巧算和速算指南

合集下载

第一讲速算与巧算

第一讲速算与巧算

第一讲速算与巧算第一讲速算与巧算一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。

二、精讲精练【例题1】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000。

在计算这类题目时,常使用减整法,例如将99转化为100-1。

这是小学数学计算中常用的一种技巧。

9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习1:1计算1998+2997+4995+5994 2.计算19998+39996+49995+69996.【例题2】计算489+487+483+485+484+486+488【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?.练习2:1. 1032+1028+1033+1029+1031+10302.2451+2452+2446+2453.【例题3】计算下面各题。

(1)632-156-232 (2)128+186+72-86【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。

练习3:计算下面各题1.1208-569-2082.283+69-1833.132-85+68【例题4】计算下面各题。

第1讲 速算与巧算

第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。

1.加法巧算。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。

如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。

字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。

(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。

字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。

字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。

如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。

(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。

巧算和速算方法

巧算和速算方法

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法. 错误!未定义书签。

第二讲常用巧算速算中的思维与方法(1)........ - 4 - 第三讲常用巧算速算中的思维与方法(2)........ - 6 - 第四讲常用巧算速算中的思维与方法(3)........ - 8 - 第五讲常用巧算速算中的思维与方法(4)........ - 9 - 第六讲常用巧算速算中的思维与方法(5)....... - 10 - 第七讲常用巧算速算中的思维与方法(6)....... - 11 - 第八讲小数的速算与巧算...................... - 12 - 第九讲乘法速算1............................. - 13 - 第十讲乘法速算2............................. - 15 - 第十一讲乘法速算3............................. - 17 - 第十二讲乘法速算4............................. - 17 - 第十三讲乘法速算5............................. - 18 - 第十四讲乘法速算6............................. - 19 - 第十五讲乘法速算7............................. - 22 - 第十六讲乘法速算8............................. - 24 - 注:《速算技巧》.............................. - 27 - 第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1 ×1 = 12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

(完整版)小学数学三年级速算与巧算技巧

(完整版)小学数学三年级速算与巧算技巧

(完整版)小学数学三年级速算与巧算技巧第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看”“二想”“三选择”一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。

观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。

根据符号的规律划分周期,进行分组计算。

切记不要忘了第一个数的符号!1、简单分组例:10 -9 +8 -7 +6 -5 +4 -3 +2 -1+-+-+-+-+-(符号周期为+、-,两个数为一组)则原式=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)=1+1+1+1+1=52、分组有剩余例:20 + 19 –18 + 17 –16 + 15 –14 + 13 –12 + 11 –10++-+-+-+-+-(符号周期为+、-,两个数一组,但第一个数多余出来了)则原式=20 +(19-18)+(17-16)+(15-14)+(13-12)+(11-10)=20+1+1+1+1+1=253、复杂分组例:48 + 47 - 46 -45 + 44 + 43 –42 –41 + 40 + 39 –38 –37 + 36 ++--++--++--+(符号周期为+、+、-,-,四个数一组)则原式=(48 + 47 - 46 -45)+(44 + 43 –42 –41)+(40 + 39 –38 –37)+ 36 =4+4+4+36=48例:15 + 14 –13 + 12 + 11 –10 + 9 + 8 –7 + 6 + 5 –4 + 3 + 2 - 1++-++-++-++-++-(符号周期为+、+、-,三个数一组)则原式=(15 + 14–13)+(12 + 11–10)+(9 + 8–7)+(6 + 5 –4)+(3 + 2–1)=16+13+10+7+4 (这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比较简便)=(16+4)+(13+7)+10=20+20+10=504、重新分组(即符号或数字的规律不好用,需要观察重新“排队”分组)例:1-2+3-4+5-6+7-8+9-10+11经观察,数字和符号都是有规律的,可是按照(1-2)+(3-4)……这样分组的话,每个括号里都不够减。

四年级速算、巧算方法

四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。

运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。

1、加法“凑整”。

利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。

利用减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。

利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。

末尾是一个或几个0的数,运算起来比较简便。

若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。

一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。

把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。

速算与巧算方法完整版

速算与巧算方法完整版

速算与巧算方法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】速算与巧算一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28解:①式=(36+64)+87②式=(99+101)+136 ③式=(1361+639)+(972+28) =200+136=336 =100+87=187 =2000+1000=30003.拆出补数来先加。

例2 ①198+873 ②548+996 ③9898+203解:①式=(198+2)+(873-2)(熟练之后,此步可略) ③式=(9898+102)+(203-102) =200+871=1071 ②式=(548-4)+(996+4) =10000+101=10101=544+1000=1544二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3① 300-73-27 ② -10解:①式= 300-(73+ 27) ②式=1000-(90+80+20+10) =1000-200=800 =300-100=2002.先减去那些与被减数有相同尾数的减数。

