材料拉压实验报告

合集下载

拉伸压缩实验报告

拉伸压缩实验报告

一、实验目的1. 了解材料力学中拉伸和压缩的基本原理及实验方法。

2. 通过实验观察材料的弹性、屈服、强化等力学行为。

3. 测定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

4. 掌握电子万能试验机的使用方法及工作原理。

二、实验原理1. 拉伸实验:将试样放置在万能试验机的夹具中,缓慢施加轴向拉伸载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:将试样放置在万能试验机的夹具中,缓慢施加轴向压缩载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

三、实验设备1. 电子万能试验机2. 力传感器3. 位移传感器4. 游标卡尺5. 计算机及数据采集软件四、实验材料1. 低碳钢拉伸试样2. 铸铁压缩试样五、实验步骤1. 拉伸实验:1. 将低碳钢拉伸试样安装在万能试验机的夹具中。

2. 设置试验参数,如拉伸速率、最大载荷等。

3. 启动试验机,缓慢施加轴向拉伸载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:1. 将铸铁压缩试样安装在万能试验机的夹具中。

2. 设置试验参数,如压缩速率、最大载荷等。

3. 启动试验机,缓慢施加轴向压缩载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

六、实验结果与分析1. 低碳钢拉伸实验:1. 通过F-Δl曲线,确定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

2. 分析材料在拉伸过程中的弹性、屈服、强化等力学行为。

2. 铸铁压缩实验:1. 通过F-Δl曲线,确定材料的强度极限等力学性能指标。

2. 分析材料在压缩过程中的破坏现象。

七、实验结论1. 通过本次实验,我们掌握了拉伸和压缩实验的基本原理及实验方法。

2. 通过实验结果,我们了解了低碳钢和铸铁的力学性能。

3. 实验结果表明,低碳钢具有良好的弹性和塑性,而铸铁则具有较好的抗压性能。

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。

通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。

本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。

二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。

应变可以通过求解样本的伸长量与原始长度的比值得到。

三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。

四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。

实验结果表明,不同材料的力学
性能存在较大的差异。

其中,钢材的抗拉强度最高,铝材的延伸率较高。

对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。

五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。

通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。

在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。

金属材料拉伸试验报告

金属材料拉伸试验报告

金属材料拉伸试验报告一、实验目的。

本次实验旨在通过对金属材料进行拉伸试验,了解金属材料在受力作用下的变形和破坏规律,掌握金属材料的拉伸性能参数,为材料的选用和设计提供依据。

二、实验原理。

拉伸试验是通过在金属试样上施加拉力,使试样产生塑性变形,最终达到破坏的一种试验方法。

在拉伸试验中,通常会测定材料的抗拉强度、屈服强度、断裂伸长率等指标。

三、实验步骤。

1. 准备试样,按照标准制备金属试样,保证试样的尺寸符合要求。

2. 安装试验机,将试样安装在拉伸试验机上,并调整好试验机的参数。

3. 进行拉伸试验,开始施加拉力,记录拉力-位移曲线,直至试样发生破坏。

4. 测定参数,根据拉力-位移曲线,测定材料的抗拉强度、屈服强度、断裂伸长率等参数。

四、实验数据及结果分析。

通过拉伸试验得到的数据如下:1. 抗拉强度,XXX MPa。

2. 屈服强度,XXX MPa。

3. 断裂伸长率,XX%。

根据实验数据分析可得,材料在受拉力作用下,首先表现出线性的弹性变形,随后进入塑性变形阶段,最终发生破坏。

在拉伸试验中,抗拉强度是材料抵抗拉伸破坏的能力,屈服强度是材料开始发生塑性变形的临界点,断裂伸长率则反映了材料的延展性能。

五、实验结论。

通过本次拉伸试验,我们得出了材料的抗拉强度、屈服强度、断裂伸长率等重要参数。

这些参数对于材料的选用和工程设计具有重要意义。

在实际工程中,我们应该根据材料的拉伸性能参数,合理选择材料,并设计合适的结构,以确保工程的安全可靠。

六、实验总结。

拉伸试验是对金属材料力学性能进行评价的重要手段,通过拉伸试验可以全面了解材料在受拉力作用下的性能表现。

因此,掌握拉伸试验的原理和方法,对于材料工程师和设计人员来说是非常重要的。

在今后的工作中,我们将继续深入学习材料力学知识,不断提高对材料性能的认识,为工程实践提供更加可靠的技术支持。

七、参考文献。

1. 《金属材料拉伸试验方法》。

2. 《金属材料力学性能测试手册》。

以上就是本次金属材料拉伸试验的报告内容,希望能对大家有所帮助。

材料力学实验(拉压试验)

