FLUENT官方培训教材(完整版)

合集下载

2024版年度ANSYSFLUENT培训教材UDF

2024版年度ANSYSFLUENT培训教材UDF
32
THANKS
感谢观看
2024/2/2
33
后处理功能增强
UDF可以用于后处理过程中,提 取流场数据并进行自定义处理。
5
编程环境与语言基础
编程环境
UDF的编写通常在ANSYS FLUENT提供的集成开发环境中进行,该环境支持C语言编程。
语言基础
UDF的编写需要具备一定的C语言基础,包括变量定义、控制结构、函数调用等方面的 知识。
2024/2/2
30
对比分析不同场景下性能表现
对比不同UDF之间的性能差异
通过对比不同UDF在同一场景下的性能表现,可以分析出各自的优势和不足,为后续的 优化和改进提供方向。
分析不同场景对UDF性能的影响
通过改变场景参数,如网格数量、时间步长等,可以分析出这些参数变化对UDF性能的 影响规律和趋势。
2024/2/2
多相流模拟
化学反应模拟
在多相流模拟中,UDF可以用于定义相间作 用力、相变过程等复杂现象。
对于涉及化学反应的流动问题,UDF可以用 于定义化学反应速率、物质输运等过程。
2024/2/2
7
02
UDF编程入门与实践
2024/2/2
8
准备工作与设置
1
安装ANSYS Fluent软件,并确认软件版本与 UDF兼容性。
燃烧模拟
通过UDF定义燃烧反应中的化学动 力学模型,模拟燃烧过程中的温度 场、浓度场和流场分布,分析燃烧 效率和污染物排放等。
16
拓展应用:多相流、化学反应等
2024/2/2
多相流模拟 通过UDF可以方便地定义多相流模型中的相间作用力、相 变等物理现象,模拟多相流体的混合、分离和传输过程。
化学反应模拟 UDF可以定义化学反应中的反应速率、反应热等参数,模 拟化学反应过程中的物质转化和能量传递现象。此外,还 可以模拟催化剂对化学反应的影响等。

FLUENT中文全教程

FLUENT中文全教程

FLUEN教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting 第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引( Bibliograp)hy 第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUEN的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUEN所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:z 开始使用:本章描述了FLUEN的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)z 读写文件:本章描述了FLUENT以读写的文件以及硬拷贝文件。

z单位系统:本章描述了如何使用FLUENTS提供的标准与自定义单位系统。

z 读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale、分区(partition等方法对网格的修改。

ANSYS FLUENT官方培训教程10后处理1

ANSYS FLUENT官方培训教程10后处理1

的流动速度
A Pera Global Company © PERA China
其他图形对象
Text: 在viewer中加入自己的labels
– 可自动显示和改变time step/values, expressions, filenames及dates
Text Coord Legend Instance Clip Colour Frame Transform Plane Map
– X, Y, Z, Normals , mesh quality data
Solution variables
– 来自结果文件
User Defined variables
– 创建新的变量
Turbo variables
– 为透平机械算例自动创建的变量
A Pera Global Company © PERA China
Coord Frame Legend
– 为plot创建Legend
Instance Transform
– 对plot进行旋转或平移操作
A Pera Global Company © PERA China
其他图形对象
Clip Plane
– 定义面; 用于对所创建的这个面前/后 的几何
Text Coord Legend Instance Clip Colour Frame Transform Plane Map
位置类型
体(Volumes)
– 以 Surface构建 • 以选择的所有面构建而成 • 用于网格检查 – 等值体(Isovolume) • 基于变量
A Pera Global Company © PERA China
位置类型
Isosurface of pressure behind a flap valve