巧算和速算方法

巧算和速算方法

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法 .............................. - 2 - 第二讲常用巧算速算中的思维与方法〔1〕 .................... - 4 - 第三讲常用巧算速算中的思维与方法〔2〕 .................... - 6 - 第四讲常用巧算速算中的思维与方法〔3〕 .................... - 9 - 第五讲常用巧算速算中的思维与方法〔4〕 ...................- 10 - 第六讲常用巧算速算中的思维与方法〔5〕 ...................- 14 - 第七讲常用巧算速算中的思维与方法〔6〕 ...................- 16 - 第八讲小数的速算与巧算.................................................- 18 - 第九讲乘法速算1..............................................................- 19 - 第十讲乘法速算2..............................................................- 21 - 第十一讲乘法速算3..............................................................- 23 - 第十二讲乘法速算4..............................................................- 23 - 第十三讲乘法速算5..............................................................- 24 - 第十四讲乘法速算6..............................................................- 25 - 第十五讲乘法速算7..............................................................- 28 - 第十六讲乘法速算8..............................................................- 30 - 注:《速算技巧》 ...............................................................- 33 -第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

奥数学习知识点学习速算及巧算

奥数学习知识点学习速算及巧算

速算与巧算指引:1、计算(凑十法) 1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知) 1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算(改变运算次序) 10-9+8-7+6-5+4-3+2-15、计算(带着“+”、“-”号迁居)1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10的技术题1、计算1+2+3+4+5+6+7+8+9+10这类逐渐相加的方法,利处是能够获得每一步的结果,但弊端是麻烦、简单犯错;并且一步犯错,此后步步都错。

假如利用凑十法,就能战胜这类弊端。

二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,能够使那些较大的数相加又快又准。

像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。

题2、计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:题3、计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:题4、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已得的知来解决面的更复的是人事物的一般程,凑十法、凑整法的就是个道理,可把种律用于算方面,可使算更快更准。

5、算:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例2和例3,已知道从1开始的前10个数之和及从2开始的前10个双数之和,巧用些果算道就简单了。

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=(1+3+5+7+9+11+13+15+17+19 )+(2+4+6+8+10+12+14+16+18+20 )=100+110(步利用了例2和例3的果)=2106、算:5+6+7+8+9+10解:能够利用前10个自然数之和等于55一果。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法巧算和速算方法是一种用来简化和加快数学计算的技巧或方法。

在日常生活和工作中,相信有很多人都希望能够迅速准确地进行计算。

以下将介绍一些常用的巧算和速算方法。

1.规律运算法规律运算法是根据数学规律进行计算的方法。

例如,对于两个数的和或差,我们可以利用「同补」的概念,将计算转化为更为简单的形式。

比如,计算79+73可以转化为80+72,利用整十数相加的规律进行计算,即得1522.乘数调整法乘数调整法是在乘法运算中,根据数值特征进行调整。

对于两个大数相乘,可以通过调整其中一个数,使其成为10的整数次幂的形式,进而简化计算。

例如,计算84×48可以调整为80×48+4×48,这样可以利用「倍数性质」和「分开计算」的原则,分别计算80×48和4×48,再将两个结果相加。

3.快速除法法快速除法法是利用数的倍数关系进行除法运算的方法。

例如,计算858÷6可以先观察858和6的倍数关系,可以发现858是6的140倍,因此可以直接得出商为140。

4.近似取数法近似取数法是在计算过程中,对于大数去除无关紧要的位数,简化计算。

例如,计算9876-4321时,可以将9876和4321两个数的千位、百位去掉,得到76-21=55、再将去掉的位数加回来,即可得到正确结果。

5.平方数的巧算法对于平方数,有一些特殊的巧算公式。

例如,计算49的平方,可以利用公式(a+b)×(a-b)=a²-b²,将49写为50-1,然后进行求解,即得49²=50²-1²=2500-1=24996.百分比计算法百分比计算是在计算过程中,利用常见的百分数换算进行计算。