材料力学实验(拉压试验)

材料力学实验(拉压试验)拉伸实验一.实验目的:1.学习了解电子万能试验机的结构原理,并进行操作练习。

2.确定低碳钢试样的屈服极限3.确定铸铁试样的强度极限、强度极限。

、伸长率、面积收缩率。

4.观察不同材料的试样在拉伸过程中表现的各种现象。

二.实验设备及工具:电子万能试验机、游标卡尺、记号笔。

三.试验原理:塑性材料和脆性材料拉伸时的力学性能。

(在实验过程及数据处理时所支撑的理论依据。

参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。

)四.实验步骤1.低碳钢实验(1)量直径、画标记:用游标卡尺量取试样的直径。

在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。

用记号笔在试样中部画一个或长的标距,作为原始标距。

(2)安装试样:启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下夹头之间的位置能满足试样长度,把试样放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。

(3)调整试验机并对试样施加载荷:调整负荷(试验力)、峰值、变形、位移、试验时间的零点;根据出加载速度,其中计算为试样中部平行段长度,当测定下屈服强度和抗拉强度时,并将计算结果归整后输入;按下显示屏中的“开始”键,给试样施加载荷;在加载过程中,注意观察屈服载荷的变化,记录下屈服载荷的大小,当载荷达到峰值时,注意观察试样发生的颈缩现象;直到试样断裂后按下“停止”键。

(4)试样断裂后,记录下最大载荷和断口处最小直径。

从夹头上取下试样,重新对好,量取断后标距2.铸铁实验(1)量直径:用游标卡尺量取试样的直径。

在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。

(2)安装试样:启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下夹头之间的位置能满足试样长度,把试样放在两夹头之间,沿箭头方向旋转手柄,加紧试样。

材料力学实验报告1

材料力学实验报告1

目录实验一金属材料的拉伸与压缩实验 (1)实验二金属材料的扭转实验…………………………………实验三金属材料的弹性模量E和波桑系数 测定…………………实验四桥路变换……………………………………………………实验五纯弯梁的正应力测定………………………………………实验六空心簿壁圆桶的主应力测定………………………………实验七偏心拉伸……………………………………………………实验一金属材料的拉伸与压缩试验一、一、实验目的1. 1.了解液压式材料试验机的工作原理,初步掌握试验机的操作规程。

2. 2.测定低碳钢的屈服(流动)极限σS,强度极限σb,延伸率δ和截面收缩率Ψ。

观察试件在拉伸过程中的各种现象(弹性、屈服、强化、颈缩)。

3. 3.测定铸铁材料的拉伸和压缩强度极限σb。

4. 4.比较低碳钢和铸铁的机械性质及破坏时的断口形式。

二、二、实验原理及计算测定金属材料的机械性质需要将试件制成符合国家标准的形状和尺寸。

一般规定,圆形截面的拉伸试件其标距L0与直径D0的关系为L0=10D0;压缩试件的高度H0与直径D0的关系为。

见图1.图1-1图1-2 为低碳钢和铸铁试件的P―ΔL图。

图1-2低碳钢试件在拉伸过程中,可分为四个阶段:1. 1.弹性阶段:载荷与变形成正比,P―ΔL图中表现为OA直线段。

屈服阶段:2. 2.P―ΔL图中的BC段,为一水平锯齿形曲线,此时材料暂时失去了抵抗变形的能力,表现为载荷在很小的范围内波动,而变形量则比较明显。

此时可观察到试验机测力盘上的主动针在某一刻度值范围内波动,取主动针回摆的最小读数值,即BC段中的下极限作为屈服载荷PS并记录下来,屈服极限σS可按下式计算:MN/m23. 3.强化阶段。

P―ΔL图中的CE阶段,在此阶段材料又恢复了抵抗变形的能力,要使它继续变形则必须增加载荷。

在此阶段(例如D点)卸载,则按图1-2所示的DD’斜直线回到D'短时间內若再加载,则P—∆L图大致仍按D'D斜直回到D点,然后又回沿DE曲线变化。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。

二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。

在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。

2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。

通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。

三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。

2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。

四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。

b. 设置合适的加载速率和采样频率,开始施加拉力。

c. 记录载荷和位移数据,绘制应力-应变曲线。

d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。

2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。

b. 设置合适的加载速率和采样频率,开始施加压力。

c. 记录载荷和位移数据,得到应力-应变关系曲线。

d. 观察试样的变形情况,记录压缩过程中的各阶段特征。

五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。

2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。

六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。

实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。

这些结果为材料的工程应用提供了重要参考。

材料力学拉伸实验报告

材料力学拉伸实验报告

材料力学拉伸实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】材料的拉伸压缩实验徐浩 20 机械一班一、实验目的1.观察试件受力和变形之间的相互关系;2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象。

