCS) -- Since there are no commercially available QCSs, dilutions of a stock standard of a different lot number from that used to prepare calibration solutions may be used.8.0Sample Collection, Preservation andStorage8.1Water Sample Collection -- Water may be obtained by a pump or grab sampler. Data quality objectives will determine the depth and frequency at(21) which samples are taken. Healthy phytoplankton, however, are generally obtained from the photic zone (region in which the illumination level is 1% of surface illumination). Enough water should be collected to concentrate phytoplankton on at least three filters so that precision can be assessed. Filtration volume size will depend on the particulate load of the water. Four liters may be required for open ocean water where phytoplankton density is usually low, whereas 1 L or less is generally sufficient for lake, bay or estuary water. All apparatus should be clean and acid-free. Filtering should be performed in subdued light as soon as possible after sampling since algal populations, thus pigment concentrations, can change in relatively short periods of time. Aboard ship filtration is highly recommended.447.0-5Version 1.0 September 1997447.0-6Version 1.0 September 1997Assemble the filtration apparatus and attach the vacuum 9.2Initial Demonstration of Performance source with vacuum gauge and regulator. Vacuum (Mandatory)filtration should not exceed 6 in. Hg (20 kPa). Higher filtration pressures may damage cells and result in loss of 9.2.1The initial demonstration of performance is used chlorophyll. Care must be taken not to overload the to characterize instrument performance (IDLs) and filters. Do not increase the vacuum during boratory performance (MDLs, extraction proficiency,Prior to drawing a subsample from the water sample container, gently stir or invert the container several times 9.2.2Instrumental Detection Limit (IDL) -- After a low to suspend the particles. Pour the subsample into a level calibration (Sect. 10), prepare a standard solution graduated cylinder and accurately measure the volume.that upon injection into the chromatograph yields an Pour the subsample into the filter tower of the filtration absorbance of 0.002-0.010. If using an autosampler,apparatus and apply a vacuum (not to exceed 20 kPa).variable volumes may be injected and the micrograms Typically, a sufficient volume has been filtered when a visible green or brown color is apparent on the filter. Do not suck the filter dry with the vacuum; instead slowly release the vacuum as the final volume approaches the level of the filter and completely release the vacuum as the last bit of water is pulled through the filter. Remove the filter from the fritted base with tweezers, fold once with the particulate matter inside, lightly blot the filter with a tissue to remove excess moisture and place it in the petri dish or other suitable container. If the filter will not be immediately extracted, wrap the container with aluminum foil to protect the phytoplankton from light and store the filter at -20C or -70C. Short term storage (2 to o o 4 h) on ice is acceptable, but samples should be stored at -20E C or -70C as soon as possible.o 8.2Preservation -- Sampled filters should be stored frozen (-20C or -70C) in the dark until extraction.o o 8.3Holding Time -- Filters can be stored frozen at -20C for as long as 3½ weeks without significant loss of ochl a .(20)9.0Quality Control9.1Each Laboratory using this method is required to operate a formal quality control (QC) program. The minimum requirements of this program consist of an initial demonstration of laboratory capability and the continued analysis of laboratory reagent blanks, field replicates,QCSs, and CALCHKs as a continuing check on performance. The laboratory is required to maintain performance records that define the quality of the data generated.and analyses of QCSs) prior to sample analyses.(µg) injected calculated by multiplying the known concentration (µg/µL) of the standard by the volume injected (µL). A practical starting point may be to inject 0.05 µg (that would be a 50 µL injection of a 1.0 mg/L standard solution) and reduce or increase the mass injected according to the resulting signal. Avoid injecting really small volumes (< 10 µL). After the quantity of pigment has been selected, make three injections and calculate the IDL by multiplying the standard deviation of the calculated mass by 3.9.2.3Method Detection Limit (MDL) -- At least seven natural phytoplankton samples known to contain the pigments of interest should be collected, extracted and analyzed according to the procedures in Sects. 