《fluent讲义》课件

《fluent讲义》课件

Fluent的模拟应用和优化技术
1
热传导模拟
模拟热传导过程,包括传热、热辐射和相变,以优化能量传递和系统效率。
2
多物理场模拟
将不同物理场耦合进行模拟,如流体-固体、流体-电磁和流体-热传导,以研究多 场耦合效应。
3
物流耦合模拟
模拟流体和结构耦合,研究流体对结构的影响,以及结构变化对流体行为的反馈。
流体力学概念与模拟
1 流体力学基础
介绍流体力学的基本概念,包括质量守恒、 动量守恒和能量守恒。
2 多相流模拟
探索多相流模型,如气固流、气液流和固液 流,并学习如何模拟这些复杂的流体行为。
3 湍流模拟
了解湍流的产生机制和模型,并学习如何进 行湍流模拟以预测和优化流体行为。
4 化学反应模拟
研究流体中的化学反应过程,包括燃烧、化 学反应和质量转移,并模拟这些过程的影响。
Fluent的动网格技术和并行计算
动网格技术
介绍Fluent中的动网格技术,包括网格自适应和网 格重构。动态调整网格以捕捉流动细节和提高模拟 精度。
并行计算
探索Fluent中的并行计算技术,利用多核处理器和 集群系统提高模拟速度和处理大规模模拟任务。
Fluent的后处理工具和工程应用案例
后处理工具
Fluent的操作和界面介绍包括模型创建、网 格导入、参数设置等。
物理模型选择
深入了解Fluent所提供的多种物理模型选项,并 选择适合你的应用的模型。
用户界面
探索Fluent友好的用户界面,包括工具栏、菜单 栏、视图控制和后处理选项。
求解器设置
学习如何选择和设置合适的求解器以提高模拟效 率和准确性。
使用Fluent的后处理工具进行数据可视化、图表分析 和结果解释,以实现全面的模拟分析。

FLUENT中文全教程

FLUENT中文全教程

FLUENT 教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。

z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。

z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

FLUENT中文全程1-250

FLUENT中文全程1-250

FLUENT教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:z开始使用:本章描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)z读写文件:本章描述了FLUENT可以读写的文件以及硬拷贝文件。

z单位系统:本章描述了如何使用FLUENT所提供的标准与自定义单位系统。

z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

FLUENT中文全教程

FLUENT中文全教程
I、目录
FLUENT 教程 赵玉新
第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引
一章 z 检查 FLUENT 中流动变量的定义请参阅“流场函数定义”一章 z 关于 FLUENT 并行计算解请参阅“并行处理”一章 z 关于如何使用 FLUENT 的在线帮助请参阅“用户界面”一章 z 对于特定的问题和你所要使用的工具,请查阅相关内容的列表以及索引 对于有经验的使用者,建议如下:
如果你是一个有经验的使用者,只需要查找一些特定的信息,那么有三种不同的方法供 你使用该手册。目录列表和主题列表是按程序顺序排列的,从而使你能够按照特定程序的步 骤查找相关资料。本手册为你提供了两个不同的索引:一、命令索引,该索引为你提供特定 了面板和文本命令的使用方法。二、分类索引,该索引为你提供了特定类别的信息(在线帮 助中没有此类索引,只能在印刷手册中找到它)。
图一:基本程序结构 我们可以用 GAMBIT 产生所需的几何结构以及网格(如想了解得更多可以参考 GAMBIT 的帮助文件,具体的帮助文件在本光盘中有,也可以在互联网上找到),也可以在 已知边界网格(由 GAMBIT 或者第三方 CAD/CAE 软件产生的)中用 Tgrid 产生三角网格, 四面体网格或者混合网格,详情请见 Tgrid 用户手册。也可能用其他软件产生 FLUENT 所 需 要 的 网 格 , 比 如 ANSYS(Swanson Analysis Systems, Inc.) 、 I-DEAS (SDRC) ; 或 者 MSC/ARIES,MSC/PATRAN 以及 MSC/NASTRAN (都是 MacNeal-Schwendler 公司的软件)。 与其他 CAD/CAE 软件的界面可能根据用户的需要酌情发展,但是大多数 CAD/CAE 软件都 可以产生上述格式的网格。 一旦网格被读入 FLUENT,剩下的任务就是使用解算器进行计算了。其中包括,边界 条件的设定,流体物性的设定,解的执行,网格的优化,结果的查看与后处理。 PreBFC 和 GeoMesh 是 FLUENT 前处理器的名字,在使用 GAMBIT 之前将会用到它们。 对于那些还在使用这两个软件的人来说,在本手册中,你可以参考 preBFC 和 GeoMesh 的 详细介绍。 本程序的能力 FLUENT 解算器有如下模拟能力: z 用非结构自适应网格模拟 2D 或者 3D 流场,它所使用的非结构网格主要有三角形/五边 形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。(一致网格和 悬挂节点网格都可以) z 不可压或可压流动 z 定常状态或者过渡分析 z 无粘,层流和湍流 z 牛顿流或者非牛顿流 z 对流热传导,包括自然对流和强迫对流 z 耦合热传导和对流 z 辐射热传导模型 z 惯性(静止)坐标系非惯性(旋转)坐标系模型 z 多重运动参考框架,包括滑动网格界面和 rotor/stator interaction modeling 的混合界面 z 化学组分混合和反应,包括燃烧子模型和表面沉积反应模型 z 热,质量,动量,湍流和化学组分的控制体源 z 粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合 z 多孔流动 z 一维风扇/热交换模型 z 两相流,包括气穴现象 z 复杂外形的自由表面流动 上述各功能使得 FLUENT 具有广泛的应用,主要有以下几个方面 z Process and process equipment applications z 油/气能量的产生和环境应用 z 航天和涡轮机械的应用 z 汽车工业的应用 z 热交换应用 z 电子/HVAC/应用 z 材料处理应用 z 建筑设计和火灾研究

