模拟电子第三章-三极管
模拟电路讲课+说课
均加反偏。
重点讨论BJT的放大模式,以NPN型为例,讨论结果对PNP型 同样适用,只是所需电压极性相反,产生的电流方向相反。
(2)内部条件:
①发射结为不对称结:e区掺杂浓度远大于b区;
②基区宽度很小;
③集电结面积大于发射结面积(约3~5倍)。
目的: 使E区多子自由电子通过发射结注入、基区扩散(复合)和集电区 收集(通过C结漂移)三个环节将IEN 转化为ICN ,大小仅受E结电压控 制。
许猛华电信1302教学对象主导教材高等教育出版社出版康华光主编电子技术基础模拟部分辅助教材电子线路线性部分第四版高教出版社模拟电子技术基础教学章节第三章三极管及其放大电路放大电路的频率响应二教学对象电气信息类专业大学二年级学生教法教什么直观教学法模像直观三极管实物三教法学法学法学什么实践与理论相结合四教学过程课后学生学习的反馈学生的课堂反应备课
BJT是由两个PN结背对背排列组成的。
实物图像
半导体三极管的型号
3DG110B
用字母表示同一型号中的不同规格 用数字表示同种器件型号的序号
用字母表示器件的种类
用字母表示材料
第二位:A锗PNP管、B锗NPN管、 C硅PNP管、D硅NPN管 第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管
ENIM
( 2) 共射极
(3共集电极
四、BJT的主要参数
(1)
(2)
(3)
电流 放大系数
极间 反向电流
极限参数
成功需要有一颗探索科学的心
THANK YOU
一、BJT内部的载流子传输过程
1. 因为发射结正偏,所以发射区 向基区注入电子 ,形成了扩散电 流IEN 。同时从基区向发射区也有 空穴的扩散运动,形成的电流为 IEP。但其数量小,可忽略。 所以 发射极电流I E ≈ I EN 。 2. 发射区的电子注入基区后,变成 了少数载流子。少部分遇到的空 穴复合掉,形成 IBN 。所以基极电 流I B ≈ I BN 。大部分到达了集电区 的边缘。
模拟电子技术三极管特性实验
实验:三极管特性验证三极管有电流放大作用,并且各级间电压与电流之间有一定的关系,而其关系可以用曲线表示,即输出特性曲线,本实验将对三极管的电流放大和输出曲线进行验证,以加深读者对三极管特性的理解。
1.实验目的(1)验证三极管电流分配关系 (2)验证三极管的输出特性曲线2.实训原理(1)三极管内部载流子的运动引出三极管各极电流的关系是 I C =I CN +I CBOI B =I BN -I CBO I E =I CN +I BN =I C +I B(2)三极管的输出特性曲线是指当IB 一定时,输出回路的IC 与UCE 之间的曲线关系,用函数表示为I C =f (U CE )|I B=常数3.测试电路图(1)三极管电流分配关系实验:仿真实验电路图如图2-1:图2-1 仿真电路图I BI cI E用到的元器件如表2-2所示。
表2-2元器件表测试数据:表2-3 I B 、I C 、I E 测试数据数据分析:① 由表2-3可知:I E =I B +I C 。
满足基尔霍夫定律,即流进三极管的电流等于流出管子的电流。
② I C 与I B 的关系。
取表中第四列和第五列数据可得三极管的直流放大作用β=BC I I =05.03.11=226 三极管的交流放大作用β=0.03-0.049.68-11.3I I B C =∆∆=162 由此可见,当I B 有微弱变化时,I C 有较大的变化,这就是三极管的放大作用的实质----以小控制大,以弱控制强。
实验作业:①改变电阻R1、R2和滑动变阻器RP1的阻值,调整到I E =0,得出怎样的结论?如果调整到I B =0又会怎样呢?②测试电路是共射放大电路,如果用共基放大电路或共集放大电路作为测试电路电流分配关系是如何呢?(2)验证晶体管的输入特性曲线和输出特性曲线仿真电路图如图2-4用到的元器件如表2-5将“TRANSFER”仿真图表拖动到合适的地方。
选中电流探针,将其拖入到“TRANSFER”仿真图表中,双击“TRANSFER”仿真图表2-6 “TRANSFER”仿真图表参数表此实验中将参数设置成如图2-7图2-7 设置参数图参数设置完成后,点选Graph/Simulate(快捷键:空格)命令,开始仿真,得到如图2-4的输出特性仿真结果图。
北京交通大学模拟电子技术习题及解答第三章双极型三极管基本放大电路
第三章双极型三极管基本放大电路3-1 选择填空1.晶体管工作在放大区时,具有如下特点______________。
a. 发射结正偏,集电结反偏。
b. 发射结反偏,集电结正偏。
c. 发射结正偏,集电结正偏。