例如,计算一个数值的5%,可以先将这个数值除以20,然后再乘以1,即可得到所求百分比的值。

例如,计算80的5%,可以先将80除以20得到4,再乘以1,即得到所求的百分比值为47.近似法在计算过程中,可以对数值进行近似处理,以便更快地进行计算。

(完整版)三年级-速算与巧算

(完整版)三年级-速算与巧算

速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。

即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。

相反,一个数减去几个数的和,等于连续减去这几个数。

即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。

如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。

如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。

例如:1+9=10,1叫做9的补数。

判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。

小学常用的巧算和速算方法

小学常用的巧算和速算方法

小学常用的巧算和速算方法一、巧算方法:1.凑整法:将一个数调整到一个更容易处理的数。

例如:17+4,可以将4拆分成2+2,然后17+2+2=19+2=212.倍数法:将一个数按照倍数进行运算。

例如:23×5,可以将23拆分成20+3,然后20×5=100,3×5=15,最后100+15=1153.分解法:将一个数分解成更容易计算的数。

例如:36+28,可以将28拆分成20+8,然后36+20+8=56+8=644.倒算法:将一个数转化为与其相加减的数。

例如:80-27,可以将27转化为73,然后80-73=75.移项法:将一个式子中的数移动到另一边进行运算。

例如:8+5=15,可以转化为15-8=76.换位运算法:将两个数的位置进行调换再运算。

例如:78-35,可以调换顺序为35-78,然后将结果取负数得到-43二、速算方法:1.竖式计算法:将两个数竖直排列后进行运算。

例如:27×13,将27和13竖直排列,然后分别计算个位和十位,最后将结果相加得到3512.快速乘法:使用乘法表以及对称性进行快速计算。

例如:78×6,可以先计算78×3,然后将结果翻倍得到234×2=468,最后78×6=468+468=9363.快速除法:使用除法表以及对称性进行快速计算。

例如:56÷7,可以先计算56÷2,然后将结果翻倍得到28×2=56,最后56÷7=284.快速减法:使用对称性和调整变形进行快速计算。

例如:245-97,可以先计算245-100,然后将结果加上3,最后245-97=1455.快速加法:使用进位和调整变形进行快速计算。

例如:789+143,可以先计算700+100=800,然后分别计算80+40=120和9+3=12,最后800+120+12=932三、其他常用的巧算和速算方法:1.快速平方:使用平方公式或对称性进行快速计算。

速算与巧算基础教程

速算与巧算基础教程

目录第一讲速算与巧算(一)一、凑十法同学们已经知道,下面的五组成对的数相加之和都等于101+9=10,2+8=10,3+7=10,4+6=10,5+5=10巧用这些结果,可以使计算又快又准。

例1计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3,3+3=6,6+4=10,10+5=15,15+6=21,21+7=28,28+8=36,36+9=45,45+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。

若是利用凑十法,就能克服这种缺点。

二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=20,11+9=30,2+18=20,12+28=40,3+17=20,13+37=50,4+16=205+15=20,15+55=70,6+14=20,16+64=80,7+13=20,17+73=90,8+12=20又如:15+85=100,14+86=100,25+75=100,24+76=100,35+65=100,34+66=100等等。

巧用这些结果,可以使那些较大的数相加又快又准。

像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。

例2计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。

下面再举两个例子。

例5计算:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例2和例3,已经知道从1开始的前10个单数之和以及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。

小学十种常用速算与巧算方法2

小学十种常用速算与巧算方法2

小学十种常用速算与巧算方法2小学十种常用速算与巧算方法2小学生常用的速算与巧算方法有很多,以下是其中十种较常用的方法:1.同理相加法:当计算两个数相加时,如果其中一个数离10的差较小,可以将这个差值加到另一个数上,使其中一个数变为10的整倍数,然后再进行相加。

例如,计算7+6时,可以将6变为10-4,即7+10-4=7+6=132.数根法:将一个数的各位数字相加,直到得到一个个位数为止,这个个位数就是该数的数根。

例如,计算123的数根,可以先计算1+2+3=6,得到一个个位数6,即123的数根为63.买买乐法:计算两个两位数相乘的积时,可以采用买买乐法。

首先将两个数的个位数相乘,然后将两个数的十位数相乘,再将两个结果相加。

例如,计算34×27,先计算4×7=28,然后计算3×2=6,最后将28和6相加得到34×27=9184.分配律法则:当计算一个数乘以另一个数的和时,可以按照分配律法则进行运算。

例如,计算3×(5+2),可以先计算5+2=7,然后再计算3×7=21,即3×(5+2)=215.线条法:当计算两个两位数相乘的积时,可以用线条法来简化计算。

首先将竖式的十位上的数和个位上的数相乘,然后将竖式的个位上的数与横式的个位上的数相乘,最后将两个结果相加。

例如,计算34×27,先计算30×20=600,然后计算4×7=28,最后将600和28相加得到34×27=6286.十字相乘法:当计算两个两位数相乘的积时,可以用十字相乘法来简化计算。

