人教版北京市各区2015年中考二模数学试题7套及答案

合集下载

2015年北京中考数学二模各区29题汇总(含答案)

2015年北京中考数学二模各区29题汇总(含答案)

2015北京中考数学二模各区29题(含答案)昌平29. 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”. (1)试写出一对兄弟抛物线的解析式 与 ; (2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图朝阳29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON .(1)求该二次函数的表达式;(2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.丰台29.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.怀柔29. 阅读理解:学习了三角形全等的判定方法:“SAS ”,“ASA ”,“AAS ”,“SSS ”和直角三角形全等的判定方法“HL ”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA ”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D . 初步探究:如图1,已知AC=DF, ∠A =∠D ,过C 作CH ⊥射线AM 于点H ,对△ABC 的CB 边进行分类,可分为“CB<CH ,CB=CH ,CH<CB<CA ,”三种情况进行探究.深入探究: 第一种情况,当BC<CH 时,不能构成△ABC 和△DEF .第二种情况,(1)如图2,当BC=CH 时,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D ,根据 ,可以知道Rt △ABC ≌Rt △DEF .HNANA第三种情况,(2)当CH<BC<CA 时,△ABC 和△DEF 不一定全等.请你用尺规在图1的两个图形中分别补全△ABC 和△DEF,使△DEF 和△ABC 不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH 时,才一定能使△ABC ≌△DEF . 除了上述三种情况外,BC 边还可以满足什么条件,也一定能使△ABC ≌△DEF ?写出结论,并利用备用图证明.石景山29.对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“ℜ”变换.(1)求()3,2P 的3阶“ℜ”变换后3'P 的坐标;(2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“ℜ”变换后得到点C ,求过,,A B C 三点的抛物线M 的解析式; (3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E ,使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标.房山29.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.A . 1 B. 2 C. 3 D. 无数 (2)如图2,已知抛物线L 3:2284y x x =-+与y 轴交于点C ,点C 关于该抛物线对称轴的对称点为D ,请求出以点D 为顶点的L 3的“友好”抛物线L 4的表达式;(3)若抛物线21()y a x m n =-+的“友好”抛物线的解析式为22()y a x h k =-+,请直接写出1a 与2a 的关系式为 .ANH图2图1平谷29.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O . (1)“距离坐标”为(1,0)点有 个;(2)如图2,若点M 在过点O 且与直线CD 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD =120°.请画出图形,并直接写出p ,q 的关系式; (3)如图3,点M 的“距离坐标”为(1,且∠AOB =30°,求OM 的长.顺义29.如图,在平面直角坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上方的抛物线上一动点(不与点C 重合). (1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状, 并说明理由; (3)在(2)的条件下直接写出点P 的坐标.图1O D C B A 图2 图3备用图西城29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.东城29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这个封闭图形的等分线。

海淀区2024届初三二模数学试题及答案

海淀区2024届初三二模数学试题及答案

海淀区九年级第二学期末练习数 学2024.05学校_____________ 姓名______________ 准考证号______________第一部分 选择题一、选择题(共16分,每题2分)第1 - 8题均有四个选项,符合题意的选项只有一个.1.截至2023年底,我国人工智能核心产业规模接近5800亿元,形成了京津冀、长三角、珠三角三大集聚发展区.将580000000000 用科学记数法表示应为 (A )105810⨯(B )115.810⨯(C )125.810⨯(D )120.5810⨯2.右图是一张长方形纸片,用其围成一个几何体的侧面,这个几何体可能是 (A )圆柱 (B )圆锥 (C )球(D )三棱锥3.五边形的内角和为 (A )900︒(B )720︒(C )540︒(D )360︒4.若a b >,则下列结论正确的是 (A )0a b +>(B )0a b −>(C )0ab >(D )0ab> 5.如图,实数5在数轴上对应的点可能是(A )点A(B )点B(C )点C(D )点D6.如图,12l l ,点A 在1l 上,以点A 为圆心,适当长度为半径画弧,分别交1l ,2l 于点B ,C ,连接AC ,BC .若140∠=︒,则ABC ∠的大小为 (A )80︒ (B )75︒ (C )70︒(D )65︒考生须知1.本试卷共7页,共两部分,28道题,满分100分。