d. 发射结反偏,集电结反偏。
2.晶体管工作在饱和区时,具有如下特点______________。
a. 发射结正偏,集电结反偏。
b. 发射结反偏,集电结正偏。
《c. 发射结正偏,集电结正偏。
d. 发射结反偏,集电结反偏。
3.在共射、共集、共基三种基本组态放大电路中,电压放大倍数小于1的是______组态。
a. 共射b. 共集c. 共基d. 不确定4.对于题3-1图所示放大电路中,当用直流电压表测得U CE ≈V CC 时,有可能是因为______,测得U CE ≈0时,有可能是因为________。
题3-1图ccR L开路 b. R C 开路 c. R B 短路 d. R B 过小5.对于题3-1图所示放大电路中,当V CC =12V ,R C =2k Ω,集电极电流I C 计算值为1mA 。
用直流电压表测时U CE =8V ,这说明______。
a.电路工作正常b. 三极管工作不正常c. 电容C i 短路d. 电容C o短路 &6.对于题3-1图所示放大电路中,若其他电路参数不变,仅当R B 增大时,U CEQ 将______;若仅当R C 减小时,U CEQ 将______;若仅当R L 增大时,U CEQ 将______;若仅更换一个β较小的三极管时,U CEQ 将______; a.增大 b. 减小 c. 不变 d. 不确定7.对于题3-1图所示放大电路中,输入电压u i 为余弦信号,若输入耦合电容C i 短路,则该电路______。
a.正常放大b. 出现饱和失真c. 出现截止失真d. 不确定 8. 对于NPN 组成的基本共射放大电路,若产生饱和失真,则输出电压_______失真;若产生截止失真,则输出电压_______失真。
完整版)模拟电子技术基础-知识点总结
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
模拟电子电路——三极管
第2章基本放大电路本章讨论的主要问题●放大的对象是什么?如何才能保证放大电路正常工作?●放大电路主要有哪些性能指标?●如何运用图解分析法分析放大电路的非线性失真?求解最大不失真电压?●如何建立三极管的小信号模型?等效模型分析法是否适用于分析大信号?●三极管的三种基本放大电路各有什么特点?●如何利用场效应管构成放大电路?它和三极管构成的放大电路一样吗?●场效应管放大电路的小信号模型与三极管的小信号模型有何不同?如何应用小信号模型进行分析?2.1放大电路的基本概念放大电路(亦称放大器)是一种应用极为广泛的电子电路。
在电视、广播、通信、测量仪表以及其它各种电子设备中,是必不可少的重要组成部分。
它的主要功能是将微弱的电信号(电压、电流、功率)进行放大,以满足人们的实际需要。
例如扩音机就是应用放大电路的一个典型例子。
其原理框图如图2.1.1所示。
当人们对着话筒讲话时,声音信号经过话筒(传感器)被转变成微弱的电信号,经放大电路放大成足够强的电信号后,才能驱动喇叭使其发出比原来大得多的声音。
放大电路放大的实质是能量的控制和转换。
在输入信号作用下,放大电路将直流电源所提供的能量转换成负载(例如喇叭)所获得的能量,这个能量大于信号源所提供的能量。
因此放大电路的基本特征是功率放大,即负载上总是获得比输入信号大得多的电压或电流信号,也可能兼而有之。
那么,由谁来控制能量转换呢?答案是有源器件,即三极管和场效应管等等。
2.1.1基本放大电路的组成和工作原理1.基本放大电路的组成所谓基本放大电路是指由一个放大器件(例如三极管)所构成的简单放大电路。
由前面的分析可知,三极管有三个电极,因此有三种不同的电路组态。
下面以应用最广泛的共射电路为例,说明其组成原则和工作原理。
图2.1.2所示电路中,AO为放大电路的输入端,外接需要放大的信号u i;BO为放大电路的输出端,外接负载,发射极是放大电路输入和输出的公共端,所以该电路是共射基本放大电路。
《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路
3.2 双极型晶体管
3.2.4 晶体管的共射特性曲线
2.输出特性曲线—— iC=f(uCE) IB=const
以IB为参变量的一族特性曲线
(1)当UCE=0V时,因集电极无收集
作用,IC=0;
(2)随着uCE 的增大,集电区收集电
子的能力逐渐增强,iC 随着uCE 增加而
增加;
(3)当uCE 增加到使集电结反偏电压
电压,集电结应加反向偏置电压。
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
1. 晶体管内部载流子的传输
如何保证注入的载流
子尽可能地到达集电区?