首先将竖式的十位上的数和个位上的数相乘,然后将竖式的个位上的数与横式的十位上的数相乘,最后将两个结果相加。

例如,计算34×27,先计算30×20=600,然后计算4×7=28,最后将600和28相加得到34×27=6287.逆相乘法:计算两个数相乘时,如果其中一个数比另一个数大或小一个整数倍,可以将两个数相乘后再除以这个整数倍的数。

小学奥数第一讲:速算与巧算

小学奥数第一讲:速算与巧算

小学奥林匹克数学第一集:第一讲:速算与巧算一、例题讲解十个数字,几种计算符号,构造了千变万化的数学计算,计算要做到又快又正确。

关键在于掌握运算技巧,“硬算”加“巧算”。

“巧算”是对算式整体以及其中的每个数进行观察,剖析算式的特点和各数之间的可能存在的联系。

恰当地利用运算定律,改组运算顺序,使计算简便易行。

要达到“速”与“巧”主要掌握以下几点计算技巧:1.凑成容易算的数,在心算中培养凑整、搭配、替代的思维习惯。

如凑成整十、整百、整千……又如若干比较接近的数相加时,可选择一个基数作为计算基础。

在此数上加上或减去这个基数的相差数。

2.利用运算定律简化运算。

3.根据某些算式的定律,学会创造条件,进行分组,分类地计算,使计算简便。

4.适当配对,能使计算简便。

例1:610+270+190分析:题中610+190=800,凑成整百数,所以先把“+190”搬家,搬到“+270”的前面,然后再把610+190的和算出来。

解:610+270+190=(610+190)+270=800+270=1070(说明:加法的结合律和交换律是计算中常用的方法。

)例2:320-60+180分析:题中320+180的和是整百数,可以先把“+180”搬到“-60”的前面,再算出320与180的和。

解:320-60+180=(320+180)-60=500-60=440例3:6998+995+97+59分析:题中6998、995、97和59接近整千、整百、整十的数。

可以先把这些加数分别看作:7000-2、1000-5、100-3、60-1,然后再算出(7000+1000+100+60)-(2+5+3+1)的结果。

解:6998+995+97+59=7000-2+1000-5+100-3+60-1=(7000+1000+100+60)-(2+5+3+1)=8160-11=8149例4:计算18+21+23+20+15+19分析:先确定一个数作为基准,并将其他数与这个数作比较。

