2019年高考数学课件: 第8章 平面解析几何 第3节 圆的方程学案

合集下载

高考数学复习第八章解析几何第3节圆的方程课件文新人教A版

高考数学复习第八章解析几何第3节圆的方程课件文新人教A版

4+2D+F=0,
F=0.
方法二 画出示意图如图所示,则△OAB 为等腰直角三角形,故
所求圆的圆心为(1,0),半径为 1,所以所求圆的方程为(x-1)2+y2=1,
即 x2+y2-2x=0.
VS
题组二 教材改编⇔最新模拟
3.(P121 练习 T3 改编)圆 C 的直径的两个端点分别是 A(-1,2),B(1,4),则圆 C 的标准方程为____x2_+__(_y_-__3_)2_=__2___.
考点二 与圆有关的轨迹问题
师生 共研
设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平 行四边形MONP,求点P的轨迹.
解 如图,设 P(x,y),N(x0,y0),则线段 OP 的中点坐标 为2x,2y,线段 MN 的中点坐标为x0-2 3,y0+2 4.

(B)
A.R
B.(-∞,1)
C.(-∞,1]
D.[1,+∞)
解析 由方程x2+y2-4x+2y+5k=0可得(x-2)2+(y+1)2=5-5k,此方程表示 圆,则5-5k>0,解得k<1.故实数k的取值范围是(-∞,1).
6.(2019·河北邯郸月考)圆(x+1)2+y2=2 的圆心到直线 y=x+3 的距离为
故圆 P 的方程为 x2+(y-1)2=3 或 x2+(y+1)2=3.
考点三 与圆有关的最值问题
已知实数 x, y 满足方程 x2+y2-4x+1=0. (1)求yx的最大值和最小值; (2)求 y-x 的最大值和最小值.
师生 共研
解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心, 3为半径的圆. (1) yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即 y=kx.当直线 y =kx 与圆相切时,斜率 k 取得最大值或最小值,此时|2kk2-+01|= 3,解得 k=± 3(如图 1). 所以yx的最大值为 3,最小值为- 3.

高考数学一轮复习 第八章 平面解析几何 第3讲 圆的方程课件 文

高考数学一轮复习 第八章 平面解析几何 第3讲 圆的方程课件 文

12/13/2021
第二十四页,共四十页。
【解】 (1)因为 PA 是圆 C 的一条切线, 所以∠CAP=90°, 在 Rt△CAP 中,PA= PC2-AC2= PC2-22. 因为 PC 的最小值为圆心 C 到直线 x-2y=0 的距离 d,且 d = |-2×4| =8 5,
(-2)2+12 5
第二十七页,共四十页。
有关圆的综合问题中应注意常见问题的处理方法,例如圆的 切线、弦长等,同时应注重结合图形加以分析,寻找解题思 路.
12/13/2021
第二十八页,共四十页。
在平面直角坐标系 xOy 中,设二次函数 f(x) =x2+2x+b(x∈R)的图象与两坐标轴有三个交点,经过这三 个交点的圆记为 C. (1)求实数 b 的取值范围; (2)求圆 C 的方程; (3)问圆 C 是否经过某定点(其坐标与 b 无关)?请证明你的结 论.
12/13/2021
第三页,共四十页。
1.圆 C 的直径的两个端点分别是 A(-1,1),B(1,3),则 圆 C 的方程为____x_2+__(_y_-__2_)_2=__2_____. [解析] 因为点 A(-1,1)和 B(1,3)为圆 C 直径的两个端点, 则圆心 C 的坐标为(0,2),
12/13/2021
第二十页,共四十页。
(2)可知mn-+32表示直线 MQ 的斜率, 设直线 MQ 的方程为 y-3=k(x+2),即 kx-y+2k+3=0, 则mn-+32=k.由直线 MQ 与圆 C 有交点, 所以|2k-71++2kk2+3|≤2 2.可得 2- 3≤k≤2+ 3, 所以mn-+32的最大值为 2+ 3,最小值为 2- 3.
12/13/2021
第二十二页,共四十页。