观察铸铁在压缩时的破坏现象。

3.测定拉伸时低碳钢的强度指标(s、b)和塑性指标(、)。

测定压缩时铸铁的强度极限b。

二、实验设备1.微机控制电子万能试验机;2.游标卡尺。

三、实验材料拉伸实验所用试件(材料:低碳钢)如图所示,四、实验原理低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。

对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于l,此阶段称为弹性阶段。

屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。

其中,B 点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。

下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。

测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显着变形,载荷逐渐减小,直至试件断裂。

应用公式b=F b/A0计算强度极限(A0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端面收缩率,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。

五、实验步骤及注意事项 1、拉伸实验步骤(1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。

材料的力学实验报告

材料的力学实验报告

材料的力学实验报告材料的力学实验报告材料的力学实验报告一目录一、拉伸实验...............................................................................2 二、压缩实验...............................................................................4 三、拉压弹性模量E 测定实验...................................................6 四、低碳钢剪切弹性模量G测定实验.......................................8 五、扭转破坏实验....................................................................10 六、纯弯曲梁正应力实验..........................................................12 七、弯扭组合变形时的主应力测定实验..................................15 八、压杆稳定实验. (18)一、拉伸实验报告标准答案实验结果及数据处理:例:(一)低碳钢试件强度指标:Ps=_____KN屈服应力ζs= Ps/A _____MPa P b =_____KN 强度极限ζb= Pb /A _____MPa 塑性指标:L1-LAA1伸长率100% %面积收缩率100% %LA低碳钢拉伸图:铸铁试件强度指标:最大载荷Pb =_____ KN强度极限ζb= Pb / A = ___ M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、引言在工程力学实验中,拉伸与压缩实验是非常重要的一部分。

通过对材料在拉伸与压缩过程中的力学性质进行测试与分析,能够帮助我们更好地了解材料的强度、刚度等特性。

本实验旨在通过拉伸与压缩实验,探究材料在不同加载条件下的性能表现,以及分析材料的应力-应变关系等相关问题。

二、实验设备与方法2.1 实验设备在本实验中,我们使用的设备主要有: - 拉伸试验机 - 压缩试验机 - 拉伸与压缩试验样品2.2 实验方法1.拉伸实验方法:–准备拉伸试验样品。

–将试样夹入拉伸试验机,并进行初始调节。

–增加载荷,开始进行拉伸实验。

–记录载荷和伸长量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和韧性等性能指标。

2.压缩实验方法:–准备压缩试验样品。

–将试样夹入压缩试验机,并进行初始调节。

–增加载荷,开始进行压缩实验。

–记录载荷和压缩量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和刚度等性能指标。

三、实验结果与分析3.1 拉伸实验结果与分析在拉伸实验中,我们对不同材料进行了拉伸测试并记录了载荷和伸长量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

3.2 压缩实验结果与分析在压缩实验中,我们对不同材料进行了压缩测试并记录了载荷和压缩量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

四、结论通过本次拉伸与压缩实验,我们得到了不同材料在拉伸与压缩过程中的应力-应变曲线。

通过分析曲线特征,我们可以得出以下结论: 1. 不同材料具有不同的强度和刚度,应力-应变曲线的斜率可以反映材料的刚度。

2. 在拉伸过程中,材料会表现出一定的塑性变形,这可以通过应力-应变曲线的非线性段来观察。

3. 拉伸实验中断裂点的载荷值可以反映材料的抗拉强度。

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告金属材料拉伸与压缩实验报告引言:金属材料是工程领域中广泛应用的一类材料。