奥数知识点速算与巧算

奥数知识点速算与巧算

速算与巧算引导:1、计算凑十法1+2+3+4+5+6+7+8+9+102、计算凑整法1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算用已知求未知1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算改变运算顺序10-9+8-7+6-5+4-3+2-15、计算带着“+”、“-”号搬家1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10的技术题1、计算1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错;若是利用凑十法,就能克服这种缺点;二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,可以使那些较大的数相加又快又准;像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标;题2、计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:题3、计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:题4、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准;题5、计算:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 解:由例2和例3,已经知道从1开始的前10个单数之和及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了;1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=1+3+5+7+9+11+13+15+17+19+2+4+6+8+10+12+14+16+18+20=100+110这步利用了例2和例3的结果=210题6、计算:5+6+7+8+9+10解:可以利用前10个自然数之和等于55这一结果;5+6+7+8+9+10=1+2+3+4+5+6+7+8+9+10-1+2+3+4=55-10=45四、改变运算顺序在只有加减运算的算式中,有时改变加、减的运算顺序可使计算显得十分巧妙题7、计算:10-9+8-7+6-5+4-3+2-1解:改变一下运算顺序,先减后加,就使运算显得非常“漂亮”;10-9+8-7+6-5+4-3+2-1=10-9+8-7+6-5+4-3+2-1=1+1+1+1+1=5五、带着“+”、“-”号搬家题8、计算:1-2+3-4+5-6+7-8+9-10+11解:这题只有加减运算,而且1-2不够减;我们可以采用带着加减号搬家的方法解决;要注意每个数自己的符号就是这个数前面的那个“+”号或“-”号,搬家时要带着符号一起搬;1-2+3-4+5-6+7-8+9-10+11=1+3-2+5-4+7-6+9-8+11-10=1+3-2+5-4+7-6+9-8+11-10=1+1+1+1+1+1=6在这道题的运算中,把“+3”搬到“-2”的前面,把“+5”搬到了“-4”的前面,……把“+11”搬到了“-10”前面,这就叫带着符号搬家;巧妙利用这种搬法,可以使计算简便;题9、计算: 2+4+6+…+20-1+3+5+…+19=10题10、计算:2+4+6+…+100-1+3+5+…+99=50总结:速算第一步:观察是否能用公式,数字有什么特点,符号有什么特点,是否有简便方法…速算思想:1、 “整”比“散”好 100+200 比 156+288好算2、 “小”比“大”好 1+2 比 1257+3658好算掌握理论小技巧:1、 加法交换律:1+2 = 2+12、 加法结合律:1+2+3 = 1+2+33、 带符号搬家:加减法中数字就像逛超市,每人推着自己的小车,去哪儿都推着即符号在前面43+88-33 = 43-33+88 = 88+43-334、 加括号:5+3-2 = 5+3-2,5-3-2 = 5-3+25、 减括号:5+3-2= 5+3-2,5-3+2=5-3-26、 找基准数:53+51+48+47 基准数为507、 变加为乘:8+8+8+8+8+8+8+7=8×7或=8×8-1=638、 加减抵消:92-16+23-23+16=929、 减法巧算:100-36-24,88-28+1510、 分组:90-89+88-87+86-85+84-8311、 利用乘法结合率:81+9×21=9×9+9×21=9×9+21=9×30=27012、 利用乘法分配率:99×7=100-1 ×7=100×7-1×7=700-7=69313、 等差数列高斯公式:1+2+3+……+998+999+1000=首项+末项 ×项数÷214、 金字塔数列:1+2+3+……+98+99+100+99+98+……+3+2+1=100×100=1000015、 位值原理 1234 + 3142 + 4321 + 2413==10000+1000+100+10=11110适用于:各数位有特点,按数位相加即千位加千位,百位加百位更简便1 1+2=3 括号前为+,添/去括号后不变, 括号前为-,添/去括号后括号内要变号1+2+3=61+2+3+4=101+2+3+4+5=151+2+3+4+5+6=211+2+3+4+5+6+7=281+2+3+4+5+6+7+8=361+2+3+4+5+6+7+8+9=451+2+3+4+5+6+7+8+9+10=55应用题1.三个小朋友分5块糖;要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装②按同样要求,把15只小鸡装进5个笼子能办得到吗③按同样要求,把14只小鸡分装到5个笼子能办得到吗3.①把100块糖分给10个小朋友;要求每人都分到单数块糖,而且每人分到糖块数都不一样,如何分②把99块糖按同样要求分给10个小朋友,你能分吗4.从1到20这20个数中,所有的双数之和与所有的单数之和的差是多少5.小方家的钟除了几点钟敲几下外,每半点钟也敲一下;比如说,0点半敲1下,1点钟敲1下,1点半敲1下,2点敲2下,2点半敲1下,……照这样敲下去,从夜里0点开始,计到白天中午12点钟,在这12个小时之内时钟共敲了多少下习题解答1.答案是不能分;所需糖块数最少的一种分法是:第1个人分1块,第2个人分2块,第3个人分3块,这样三个人共需要有1+2+3=6块,但总的糖块数只有5块,不够分;如果第3个人也分得2块,这样糖是够分了,但是这样就有2个人分得糖块数一样多了,又不符合分糖要求了;2.①5只笼子装16只小鸡的装法是1,2,3,4,6;1+2+3+4+6=16只②5只笼子装15只小鸡的装法是1,2,3,4,5;1+2+3+4+5=15只③5只笼子装14只小鸡,要求每笼都有鸡,而且笼笼鸡数不等,无法分装;3.①记住1+3+5+7+9+11+13+15+17+19=100立即可知100块糖按要求分给10个人的分法是:各人所得糖块数分别为1,3,5,7,9,11,13,15,17,19;②99块糖按要求分给10个小朋友无法分;4.解:方法1:单数之和:1+3+5+7+9+11+13+15+17+19=100双数之和:2+4+6+8+10+12+14+16+18+20=110差:110-100=10方法2:改变运算顺序2+4+6+8+10+12+14+16+18+20-1+3+5+7+9+11+13+15+17+19=2-1+4-3+6-5+8-7+10-9+12-11+14-13+16-15+18-17+20-19=1+1+1+1+1+1+1+1+1+1=105.解:先记录时钟敲的整点数和半点数如下:列算式求和,并改变运算顺序:1+1+1+2+1+3+1+4十1+5+1+6+1+7+1+8+1+9+1+10+1+11+1+12=1+2+3+4+5+6+7+8+9+10+11+12+1+1+1+1+1+1+1+1+1+1+1+1=78+12=90下经典例题:例1、哥哥和妹妹分糖;哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块;你说谁拿得多,多几块解:方法1:先算哥哥共拿了多少块再算妹妹共拿了多少块72-64=8块方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块;2-1+4-3+6-5+8-7+10-9+12-11+14-13+16-15 =1+1+1+1+1+1+1+1=8块可以看出方法2要比方法1巧妙例2、星期天,小明家来了9名小客人;小明拿出一包糖,里面有54块;小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分”结果大家都无法分,你能帮他们分好吗解:按小明提的要求确实无法分;因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块;但是,这种分法共需要有1+2+3+4+5+6+7+8+9+10=55块而小明这包糖一共才54块,所以按这种方法无法分;如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求;。