高考数学大一轮总复习 第八章 平面解析几何 8.3 圆的方程课件 理 北师大版

高考数学大一轮总复习 第八章 平面解析几何 8.3 圆的方程课件 理 北师大版
所得弦的长为 2 3,则圆 C 的标准方程为_(_x_-__2_)_2+__(_y_-__1_)_2=__4___。
【解析】因为圆心在直线 x-2y=0 上,且圆 C 截 x 轴所得弦的长为 2 3, 所以可设圆心坐标为(2a,a),则(2a)2=a2+( 3)2,解得 a=±1。又圆 C 与 y 轴的正半轴相切,所以 a=1,故圆 C 的标准方程为(x-2)2+(y-1)2 =4。
【规律方法】 求圆的方程的两种方法 (1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出 方程。 (2)待定系数法: ①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已 知条件列出关于a,b,r的方程组,从而求出a,b,r的值; ②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据 已知条件列出关于D,E,F的方程组,进而求出D,E,F的值。
基础自测
[判一判] (1)确定圆的几何要素是圆心与半径。(√ ) 解析 正确。根据圆的概念可知确定圆的几何要素是圆心与半径。 (2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个 圆。( × ) 解析 错误。方程(x-a)2+(y-b)2=t2中,当t>0时才表示圆心为(a, b),半径为t的一个圆。
【解析】 由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,- 2),设圆心为(a,0)(a>0),所以 a-02+0-22=4-a,解得 a=32,故圆 心为23,0,此时半径 r=4-32=52,因此该圆的标准方程是x-322+y2=245。
(2)圆心在直线 x-2y=0 上的圆 C 与 y 轴的正半轴相切,圆 C 截 x 轴
第八章 平面解析几何
第三节 圆的方程

高考数学一轮复习第8章平面解析几何第3节圆的方程教学案含解析理

高考数学一轮复习第8章平面解析几何第3节圆的方程教学案含解析理

第三节圆的方程[考纲传真] 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.1.圆的定义及方程点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[常用结论]1.圆的三个性质(1)圆心在过切点且垂直于切线的直线上;(2)圆心在任一弦的中垂线上;(3)两圆相切时,切点与两圆心三点共线.2.两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b为定值,r是参数;(2)半径相等的圆系方程:(x-a)2+(y-b)2=r2(r>0),其中r为定值,a,b是参数.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.( )(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( )[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4A [AB 的中点坐标为(0,0),|AB |=[1--2+-1-2=22,所以圆的方程为x 2+y 2=2.]3.点(m 2,5)与圆x 2+y 2=24的位置关系是( ) A .点在圆外 B .点在圆内 C .点在圆上D .不能确定A [将点(m 2,5)代入圆方程,得m 4+25>24.故点在圆外,故选A.] 4.若x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( ) A .R B .(-∞,1) C .(-∞,1]D .[1,+∞)B [由方程x 2+y 2-4x +2y +5k =0可得(x -2)2+(y +1)2=5-5k ,此方程表示圆,则5-5k >0,解得k <1.故实数k 的取值范围是(-∞,1).故选B.]5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1 B .(x -2)2+(y +1)2=1 C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1A [由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切,∴|4a -3|5=1,解得a =2或a =-12(舍去).∴圆的标准方程为(x -2)2+(y -1)2=1.故选A.]1. 过点A (1,-1)( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4C [AB 的中垂线方程为y =x ,所以由y =x ,x +y -2=0的交点得圆心(1,1),半径为2,因此圆的方程是(x -1)2+(y -1)2=4,故选C.]2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________.(x -1)2+(y +4)2=8 [过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =-2+-2+2=22,故所求圆的方程为(x -1)2+(y +4)2=8.]3.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.x 2+y 2-2x =0 [法一:设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0.法二:画出示意图如图所示,则△OAB 为等腰直角三角形,故所求圆的圆心为(1,0),半径为1,所以所求圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0.]直接法:直接求出圆心坐标和半径,写出方程待定系数法①若已知条件与圆心a ,和半径②选择圆的一般方程,依据已知条件列出关于►考法1 【例1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0,则yx的最大值为________,最小值为________.3 -3 [原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设y x =k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =± 3.(如图所示)所以y x的最大值为3,最小值为- 3. ►考法2 截距型最值问题【例2】 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. [解] 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+--t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. ►考法3 距离型最值问题【例3】 已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).求|MQ |的最大值和最小值;[解] (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=+2+-2=42,∴|MQ |m ax =42+22=62, |MQ |min =42-22=2 2.形如形式的最值问题可转化为动直线斜率的最值问题形如形如x -2+y -2形式的最值问题可转化为动点到定点的距离的平方的最值问题.(1)如果实数x ,y 满足圆(x -2)2+y 2=1,那么y +3x -1的取值范围是________. (2)由直线y =x +1上的一点向圆x 2-6x +y 2+8=0引切线,则切线长的最小值为________.(1)⎣⎢⎡⎭⎪⎫43,+∞ (2)7 [(1)(x ,y )在圆上,y +3x -1表示的是圆上的点(x ,y )与点(1,-3)连线的斜率,结合图象(图略),求出过点(1,-3)与圆相切的一条切线的斜率不存在,另一条切线斜率设为k ,切线方程为kx -y -3-k =0,圆心到直线的距离等于半径,即|k -3|1+k2=1,k =43,故取值范围是⎣⎢⎡⎭⎪⎫43,+∞.(2)切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d 2-r 2=8-1=7.]【例4】 P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt△PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON (图略),则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 直接法:直接根据题设给定的条件列出方程求解定义法:根据圆的定义列方程求解几何法:利用圆的几何性质得出方程求解代入法相关点法:找出要求的点与已知点的关系,已知点A (-1,0),点B (2,0),动点C 满足|AC |=|AB |,求点C 与点P (1,4)所连线段的中点M 的轨迹方程.[解] 由题意可知:动点C 的轨迹是以(-1,0)为圆心,3为半径长的圆,方程为(x +1)2+y 2=9.设M (x 0,y 0),则由中点坐标公式可求得C (2x 0-1,2y 0-4), 代入点C 的轨迹方程得4x 20+4(y 0-2)2=9, 化简得x 20+(y 0-2)2=94,故点M 的轨迹方程为x 2+(y -2)2=94.1.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10C [设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴|MN |=46,故选C.]2.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.⎝ ⎛⎭⎪⎫x -322+y 2=254 [由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.]3.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. [解] (1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=y 1y 224=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4,故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =m 2+2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。