P
N
IE=IEN + IEP
IEN >> IEP
IC= ICN +ICBO
ICN= IEN – IBN
IEN>> IBN
ICN>>IBN
N
IEP
IE
3. 晶体管的电流放大系数
(1) 共基极直流电流放大系数
通常把被集电区收集的电子所形成的电流ICN 与发射极电流
IE之比称为共基电极直流电流放大系数。
ത
I CN
IE
由于IE=IEP+IEN=IEP+ICN+IBN,且ICN>> IBN,ICN>>IEP。通常ത
的值小于1,但≈1,一般
ത
为0.9-0.99。
ത
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
3. 晶体管的电流放大系数
(2) 共射极直流电流放大系数
I C I CN I CBO I E I CBO ( I C I B ) I CBO
第三章 双极性三极管及其放大电路基础
一、双极型三极管BJT
BJT放大的条件和电流分配关系
放大的条件: 发射结正向偏置;集电结反向偏置。 电流分配关系:
I C I B I E I B IC (1 ) I B
这是贯穿模拟电子电路分析的两个最重要的概念
无量纲 电导
三、放大电路的分析方法
小信号模型分析法(等效电路法)
1、晶体管的h参数等效模型(交流等效模型) 交流等效模型(按式子画模型)
U be h11 I b h12U CE I C h21 I b h22U CE
三、放大电路的分析方法
小信号模型分析法(等效电路法)
2、h参数的物理意义
放大的概念与放大电路的性能指标
1、放大的概念
放大的对象:变化量 放大的本质:能量的控制
判断电路能否放 大的基本出发点
放大的特征:功率放大
放大的基本要求:不失真
二、基本共射极放大电路
放大的概念与放大电路的性能指标
2、性能指标
任何放大电路均可看成为两端口网络。
输出电流 输入电流
信号源 内阻
信号源
二、基本共射极放大电路
基本共射放大电路的组成及各元件的作用
动态信号作用时:
uI ib ic iRc uCE (uo )
输入电压 uI为零时,晶体管各 极的电流、b-e间电压、管压降, 称为静态工作点Q。记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。 基本共射放大电路
IC 1 100 I B 0.01
IC 5 50 I B 0.1
一、双极型三极管BJT
讨论
模电课件:第三章三极管
动态:输入信号不为零时,放大电路的工作
状态,也称交流工作状态。
电路处于静态时,三极管个电极的电压、电
流在特性曲线上确定为一点,称为静态工作点,
常称为Q点。一般用IB、 IC、和VCE (或IBQ、ICQ、 和VCEQ )表示。
# 放大电路为什么要建立正确的静态?
3.2 共 射极放 大电路
5. 直流通路和交流通路 (思考题)
Rc CCbb22
TTT Cb2
VVCCCC
Rb
VBB
(d) ((bf))
3.3 图解分析法
3.3.1 静态工作情况分析
用近似估算法求静态工作点 用图解分析法确定静态工作点
3.3.2 动态工作情况分析
交流通路及交流负载线 输入交流信号时的图解分析 BJT的三个工作区 输出功率和功率三角形
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示。 共集电极接法,集电极作为公共电极,用CC表示;
4. 共射放大
若 vI = 20mV 使 iB = 20 uA 设 = 0.98
则 iC iB
1 iB
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
vCE = 0V vCE 1V
得到
且
IE= (1+ ) IB
IC
IB
3半导体三极管
一、复习引入三极管是电子电路中基本的电子器件之一,在模拟电子电路中其主要作用是构成放大电路。
在数字电路中主要作用是作为电子开关。
二、新授(一)三极管的结构和分类根据不同的掺杂方式,在同一个硅片上制造出三个掺杂区域,并形成两个PN结,三个区引出三个电极,就构成三极管。
采用平面工艺制成的NPN型硅材料三极管的结构示意图如图1(a)所示。
位于中间的P区称为基区,它很薄且掺杂浓度很低,位于上层的N区是发射区,掺杂浓度最高;位于下层的N区是集电区,因而集电结面积很大。
显然,集电区和发射区虽然属于同一类型的掺杂半导体,但不能调换使用。
如图1(b)所示是NPN型管的结构示意图,基区与集电区相连接的PN结称集电结,基区与发射区相连接的PN结称发射结。
由三个区引出的三个电极分别称集电极c、基极b和发射极e。
(a)NPN型硅材料三极管结构示间意图(b)NPN型管的结构示意图(c)NPN型和PNP型管的符号图1 三极管的结构示意图按三个区的组成形式,三极管可分为NPN型和PNP型,如图1(c)所示。