常用的巧算和速算方法

常用的巧算和速算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。

“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。

四年级速算与巧算

四年级速算与巧算

速算与巧算一【要点提示】1、简便运算是计算中的一个非常重要的组成部分,掌握一些简便算法,有助于提高我的计算能力和思维能力。

而简便算法往往要根据一定的运算定律和运算性质通过对算式进行“有的放矢”从而使计算简便。

2、在巧算的方法里,蕴含着重要的解决问题的策略:转化法。

即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整,从而变成一个易于算出结果的算式。

3、运算定律和运算性质:如交换律、结合律、乘法分配律、添括号、拆分法。

除法的性质:如a÷a=(a×a)÷(a×a)=(a÷a)÷(a÷a) (a≠a)4、在分解因数凑整相乘时,记住一些特殊的积有益于速算,如2×5=10 25×a=aaa25×8=200 125×8=1000 625×8=5000等等。

但是,凑整法需要灵活运用,要想算的快又准,最根本的是抓住题目特点,灵活运用乘、除法运算定律进行计算。

二【经典题型】例1计算(1)9+99+999 (2)479+478+477+476+481+482(3)326+289+74-189 (4)354+(146-78)(5) 735-(335-287) (6)735-487+187例21、4×aa×aa2、aa×aaa3、232×aa+aaa×aa4、aaa÷aa5、aaaa×aaaa+aaaaa6、aa×aa×aaa【模仿提升】1、99999+9999+999+99+92、9+98+997+9996+999953、80+81+82+83+84+854、998+999+1000+1001+10025、 6、2426-589+74+8897、564-(212-236) 8、639+(410-239)9、632-385+185 10、458-889+188911、37×a×aa 12、aa×aa×aaa13、aaa×aa 14、aaaaa÷aaa÷a15、aaa×aa+aa×aa+aa×aa16、aa×aa−aa×aa−aa17、12345+23451+34512+45123+51234【奥数训练营】速算与巧算速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。

数学巧算速算方法

数学巧算速算方法

数学巧算速算方法数学是一门普遍被人们广泛应用的学科,其中速算是数学中非常重要的一部分。

速算方法可以帮助我们在短时间内快速准确地完成计算,提高计算效率。

本文将介绍一些常见的数学巧算速算方法,帮助读者更好地掌握这些技巧。

一、整数相乘的速算方法1. 将两个整数相乘时,如果其中一个数是10的倍数,那么结果就是另一个数加上若干个0。

例如,23乘以10等于230,23乘以100等于2300。

2. 如果两个整数都接近10的倍数,可以将两个数与10的差相乘,再加上两个数与10的差的乘积。

例如,17乘以13等于(20-3)*(10+3)+3*3=221。

3. 如果两个整数都是偶数,可以将两个数分别除以2,再将商相乘,最后再乘以2。

例如,36乘以48等于(36÷2)*(48÷2)*2=18*24*2=864。

4. 如果两个整数一个是偶数,一个是奇数,可以将偶数除以2,再乘以奇数。

例如,24乘以5等于(24÷2)*5=12*5=60。

二、小数相乘的速算方法1. 小数相乘时,可以先将小数化为分数,再进行计算。

例如,0.6乘以0.2等于(6/10)*(2/10)=12/100=0.12。

2. 如果一个小数很接近1,可以将另一个小数乘以1,结果保持不变。

例如,0.98乘以0.04等于0.98*1*0.04=0.0392。

三、整数除法的速算方法1. 如果被除数是10的倍数,可以将被除数直接除以10,再加上若干个0。

例如,2300除以10等于230,2300除以100等于23。

2. 如果被除数比除数小很多,可以先将被除数乘以10,再除以除数。

例如,230除以5等于(230*10)/5=2300/5=460。

四、百分数的速算方法1. 当计算某个数的百分之几时,可以将这个数除以100,再乘以百分数。

例如,计算48的百分之25,可以先将48除以100,再乘以25,即48/100*25=12。

2. 当计算某个数是另一个数的百分之几时,可以将这个数除以另一个数,再乘以100。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法一、加法巧算和速算方法凑整法 凑整法是加法巧算和速算中最常用的方法之一。

