考研线性代数知识点全面总结资料

合集下载

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。

通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。

在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。

考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。

在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。

本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。

知识点1:向量空间向量空间是线性代数中最基础的概念之一。

考生需要掌握向量空间的定义、性质和基本运算法则。

此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。

知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。

考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。

同时,需要了解矩阵的秩以及矩阵可逆的条件。

在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。

知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。

考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。

同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。

知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。

考生需要了解特征值和特征向量的定义、性质和计算方法。

同时,需要掌握矩阵的对角化和相似对角化的相关知识。

知识点5:线性变换线性变换是线性代数的核心内容之一。

考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。

此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。

知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。

考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。

同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。

综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学线性代数重点知识

考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。

下面我们就来详细梳理一下线性代数中的重点知识。

一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。

计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。

其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。

行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。

行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。

二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。

矩阵的运算有加、减、乘、数乘。

矩阵乘法需要注意其规则,不满足交换律。

逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。

三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。

判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。

极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。

向量组的秩等于其极大线性无关组所含向量的个数。

四、线性方程组线性方程组是线性代数的重点应用之一。

齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。

非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。

求解线性方程组可以使用高斯消元法。

五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。

求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。

考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)线性代数讲义目录第一讲基本概念矩阵的初等变换与线性矩阵方程的消去完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第4讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的判别基本解系统和通解第6讲特征向量和特征值的相似性和对角化特征向量与特征值―概念,计算与应用相似对角化―判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量取代了实对称矩阵惯性指数正定二次型与正定矩阵的合同标准化与规范化附录二向量空间及其子空间附录III两个线性方程组的解集之间的关系附录四06,07年考题一第一讲基本概念1.线性方程组的基本概念。

线性方程组的一般形式是:a11x1+a12x2++a1nxn=b1,a21x1+a22x2+?+a2nxn=b2,????am1x1+am2x2+?+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2,k,kn)(称为解向量),它满足当每个方程中的未知数席被Ki替换时,它变成一个方程。

线性方程组的解的情况有三种:无解,唯一解,无穷多解.在线性方程组的讨论中有两个主要问题:(1)判断解(2)求解,特别是当存在无穷多个连接时求通解b1=b2=?=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解。

因此,齐次线性方程组只有两种解:唯一解(即只要零解)和无限解(即非零解)把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.是M吗?一张表有M行和N列,以N个数字排列,两边用括号或方括号括起来,就变成了M?例如N型矩阵2-101111102254-29333-18是4吗?5矩阵对于上述线性方程组,它被称为矩阵a11a12?a1na11a12?a1nb1a=a21a22?a2n和(a|?)=a21a22?a2nb2??????? am1am2?amnam1am2?amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.矩阵中的数字称为其元素,第I行和第J列中的数字称为(I,J)位元素所有元素为0的矩阵称为零矩阵,通常记录为0两个矩阵a和b相等(记作a=b),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.N个数的有序数组称为N维向量,这些数称为其分量书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,?,an的向量可表示成二a1(a1,a2,?,an)或a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个M?n的矩阵的每一行是一个n维向量,称为其行向量;每一列都是一个m维向量,称为它的列向量。