了解金属材料的力学性能对于设计和制造具有高强度和高可靠性的结构件至关重要。

本实验旨在通过拉伸和压缩实验,研究金属材料的力学性能,并分析其应力-应变曲线、屈服强度和延伸率等参数。

实验方法:1. 拉伸实验:首先,选择一块金属试样,将其夹紧在拉伸试验机上。

逐渐施加拉力,记录下拉伸过程中的应变和应力数据。

当试样断裂时,停止拉力施加,记录下断裂点的应变和应力。

2. 压缩实验:选择一块金属试样,将其夹紧在压缩试验机上。

逐渐施加压力,记录下压缩过程中的应变和应力数据。

当试样发生破坏时,停止压力施加,记录下破坏点的应变和应力。

实验结果与分析:通过拉伸实验得到的应力-应变曲线表明,金属材料在拉伸过程中呈现出弹性阶段、屈服阶段和断裂阶段。

在弹性阶段,应变与应力成正比,材料能够恢复原状。

在屈服阶段,应变增加速度减慢,材料开始发生塑性变形。

在断裂阶段,应变急剧增加,材料发生断裂。

通过测量屈服点的应力和应变,可以计算出材料的屈服强度。

通过压缩实验得到的应力-应变曲线与拉伸实验类似,也呈现出弹性阶段、屈服阶段和断裂阶段。

然而,与拉伸实验相比,压缩实验中的屈服点通常较难确定。

这是因为在压缩过程中,试样受到的应力分布不均匀,可能会导致试样的局部塑性变形和失稳。

根据实验数据计算得到的屈服强度和延伸率等参数可以用来评估金属材料的机械性能。

屈服强度是材料在发生塑性变形之前能够承受的最大应力。

延伸率是材料在拉伸过程中能够延展的程度,通常以百分比表示。

这些参数对于工程设计和材料选择非常重要,可以帮助工程师确定合适的金属材料以满足特定的应用需求。

结论:通过拉伸和压缩实验,我们可以获得金属材料的应力-应变曲线,并计算出屈服强度和延伸率等参数。

这些参数对于评估金属材料的力学性能至关重要。

在工程设计和材料选择过程中,我们应该根据特定应用的需求,选择具有适当力学性能的金属材料,以确保结构的安全性和可靠性。

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告材料的拉伸与压缩实验报告引言:材料的力学性质是工程设计和材料科学研究中的重要参数,而材料的拉伸与压缩实验是了解材料力学性能的常用手段之一。

本实验通过对不同材料在拉伸与压缩过程中的行为进行观察与分析,旨在揭示材料的力学特性,为工程应用提供参考。

实验目的:1. 了解材料在拉伸与压缩加载下的力学行为;2. 掌握拉伸与压缩实验的基本操作方法;3. 分析材料的应力-应变曲线,计算其力学参数。

实验步骤:1. 实验前准备:a. 准备实验所需材料,如金属样品或塑料样品;b. 根据实验要求,制备所需的试样;c. 检查实验设备,确保其正常工作。

2. 拉伸实验:a. 将试样固定在拉伸试验机上,并调整好试验机的参数;b. 逐渐增加拉伸力,记录拉伸力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗拉强度等力学参数。

3. 压缩实验:a. 将试样固定在压缩试验机上,并调整好试验机的参数;b. 逐渐增加压缩力,记录压缩力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗压强度等力学参数。

实验结果与分析:通过拉伸与压缩实验,我们得到了不同材料在加载过程中的应力-应变曲线。

根据曲线的特点,我们可以看出材料在拉伸与压缩过程中的行为有很大的差异。

在拉伸实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

此后,应力开始下降,直到材料发生断裂。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗拉强度等参数,这些参数可以用来评估材料的强度和韧性。

在压缩实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

与拉伸实验不同的是,材料在压缩过程中不会发生断裂,而是发生塑性变形。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗压强度等参数,这些参数可以用来评估材料的稳定性和可塑性。

结论:通过本次实验,我们对材料的拉伸与压缩行为有了更深入的了解。

§4—1材料在拉伸和压缩时力学性能测定实验

§4—1材料在拉伸和压缩时力学性能测定实验

金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。

常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。

通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。

下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。

一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。

3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。

(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。

2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。

3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。

4、了解万能材料试验机的结构工作原理和操作。

(二)设备及试样1、电子万能材料试验机。

2、杠杆式引伸仪或电子引伸仪。

3、游标卡尺。

4、拉伸试样。

GB6397—86规定,标准拉伸试样如图1所示。

截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。

对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。

实验前要用划线机在试样上画出标距线。

(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。

这些指标都是工程设计中常用的力学性能参数。

现以液压式万能材料试验机为例说明其测量原理和方法。

材料拉压实验报告

材料拉压实验报告

成绩台州学院机械工程学院实验报告班级 _________________ 学号________________ 姓名_________________实验课程:_________________________ 材料力学实验项目:低碳钢和铸铁的拉伸和压缩实验实验日期:______________ 年________ 月________ 日实验一低碳钢和铸铁的拉伸和压缩实验(一)低碳钢和铸铁的拉伸实验实验日期: 报告人: 室 温:小组成员:、实验目的:、实验设备及仪器1) 试验机型号、名称: 2) 量具型号、名称:三、试件1) 试件材料。