高考数学一轮复习第八章平面解析几何8.3圆的方程课件文

高考数学一轮复习第八章平面解析几何8.3圆的方程课件文

答案:(-1,1)
热点命题· 突破 02
课堂升华 强技提能
热点一 【例 1】
求圆的方程 根据下列条件,求圆的方程.
(1)经过 P(-2,4)、Q(3,-1)两点,并且在 x 轴上截得的弦长 等于 6; (2)圆心在直线 y=-4x 上,且与直线 l:x+y-1=0 相切于点 P(3,-2).
【解】 (1)设圆的方程为 x2+y2+Dx+Ey+F=0,将 P、Q 两 点的坐标分别代入得
第八章
平面解析几何
第三节
圆的方程
1.掌握确定圆的几何要素,掌握圆的标准 方程与一般方程. 2 . 初步了解用代数方法处理几何问题的 思想.
主干知识· 整合 01
课前热身 稳固根基
Hale Waihona Puke 知识点一 圆的方程 1.圆的定义 在平面内,到______的距离等于______的点的______叫圆. 2.圆的标准方程 (x-a)2+(y-b)2=r2(r>0),其中______为圆心,__为半径. 3.圆的一般方程 x2+y2+Dx+Ey+F=0 表示圆的充要条件是____________, 其 中圆心为____________,半径为________________.
解析: 方程 x2+y2+4mx-2y+5m=0 可化为(x+2m)2+(y-1)2 1 =4m2-5m+1, 它表示圆的充要条件是 4m2-5m+1>0, 即 m<4或 m>1.
1 答案:m<4或 m>1
知识点二 点 Mx0,y0与圆x-a2+y-b2=r2 的位置关系 1.若 M(x0,y0)在圆外,则__________________. 2.若 M(x0,y0)在圆上,则__________________. 3.若 M(x0,y0)在圆内,则__________________.