考研线代知识点总结

考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。

这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。

本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。

二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。

2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。

3.矩阵的秩、行阶梯形式、简化阶梯形式等。

三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。

2.线性变换的概念、性质、矩阵表示、不变量等。

四、特征值与特征向量1.特征值、特征向量的概念及求解方法。

2.矩阵的对角化、相似矩阵等。

五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。

2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。

六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。

2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。

3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。

4.注重理论联系实际,熟练运用线性代数知识解决实际问题。

总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。

考研线性代数终极总结

考研线性代数终极总结

考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。

它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。

准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。

一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。

在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。

希望同学们能够在考研线性代数的复习中取得好的成绩!。

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。

矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。

1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。

即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。

1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。

矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。

其中∑表示求和符号,k表示对应元素的相同下标。

1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。

即,如果A = [a_ij],则A^T = [a_ji]。

也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。

1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。

对于一个数k和一个矩阵A,它们的乘积记作kA。

即,kA = [ka_ij]。

其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。

二、线性方程组线性方程组是线性代数的重要内容之一。

解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。

通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。

2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。

具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。

2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。

对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。

2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

随机变量之于概率正如矩阵之于线性代数。

考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。

所以随机变量的理解至关重要。

讨论完随机变量之后,讨论其描述方式。

分布即为描述随机变量的方式。

分布包括三种:分布函数、分布律和概率密度。

其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。

之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。

考研数学 线性代数(高等代数)重点知识整理总结

考研数学 线性代数(高等代数)重点知识整理总结

考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。

2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。

重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。

(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

(4)行列式具有分行(列)可加性。

行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。

(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。

余子式ij M 、代数余子式ij ji ij M A +-=)1(。

(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。

定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。

逆否:若方程组存在非零解,则D 等于零。

③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。

④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。

考研线性代数总结

考研线性代数总结

考研线性代数总结关键信息项:1、线性代数的基本概念行列式矩阵向量线性方程组2、线性代数的核心理论矩阵的秩线性相关性线性变换特征值与特征向量3、考研重点题型行列式的计算矩阵的运算与求逆向量组的线性表示与线性相关性判定线性方程组的求解与解的结构矩阵的特征值与特征向量的计算二次型的标准化与正定判定11 线性代数的基本概念111 行列式行列式是线性代数中的一个基本概念,它是一个数值。

行列式的定义基于排列的逆序数。

行列式的计算方法包括按行(列)展开、利用行列式的性质化简等。

行列式在求解线性方程组、判断矩阵可逆性等方面有重要应用。

112 矩阵矩阵是线性代数的核心概念之一,它是一个数表。

矩阵的运算包括加法、数乘、乘法、转置等。

矩阵的逆是一个重要概念,只有方阵且行列式不为 0 时可逆。

矩阵的秩反映了矩阵的内在结构和性质。

113 向量向量可以看作是具有方向和大小的量。

向量组的线性相关和线性无关是重要的性质。

向量空间是由向量构成的集合,具有特定的运算和性质。

114 线性方程组线性方程组可以用矩阵形式表示,通过系数矩阵和增广矩阵来研究。

线性方程组有解的条件、解的结构是重要的考点。

12 线性代数的核心理论121 矩阵的秩矩阵的秩是矩阵的一个重要指标,它表示矩阵中行向量或列向量的线性无关组数。

通过初等变换可以求矩阵的秩。

秩在判断线性方程组解的情况、向量组的线性相关性等方面起关键作用。

122 线性相关性向量组的线性相关性判断方法包括定义法、行列式法、秩法等。

线性相关和线性无关的性质和应用需要熟练掌握。

123 线性变换线性变换是将一个向量空间映射到另一个向量空间的函数,且保持线性运算。

可以通过矩阵来表示线性变换,研究其性质和作用。

124 特征值与特征向量特征值和特征向量反映了矩阵在特定方向上的缩放比例和方向。

求特征值和特征向量的方法和步骤需要熟练掌握,在矩阵对角化等方面有重要应用。

13 考研重点题型131 行列式的计算常见的行列式类型包括上(下)三角行列式、爪型行列式、范德蒙德行列式等。

考研线性代数知识点全面总结教材

考研线性代数知识点全面总结教材

《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:nq q q n a aa ⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。