从符号上区分,NPN型发射极箭头向外,PNP 型发射极箭头向里。
发射极的箭头方向除了用来区分类型之上,更重要的是表示三极管工作时,发射极的箭头方向就是电流的流动方向。
三极管按所用的半导体材料可分为硅管和锗管;按功率可分为大、中、小功率管;按频率可分为低频管和高频管等。
常见三极管的类型如图2所示。
3DG6 NPN型高频小功率硅管3AD6 PNP型低频大功率锗管3AX31 PNP型高频小功率锗管3DX204 NPN型低频小功率硅管图2 常见三极管的类型(二)三极管的电流放大作用及其放大的基本条件三极管具有电流放大作用。
下面从实验来分析它的放大原理。
1.三极管各电极上的电流分配用NPN型三极管构成的电流分配实验电路如图3所示。
电路中,用三只电流表分别测量三极管的集电极电流I C、基极电流I B和发射极电流I E,它们的方向如图中箭头所示。
模拟电子技术三极管详解
GS
uGS iD = IDO( −1)2 UGS(th)
uGS = 2UGS(th) 时的 iD 值 ( )
半导体三极管 第 2 章 半导体三极管
二、耗尽型 N 沟道 MOSFET
Sio2 绝缘层中掺入正离子 D 时已形成沟道; 在 uGS = 0 时已形成沟道; B 在 DS 间加正电压时形成 iD, uGS ≤ UGS(off) 时,全夹断。 全夹断。 ( ) S
ICEO O
U(BR)CEO
1. ICM — 集电极最大允许电流,超过时 β 值明显降低。 集电极最大允许电流, 值明显降低。 2. PCM — 集电极最大允许功率损耗 PC = iC × uCE。 3. U(BR)CEO — 基极开路时 C、E 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)CBO — 发射极开路时 C、B 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)EBO — 集电极极开路时 E、B 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)CBO > U(BR)CEO > U(BR)EBO ) ) )
半导体三极管 第 2 章 半导体三极管
2.2.1 MOS 场效应管 一、增强型 N 沟道 MOSFET (Mental Oxide Semi— FET) ) 1. 结构与符号
S
N+
MOSFET结构 结构
G
D
N+
耗尽层
(掺杂浓度低) 掺杂浓度在硅片表面生一 用金属铝引出 用扩散的方法 在绝缘层上喷金 G — 栅极 Gate 层薄 SiO2 绝缘层 G 属铝引出栅极 G 源极 S 和漏极 D 制作两个 N 区 D — 漏极 Drain
半导体三极管 第 2 章 半导体三极管
模拟电子技术第三章 场效应三极管
d g s
源 极
上页 下页 首页
栅 极
N沟道结型场效应管的结构和符号
3
s
2. 工作原理
⑴ 当uDS = 0 时, uGS 对耗尽层和导电沟道的影响。
ID=0 ID=0
d
P+
d
N 型 沟 道
P+ P+
d
P+ P+ P+
g
g
N 型 沟 道
g
s uGS = 0
s uGS < 0
4
预夹断轨迹
恒流区
IDO O
UGS(th) 2UGS(th) uGS/V
O
截止区
uDS/V
转移特性曲线可近似用以下公式表示:
iD I DO ( uGS U GS(th) )
2
当uGS ≥ UGS(th)时
12
上页
下页
首页
2. N沟道耗尽型MOS场效应管 预先在二氧化硅中掺入大 量的正离子,
使uGS = 0 时,
形成一个N型导电沟道。
又称之为反型层 开启电压,用uGS(th)表示
导电沟道随uGS 增大而增宽。
10
B uGS > UGS(th)时 形成导电沟道
上页 下页 首页
uDS对导电沟道的影响
uGS为某一个大于UGS(th)的固定值, 在漏极和源极之间加正电压,且 s uDS < uGS - UGS(th) 即uGD = uGS - uDS > UGS(th) 则有电流iD 产生,
在制造时就具有 原始导电沟道
31
3. 场效应管的主要参数
(1) 开启电压 UGS(th):是增强型MOS管的参数 (2) 夹断电压 UGS(off): 是结型和耗尽型 (3) 饱和漏电流 IDSS: MOS管的参数
模拟电子技术第三章 模拟集成基本单元电路练习题及解答
第三章 模拟集成基本单元电路练习题及解答3.4 题3.4图是以三极管比例恒流源作为有源负载的射极跟随器电路(基极偏置电路未画出)。
若三极管的80=β,V U BE 6.0=时,求i R ,u A 和o R 。
解;画出电路的等效恒流源模型和交流通路分别如题3.4解图(a)和(b)所示。