8 and 11,using clean glassware and apparatus. Mass of the pigment injected into the chromatograph should be 2 to 5 times the IDL. Dilution of the sample extract solution to the appropriate concentration or reducing the volume of sample injected may be necessary. Calculate the MDL (in micrograms) as follows.(19)MDL = (t) X (S)where, t = Student's t-value for n-1 degrees of freedom at the 99% confidence level. t = 3.143 for six degrees of freedom.S = Standard deviation of the replicate analyses.9.2.4Quality Control Sample (QCS) -- When beginning to use this method, on a quarterly basis or as required to meet data quality needs, verify instrument performance with the analysis of a QCS (Sect. 7.11). If the determined value is not within +10% of the spectrophotometrically determined value, then the instrument should be recalibrated with fresh stock standard and the QCS reanalyzed. If the redetermined value is still unacceptable then the source of the problem must be identified and corrected before continuing analyses.447.0-7 Version 1.0 September 19979.2.5Extraction Proficiency -- Personnel performing 10.3Program the pump with the following gradient:this method for the first time should demonstrate proficiency in the extraction of sampled filters (Sect. 11.1).Time Flow %1%2 %3Condition Fifteen to twenty natural samples should be obtained 0.0 1.010000Injectionusing the procedure outlined in Sect. 8.1 of this method. 2.0 1.001000Linear Gradient Sets of 10 samples or more should be extracted and 2.6 1.009010Linear Gradient analyzed according to Sect. 11. The percent relative 13.6 1.006535Linear Gradient standard deviation (%RSD) should not exceed 15% for 20.0 1.003169Linear Gradient samples that are at least 10X the IDL.22.0 1.001000Linear Gradient 9.3Assessing Laboratory Performance 30.01.01000Equilibration(Mandatory)9.3.1Laboratory Reagent Blank (LRB) -- The laboratory must analyze at least one blank filter with each 10.4The first analysis is a blank 90% acetone solution sample batch. The LRB should be the last filter followed by calibration. Calibrate with at least three extracted. LRB data are used to assess contamination concentrations, covering no more than one order of from the laboratory environment. LRB values that exceed magnitude, and bracketing the concentrations of the IDL indicate contamination from the laboratory samples. If an autosampler is used, variable volumes environment. If the LRB value constitutes 10% or more ranging from 10 - 100% of the sample injection loop of the analyte level determined in a sample, fresh volume are injected to give a calibration of detector samples or field replicates must be analyzed after the response versus mass of pigment. If doing manual contamination has been corrected and acceptable LRB injections, variable solution concentrations are made and values have been obtained.a fixed sample loop volume is injected for standards and 9.3.2Calibration Check Standard (CALCHK) -- The versus mass or detector response versus concentration laboratory must analyze one CALCHK for every ten samples to verify calibration. If the CALCHK is not +10%of the spectrophotometrically determined concentration,then the instrument must be recalibrated.10.0Calibration and Standardization10.1Allow the visible wavelength detector (440 nm) to warm up for at least 15 min before calibration. Prepare ELUENTS A - C and degas by sparging with an inert gas for 10 minutes or sonicating under vacuum for 5 minutes.Prime the pump for each eluent taking care to remove all air that may be in the liquid lines. Equilibrate the column for ten minutes with 100% of ELUENT A.10.2Remove the SSS from the freezer and allow it to come to room temperature. Add 1 mL of the SSS to a 10-mL volumetric flask and dilute to 10 mL with 90%acetone. Prepare the chl a and b separately and determine the concentrations according to EPA Method 446 using the monochromatic equations for chl a determination. After the concentration of the SSS is determined, add 1 mL of the chl a SSS plus 1 mL of the chl b SSS to a separate 10-mL flask and dilute to volume.Store the calibration standard in a light tight glass bottle.25.0 1.010000Linear Gradient Flow is in mL/min.samples. Calibration can be either detector response (mg/L or µg/L). Linearity across sensitivity settings of the detector must be confirmed if samples are analyzed at a different sensitivity settings from that of the calibration. 