它的基本思想是将加数凑成整十、整百、整千等,然后再进行计算。

例如,计算 23+45+55 时,可以将 45 和55 凑成 100,然后再加上 23,得到 123。

交换律和结合律 交换律和结合律是加法运算中的基本定律,它们可以帮助我们简化计算。

例如,计算 23+45+55 时,可以先将 45 和 55 相加,得到 100,然后再加上23,得到 123。

基准数法 基准数法是一种将加数都近似地看作某个基准数的方法。

例如,计算23+22+24+21 时,可以将 23 看作基准数,然后将其他加数都近似地看作 23,得到23×4=92。

二、减法巧算和速算方法凑整法 凑整法同样适用于减法巧算和速算。

例如,计算 100-45 时,可以将 45 凑成50,然后再用 100 减去 50,得到 50。

交换律和结合律 交换律和结合律在减法运算中同样适用。

例如,计算 100-45-55时,可以先将 45 和 55 相加,得到 100,然后再用 100 减去 100,得到 0。

基准数法 基准数法在减法运算中也可以使用。

例如,计算 100-45-55 时,可以将100 看作基准数,然后将其他减数都近似地看作 100,得到 100-100=0。

三、乘法巧算和速算方法乘法分配律 乘法分配律是乘法运算中的基本定律,它可以帮助我们简化计算。

例如,计算 25×(40+4)时,可以先将 40 和 4 分别乘以 25,然后将结果相加,得到25×40+25×4=1000+100=1100。

乘法结合律 乘法结合律是乘法运算中的另一个基本定律,它可以帮助我们简化计算。

例如,计算 25×4×25 时,可以先将 25 和 4 相乘,得到 100,然后再将 100 乘以 25,得到 2500。

乘法交换律 乘法交换律是乘法运算中的基本定律之一,它可以帮助我们简化计算。

1速算与巧算

1速算与巧算

第一讲速算与巧算一、运用加法运算定律巧算加法1.直接利用补数巧算加法如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。

如:28+52=80,49+51=100,936+64=1000。

其中,28和52互为补数;49和51互为补数;936和64互为补数。

在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。

例1巧算下面各题:(1)42+39+58;(2)274+135+326+265。

解:(1)原式=(42+58)+39=100+39=139(2)原式=(274+326)+(135+265)=600+400=10002.间接利用补数巧算加法如果两个加数没有互补关系,可以间接利用补数进行加法巧算。

例2计算986+238。

解法1:原式=1000-14+238=1000+238-14=1238-14=1224解法2:原式=986+300-62=1286-62=1224以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。

解法3:原式=(62+924)+238=924+(238+62)=924+300=1224解法4:原式=986+(14+224)=(986+14)+224=1224以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。

所以可称为“拆分凑补法”。

3.相接近的若干数求和下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。

例3计算71+73+69+74+68+70+69。

解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。

我们把这7个数都看作70,则变为7个70。

如果多加了,就减去,少加了再加上,这样计算比较简便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。

“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。

【由小推大】“由小推大”是一种数学思维方法,也是一种速算、巧算技巧。

遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。

例如:(1)计算下面方阵中所有的数的和。

这是个“100×100”的大方阵,数目很多,关系较为复杂。

不妨先化大为小,再由小推大。

先观察“5×5”的方阵,如下图(图4.1)所示。

容易看到,对角线上五个“5”之和为25。

这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现,这五个斜行,每行数之和都是25。

所以,“5×5”方阵的所有数之和为25×5=125,即5×5×5=125。

于是,很容易推出大的数阵“100×100”的方阵所有数之和为100×100×100=1,000,000。

【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。

例如:求1 到10 亿这10 亿个自然数的数字之和。

这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。

什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。

显然,10 亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。

怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。

然后,将它们分组(首尾法分组):0 和999,999,999;1 和999,999,998;2 和999,999,997;3 和999,999,996;4 和999,999,995;5 和999,999,994;……… ………依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如0+9+9+9+9+9+9+9+9+9=811+9+9+9+9+9+9+9+9+8=81………………最后的一个数1,000,000,000 不成对,它的数字之和是1。

所以,此题的计算结果是(81×500,000,000)+1=40,500,000,000+1=40,500,000,001根据此原理:求1 到12 这12 个自然数的数字之和,解:利用首尾法分组:0,91,8,2,7共5组数,加上10,11,12的和,即:9*5+1+0+1+1+1+2=51【凑整巧算】用“凑整方法”巧算,常常能使计算变得比较简便、快速。