线性代数考研讲义完整版(完整资料).doc

线性代数考研讲义完整版(完整资料).doc

【最新整理,下载后即可编辑】考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲 基本概念1.线性方程组的基本概念线性方程组的一般形式为: a 11x 1+a 12x 2+…+a 1n x n =b 1,a 21x 1+a 22x 2+…+a 2n x n =b 2,… … … …a m1x 1+a m2x 2+…+a mn x n =b m ,其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足:当每个方程中的未知数x i 都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m ⨯n 个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个m ⨯n 型矩阵.例如2 -1 0 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a 11 a 12 … a 1n a 11 a 12 … a 1nb 1A = a 21 a 22 … a 2n 和(A |)= a 21 a 22 … a 2n b 2… … … … … … …a m1 a m2 … a mn a m1 a m2 … a mnb m为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等(记作A =B ),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a 1,a 2,⋯ ,a n 的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为1,2,⋯ ,n 时(它们都是表示为列的形式!)可记A =(1,2,⋯ ,n ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A .④ 数乘结合律: c(d)A =(cd)A .⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A ').有以下规律:① (A T )T = A .② (A +B )T =A T +B T .③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T 表示行向量,当是行向量时, T 表示列向量.向量组的线性组合:设1,2,…,s 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称c 11+c 22+…+c s s 为1,2,…,s 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n 阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E (或I ).数量矩阵: 对角线上的的元素都等于一个常数c 的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn 如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 0023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(nn n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如 |,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵:(A |)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1③1+a 1 1 1a 2 a a a 1 1+x 1 12 2+a 2 2a a 2 a a . 1 1 1+x 1 .3 3 3+a 3 .a a a 2 a 1 1 1 1+x4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A |=2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i i i a b a b a b ++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB . AB 的行数和A 相等,列数和B 相等. AB 的(i,j)位元素等于A 的第i 个行向量和B 的第j 个列向量(维数相同)对应分量乘积之和.设 a 11 a 12 … a 1n b 11 b 12 … b 1s c 11c 12 … c 1sA = a 21 a 22 … a 2nB = b 21 b 22 … b 2sC =AB =c 21 c 22 … c 2s… … … … … …… … …a m1 a m2 … a mn ,b n1 b n2 … b ns ,c m1c m2 … c ms ,则c ij =a i1b 1j +a i2b 2j +…+a in b nj .矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件.② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由AB =0推不出A =0或B =0.由AB =AC 和A ≠0推不出B =C .(无左消去律)由BA =CA 和A ≠0推不出B =C . (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC .② 数乘性质 (c A )B =c(AB ).③ 结合律 (AB )C = A (BC ).④ (AB )T =B T A T .2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A的连乘积.规定A 0=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h .② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为1,2,…,n ,B的列向量组为1,2,…,s , AB 的列向量组为1,2,…,s ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:i =A i ,i=1,2,…,s.即A (1,2,…,s )= (A 1,A 2,…,A s ).② =(b 1,b 2,…,b n )T ,则A = b 11+b 22+…+b n n .应用这两个性质可以得到:如果i =(b 1i ,b 2i ,…,b ni )T ,则i =A I =b 1i 1+b 2i 2+…+b ni n .即:乘积矩阵AB 的第i 个列向量i 是A 的列向量组1,2,…,n 的线性组合,组合系数就是B 的第i 个列向量i的各分量.类似地, 乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c 倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s 列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E,CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)② 如果A 和B 都可逆,则AB 也可逆,并且(AB )-1=B -1A -1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E (i,j)-1= E (i,j), E (i(c))-1=E (i(c -1)), E (i,j(c))-1= E (i,j(-c)).(4) 逆矩阵的计算和伴随矩阵① 计算逆矩阵的初等变换法当A 可逆时, A -1是矩阵方程AX =E 的解,于是可用初等行变换求A -1:(A |E )→(E |A -1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.② 伴随矩阵若A 是n 阶矩阵,记A ij 是|A |的(i,j)位元素的代数余子式,规定A的伴随矩阵为A 11 A 21 … A n1A *= A 12 A 22 … A n2 =(A ij )T .… … …A 1n A 2n … A mn请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时, A *和A -1有密切关系.基本公式: AA *=A *A =|A |E .于是对于可逆矩阵A ,有A -1=A */|A |, 即A *=|A |A -1.因此可通过求A *来计算A -1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc ≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T,A=E-T,B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n =A n-2+A 2-E . (2) 求A n .例4设A 为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足 A1=1+2+3, A 2=22+3,A 3=22+33.求作矩阵B ,使得A (1,2,3)=(1,2,3)B . (2005年数学四)例5设3阶矩阵A =(1,2,3),|A |=1,B =(1+2+3,1+22+33,1+42+93),求|B |.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A 是3阶矩阵, 是3维列向量,使得P =(,A ,A 2)可逆,并且A 3=3A -2A 2.又3阶矩阵B 满足A =PBP -1.(1)求B .(2)求|A +E |.(01一)2 1 0例8 3阶矩阵A ,B 满足ABA *=2BA *+E ,其中A = 1 2 0 ,求|B |.(04一)0 0 1例9 3 -5 1设3阶矩阵A = 1 -1 0 , A -1XA =XA +2A ,求X .-1 0 2例10 1 1 -1设3阶矩阵A = -1 1 1 , A *X =A -1+2X ,求X .1 -1 1例11 4阶矩阵A ,B 满足ABA -1=BA -1+3E ,已知1 0 0 0A *= 0 1 0 0 ,求B . (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A = 2 1 0 , B = 0 0 0 , XA +2B =AB +2X ,求X 11.2 13 0 0 -1例13 设1=(5,1,-5)T ,2=(1,-3,2)T ,3=(1,-2,1)T ,矩阵A满足A 1=(4,3) T , A 2=(7,-8) T , A 3=(5,-5) T ,求A .2.概念和证明题例14 设A 是n 阶非零实矩阵,满足A *=A T .证明:(1)|A |>0.(2)如果n>2,则|A |=1.例15 设矩阵A =(a ij )3 3满足A *=A T ,a 11,a 12,a 13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵,E+AB可逆,证明(E+AB)-1A 也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C 为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例 3 (1)提示:A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 1 .1 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系 设1,2,…,s 是一个n 维向量组.如果n 维向量等于1,2,…,s 的一个线性组合,就说可以用1,2,…,s 线性表示.如果n 维向量组1,2,…,t 中的每一个都可以可以用1,2,…,s 线性表示,就说向量 1,2,…,t 可以用1,2,…,s 线性表示.判别“是否可以用1,2,…,s 线性表示? 表示方式是否唯一?”就是问:向量方程x 11+x 22+…+x s s =是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A 为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组1,2,…,t 可以用1,2,…,s 线性表示,则矩阵(1,2,…,t )等于矩阵(1,2,…,s )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是i 对1,2,…,s 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t 可以用1,2,…,s 线性表示,而1,2,…,s 可以用γ1,γ2,…,γr 线性表示,则1,2,…,t 可以用γ1,γ2,…,γr 线性表示.当向量组1,2,…,s 和1,2,…,t 互相都可以表示时就说它们等价并记作1,2,…,s ≅1,2,…,t. 等价关系也有传递性.。