考试时间120分钟。

2.在试卷和答题纸上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题纸和草稿纸一并交回。

ABC1l 1l 20 1 2 3–1 A B CD7.九年级(1)班羽毛球小组共有4名队员,其中两名男生,两名女生.从中随机选取两人,恰好能组成一组混双搭档的概率是 (A)14(B )13(C )12(D )238.某种型号的纸杯如图1所示,若将n 个这种型号的杯子按图2中的方式叠放在一起,叠在一起的杯子的总高度为H .则H 与n 满足的函数关系可能是 (A )0.3H n = (B )100.3H n=(C )100.3H n =−(D )100.3H n =+第二部分 非选择题二、填空题(共16分,每题2分) 9. 若代数式12x −有意义,则实数x 的取值范围是 . 10.若1x =是方程230x x m −+=的一个根,则实数m 的值为 . 11.如图,在△ABC 中,D ,E 分别在边AB ,BC 上,DEAC .若2AD =,4BD =,则DEAC的值为 .12.在平面直角坐标系xOy 中,点1(1)A y ,,2(2)B y ,在反比例函数ky x=(0k ≠) 的图象上. 若12y y <,则满足条件的k 的值可以是 (写出一个即可).13.如图所示的网格是正方形网格,A ,B ,C 是网格线的交点,C 在以AB 为直径的半圆上.若点D 在BC 上,则BDC ∠= ︒.14.一组数据3,2,4,2,6,5,6的平均数为4,方差为20s .再添加一个数据4,得到一组新数据.若记这组新数据的方差为21s ,则21s 20s (填“>”“=”或“<”).A DBE C图1图2D CBA15.下表是n 与2n (其中n 为自然数)的部分对应值表:n5 10 15 20 25 30 35 2n321 02432 7681 048 57633 554 4321 073 741 82434 359 738 368根据表格提供的信息,计算102432768⨯的结果为 . 16.在ABC 中,D 为边AB 的中点,E 为边AC 上一点,连接DE .给出下面三个命题:①若AE EC =,则12DE BC =; ②若12DE BC =,则DE BC ∥; ③若DE BC ∥,则AE EC =.上述命题中,所有真命题的序号是 .三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答写出文字说明、演算步骤或证明过程.17.计算:020242sin 45|3|8−︒+−+.18.解不等式组:532342(1).x x x x +⎧<⎪⎨⎪−>+⎩,19.已知2230m n −−=,求代数式2()2()m n n m n +−+的值.20.如图,点A ,B ,C ,D 在一条直线上,AB BC CD ==,AE EC =,四边形ECDF 是平行四边形. (1)求证:四边形EBCF 是矩形; (2)若12AD =,4cos 5A =,求BF 的长.21.我国古代著作《管子·地员篇》中介绍了一种用数学运算获得“宫商角徵羽”五音的方法.研究发现,当琴弦的长度比满足一定关系时,就可以弹奏出不同的乐音.例如,三根弦按长度从长到短排列分别奏出乐音“do ,mi ,so ”,需满足相邻弦长的倒数差相等.若最长弦为15个单位长,最短弦为10个单位长,求中间弦的长度.ODACBFE22.在平面直角坐标系xOy 中,一次函数0y kx b k =+≠()的图象由函数12y x =的图象平移得到,且经过点(24),.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,函数y x n =+的值与一次函数0y kx b k =+≠()的值的差大于1,直接写出n 的取值范围.23.一本图鉴中的照片由1开始连续编号,由于装订线脱落,照片散落一地.小云想利用统计学知识估计照片总数,于是从中随机抽取20张照片,将其编号作为样本,数据整理如下: a .20张照片的编号:4,8,15,25,34,39,41,48,68,79,85,86,89,91,102,104,110,121,144,147 b .20张照片编号的最小值、最大值、平均数和中位数:最小值 最大值 平均数 中位数 414772m(1)写出表中m 的值;(2)设照片总数为n ,所有照片编号分别为1,2,…,n ,这n 个数的平均数和中位数均为12n +. ①利用样本平均数估计全体平均数,可估算出照片的总数1n 为_________, ②利用样本中位数估计全体中位数,可估算出照片的总数2n 为_________,小云发现,有一个估算结果不合理,这个不合理的结果是_________(填“1n ”或“2n ”); (3)小云想到还可使用样本数据的“平均间隔长度”进行估计.