由题3.4图有mA K K R R U E I BE E R 01.256.01.56.0121≈+-=+--=mA m I R R I R C 513.001.22.256.0212=⨯==∞≈o r 忽略Ω≈⨯=='K I U r C Te b 4513.026802βΩ=+=K r r r e b bb be 3.4'' (取Ω='300b b rΩ=⨯+=++=K K K R r R L be i 81410813.4)1(β995.010*******)1()1(≈⨯+⨯=+++=KK KR r R A L be L u ββΩ≈=+=538140001βbe o r R3.6 电路如题3.6图所示。
已知:Ω==K R R L c 10,Ω=K R em 1.5,Ω===K R R R b b b 221,V E C 24=,V E E 12-=-。
设1V 和2V 的β相等均为60,be r 均+-u o u i + E E +-u o u i +-C =12VE E =-12V o题3.4图(a)(b)+-u o u i + -i题3.4解图为ΩK 1。
(1)试求差模电压放大倍数ud A 、差模输入电阻id R 和输出电阻o R ,并说明o u 与i u 的相位关系;(2)求该电路的CMR K 。
(3)若断开2b R 的接“地”端,并在该端与“地”之间输入一交流电压mV t u i ωsin 25082=;并令原输入mV t u u i i ωsin 25001==。
试求出此时输出电压o u 的瞬时值表达式。
模拟电子技术教程第3章习题答案
第3章 习题1. 概念题:(1)在放大电路中,三极管或场效应管起的作用就是 将一种形式的电量转换为另一种形式的电量 。
(2)电源的作用是 为能量转换提供能源 ,如果离开电源,放大器可以工作吗( 不能 )(3)单管放大器的讲解从电容耦合形式开始,这是因为 阻容耦合放大器设计和计算相对来说要简单点 ,如果信号和负载直接接入,其 工作点 的计算将要复杂的多。
(4)在共射放大器的发射极串接一个小电阻,还能认为是共射放大器吗( 能 )在共集放大器的集电极串接一个小电阻,还能认为是共集放大器吗( 能 )(5)在模电中下列一些说法是等同的,(A 、C 、F )另一些说法也是等同的。
(B 、D 、E )A. 直流分析B. 交流分析C. 静态分析D. 动态分析E. 小信号分析F. 工作点分析(6)PN 结具有单向导电性,信号电压和电流的方向是随时间变化的,而交流信号却能在放大电路中通过并获得放大,这是因为 放大器输出端获取的交流信号其实就是电流或电压的相对变化量 。
(7) β大的三极管输入阻抗 也大 ,小功率三极管的基本输入阻抗可表示为EQTbb'be I U )1(r r β++≈。
(8)画直流通路比画交流通路复杂吗(不)在画交流通路时直流电压源可认为 短路 ,直流电流源可认为 开路 ,二极管和稳压管只考虑其 动态内阻 即可。
(9)求输出阻抗时负载R L 必须 断开 ,单管放大器输出阻抗最难求的是共 集电极 放大器,其次是共 源 放大器。
(10)对晶体管来说,直流电阻指 晶体管对所加电源呈现的等效电阻 ,交流电阻指 在一定偏置下晶体管对所通过的信号呈现的等效电阻 ,对纯电阻元件有这两种电阻之区分吗( 无 )(11)在共射级放大器或共源放大器中,电阻R C 或R D 的作用是 把电流I C 或I D 的变化转换为电压的变化 。
(12)放大电路的非线性失真包括 饱和 失真和 截止 失真,引起非线性失真的主要原因是 放大器工作点偏离放大区 。
模拟电子技术基础简明教程(第三版)第三章
0.707A 0.707Aum BW fH
f
A = Au ( f )∠( f ) u
A (f) u
f
幅频特性 相频特性
( f )
二, 下限频率,上限频率和通频带
|Au |
Aum :称为中频电压放大倍数 fL :称为下限频率
第三章 放大电路的频率响应
第一节 频率响应的一般概念
幅频特性和相频特性 下限频率, 下限频率,上限频率和通频带 频率失真 波特图 高通电路和低通电路
1
下页 总目录
一, 幅频特性和相频特性
由于电抗性元件的作用, 由于电抗性元件的作用, 使正弦波信号通过放大电路时, 使正弦波信号通过放大电路时, 不仅信号的幅度得到放大, 不仅信号的幅度得到放大, 而且还将产生一个相位移. 而且还将产生一个相位移. 此时,电压放大倍数可表示如下: 此时,电压放大倍数可表示如下:
A = u
1 1 = 1+ jωτH 1+ j f
fH
上页 下页 首页
= 20lg 1+ ( f f )2 20lg Au H
= arctg( f fH )
20lg|A 20lg|Au |/dB
最大误差 3 dB φ 0.1fH 0.1f fH 10fH 10f f 0 -450 20dB/十倍频 20dB/十倍频
EQ
β
β
IEQ
Cbc可查到
上页 下页 首页
应用密勒定理将电路简化 将Cbc分别等效到输入回路和输出回路. 分别等效到输入回路和输出回路.