试件①:低碳钢 Q235试件②:灰口铸铁 2) 试件形状和尺寸表1 —1试件形状表1— 2试件原始尺寸实验地点: 指导教师:四、实验数据及计算结果表1 —3实验数据材料屈服载荷F s(kN)最大载何F b (kN)拉断后标距(mm断口处直径(mr)i断口处横截面面积(mm2)(1) (2) (3) (4) 平均低碳钢铸铁表1 —4计算结果材料弹性模量E(Gpa)强度指标(MPa塑性指标(%)断口形状屈服极限强度极限%延伸率6截面收缩率屮低碳钢铸铁低碳钢铸铁注:1Pa= 1N/ m五、拉伸曲线示意图O图2铸铁六、思考题1)参考低碳钢拉伸图,分段回答力与变形的关系以及在实验中反映出的现象图1低碳钢2)由低碳钢、铸铁的拉伸图和试件断口形状及其测试结果,回答二者机械性能有什么不同3)测定E时为何要加初载荷P0并限制最高载荷Pn?使用分级加载的目的是什么?(二)低碳钢和铸铁的压缩实验、实验设备及仪器1)试验机型号、名称: 2)量具型号、名称:试件1)试件材料:试件①:低碳钢Q235试件②:灰口铸铁2)试件形状和尺寸表2-2试件原始尺寸三、实验数据及计算结果表2 -3实验数据及计算结果附:计算公式:屈服极限,强度极限,。

盘四、压缩曲线示意图图低碳钢图铸铁五、思考题1)为何低碳钢压缩测不出破坏载荷,而铸铁压缩测不出屈服载荷?2)为什么铸铁压缩时沿轴线大致成45°方向的斜截面破坏?3)通过拉伸与压缩实验,比较低碳钢的屈服极限在拉伸和压缩时的差别?4)通过拉伸与压缩实验,比较铸铁的强度极限在拉伸和压缩时的差别?。

力学试验测试实验报告(3篇)

力学试验测试实验报告(3篇)

第1篇一、实验目的1. 了解力学试验的基本原理和方法。

2. 掌握拉伸试验、压缩试验、弯曲试验等力学试验的操作技能。

3. 培养学生严谨的实验态度和良好的实验习惯。

二、实验原理力学试验是研究材料力学性能的重要手段。

本实验主要研究材料的拉伸、压缩和弯曲性能。

通过测量材料在受力过程中的应力、应变等参数,可以了解材料的力学特性。

1. 拉伸试验:测量材料在拉伸过程中断裂时的最大应力,称为抗拉强度。

2. 压缩试验:测量材料在压缩过程中断裂时的最大应力,称为抗压强度。

3. 弯曲试验:测量材料在弯曲过程中断裂时的最大应力,称为抗弯强度。

三、实验仪器与材料1. 实验仪器:万能试验机、拉伸试验机、压缩试验机、弯曲试验机、测量仪器等。

2. 实验材料:钢棒、铜棒、铝棒等。

四、实验步骤1. 拉伸试验:(1)将材料固定在拉伸试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢拉伸,直到断裂。

(3)记录断裂时的最大应力值。

2. 压缩试验:(1)将材料固定在压缩试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢压缩,直到断裂。

(3)记录断裂时的最大应力值。

3. 弯曲试验:(1)将材料固定在弯曲试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢弯曲,直到断裂。

(3)记录断裂时的最大应力值。

五、实验数据与结果分析1. 拉伸试验:(1)材料:钢棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为600MPa。