FLUENT培训教材02求解器基础

FLUENT培训教材02求解器基础

在 Workbench中可以设置另外的鼠标功能
材料属性
FLUENT 提供标准的材料库, 也允许用户创建自己的材料。
所选择的物理模型决定了哪 些材料可用,以及必须设定 这些材料的哪些属性。 – 多相流(多种材料) – 燃烧(多种组分) – 传热(导热系数) – 辐射(发射率以及吸收率) 材料属性可以直接设定为温 度、压力的函数 – 和其他变量相关需要用 UDF设定。
材料库
FLUENT 中的材料库 – 提供一系列预先定义的流体、 固体和混合物 – 如需要,可以拷贝材料并修 改其属性 客户定义的材料库 – 在现有的case中创建的新材 料和反应机理,可以在以后 的case中重复使用 – 在 FLUENT中的材料面板里 可以创建、使用、修改材料 属性。
操作条件
在参考压力位置设定的操作 压力,是FLUENT在计算表压 时的参考值
当计算浮力流时,操作温度 设定了参考温度 操作密度是计算密度大范围 变化流动问题的参考值
并行计算
FLUENT 中的并行计算用来运行多个处 理器,以减少计算时间,增加仿真效率 – 对大规模网格或者复杂物理问题尤其 有效 – FLUENT 是全并行的,能在大多数硬 件和软件平台上运行,如clusters 或 者多核机器上 并行FLUENT 可以使用命令启动,也可 以在启动面板中选择 – 例如,启动一个 n-CPU 并行进程, 用下面的命令 fluent 3d –tn
网格可以手工分区,或者用下面不同的 方法自动分区 – 非一致网格,滑移网格和壳导热区域 需要逐个来分区
总结
本节课程介绍了CFD仿真中经常用到的许多基础功能 并行计算能减少计算时间,但只针对大规模网格时有效
后续课程会涉及到非稳态问题的求解设置
其他未涉及到的议题(见附录)

fluent培训

fluent培训

第一章Fluent 软件的介绍fluent 软件的组成:软件功能介绍:GAMBIT 专用的CFD 前置处理器(几何/网格生成) Fluent4.5 基于结构化网格的通用CFD 求解器 Fluent6.0 基于非结构化网格的通用CFD 求解器 Fidap 基于有限元方法的通用CFD 求解器 Polyflow 针对粘弹性流动的专用CFD 求解器 Mixsim 针对搅拌混合问题的专用CFD 软件 Icepak专用的热控分析CFD 软件软件安装步骤:step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。

step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。

注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa) win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b) xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。

要买的Fluent书籍

要买的Fluent书籍
5.Fluent 流体分析及工程仿真 朱红钧 林元华 谢龙汉 编著 腾龙科技
6.FLUENT入门与进阶教程 于勇主编 北京理工大学出版社
7.FLUENT流体工程仿真计算实例与应用 北京理工大学出版社
8.FLUENT工程技术与实例分析 中国水利水电出版社
9.Fluent高级应用与实例分析 清华大学出版社
10.Fluent技术基础与应用实例 张凯 王瑞金 王刚编著 第2版 清华大学出版社
《计算流体动力学分析—CFD软件原理与应用》王福军 (经典,理论基础)《FLUENT入门与进阶教程》 于勇 (入门) 《FLUENT流体工程仿真计算实例与应用》 韩占忠 (市面上最早出版的书,很好)《Fluent技术基础与应用实例》 王瑞金 (这本也不错)《Fluent高级应用与实例分析》 江帆 《精通fluent6.3流场分析》李进良理论+实例+多看,多问各个论坛资料=无敌;
1.FLUENT入门与进阶教程(北京理工大学出版社) 这个是初级 有各个方面的一些应用教程 步骤还算是细 高级的一点 2.FLUENT高级应用与实例分析(清华大学出版社) 还有一本是3. 计算流体动力学分析:CFD软件原理与应用 王福军 编著 这个是关于理论方面 建议先看1。再看看2.明白一些理论(以后可以反复看),虽然很难懂 ,但对你以后有帮助,再看看3。建议完毕~·
1.Fluent 高级应用与实例分析 江帆 黄鹤编著
2.FLUENT6.3流场分析 从入门到精通
3.精通FLUENT6.3流场分析 李进良 李承曦 胡仁喜等编著
4.FLUENT流体计算应用教程 温正 石良辰 任毅加 编著
FLUENT流体计算应用教程(配光盘)作者:温正,石良臣,任毅如 编著出版:清华大学 出版日期:2008年12月 FLUENT是通过CFD软件,在流体建模中被广泛应用。本书详细介绍了利用FLUENT进行流体分析的具体方法和技巧,并通过大量实例系统地介绍了建模、计算以及后处理的详细过程,可使读者在短时间内把握学习的要领,掌握FLUENT6.3的流体计算应用技术。目前,本书已被列为Fluent公司在中国的唯一代理——北京海基科技公司CFD培训参考用书。 本书结构清晰,基础知识与实用技能并用,可作为高等院校相关专业本科和硕士研究生的流体力学以及传热学的教材,也可供利用FLUENT软件进行流体流动数值模拟分析的新华书店网店新华文轩有卖的