陕西省考研数学复习资料线性代数重点知识总结

陕西省考研数学复习资料线性代数重点知识总结

陕西省考研数学复习资料线性代数重点知识总结陕西省考研数学复习资料:线性代数重点知识总结引言:线性代数是数学中的一个重要分支,也是考研数学中的一项重要内容。

对于准备参加陕西省考研数学考试的同学来说,深入理解线性代数的知识点并掌握重点内容是非常关键的。

本文将对线性代数的重点知识进行总结,帮助考生们更好地复习备考。

一、向量空间与线性变换1. 向量空间在线性代数中,向量空间是研究向量及其运算规律的重要概念。

向量空间满足一定的公理:加法封闭性、数乘封闭性、结合律、分配律等。

对于考生来说,要了解向量空间的定义和性质,并能够解决与向量空间相关的基本问题。

2. 线性变换线性变换是一种特殊的变换,它保持向量空间的加法和数乘运算。

对于一个线性变换,应了解其定义、性质和表示方法,同时要能够应用线性变换解决实际问题。

二、矩阵与行列式1. 矩阵基本操作矩阵是线性代数中的重要工具,它能够方便地表示线性变换和线性方程组。

在复习过程中,需要掌握矩阵的基本操作,如矩阵的加法、数乘、乘法、转置等。

2. 行列式理论与性质行列式是线性代数中的重要概念,它具有很多重要的性质和应用。

要复习行列式的定义、计算方法、性质以及与线性方程组的关系等内容,并能够应用行列式解决实际问题。

三、特征值与特征向量特征值与特征向量是矩阵理论中的核心概念。

掌握特征值与特征向量的定义、性质以及计算方法,对于理解矩阵的本质和解决相关问题具有重要意义。

四、内积空间与正交性1. 内积空间内积空间是线性代数中的重要内容,它通过定义内积运算来研究向量的长度、夹角等性质。

要了解内积空间的定义,以及欧几里得空间、函数空间等内积空间的具体例子。

2. 正交性与正交基正交性是内积空间中的重要概念,它与向量的垂直、线性无关等性质有着密切的关系。

要了解正交性的定义、性质以及正交基的应用,并能够解决相关的计算问题。

五、线性方程组及其解的性质1. 线性方程组的基本概念线性方程组是线性代数的重要研究对象,要了解线性方程组的定义、解集及其性质,以及齐次线性方程组和非齐次线性方程组之间的关系。

数学一线代知识点

数学一线代知识点

考研数学一《线性代数》知识点总结第一部分行列式一、本部分内容重点1.了解行列式的概念,掌握行列式的性质。

2.会用行列式的性质和行列式按行(列)展开法则计算行列式。

二、考点分析1.行列式是基础,它与后续要学的内容——方阵构成的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都有重要应用。

所以必须要弄清楚行列式在处理有关问题中的功能与作用,熟练掌握行列式的性质和计算方法,为应用行列式处理有关问题打下良好的基础。

2.计算行列式的常用方法:1)用定义法计算行列式中含某一项的系数;2)应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法);3)将各行(列)加到某一行(列),提取公因式;4)按行(列)展开行列式——降阶法(在此基础上,有些题可用数学归纳法、有些题可用递推关系式法来计算行列式)。