(3)结果分析:钢棒在拉伸试验中表现出良好的抗拉性能。

2. 压缩试验:(1)材料:铜棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为200MPa。

(3)结果分析:铜棒在压缩试验中表现出较好的抗压性能。

3. 弯曲试验:(1)材料:铝棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为150MPa。

(3)结果分析:铝棒在弯曲试验中表现出较好的抗弯性能。

拉伸压缩实验报告小结

拉伸压缩实验报告小结

拉伸压缩实验报告小结引言拉伸压缩实验是一种常用的材料力学实验方法,用于研究材料的力学性能。

通过对材料进行拉伸或压缩,可以测量材料的应变和应力,并得出相应的力应变曲线。

本次实验旨在通过拉伸压缩实验,了解材料的力学性能,并探究拉伸和压缩过程中材料的强度和变形特性。

实验过程本次实验使用了一台万能材料测试机,将不同材料的试样加在夹具上,进行拉伸或压缩。

在实验过程中,我们通过调节测试机的加载速度,从而记录下材料的变形和破坏情况,并使用相应的软件来绘制力应变曲线。

实验结果实验结果表明,不同材料在拉伸和压缩过程中的力学性能存在明显差异。

在拉伸过程中,材料开始发生变形,线性区域中的应力与应变成正比。

随着拉伸的增加,材料逐渐进入非线性区域,应变速度逐渐增大,最后发生破坏。

而在压缩过程中,材料开始呈现压缩性变形,直至发生破坏。

通过力应变曲线的绘制,我们可以获得材料的屈服强度、极限强度、延伸率等重要参数。

这些参数对于材料的选择和设计具有重要意义。

另外,在比较不同材料的拉伸和压缩性能时,我们还可以推断出材料的韧性、脆性等特性。

结论本次拉伸压缩实验通过对不同材料进行拉伸和压缩,研究了材料的力学性能。

实验结果表明,不同材料在拉伸和压缩过程中的力学行为存在明显差异。

同时,通过绘制力应变曲线,我们还可以得到材料的重要参数,为材料的选择和设计提供依据。

然而,本次实验还存在一些不足之处。

首先,由于时间的限制,我们只能对有限数量的材料进行测试,因此得到的结论具有一定的局限性。

其次,实验中可能存在实验误差和操作误差,对最终结果造成一定影响。

为了提高实验的准确性和可靠性,未来可以进一步优化实验方案,增加样本的数量和种类,以及加强对实验操作的控制和规范。

通过本次实验,我们深入了解了拉伸压缩实验的方法和意义,丰富了对材料力学性能的认识。

这对于我们今后在材料选型、产品设计和工程实践中具有重要指导作用。

拉压试验

拉压试验

实验一拉伸时材料弹性模量的测定一、实验目的1、在比例极限内,验证虎克定律。

2、测定低碳钢的弹性模量Eo二、实验设备1、游标卡尺2、球铰式引伸仪用来测量微小线变形的仪器称为引伸仪,它可以将微小变形放大许多倍,提高测量精度。

引伸仪种类很多,现介绍常用的球铰式引伸仪,此仪器的原理示意图如图1所示。

试件夹持于上、下标距叉内,当试件标距L伸长△L时,下标距叉绕球铰B转动,试件伸长△L=AA’,由于AB=AC,所以CC’=2AA=2△L,千分表(或百分表)测出的距离则为2△L,又因千分表(或百分表)的放大倍数为1000(或100)倍,故球铰式引伸仪总的放大倍数为K=2000倍(或K=200倍)。

仪器标距有L=100mm和L=50mm两种。

3、油压式万能材料试验机油压式万能材料试验机可以作拉伸、压缩、弯曲等多种试验,其构造可分为加载、测力和绘图三个部分。

试验机的类型很多,下面以实验室使用的WE—10B型液压式万能试验机为例说明,图2是其构造原理示意图。

(1)加载部分拉伸试件夹紧于上、下横梁1和2的夹头之间,上横梁1通过前后两光杆3与试验台4固结在一起,下横梁2则通过传动螺母支持在前后两丝杆5上。

开动油泵电动机带动油泵6工作,将油箱中的油经油管(1)和控制阀7送入工作油缸8,推动工作活塞9使试验台4、光杆3及上横梁l上升,下横梁2不动,从而使试件受拉伸。

如将试件放在下横梁2和试验台4之间,则试验台上升时,试件将承受压力。

为便于装夹不同长度的试件,可开启升降电机,通过减速器10传动链子,使丝杆5旋转,从而使下横梁2快速移动到适当位置。

必须注意:当试件已经夹紧或受力后,严禁再开启升降电机,以免损坏机器。

(2)测力部分加载时,工作油缸8中的油压与试件所受的力成正比,如用油管(2)将工作油缸与测力油缸11联通,此油压推动测力活塞2向下移动,带动拉杆13,使摆锤14绕支点转动,同时摆上的推板15便推动线轮架16沿导轨移动,使指针17旋转,指针转动的角度与试件受力大小成正比,于是在测力度盘18上便可读出试件受力的大小。