FLUENT培训教材06传热模型

FLUENT培训教材06传热模型
A Pera Global Company © PERA China
壳导热模型
壳导热模型处理板内部的 导热 求解器创建额外的导热单 元,但不能显示,也不能 通过UDF获得 固体属性必须是常数,不 能和温度相关
Static Temperature (cell value)
Virtual conduction cells
能量方程
能量输运方程:
Unsteady
Conduction
Conduction
Species Diffusion
Viscous Dissipation
Enthalpy Source/Sink
– 单位质量的能量 E :
– 对可压缩性流体,或者密度基求解器,总是考虑压力做功和动能。对压 力基求解器计算不可压流体,这些项被忽略,可以用下面的命令加入: – define/models/energy?
A Pera Global Company © PERA China
对固体板划分网格 vs. 薄壁方法
薄壁方法
– 人工模型模拟壁面热阻 – 壁面需要必要的数据输入(材料导热系数,厚度) – 只有对内部边界用耦合边界条件
Wall zone (no shadow)
Fluid zone
Wall thermal resistance is calculated using artificial wall thickness and material type. Through-thickness temperature distribution is assumed to be linear. Conduction is only calculated in the wall-normal direction unless Shell Conduction is enabled.

FLUENT_UDF官方培训教程

FLUENT_UDF官方培训教程

A Pera Global Company © PERA China
DEFINE 宏
DEFINE 宏的例子
DEFINE_ADJUST(name,domain); general purpose UDF called every iteration DEFINE_INIT(name,domain); UDF used to initialize field variables DEFINE_ON_DEMAND(name); an ‘execute-on-demand’ function DEFINE_RW_FILE(name,fp); customize reads/writes to case/data files DEFINE_PROFILE(name,thread,index); boundary profiles DEFINE_SOURCE(name,cell,thread,dS,index); equation source terms DEFINE_HEAT_FLUX(name,face,thread,c0,t0,cid,cir); heat flux DEFINE_PROPERTY(name,cell,thread); material properties DEFINE_DIFFUSIVITY(name,cell,thread,index); UDS and species diffusivities DEFINE_UDS_FLUX(name,face,thread,index); defines UDS flux terms DEFINE_UDS_UNSTEADY(name,cell,thread,index,apu,su); UDS transient terms DEFINE_SR_RATE(name,face,thread,r,mw,yi,rr); surface reaction rates DEFINE_VR_RATE(name,cell,thread,r,mw,yi,rr,rr_t); volumetric reaction rates DEFINE_SCAT_PHASE_FUNC(name,cell,face); scattering phase function for DOM DEFINE_DELTAT(name,domain); variable time step size for unsteady problems DEFINE_TURBULENT_VISCOSITY(name,cell,thread); calculates turbulent viscosity DEFINE_TURB_PREMIX_SOURCE(name,cell,thread,turbflamespeed,source); turbulent flame speed DEFINE_NOX_RATE(name,cell,thread,nox); NOx production and destruction rates
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solid model of a Headlight Assembly
Pre-Processing Mesh Physics Solver Settings
4. 设计和划分网格