在下面的示意图中,用1220x x x ,,…,表示随机抽取的20张照片编号从小到大排序,则从0到20x 的平均间隔长度为2020x ,从0到n 的平均间隔长度为21n,直接写出此时估算出照片的总数3n (结果取整数).24.如图,P 是⊙O 外一点,P A ,PB 分别切⊙O 于点A ,B ,PO 与⊙O 交于点H ,AH OH =. (1)求证:△ABP 是等边三角形;(2)过点A 作PO 的平行线,与⊙O 的另一个交点为C ,连接CP .若6AB =,求⊙O 的半径和tan CPB ∠的值.HBAOPnx 20x 19 …x3 x 2x 125.生活垃圾水解法是一种科学处理生活垃圾的技术.有研究表明,在生活垃圾水解过程中添加一些微生物菌剂能够加快原料的水解.某小组为研究微生物菌剂添加量对某类生活垃圾水解率的影响,设置了六组不同的菌剂添加量,分别为0%,2%,4%,6%,8%,10%,每隔12h 测定一次水解率,部分实验结果如下:a .不同菌剂添加量的生活垃圾,在水解48 h 时,测得的实验数据如下图所示:为提高这类生活垃圾在水解48 h 时的水解率,在这六组不同的菌剂添加量中,最佳添加量 为 %;b .当菌剂添加量为p %时,生活垃圾水解率随时间变化的部分实验数据记录如下:时间t (h )1224364860728496108120水解率y (%)0 28.0 35.1 39.4 42.5 44.9 46.8 48.5 50.0 51.2 52.3通过分析表格中的数据,发现当菌剂添加量为p %时,可以用函数刻画生活垃圾水解率y 和时间t 之间的关系,在平面直角坐标系中画出此函数的图象.结合实验数据,利用所画的函数图象可以推断,当水解132 h 时,生活垃圾水解率超过54%(填“能”或“不能”).根据以上实验数据和结果,解决下列问题: (1)直接写出p 的值;(2)当菌剂添加量为6%时,生活垃圾水解率达到50%所需的时间为0t 小时,当菌剂添加量为p %时,生活垃圾水解0(48)t +小时的水解率 50%(填“大于”“小于”或“等于”).t (h)1224364860728496108120132O菌剂添加量 (%)水解率 (%)25 30 35 40 4550 55 46810220 O26.在平面直角坐标系xOy 中,抛物线2y ax bx c =++(0a >)的对称轴为x t =,点1()2A t m ,,(2)B t n ,,00()C x y ,在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于067x <<,都有0m y n <<,求t 的取值范围.27.在ABC △中,AB AC =,60A ∠<︒,点D 在边AC 上(不与点A ,C 重合),连接BD ,平移线段BD ,使点B 移到点C ,得到线段CE ,连接DE .(1)在图1中补全图形,若2BAC E ∠=∠,求证:CBD ∠与CDE ∠互余;(2)连接AE ,若AC 平分BAE ∠,用等式表示CBD ∠与BAE ∠之间的数量关系,并证明.图1 备用图28.在平面直角坐标系xOy 中,⊙O 的半径为1,AB 是⊙O 的一条弦,以AB 为边作平行四边形ABCD .对于平行四边形ABCD 和弦AB ,给出如下定义:若边CD 所在直线是⊙O 的切线,则称四边形ABCD 是弦AB 的“弦切四边形”.(1)若点(01)A −,,(10)C ,,四边形ABCD 是弦AB 的“弦切四边形”,在图中画出“弦切四边形”ABCD ,并直接写出点D 的坐标;(2)若弦AB 的“弦切四边形”为正方形,求AB 的长;(3)已知图形M 和图形N 是弦AB 的两个全等的“弦切四边形”,且均为菱形,图形M 与N 不重合.P ,Q 分别为两个“弦切四边形”对角线的交点,记PQ 的长为t ,直接写出t 的取值范围.海淀区九年级第二学期期末练习数学试卷参考答案第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.2x≠10.211.2312.答案不唯一,0k<即可13.135 14.<15.33 554 432 16.①③三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式1232=−⨯++………………………………………………………………..4分13=+4=+…………………………………………………………………5分18. 解:原不等式组为56342 2.x xx x+<⎧⎨−>+⎩,①②解不等式①,得1x>. ………………………………………………………………….2分解不等式②,得6x>. …………………………………………………………………..4分∴原不等式组的解集为6x>. ……………………………………………………………..5分19. 