拉压实验报告步骤

拉压实验报告步骤

拉压实验报告步骤实验目的本实验旨在通过拉压实验,探究材料的力学性质,了解其拉伸和压缩行为,以及材料的弹性模量、屈服点等重要参数。

实验器材和材料- 拉压试验机- 样品材料(例如金属、塑料等)- 钢尺、千分尺等测量工具- 记录表格实验步骤1. 实验准备1. 准备好所需的实验器材和材料。

2. 检查拉压试验机的工作状态,确保其正常运行。

3. 准备好记录表格,用于记录实验数据。

2. 样品准备1. 根据实验要求,选取合适的样品材料。

2. 利用钢尺或千分尺测量样品的初始尺寸,记录下来。

3. 实验操作1. 将样品放置于拉压试验机的夹持装置中,并根据样品形状和实验要求确定夹具的位置和姿态。

2. 调整拉压试验机的负载和位移控制参数,按照实验要求设定拉伸或压缩的速率。

3. 启动拉压试验机,开始实验。

4. 观察样品的变形情况,记录下实验数据,包括负载、位移等数据。

5. 在达到预定的拉伸或压缩程度后,停止试验,记录下最终的负载和位移数值。

6. 将样品从拉压试验机中取出,检查其是否出现明显的变形、裂纹等。

4. 数据处理和分析1. 将实验记录的负载和位移数据整理成表格形式。

2. 根据实验数据,绘制负载-位移曲线和应力-应变曲线等图表。

3. 根据曲线的特征,分析材料的拉伸和压缩性能,测定其弹性模量、屈服点等重要参数。

5. 实验结论根据实验数据和分析结果,得出结论,总结实验的研究目标是否达到,实验过程中是否有问题或改进的地方。

总结通过拉压实验,我们可以深入研究材料的拉伸和压缩行为,了解其力学性质和性能特征。

在实验中,我们通过准备样品、操作拉压试验机、记录数据并进行分析等步骤,获得了实验结果和结论,对材料的性能有了更深入的认识。

这些实验步骤和方法不仅可以应用于材料科学领域,也可以推广到其他工程和科学研究中,为研究者提供参考和借鉴。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、实验目的本次实验旨在通过拉伸与压缩实验,掌握材料的力学性能,了解材料的弹性、塑性及破坏特点,进一步加深对工程力学理论的认识。

二、实验原理拉伸与压缩实验是通过对试样施加拉伸或压缩力来测定材料在不同应变下的应力变化关系,以此来确定材料的力学性能。

其中,应力为单位面积内所受到的外部力大小,应变为物体长度或形状发生改变时相应的比例系数。

三、实验仪器和设备1. 万能试验机2. 计算机3. 试样夹具四、实验步骤1. 准备好试样,并进行标记。

2. 将试样夹入夹具中,并将夹具固定在万能试验机上。

3. 设置测试参数,包括加载速率、加载方式等。

4. 开始测试,并记录下载荷与位移数据。

5. 根据数据计算得出应力-应变曲线,并分析结果。

五、实验结果分析1. 拉伸试验结果分析:根据数据计算得出应力-应变曲线,可以看出随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

同时,在材料破坏前,其应变与应力之间呈线性关系,即材料的弹性变形区。

2. 压缩试验结果分析:与拉伸试验相似,随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

但是,在压缩试验中容易出现杆件侧向屈曲现象,因此需要注意试样的几何形状和长度。

六、实验注意事项1. 试样的准备需要严格按照要求进行,并进行标记。

2. 夹具固定在万能试验机上时需要保证稳定性。

3. 设置测试参数时需要根据实际情况进行调整。

4. 在测试过程中需要注意记录数据,并及时停止测试避免损坏设备。

七、实验结论通过拉伸与压缩实验可以了解材料的弹性、塑性及破坏特点,并掌握材料的力学性能。

同时,在进行实验时需要注意试样准备、夹具固定、测试参数设置及数据记录等方面的问题。

拉伸压缩实验报告

拉伸压缩实验报告
铸铁试件
标距L0= (mm)
标距L1= (mm)
直径(mm)



最小截面面积A0= mm
(2)加载力值
试件
上屈服荷载
下屈服荷载
屈服荷载
断裂时最大荷载
低碳钢
铸铁



2、压缩实验数据记录
(1)试件尺寸:
实验前
材料
长度mm
直径mm
横截面面积mm2
1
2
平均
低碳钢
铸铁
实验后
材料
长度mm
最大直径mm
断面与轴线夹角°
批阅报告教师(签名):
1
2
平均
低碳钢





铸铁
(2)加载力值
材料
屈服荷载KN
最大荷载KN
低碳钢

铸铁

实验指导教师(签名):
四、数据处理:
材料
屈服强度MPa
抗拉强度MPa
断后伸长率%
断面收缩率%
低碳钢
铸铁


1、拉伸试验数据处理
2、压缩试验数据处理
材料
屈服限MPa
抗压强度MPa
低碳钢

铸铁

3、试样拉伸曲线简图:
4、试样压缩曲线简图:
金属材料的拉压试验
实验日期实验地点报告成绩
分组编号-环境温、湿度℃、%RH
一、实验目的:
二、使用仪器设备:
三、数据记录
1、拉伸实验数据记录
(1)试件尺寸
试验前
试验后
低碳钢试件
标距L0= (mm)
标距L1= (mm)