计算域的各个部分都需要哪种程度的网格密度? 网格必须能捕捉感兴趣的几何特征,以及关心变量的梯度,如速度梯度、压力梯度、温度梯度等。 你能估计出大梯度的位置吗? 你需要使用自适应网格来捕捉大梯度吗? 哪种类型的网格是最合适的? 几何的复杂度如何? 你能使用四边形/六面体网格,或者三角形/四面体网格是否足够合适? 需要使用非一致边界条件吗? 你有足够的计算机资源吗? 需要多少个单元/节点? 需要使用多少个物理模型?
Problem Identification Define goals Identify domain
Pre-Processing Geometry Mesh Physics Solver Settings
Solve Compute solution
Post Processing Examine results
Unsteady
Convection
Diffusion
Generation
CFD 模拟概览
问题定义 确定模拟的目的 确定计算域 前处理和求解过程 创建代表计算域的几何实体 设计并划分网格 设置物理问题(物理模型、材料属性、域属性、边界条件 …) 定义求解器 (数值格式、收敛控制 …) 求解并监控 后处理过程 查看计算结果 修订模型
四边形/六面体还是三角形/四面体网格
Tetrahedral mesh
Wedge (prism) mesh
对复杂几何,四边形/六面体网格没有数值优势,你可以使用三角形/四面体网格或混合网格来节省划分网格的工作量 生成网格快速 流动一般不沿着网格方向 混合网格一般使用三角形/四面体网格,并在特定的域里使用其他类型的单元 例如,用棱柱型网格捕捉边界层 比单独使用三角形/四面体网格更有效
多域(或混合)网格
多域或混合网格在不同的域使用不同的网格类型,例如 在风扇和热源处使用六面体网格 在其他地方使用四面体/棱柱体网格 多域网格是求解精度、计算效率和生成网格工作量之间的很好的平衡手段 当不同域直接的网格节点不一致时,需要使用非一致网格技术。
Domain of Interest as Part of a Larger ystem (not modeled)
Domain of interest isolated and meshed for CFD simulation.
3. 创建几何模型
你如何得到流体域的几何模型? 使用现有的CAD模型 从固体域中抽取出流体域? 直接创建流体几何模型 你能简化几何吗? 去除可能引起复杂网格的不必要特征(倒角、焊点等) 使用对称或周期性? 流场和边界条件是否都是对称或周期性的? 你需要切分模型以获得边界条件或者创建域吗?
Pyramid
Prism/Wedge
Hexahedron
Pre-Processing Geometry Physics Solver Settings
Triangle
Quadrilateral
Tetrahedron
四边形/六面体还是三角形/四面体网格
对沿着结构方向的流动,四边形/六面体网格和三角形/四面体网格相比,能用更少的单元/节点获得高精度的结果 当网格和流动方向一致,四边形/六面体网格能减少数值扩散 在创建网格阶段,四边形/六面体网格需要花费更多人力
ANSYS FLUENT 培训教材 第一节:CFD简介
安世亚太科技(北京)有限公司
什么是 CFD?
CFD是计算流体动力学(Computational fluid dynamics)的缩写,是预测流体流动、传热传质、化学反应及其他相关物理现象的一门学科。CFD一般要通过数值方法求解以下的控制方程组 质量守恒方程 动量守恒方程 能量守恒方程 组分守恒方程 体积力 等等 CFD 分析一般应用在以下阶段: 概念设计 产品的详细设计 发现问题 改进设计 CFD分析是物理试验的补充,但更节省费用和人力。
Problem Identification Identify domain
2. 确定计算域
如何把一个完成的物理系统分割出来? 计算域的起始和结束位置 在这些位置你能获得边界条件吗? 这些边界条件类型合适吗? 你能把边界延伸到有合适数据的位置吗? 能简化为二维或者轴对称问题吗?
Problem Identification Define goals
Equation Variable Continuity 1 X momentum u Y momentum v Z momentum w Energy h
Control Volume*
* FLUENT control volumes are cell-centered (i.e. they correspond directly with the mesh) while CFX control volumes are node-centered
Update Model
1. 定义模拟目的
你希望得到什么样的结果(例如,压降,流量),你如何使用这些结果? 你的模拟有哪些选择? 你的分析应该包括哪些物理模型(例如,湍流,压缩性,辐射)? 你需要做哪些假设和简化? 你能做哪些假设和简化(如对称、周期性)? 你需要自己定义模型吗? FLUENT使用UDF,CFX使用 User FORTRAN 计算精度要求到什么级别? 你希望多久能拿到结果? CFD是否是合适的工具?
CFD如何工作?
ANSYS CFD 求解器是基于有限体积法的 计算域离散化为一系列控制体积 在这些控制体上求解质量、动量、能量、组分等的通用守恒方程 偏微分方程组离散化为代数方程组 用数值方法求解代数方程组以获取流场解
Fluid region of pipe flow is discretized into a finite set of control volumes.
相关文档
最新文档