高考数学一轮总复习教学课件第八章 平面解析几何第3节 圆的方程

高考数学一轮总复习教学课件第八章 平面解析几何第3节 圆的方程



+
+Dx0+Ey0+F>0.
( √)
(4)方程x2+y2-4x-2y+5=0表示圆心为(2,1)的圆.( × )
2.已知圆的标准方程是(x-3)2+(y+2)2=16,下列各点中在圆内的是
(
)
A.(2,2)
B.(1,3)
C.(-1,-2)

D.(0,-1)
解析:A中(2-3)2+(2+2)2=17>16,在圆外;
(1)直角顶点C的轨迹方程;
解:(1)法一
设C(x,y),因为A,B,C三点不共线,所以y≠0.
因为AC⊥BC,且BC,AC斜率均存在,
所以 kAC·kBC=-1,又 kAC=

所以+·

-

,kBC=

+
-
,
=-1,
化简得x2+y2-2x-3=0.
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
连线组成的三角形为直角三角形,该直角三角形的外接圆的圆心为
点(0,0)和点(4,2)所连线段的中点,即(2,1),直径2R等于点(0,0)和


点(4,2)所连线段的长,即 2R= (-) + (-) ,可得 R= ,所以圆的
2
2
方程为(x-2) +(y-1) =5.
③若圆过(0,0),(-1,1),(4,2)三点,设过这三点的圆的一般方程为
已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
[针对训练]
(1)经过坐标原点,且圆心坐标为(-1,1)的圆的一般方程是(

2019届高考数学一轮复习第八章解析几何第三节圆的方程课件理

2019届高考数学一轮复习第八章解析几何第三节圆的方程课件理

4.若方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆,则 a 的取值 范围是________. 解析:方程 x2+y2+ax+2ay+2a2+a-1=0 可化为x+a22+ (y+a)2=-34a2-a+1,因为该方程表示圆,所以-34a2-a+ 1>0,即 3a2+4a-4<0,所以-2<a<23. 答案:-2,23
当 m=-12时,直线 l 的方程为 2x+y-4=0,圆心 M 的坐标为 94,-12,圆 M 的半径为 485,圆 M 的方程为x-942+y+122 =8156. 法二:由(1)可得 y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4. 故圆心 M 的坐标为(m2+2,m). 又圆 M 过坐标原点 O 和点 P(4,-2), ∴|MO|=|MP|, 即(m2+2)2+m2=(m2-2)2+(m+2)2, 整理得 2m2-m-1=0,解得 m=1 或 m=-12.
5.若点(1,1)在圆(x-a)2+(y+a)2=4 的内部,则实数 a 的取值 范围是________. 解析:因为点(1,1)在圆(x-a)2+(y+a)2=4 的内部,所以(1 -a)2+(1+a)2<4. 即 a2<1,故-1<a<1. 答案:(-1,1)
课 堂 考点突破
练透基点,研通难点,备考不留死角
所以圆心到直线 ax+y-1=0 的距离 d=|a+a24+-11|=1,解
得 a=-43.
答案:A
3.(教材习题改编)圆 C 的直径的两个端点分别是 A(-1,2), B(1,4),则圆 C 的标准方程为________. 解析:设圆心 C 的坐标为(a,b), 则 a=-12+1=0,b=2+2 4=3,故圆心 C(0,3). 半径 r=12|AB|=12 [1--1]2+4-22= 2. ∴圆 C 的标准方程为 x2+(y-3)2=2. 答案:x2+(y-3)2=2

高考数学大一轮复习 第八章 平面解析几何 第3课时 圆的方程课件 理 北师大版.ppt

高考数学大一轮复习 第八章 平面解析几何 第3课时 圆的方程课件 理 北师大版.ppt

不表示圆,而表示一个点-D2 ,-E2,当 D2+E2-4F<0 不表示任何图形.
时,
(3)当已知圆心坐标和半径求圆的方程时,一般设为标准方程 (x-a)2+(y-b)2=r2(r>0),当已知圆上三点时一般设为一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0),当已知圆的直径的两个 端点时,一般设为 (x-x1)(x-x2)+(y-y1)·(y-y2)=0 .
解①②得a=2,b=4或a=-2,b=-4. ∴所求圆的方程为(x-2)2+(y-4)2=10 或(x+2)2+(y+4)2=10.
法二:根据图形的几何性质:半径、弦长的一半、弦心距构 成直角三角形.如图,由勾股定理,可得弦心距
d= r2-4 2 22= 10-8= 2.
∵弦心距等于圆心(a,b)到直线x-y=0的距离, ∴d=|a-2b|= 2.③ 又已知b=2a.④ 解③④得a=2,b=4或a=-2,b=-4. ∴所求圆的方程是(x-2)2+(y-4)2=10 或(x+2)2+(y+4)2=10.
是( )
1
3
A.2
B.2
2 C. 2
32 D. 2
解析:配方得(x-1)2+(y+1)2=1,圆心(1,-1)到直线的距 离d=|1+12+1|=3 2 2,故选D.
答案:D
2.若原点(0,0)在圆(x-m)2+(y+m)2=2的内部,则实数m的
取值范围是( )
A.(0,1)
B.(-1,1)
C.(- 2, 2)
(1)从题组求解可以看出,确定一个圆的方程,需要三个独立 的条件;“选形式,定参数”是求圆的方程的基本方
法,即根据题设条件恰当选择圆的方程的形式,进而确定其 中的三个参数.
(2)解答与圆有关的问题,应注意数形结合,充分运用圆的几 何性质,简化运算.