b + Ube e 简化的混合П型等效电路 rb e C gmUbe rb b U b e b c + K-1 C b c K Uce -
模拟电子技术三极管详解
振荡电路
振荡电路的基本原理 三极管在振荡电路中的应用 振荡电路的设计和调试 振荡电路在实际中的应用案例
调制与解调电路
调制:将信号转换为适合传输的形式
解调:将接收到的信号还原为原始信号
三极管在调制与解调电路中的应用:放大信号、控制信号、实现信号 转换
调制与解调电路中的三极管类型:双极型三极管、场效应三极管等
流变化
应用领域:广 泛应用于电子 技术、通信、 计算机等领域
三极管的工作原理
基本结构:由两 个PN结组成分为 发射极、基极和 集电极
工作状态:分为 截止区、放大区 和饱和区
电流关系:基极电 流IB、集电极电流 IC和发射极电流IE 之间的关系
放大作用:通过改 变基极电流IB来控 制集电极电流IC实 现信号放大
负载
放大电路的工 作原理:通过 改变三极管的 工作状态实现
信号的放大
放大电路的分 类:共射放大 电路、共集放 大电路、共基
放大电路
放大电路的应 用:音频放大、 视频放大、射
频放大等
开关电路
开关电路是三极管最常用的应用之一 三极管在开关电路中起到控制电流的作用 开关电路可以分为NPN型和PNP型两种类型 三极管在开关电路中的工作状态可以分为饱和区和截止区两种
03 三极管的种类和特性
NPN型和PNP型三极管
NPN型三极管:电流从基极流入从发射极 流出
PNP型三极管:电流从发射极流入从基极 流出
NPN型三极管:基极电流控制发射极电流
PNP型三极管:基极电流控制集电极电流
NPN型三极管:基极电流与发射极电流成 正比
PNP型三极管:基极电流与集电极电流成 正比
三极管型号的识别与代换
型号识别:根据三极管的外观、尺 寸、引脚数量等特征进行识别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章放大电路基础3.1 放大电路的基本知识教学要求掌握放大电路放大倍数的意义及其求法;掌握放大电路输入电阻的意义及其求法;掌握放大电路输出电阻的意义及其求法.一、放大电路的组成1.电路组成方框图图中信号源提供需放大的电信号,可由换能器提供,也可是前一级电路的输出信号;负载接受输出信号,可由输出换能器构成,也可为下一级电路的输入电阻;直流电源给放大电路提供能量;放大电路进行信号放大,一般由基本放大单元组成的多级放大电路,如上图(c)所示。
二、放大电路的主要性能指标1.放大倍数:衡量放大电路的放大能力。
3.输出电阻:放大电路的输出相当于负载的信号源,该信号源的内阻称为电路的输出电阻。
其中,uot 为负载开路时的输出电压;uo带负载时的输出电压,Ro越小,uot和uo越接近。
4.通频带与频率失真:放大电路中含有的电抗元件(外接或有源器件内部寄生)使放大电路对不同频率的输入信号有不同的放大能力,这就是放大电路的频率特性,可分为幅频特性和相频特性。
幅频特性和相频特性:,Au( f ) 为幅频特性; ( f )为相频特性频带宽度(带宽)BW:当放大倍数下降到最大放大倍数的0.7倍时低端频率和高端频率称为放大电路的下限频率和上限频率,分别用f H和f L表示。
BW0.7(B and W idth)= fH–fL放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。
如果放大电路的通频带小于信号的频带,由于信号低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。
这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。
5.最大输出功率和效率:3.2 三种基本组态放大电路教学要求掌握三极管三种组态放大电路的工作原理;会对放大电路的主要性能指标进行分析;了解场效应管放大电路的工作原理。
一、共发射极放大电路(一)电路的组成直流电源V CC通过R B1、R B2、R C、R E使三极管获得合适的偏置,为三极管的放大作用提供必要的条件,R B1、R B2称为基极偏置电阻,R E称为发射极电阻,R C称为集电的降压作用,将三极管集电极电流的变化转换成集电极电压的变化,极负载电阻,利用RC从而实现信号的电压放大。