5)逐行(列)相加减;6)拆项法——将一个行列式分成几个较简单的行列式进行计算;7)公式法——如对角行列式、范德蒙德行列式等;8)升阶法。

在实际计算过程中,常常将上述方法交替使用。

第二部分矩阵一、本部分内容重点1.理解矩阵的概念。

2.了解单位矩阵、数量矩阵、对角矩阵、对称矩阵和反对称矩阵,以及它们的性质。

3.掌握矩阵的线性运算、乘法、转置,以及它们的运算律,了解方阵的幂,掌握方阵乘积的行列式。

4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

6.了解分块矩阵及其运算。

二、考点分析1.矩阵的运算(含逆矩阵)是矩阵考试内容中的重点,其中,又以矩阵乘法和逆矩阵最为重要。

要掌握矩阵运算,除了要理解各种运算的定义外,还要熟练掌握各种运算的运算律和运算性质。

在作矩阵运算时,一般要先利用运算法则通过“字母”运算进行化简。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数复习总结(重点精心整理)

线性代数复习总结(重点精心整理)

线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

湖南省考研数学复习资料线性代数重点知识梳理

湖南省考研数学复习资料线性代数重点知识梳理

湖南省考研数学复习资料线性代数重点知识梳理线性代数是数学中非常重要的一个分支,它在各个领域中具有广泛的应用。

对于湖南省的考研学生而言,掌握线性代数的重点知识是非常关键的。

本文将针对湖南省考研数学复习资料中的线性代数内容,进行一次全面的梳理和总结。

一、矩阵与行列式1. 矩阵的基本概念与运算矩阵的定义、矩阵的转置、矩阵的加法和乘法等基本概念。

2. 行列式的定义与性质行列式的定义、行列式的性质、行列式的计算等内容。

3. 矩阵的初等变换和初等矩阵矩阵的初等变换、初等矩阵的定义与性质。

4. 矩阵的秩与逆矩阵的秩、矩阵的逆及逆的计算等内容。

二、向量空间与线性方程组1. 向量空间及其基础知识向量空间的定义、子空间的性质、线性相关与线性无关等内容。

2. 线性方程组的解的结构齐次线性方程组和非齐次线性方程组的解的结构与性质。

3. 矩阵的秩与线性方程组的解矩阵的秩与线性方程组解的关系、矩阵的秩公式与推论等内容。

4. 矩阵的特征值与特征向量特征多项式、矩阵的特征值与特征向量、对角化矩阵等内容。

三、内积空间与正交变换1. 欧几里得空间与内积空间欧几里得空间和内积空间的定义与性质。

2. 正交变换与正交矩阵正交变换的概念、正交变换的性质、正交矩阵的定义与性质。

3. 对称矩阵和二次型对称矩阵的性质、对称矩阵的对角化、二次型的化简等内容。

4. 规范形与最小二乘规范形的概念与计算、最小二乘解的存在唯一性与性质等内容。

四、线性映射与矩阵的相似性1. 线性映射的定义与性质线性映射的概念、线性映射的性质、线性映射的矩阵表示等内容。

2. 矩阵的相似性矩阵的相似性的定义、相似矩阵的性质与判定等内容。

3. 线性映射的特征值与特征子空间线性映射的特征值与特征子空间的计算与性质等内容。

4. 线性映射的规范形线性映射的规范形的计算、规范形的性质与推论等内容。

以上就是我根据湖南省考研数学复习资料中线性代数的内容,为大家进行的重点知识梳理。

希望这篇文章能为考生们提供一定的参考和帮助,助力大家在考试中取得优异的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。

:若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。

:若齐次线性方程组有非零解,则其系数行列式D=0。

6.112nr r r nr r r r ==∏O,()11(1)221nr n n r r nr r r r -==-∏N()n a ba b ad bc c dcd=-ON N O, 1232222123111111231111()n n i j n i j n n n n nx x x x x x x x x x x x x x ≥>≥----=-∏L L L M M M M L,(两式要会计算)题型:Page21(例13)第二章、矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A 、B 为同阶方阵,则|AB|=|A|*|B|; ④|kA|=n k *|A|。

只有方阵才有幂运算。

(3)转置:(kA )T =kA T , ()TTA B AB T =(4)方阵的行列式:A A T =,A k kA n =,B A AB =(5)伴随矩阵:E A A A AA **==,-1)A(E A A *=,*A 的行元素是A 的列元素的代数余子式 (6)共轭矩阵:)=(Aij a ,A+B=A+B ,A k kA =,B A AB =(7)矩阵分块法:⎪⎪⎪⎭⎫⎝⎛++++=+sr sr s s r r B A BA B A B A ΛM MΛ11111111B A ,⎪⎪⎪⎭⎫ ⎝⎛=T sr r11s T11T A A A A A ΛM MΛT T 3.对称阵:方阵A A T =。