2019版高考数学一轮复习第8章平面解析几何8.3圆的方程课件文 共60页

2019版高考数学一轮复习第8章平面解析几何8.3圆的方程课件文 共60页
当 t=4 2时,取等号.故选 D.
2.已知圆 C1:(x-2)2+(y-3)2=1,圆 C2:(x-3)2+(y -4)2=9,M,N 分别是圆 C1,C2 上的动点,P 为 x 轴上的 动点,则|PM|+|PN|的最小值为( )
A.5 2-4 B. 17-1 C.6-2 2 D. 17
解析 圆 C1,C2 的图象如图所示.
解 设点 C 为圆心,因为点 C 在直线 x-2y-3=0 上, 所以可设点 C 的坐标为(2a+3,a). 又该圆经过 A,B 两点, 所以|CA|=|CB|,即 2a+3-22+a+32=
2a+3+22+a+52,解得 a=-2,所以圆心 C 的 坐标为(-1,-2),半径 r= 10.
解析 设|PO|=t,向量P→A与P→B的夹角为 θ,则|P→A|=|P→B |= t2-1,sinθ2=1t ,cosθ=1-2sin2θ2=1-t22,∴P→A·P→B= |P→A||P→B|cosθ=(t2-1)1-t22(t>1),∴P→A·P→B=t2+t22-3(t> 1),利用基本不等式可得P→A·P→B的最小值为 2 2-3,当且仅
题型 2 与圆有关的最值问题 角度 1 与圆几何性质有关的最值问题(多维探究)
典例 (2018·抚顺模拟)已知实数 x,y 满足方程 x2+
y2

4x

1

0


y x





____3____





__-___3___.
求 k=yx- -00的最值转化为直线 y=kx 与圆
相切.
解析 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆 心, 3为半径的圆.

数学一轮复习第八章平面解析几何8.3圆的方程课件

数学一轮复习第八章平面解析几何8.3圆的方程课件

解析 四点共圆,设圆的方程为x2+y2+Dx+Ey+F=0,
25+0+5D+0+F=0, 则1+0-D+0+F=0,
9+9-3D+3E+F=0,
D=-4, 解得E=-235,
F=-5,
所以圆的方程为 x2+y2-4x-235y-5=0,
将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
§8.3 圆的方程
INDEX
基础落实 回扣基础知识 训练基础题目
知识梳理
圆的定义与方程
定义 标准式
方程 一般式
平面内到 定点 的距离等于 定长 的点的轨迹叫做圆
(x-a)2+(y-b)2=r2(r>0)
圆心为_(a_,__b_)_ 半径为_r_
充要条件:_D_2_+__E_2_-__4_F_>_0__
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
方法二 设AB的中点为D,由中点坐标公式得D(1,0), 由直角三角形的性质知 CD=21AB=2. 由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C
三点不共线,所以应除去与x轴的交点).
所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
所以点P的轨迹是以(-3,4)为圆心,2为半径的圆,
直线 OM 与轨迹相交于两点-95,152和-251,258,不符合题意,舍去, 所以点 P 的轨迹为(x+3)2+(y-4)2=4,除去两点-59,152和-251,258.
题型三 师生共研 与圆有关的最值问题
例2 (1)(2020·保定质检)已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2
提示 点和圆的位置关系有三种.