与R E并联的电容C E,称为发射极旁路电容,用以短路交流,使R E对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小越好,因此,在低频放大电路中CE通常也采用电解电容器。
断开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点稳定直电流通路。
电路工作要求:I1≥ (5 ~ 10)IBQ,U BQ≥ (5 ~ 10)U BEQ求静态工作点Q:方法1.估算工作点Q不稳定的主要原因:Vcc波动,管子老化,温度变化稳定Q点的原理:方法2.利用戴维宁定理求IBQ(三)性能指标分析将放大电路中的C1、C2、CE短路,电源VCC短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。
1.电压放大倍数2.输入电阻3.输出电阻:Ro = RC没有旁路电容CE时:1.电压放大倍数源电压放大倍数2.输入电阻3.输出电阻:Ro = RC二、共集电极放大电路(射极输出器、射极跟随器)(一)电路组成与静态工作点共集电极放大电路如下图(a)所示,图(b)、(c)分别是它的直流通路和交流通路。
由交流通路看,三极管的集电极是交流地电位,输入信号u i和输出信号u o以它为公共端,故称它为共集电极放大电路,同时由于输出信号u o取自发射极,又叫做射极输出器。
IBQ= (VCC –UBEQ) / [RB+(1+ β )RE] ICQ= β IBQ,U CEQ = V CC–I CQ R E(二)性能指标分析1.电压放大倍数2.输入电阻RL = RE// RL3.输出电阻共集电极电路特点共集电极电路用途1.U o与U i同相,具有电压跟随作用 1.高阻抗输入级2.无电压放大作用A u<1 2. 低阻抗输出级3.输入电阻高;输出电阻低 3.中间隔离级三、共基极放大电路共基极放大电路如下图所示。
由图可见,交流信号通过晶体三极管基极旁路电容C2接地,因此输入信号u i由发射极引入、输出信号u o由集电极引出,它们都以基极为公共端,故称共基极放大电路。
从直流通路看,也构成分压式电流负反馈偏置。
(一)求“Q”略(二)性能指标分析R O=R C(三)特点共基极放大电路具有输出电压与输入电压同相,电压放大倍数高、输入电阻小、输出电阻大等特点。
由于共基极电路有较好的高频特性,故广泛用于高频或宽带放大电路中。
四、场效应管放大电路三种组态:共源、共栅、共漏特点:输入电阻高,噪声低,热稳定性好,但电压放大倍数较低,常作为多级放大电路的输入级。
(一)直流偏置电路1.自给偏置电路由于栅极不吸取电流,RG 中无电流,栅极G与源极S之间的偏压UGSQ=-IDQRS。
这种偏置方式称为自给偏置电路。
栅极电阻RG的作用:为栅偏压提供通路,泻放栅极积累电荷。
源极电阻R S的作用:为栅极提供负偏压。
漏极电阻R D的作用:变iD 的变化为uDS的变化,UGSQ= UGQ– USQ= – IDQRS2.分压式自偏压电路(二)性能指标分析1.共源放大电路R i 、Ro不变2.共漏放大电路3.3 差分放大电路教学要求掌握差分放大电路的工作原理;理解具有恒流源差分放大电路的工作原理;熟悉差分放大电路的输入、输出方式及特点。
一、差分放大电路工作原理(Differential Amplifier)(一)差分放大电路的组成及静态分析电路组成:T 1 T 2 电路对称;公用发射极电阻R e ;采用双电源 使U B Q =0,直流不经交流信号源,以免信号 源内阻不同时,影响Q 点。
电路特点:元件参数对称;两端输入, 两端输出;双电源供电;u i1 = u i2 时,u o = 0;能有效地克服零点漂移。
静态分析:V EE = U BEQ + I EE R EE , I EE = (V EE – U BEQ ) / R EE ,I CQ1 = I CQ2 (V EE – U BEQ ) / 2R EE , U CQ1 = V CC – I CQ1R C U CQ2 = V CC – I CQ2R C U o = U CQ1 – U CQ2 = 0(二)动态分析1. 差模输入与差模特性差模输入:差分放大电路的两个输入信号大小相等,极性相反。