材料力学实验报告 拉压试验

材料力学实验报告 拉压试验

材料力学实验实验二拉压实验实验日期:2018.10.29一、实验目的1、测定低碳钢(Q235)拉伸最大载荷Fm、拉伸强度Rm、下屈服强度R El、断后伸长率A、断后收缩率Z。

2、观察低碳钢拉伸过程中各种现象(屈服、颈缩等),并绘制拉伸曲线。

3、测定低碳钢(Q235)压缩时下压缩屈服强度R eLc,绘制压缩曲线。

4、测定铸铁压缩时最大压缩力F、抗压强度Rmc,绘制压缩曲线。

二、实验设备1、电子万能试验机2、应变式引伸计(标距50mm)3、计算机数据采集系统及实验软件4、游标卡尺三、实验原理利用拉伸试验机产生的静拉力(或静压力),对标准试样进行轴向拉伸(或压缩),同时连续测量变化的载荷和试样的伸长量,直至断裂(或破裂),并根据测得的数据计算出有关的力学性能指标。

四、实验步骤1、碳素钢拉伸(1)用游标卡尺和分规测量试样的直径d0和标距L0。

在标距中央及两条标距线附近各取截面进行测量。

(2)在控制计算机上打开拉伸实验软件,进人到实验程序界面,如图所示。

(3)启动电子万能实验机。

(4)检查横梁运动。

如图3- 6所示,在横梁调整栏中选择合适的下横梁升降速度。

点击横梁(上升]或(下降]按钮,观察下横梁行走方向是否正确。

(5)输入试样参数。

在试样参数栏中填人试样标距L0和直径d0,(6)负荷显示框清零。

此时实验机未加载荷,在负荷显示框下方点击清零按钮,使显示框的负荷数值归零。

注意,加载荷后不得使用此按钮。

(7)安装试样。

将拉伸试样一端装入上夹头,旋转手柄,夹紧。

只夹住试样端头30 mm即可。

上升横梁,将试样的下端30 mm导入下夹头,夹紧。

(8)安装引伸计。

将引伸计的两刀口装卡在试样中段,用皮筋或弹簧固定,限位小圆柱与上刀口臂之间应留不大于0.3 mm缝隙。

(9)在实验界面中将“试验速率”设为5 mm/ min。

(10)在实验前将变形显示框清零,位移显示框清零,负荷显示框不清零。

(11)上述实验准备工作完毕后,请实验指导教师检查一遍无误后,即可开始实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

台州学院
机械工程学院实验报告班级学号姓名
实验课程:材料力学
实验项目:低碳钢和铸铁的拉伸和压缩实验
实验日期:年月日
实验一低碳钢和铸铁的拉伸和压缩实验
(一)低碳钢和铸铁的拉伸实验
实验地点:实验日期:报告人:
指导教师:室温:小组成员:
一、实验目的:
二、实验设备及仪器
1)试验机型号、名称:
2)量具型号、名称:
三、试件
1)试件材料。

试件①:低碳钢Q235;试件②:灰口铸铁
2)试件形状和尺寸
四、实验数据及计算结果
五、拉伸曲线示意图
图1低碳钢图2铸铁
六、思考题
1)参考低碳钢拉伸图,分段回答力与变形的关系以及在实验中反映出的现象。

2)由低碳钢、铸铁的拉伸图和试件断口形状及其测试结果,回答二者机械性能有什么不同。

3)测定E时为何要加初载荷P0并限制最高载荷Pn?使用分级加载的目的是什么?
(二)低碳钢和铸铁的压缩实验
一、实验设备及仪器
1)试验机型号、名称:
2)量具型号、名称:
二、试件
1)试件材料:试件①:低碳钢Q235;试件②:灰口铸铁
2)试件形状和尺寸
三、实验数据及计算结果
附:计算公式: 屈服极限:0
S
S A F =
σ
强度极限:0
b
b A F =
σ 四、 压缩曲线示意图
图1 低碳钢 图2 铸铁
五、 思考题
1) 为何低碳钢压缩测不出破坏载荷,而铸铁压缩测不出屈服载荷?
2) 为什么铸铁压缩时沿轴线大致成45°方向的斜截面破坏?
3) 通过拉伸与压缩实验,比较低碳钢的屈服极限在拉伸和压缩时的差别?
4)通过拉伸与压缩实验,比较铸铁的强度极限在拉伸和压缩时的差别?。

相关文档
最新文档