平面解析几何_PPT课件

平面解析几何_PPT课件

y_-__y_0_=__k_(_x_-__x_0_) 不含_垂__直__于___x_轴_
的直线
碍 要 破 除
高 频
斜截 斜率为k,纵截 式 距为b
_y_=__k_x_+___b_
不含_垂__直__于__x_轴__
的直线
解 题
考 点 要 通 关
两点 式
过两点(x1,y1), (x2,y2),
_yy_2-_-_y_y1_1=__x_x_2--__x_x1_1
不包括垂___直__于__坐__ 标轴 的直线
训 练 要 高 效
(x1≠x2,y1≠y2)
目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程
基名


几何条件
方程
局限性

知称



要 打
截 在x轴、y轴上
不包括_垂__直__于__坐__
要 破

距 的截距分别为a, __xa_+__by_=__1__ 标轴 和_过__原__点__
目录
第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两直线的位置关系 第三节 圆 的 方 程 第四节 直线与圆、圆与圆的位置关系 第五节 椭圆 第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线的综合问题
新课标(理科)
第一节 直线的倾斜角与斜率、直线的方程
第八章 平面解析几何
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率 公式为 k=xy22--xy11=xy11--xy22 .
训 练 要 高 效
目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程

高中数学 高三一轮 第八章 平面解析几何 8.3 圆的方程【教案】

高中数学 高三一轮 第八章 平面解析几何 8.3 圆的方程【教案】

高三一轮第八章平面解析几何
8.3 圆的方程
【教学目标】
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
2。

初步了解用代数方法处理几何问题的思想。

【重点难点】
1。

教学重点:掌握确定圆的几何要素及圆的标准方程
与一般方程;
2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;
【教学策略与方法】
自主学习、小组讨论法、师生互动法
【教学过程】

错误!—-错误!
考点三: 与圆有关的最值问题1。

已知实数x,y满足方程x2+y2-4x+1=0。

求:
(1)错误!的最大值和最小值;(2)y-x的最小值;
(3)x2+y2的最大值和最小值.【解】(1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,以3为半径的圆.
设错误!=k,即y=kx,则圆心(2,0)到直线y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 圆的方程
[考纲传真] 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.
(对应学生用书第114页) [基础知识填充] 1.圆的定义及方程
2. 点与圆的位置关系
点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [知识拓展]
1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是
⎩⎪⎨⎪⎧
A =C ≠0,
B =0,D 2
+E 2
-4AF >0.
2.以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. [基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)确定圆的几何要素是圆心与半径.( )
(2)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( )
(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( )
(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20
+Dx 0+Ey 0+F >0.( ) [解析] 由圆的定义及点与圆的位置关系,知(1)(3)(4)正确. (2)中,当t ≠0时,表示圆心为(-a ,-b ),半径为|t |的圆,不正确. [答案] (1)√ (2)× (3)√ (4)√
2.(教材改编)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 ( )
A .a <-2或a >2
3
B .-2
3<a <0
C .-2<a <0
D .-2<a <2
3
D [由题意知a 2+4a 2-4(2a 2+a -1)>0,解得-2<a <23
.]
3.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则
a =( )
A .-4
3
B .-34
C .
3
D .2
A [圆x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1
=1,解得a =-43.]
4.(2017·西安质检)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.
x 2+(y -1)2=1 [两圆关于直线对称则圆心关于直线对称,半径相等,则圆C 的圆心为(0,1),
半径为1,标准方程为x 2+(y -1)2=1.]
5.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________. 【导学号:00090274】
(x -2)2+y 2=10 [设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即
a +12+1=a -12+9,
解得a =2,所以圆心为C (2,0), 半径|CA |=
2+1
2+1=
10,
∴圆C 的方程为(x -2)2+y 2=10.]
(对应学生用书第115页)
(1)(2015·,则△ABC 外接圆的圆心到原点的距离为( ) A .5
3
B .213
C .
253
D .43
(2)(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心
到直线2x -y =0的距离为
4
55
,则圆C 的方程为________.
(1)B (2)(x -2)2+y 2=9 [(1)法一:在坐标系中画出△ABC (如图),利用两点间的距离公式可得|AB |=|AC |=|BC |=2(也可以借助图形直接观察得出),所以△ABC 为等边三角形.设BC 的中点为D ,点E 为外心,同时也是重心.所以|AE |=23|AD |=23
3
,从而|OE |=。

相关文档
最新文档