对称阵特点:元素以对角线为对称轴对应相等。

3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩; (2)秩的求法:一般不用定义求,而用下面结论:范德蒙德行列矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

(3)0≤R(n m A ⨯)≤min{m,n} ; ()()A R A R T = ;若B ~A ,则R(A)=R(B) ;若P 、Q 可逆,则R(PAQ)=R(A) ; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R(B) ; 若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序) (3)可逆的条件:① |A|≠0; ②r(A)=n; ③A->I;(4)逆的求解:○1伴随矩阵法A*1-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A ) (5)方阵A 可逆的充要条件有:○1存在有限个初等矩阵1P ,…,l P ,使l P P P A Λ21= ○2E A ~ 第三章、初等变换与线性方程组1、 初等变换:○1()()B Aji−−→−↔,○2()()BAki−→−⨯,○3()()BAji+k−−→−⨯ 性质:初等变换可逆。

等价:若A 经初等变换成B ,则A与B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。

初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。

定理:对n m A ⨯施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对n m A ⨯施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。

等价的充要条件:○1 R(A)=R(B)=R(A,B) ○2n m ⨯的矩阵A、B等价⇔存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。

线性方程组解的判定定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;(3)r(A,b)=r(A)<n 有无穷多组解;特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)<n 有非零解; 再特别,若为方阵,(1)|A |≠0 只有零解;(2)|A|=0 有非零解 2.齐次线性方程组(1)解的情况:r(A)=n ⇔只有零解 ; r(A)<n ⇔有无穷多组非零解。

(2)解的结构:r n r n a c a c a c X --++=Λ2211。

(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。

(4)性质:○1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。

○2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。

○3若r A n m =⨯)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r -=n R S 。

3.非齐次线性方程组(1)解的情况:○1有解⇔ R(A)=R(A,b)。

○2唯一解⇔ R(A)=R(A,b)=n 。

○3无限解⇔ R(A)=R(A,b)<n 。

(2)解的结构: X=u+r n r n a c a c a c --++Λ2211。

(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。

(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。

(5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解○2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。

第四章、向量组的线性相关性1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。

2.向量的运算:(1)加减、数乘运算(与矩阵运算相同);(2)向量内积 α'β=a1b1+a2b2+…+anbn ; (3)向量长 22221a n a a a a a +++='=Λ(4)向量单位化 (1/|α|)α;3.线性组合(1)定义:若m m a a a λλλ+++=Λ2211b ,则称b 是向量组1a ,2a ,…,n a 的一个线性组合,或称b 可以用向量组1a ,2a ,…,n a 的线性表示。

(2)判别方法:将向量组合成矩阵,记 A =(1a ,2a ,…,n a )○1 B=(1a ,2a ,…,n a ,β),则:r (A)=r (B) ⇔b 可以用向量组1a ,2a ,…,n a 线性表示。

○2B=(1b ,2b ,…,m b ),则: B 能由A 线性表示⇔R(A)=R(A,B) ⇔AX=B 有解⇒R(B)≤R(A). (3)求线性表示表达式的方法:矩阵B 施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

注:求线性表示的系数既是求解Ax=b 4.向量组的线性相关性 (1)线性相关与线性无关的定义设 02211=+++n n a k a k a k Λ,若k1,k2,…,kn 不全为0,称线性相关;若全为0,称线性无关。

(2)判别方法:① r(α1,α 2,…,αn)<n ,线性相关; r(α1,α 2,…,αn)=n ,线性无关。

②若有n 个n 维向量,可用行列式判别: n 阶行列式|{ij a }|=0,线性相关(≠0无关)○3A:1a ,2a ,…,n a , B:1a ,2a ,…,n a ,1+n a ,若A 相关则B 一定相关,若B 相关A 不一定相关; 若A 无关,B 相关,则向量1+n a 必能由A 线性表示,且表示式唯一。

注:含零向量的向量组必定相关。

5.极大无关组与向量组的秩(1)定义:最大无关组所含向量个数称为向量组的秩(2)求法:设A =(1a ,2a ,…,n a ),将A 化为阶梯阵,则A 的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。

注:如何证明()()A R A A R T =,101P .第五章、相似矩阵及二次型1、向量内积:[]y x y x T =,。

相关文档
最新文档