解:原式222222m mn n mn n=++−−22m n=−. ……………………………………………………………………….3分∵2230m n −−=,∴223m n −=. …………………………………………………………………………4分∴原式3=. ………………………………………………………………………… 5分 20.(1)证明:∵四边形ECDF 为平行四边形,∴EF // CD ,EF CD =. …………………………………………………………1分 ∵B ,C ,D 在一条直线上,BC CD =, ∴EF // BC ,EF =BC .∴四边形EBCF 为平行四边形. ……………………………………………………2分 ∵AE EC =,AB BC =, ∴EB AC ⊥.∴90EBC ∠=.∴四边形EBCF 为矩形. …………………………………………………………3分(2)解:∵A ,B ,C ,D 在一条直线上,AB BC CD ==,12AD =,∴4AB =. …………………………………………………………………….4分 ∵EB AC ⊥. ∴90EBA ∠=. ∵4cos 5A =. ∴5cos ABAE A==. …………………………………………………………………….5分 ∵AE EC =, ∴5EC =.∵四边形EBCF 为矩形, ∴5BF EC ==.∴BF 的长为5. ………………………………………………………………….6分21. 解:设中间弦的长度为x 个单位长. …………………………. ………………. ………………..1分由题意可得11111510x x−=−. …………………………………………………………….3分 解得 12x =. ……………………………………………………………………………. 4分 经检验,12x =是原方程的解且符合题意. ………………………………………………. 5分 答:中间弦的长度为12个单位长. ……………………………………………………….6分22.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到, ∴12k =. .…..…..……………………………………………………………………..1分 ∵一次函数(0)y kx b k =+≠的图象经过点(24),,∴1242b ⨯+=. ∴3b =. .…..…..……………………………………………………………………..2分 ∴该一次函数的解析式为132y x =+. …………………...………………………..3分 (2)3n ≥. ….….….….…………………………………………………………………..5分23.解:(1)82; ….…….……………………………………..…………………………………..1分(2)143,163,1n ; ………………………………………………………………………... 4分 (3)154. ………………………………………………………………………….…..5分24.(1)证明:连接OA ,如图.∵OA OH =,AH OH =, ∴OA OH AH ==. ∴△AOH 为等边三角形.∴60AOH ∠=︒. …………………………………………………………………..….1分 ∵P A 切O 于点A , ∴PA AO ⊥. ∴90PAO ∠=︒.∴30APO ∠=︒. ………………………………………………………………..….2分 ∵P A ,PB 分别切O 于点A ,B , ∴PA PB =,30APO BPO ∠=∠=︒. ∴60APB ∠=︒.∴△ABP 为等边三角形. …………………………………………………………….3分(2)解:如图,连接BC .∵△ABP 为等边三角形,6AB =, ∴6PA PB AB ===.由(1)得,在Rt △P AO 中,90PAO ∠=︒,30APO ∠=︒.P∴tan 3063OA PA =︒=⨯= ∴O的半径为. ……………………………..…………………………4分 ∵△AOH 为等边三角形. ∴60HAO HOA ∠=∠=︒.由(1)得PA PB =,APO BPO ∠=∠, ∴PO AB ⊥. ∵AC // PO , ∴AC AB ⊥. ∴90BAC ∠=︒.∴BC 是O 的直径. ………………………..…………………………5分∴BC = ∵PB 切O 于点B , ∴PB BC ⊥. ∴90PBC ∠=︒.∴tan BC CPB PB ∠===………………………..…………………………6分 25.解:a . 6; ………………………………………………………..……………………………..1分b . 图象如下图.