差模电压放大倍数:差模输出电压u od 与差模输入电压u id 的比值。
差模输入电阻:从放大电路两个输入端看进去所呈现的等效电阻。
差模输出电阻:差分放大电路两管集电极之间对差模信号所呈现的电阻。
差模输入: u i1 = – u i2 ,大小相同,极性相反。
差模输入电压: u id = u i1 – u i2 = 2u i1 使得i c1 = – i c2,u o1 = –u o2 差模输出电压u od = u C1 – u C2 = u o1 – ( – u o2)= 2u o1 差模电压放大倍数差模输入电阻:Rid = 2rbe差模输出电阻:Rod = 2RC2. 共模输入与共模拟制比共模输入:差分放大电路的两个输入信号大小相等,极性相同。
共模拟制比(KCMR):差分放大电路放大差模信号,拟制共模信号的能力。
在实际电路中,两管电路不可能完全相同,因此,u oc不等于零,但要求u oc越小越好。
双端共模输出电压u oc与共模输入电压u ic之比,定义为差分放大电路的共模电压放大倍数A uc,即A uc=u oc/u ic。
显然,完全对称的差分放大电路,A uc=0。
共模输入u i1= u i2,大小相同,极性相同共模输入电压u ic= u i1 = u i2 ,使得i e1 = i e2,u e= 2i e1R EE共模输出电压u oc = uC1– uC2=0,共模拟制比二、具有电流源的差分放大电路(一)电流源电路提高电路共模拟制比的设计思想:增大电阻REE ,比较合理的方法是用恒流源来代替REE。
1.三极管电流源特点:直流电阻为有限值,动态电阻无穷大。
2.比例型电流源为了提高电流源输出电流的温度稳定性,常利用二极管来补偿三极管的UBE随温度变化对输出电流的影响,如下图a)所示。
当二极管与三极管发射结具有相同的温度系数时,可达到较好的补偿效果。
在集成电路中,常用三极管接成二极管来实现温度补偿作用,如下图(b)所示。
其中I REF称为基准电流,由于I0与I REF成比例,故称为比例型电流源。
由图可知I REF≈(V CC-U BE1)/(R+R1)。
由此可见,比例型电流源中,基准电流I REF的大小主要由电阻R决定,改变两管发射极电阻的比值,可以调节输出电流与基准电流之间的比例。
用一个基准电流来获得多个不同的电流输出,称为多路输出比例电流源。
3.镜像和微电流源如果把上图(b)中发射极电阻均短路,就可以得到下图所示镜像电流源。
由于V1、V2特性相同,基极电位也相同,因此它们的集电极电流相等,只要β»1,则I0=I REF,即I0与I REF之间成镜像关系。
若将比例型电流源中V1管发射极电阻R1短路,如下图(b)所示,即构成微电流源。
4.NMOS管电流源当V1、V2特性相同,基极电位也相同时,I O=I REF;当V1、V2特性不相同时,IIREF。
(二)具有电流源的差分放大电路图中V3、V4构成比例镜流源电路,R1、V4、R2构成基准电流电路。
当R1、R2、R3、V EE一定时,I C3就为一恒定的电流。
由于电流源有很大的动态电阻,故采用电流源的差分放大电路其共模抑制比可提高1~2个数量级,所以在集成电路中得到广泛应用。
(三)差分放大电路的差模传输特性特点:1.iC1+ iC2= I;当ui= 0,iC1= iC2= 0.5 I。
2.当–UT < ui< UT,iC1–iC2ui。
3.当– 4UT < ui< 4UT,一只管子截止,I几乎全部流入另一只管子,输出电压被限幅。
三、差分放大电路的输入输出方式四种连接方式:双入——双出,双入——单出,单入——双出,单入——单出。
特点:单端输出:①放大倍数为双出的一半。
②抑制零漂不如双出。
③从T1或T2管输出的U与Ui相位不同。
单端输入:输入差模信号的同时,伴随共模信号的输入。
(一)单端输入、输出方式以上所讨论的差分放大电路均采用双端输入和双端输出方式,在实际使用中,有时需要单端输出或单端输入方式。