10.5Construct a calibration curve of analyte response (area) versus concentration (mg/L in solution) or mass (µg) of pigment and perform a linear regression to determine the slope and y-intercept. A typical coefficient of determination is > 0.99.10.6Calibration must be performed at least weekly although it is not necessary to calibrate daily. Daily mid-point CALCHKs must yield calculated concentrations +10% of the spectrophotometrically determined concentration.11.0Procedure11.1Extraction of Filter Samples11.1.1For convenience, a 10-mL final extraction volume is described in the following procedure. A smaller extraction volume may be used to improve detection limits.11.1.2If sampled filters have been frozen, remove them11.2.1Draw into a clean syringe 2-3 times the injection from the freezer but keep them in the dark. Set up the loop volume and inject into the chromatograph. If using tissue grinder and have on hand laboratory tissues and an autosampler, load the sample tray, prepare a wash bottles containing water and acetone. Workspace schedule and begin analysis. A typical analyses order lighting should be the minimum that is necessary to read might be: (1) blank 90% acetone, (2) CALCHK, (3) 10 instructions and operate instrumentation. Remove a filter samples, (4) CALCHK, (5) QCS.from its container and place it in the glass grinding tube.You may also tear the filter into smaller pieces and push11.2.2If the calculated CALCHK is not +10 of the them to the bottom of the tube with a glass rod. With a spectrophotometrically determined concentration then volumetric pipet, add 3 mL of the aqueous acetone recalibrate with fresh calibration solutions.solution (Sect. 7.6) to the grinding tube. Grind the filteruntil it has become a slurry. (NOTE: Although grinding is required, care must be taken not to overheat the sample. Good judgement and common sense will help you in deciding when the sample has been sufficiently macerated.) Pour the slurry into a 15-mL screw-cap centrifuge tube and, using a 7-mL volumetric pipet, rinse the pestle and the grinding tube with the aqueous acetone. Add the rinse to the centrifuge tube containing the filter slurry. Cap the tube and shake it vigorously. Place it in the dark before proceeding to the next filter extraction. Before placing another filter in the grinding tube, use the acetone and water squirt bottles to thoroughly rinse the pestle, grinding tube and glass rod. To reduce the volume of reagent grade solvents used for rinsing between extractions, thoroughly rinse the grinding tube and glass rod with tap water prior to a final rinse with ASTM Type I water and acetone. The last rinse should be with acetone. Use a clean tissue to remove any filter residue that adheres to the pestle or to the steel rod of the pestle. Proceed to the next filter and repeat the steps above. The last filter extracted should be a blank. The entire extraction with transferring and rinsing takes approximately 5 min. Approximately 500 mL of acetone and water waste are generated per 20 samples from the rinsing of glassware and apparatus.11.1.3Again, shake each tube vigorously before placing them to steep in the dark at 4C. Samples should beoallowed to steep for a minimum of 2 h but not to exceed 24 h. Tubes should be shaken at least once, preferably two to three times, during the steeping period to allow the extraction solution to have maximum contact with the filter slurry.11.1.4After steeping is complete, centrifuge samples for 15 min at 675 g or for 5 min at 1000 g. Draw approximately 1 mL into a glass syringe, attach a 0.45 µm syringe filter, filter the extract into an amber autosampler vial, cap and label the vial. Protect the filtered samples from light and heat. If using a refrigerated autosampler, chill to 10C.o11.2Sample Analysis 12.0Data Analysis and Calculations12.1From the chl a or b area response of the sample, calculate the mass injected or concentration (C) of theE solution that was analyzed using the calibration data. Mass injected must be converted to concentration in extract by dividing mass by volume injected (µL) and multiplying by 1000 to give concentration in mg/L (mg/L = µg/mL). Concentration of the natural water sample may be reported in mg/L by the following formula:C X extract volume (L) X DFEsample volume (L)where:C = concentration (mg/L) of pigment in extract.EDF = any dilution factors.L = liters.12.2LRB and QCS data should be reported with each data set.13.0Method Performance13.1Single Laboratory Performance13.1.1An IDL was determined by preparing a mixed chla (0.703 ppm) and chlb (0.437 ppm) standard. The injected mass yielded 0.004 AU for chl a (0.035 µg) and 0.003 AU for chl b (0.022 µg). Seven replicate 50 µL injections were made and the standard deviation of the calculated concentration was multiplied by three to determine an IDL. The IDL determined for chl a was 0.76 ng and 0.44 ng for chl b. The %RSDs for chl a and chl b was 0.45 and 0.67, respectively.13.1.2MDLs for chl a and chl b were determined by spiking seven replicate filtered samples of Pycnacoccus, extracting and processing according to this method. An447.0-8 Version 1.0 September 1997。

相关文档
最新文档