………………………………………..…………………………………....2分 不能. ……………………………………………………..……………………………..3分y(h )P(1) 4; …………………………………………………………..……………………………..4分 (2) 小于. ……………………………………………..……………………………..……..5分 26.解:(1) <; ………………………………………………………………………………………2分(2)∵0a >, 抛物线的对称轴为x t =,∴ 当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ① 当7t ≥时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点,',A B C 均在抛物线对称轴左侧. ∵对于067x <<,都有0m y n <<,∴06,17.2t ≤⎧⎪⎨≥⎪⎩解得 14t ≥. ② 当67t <<时,取0x t =,此时0y 为最小值,与0m y <矛盾,不符合题意. ③ 当06t <≤时,122t t t <<.点1()2A t m ,关于抛物线对称轴x t =的对称点为3'()2A t m ,, 此时点',,ABC 均在抛物线对称轴右侧. ∵对于067x <<,都有0m y n <<, ∴36,227.t t ⎧≤⎪⎨⎪≥⎩解得742t ≤≤. ④ 当0t =时,122t t t ==,m n =,不符合题意. ⑤ 当0t <时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点',B C 在抛物线对称轴右侧. ∵'06B x x <<, ∴0n y <,不符合题意.综上所述,t 的取值范围是742t ≤≤或14t ≥. …………………………………………6分 27.(1)补全图形如图1:图1…………………………………………………………………………………………1分 证明:设E α∠=,则22BAC E α∠=∠=.∵AB AC =, ∴180902BACABC ACB α︒−∠∠=∠==︒−.由平移可知,BC // DE ,BC DE =.∴四边形BCED 为平行四边形. ……………………………………………………2分 ∴CBD E α∠=∠=. ∵BC // DE ,∴90CDE ACB α∠=∠=︒−. ∴90CBD CDE ∠+∠=︒.∴CBD ∠与CDE ∠互余. ………………………………………………………3分(2)CBD ∠与BAE ∠之间的数量关系为12CBD BAE ∠=∠. …………………4分解:如图2,连接BE ,交AC 于点O ,延长AC 至F ,使OF OA =,连接EF .图2BB由(1)可得,四边形BCED 为平行四边形.∴OB OE =.∵OA OF =,BOA EOF ∠=∠,∴△BOA ≌△EOF .∴AB FE =,BAO EFO ∠=∠. ∵AC 平分BAE ∠,∴12BAO EAO BAE ∠=∠=∠.∴EFO EAO ∠=∠. ∴AE FE =.∴AB AE =. ………………………………………………………………………5分 ∵OB OE =, ∴AC BE ⊥.∴四边形BCED 为菱形.∴BD BC =. ……………………………………………………………………………6分 ∴BDC BCD ∠=∠.∴在△BCD 中,2180CBD BCD ∠+∠=︒. ∵在△ABC 中,2180BAC BCD ∠+∠=︒. ∴BAC CBD ∠=∠.∴12CBD BAE ∠=∠. ………………………………………………………………7分28.(1)如图,四边形ABCD 即为所求.……………………………………………………………………………………………….1分x点D 的坐标为(1,2)D −. …………………………………………………………………..2分 (2)如图,弦AB 的弦切四边形为正方形ABCD ,设正方形ABCD 的边长为a ,CD 与O 的切点为E ,连接EO 并延长交AB 于点F . ∵CD 与O 的切点为E ,EF 经过圆心O , ∴EF CD ⊥.∵四边形ABCD 为正方形, ∴AB // CD ,AB BC a ==. ∴EF AB ⊥. ∴1122AF AB a ==,EF BC a ==. ∵1OE =, ∴1OF a =−.在Rt △OAF 中,由勾股定理得,222OA OF AF =+.∴22211(1)()2a a =−+.解得 85a =. ∴AB 的长为85. ………………………………………………………………………..5分(3)05t <≤或2t =. ………………………………………………………………………..2分。