例如(1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111(2)9+97+998+6=(9+1)+(97+3)+(998+2)+6-1-3-2=10+100+1000=1110(3)125+125+125+125+120+125+125+125=125+125+125+125+(120+5)+125+125+125-5=125×8-5=1000-5=995【恒等变形】恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。

它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。

例如(1)1832+68=(1832-32)+(68+32)=1800+100=1900(2)359.7-9.9=(359.7+0.1)-(9.9+O.1)=359.8-10=349.8【拆数加减】在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。

(1)拆成两个分数相减。

例如又如(2)拆成两个分数相加。

例如又如【巧妙试商】除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。

(1)用“商五法”试商。

当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。

如70÷14=5,125÷25=5。

当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。

“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。

例如1248÷24=52,2385÷45=53(2)同头无除商八、九。

“同头”指被除数和除数最高位上的数字相同。

“无除”仍指被除数前两位不够除。

这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。

5742÷58=99,4176÷48=87。

(3)用差数试商。

当除数是11、12、13…………18 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。

若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为5。

若不准确,只要调小1 就行了。

例如1476÷18=82(18 与14 差4,初商为8,经试除,商8正确);1278÷17=75(17 与12 的差为5,初商为7,经试除,商7 正确)。

为了便于记忆,我们可将它编成下面的口诀:差一差二商个九,差三差四八当头;差五差六初商七,差七差八先商六;差数是九五上阵,试商快速无忧愁。

【同分子分数加减】同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。

分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。

例如(注意:分数减法要用减数的原分母减去被减数的原分母。

)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。

例如【先借后还】“先借后还”是一条重要的数学解题思想和解题技巧。

例如做这道题,按先通分后相加的一般办法,势必影响解题速度。

现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。

【个数折半】下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。

(1)分母相同的所有真分数相加。

求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。

这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。

(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。

比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。

比方【带分数减法】带分数减法的巧算,可用下面的两个方法。

(1)减数凑整。

例如(2)交换位置。

例如在这两种方法中,第(1)种“凑整”法,也可以运用到带分数的加法中去。

例如【带分数乘法】有些特殊的带分数相乘,可以采用一些特殊的巧算方法。

(1)相乘的两个带分数整数部分相同,分数部分的和是1,则乘积也是个带分数,它的整数部分是一个因数的整数部分乘以比它大1 的数,分数部分是两个因数的分数部分的乘积。

例如(2)相乘的两个带分数整数部分相差1,分数部分和为1,则积也是个带分数,它用较大数的整数部分的平方,减去分数部分的平方,所得的差就是这两个带分数的乘积。

例如(注:这是根据“(a+b)(a-b)=a2-b2”推出来的。

)(3)相乘的两个带分数,整数部分都是1,分子也都是1,分母相差1,则乘积也是个带分数。

这个带分数的整数部分是1,分子是2,分母与较大因数的分母相同。

例如读者自己去试一试,此处略)。

【两分数相除】有些分数相除,可以采用以下的巧算方法:(1)分子、分母分别相除。

在个别情况下,分数除法可沿用整数除法的做法:用分子相除的商作分子,用分母相除的商作分母。

不过,这只有在被除数的分子、分母,分别是除数的分子、分母的整数倍数的情况下,计算才比较简便。

例如(2)分母相除,一次得商。

在两个带分数相除的算式中,当被除数和除数的整数与分母调换了位置,而它们的分子又相同时,根据分数除法法则,只要用原除数的分母除以被除数的分母,所得的数就是它们的商。

例如(注:用除法法则可以推出这种方法,此处略。

)小数的速算与巧算——凑整【知识精要】凑整法是小数加减法速算与巧算运用的主要方法。

用的时候主要看末位。

但是小数计算中“小数点”一定要对齐。

【例题精讲】<一>凑整法例1、计算5.6+2.38+4.4+0.62。

【分析】5.6 与4.4 刚好凑成10,2.38 与0.62 刚好凑成3,这样先凑整运算起来会更加简便。

【解答】原式=(5.6+4.4)+(2.38+0.62)=10+3=13【评注】凑整,特别是“凑十”、“凑百”等,是加减法速算的重要方法。

例2、计算:1.999+19.99+199.9+1999。

【分析】因为小数计算起来容易出错。

刚好1999 接近整千数2000,其余各加数看做与它接近的容易计算的整数。

再把多加的那部分减去。

【解答】1.999+19.99+199.9+1999=2+20+200+2000-0.001-0.01-0.1-1=2222-1.111=2220.889【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,我们也可以引申为读整法,譬如此题。

“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。

但是,一定要记住刚才“多加的”要“减掉”。

“多减的”要“加上”!。

相关文档
最新文档