2015北京海淀中考二模数学(含解析)

2015北京海淀中考二模数学(含解析)

2015年北京海淀中考二模数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为(). A .70.210⨯ B .6210⨯C .52010⨯D .6102⨯2.若二次根式2x -有意义,则x 的取值范围是().A .0x ≤B .0x ≥C .2x ≤D .2x ≥3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为().古时子时丑时寅时卯时今时 23:00~1:00 1:00~3:00 3:00~5:00 5:00~7:00A .13B .14C .16D .1124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540︒,则对应的是下列哪个图形().A. B . C . D .5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立(). A .()2222a b a ab b+=++ B .()2222a b a ab b -=-+ C .()()22a b a b a b +-=-D .()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是(). A .甲的方差比乙的方差小 B .甲的方差比乙的方差大 C .甲的平均数比乙的平均数小 D .甲的平均数比乙的平均数大D CB A abab ab ba7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:对于“想一想”中的问题,下列回答正确的是().A .根据“边边边”可知,C O D '''△≌COD △,所以A OB AOB '''∠=∠ B .根据“边角边”可知,C OD '''△≌COD △,所以A O B AOB '''∠=∠ C .根据“角边角”可知,C O D '''△≌COD △,所以A O B AOB '''∠=∠ D .根据“角角边”可知,C O D '''△≌COD △,所以A O B AOB '''∠=∠8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱(). A .45元B .50元C .55元D .60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为(). A .2 B .5 C .22 D .1010.如图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P A B P C D P →→→→→→的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了POQ ∠的大小.设蜜蜂飞行时间为x ,POQ ∠的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是().A .B .C .D .D BACPQO二、填空题(本题共18分,每小题3分)11.将函数223y x x =-+写成()2y a x h k =-+的形式为__________.12.点A ,B 是一个反比例函数图象上的两个不同点.已知点()2,5A ,写出一个满足条件的B 点的坐标是__________.13.如图,四边形ABCD 内接于⊙O ,100BCD ∠=︒,AC 平分BAD ∠,则BAC ∠的度数为__________.14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 北偏东75︒方向20米处,点C 在点A 南偏东15︒方向20米处,则点B 与点C 的距离为__________米.15.如图,在Rt ABC △中,90C ∠=︒,30BAC ∠=︒,1BC =,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则»AD 的长为__________.16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为__________;为了不让白方获胜,此时黑方应该下在坐标为__________的位置处.BOCDA西东南北B CADACBAOB三、解答题(本题共30分,每小题5分)17.计算:13128tan 45+()3--+-+︒-.18.解不等式2(1)13x x -+≤,并把它的解集在数轴上表示出来.19.如图,已知BAC BCA ∠=∠,90BAE BCD ∠=∠=︒,BE BD =.求证:E D ∠=∠.20.已知2410x x --=,求代数式314x x x---的值.D ACBE21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.22.已知关于x的方程24310x x a-+-=有两个实数根.(1)求实数a的取值范围;(2)若a为正整数,求方程的根.四、解答题(本题共20分,每小题5分)23.已知,ABC△中,D是BC上的一点,且30DAC∠=︒,过点D作ED AD⊥交AC于点E,4AE=,2EC=.(1)求证:AD CD=;(2)若tan3B=,求线段AB的长.BEACD24.小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:BCBADACDBCBCDCDCECCABEADECBCBCEDEDDC(1)小明用表格整理了上面的调查数据,写出表格中m和n的值;(2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?__________.(填“适中”或者“不适中”)调查问卷年月你觉得这种肉夹馍的口味__________(单选)A.太咸B.稍咸C.适中D.稍淡E.太淡25.如图,Rt ABC △中,90A ∠=︒,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上,CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与⊙O 相切;(2)若⊙O 的半径为3,4EF =,求BD 的长.26.阅读下面材料:小明研究了这样一个问题:求使得等式20(0)kx x k +-=>成立的x 的个数.小明发现,先将该等式转化为2kx x +=,再通过研究函数2y kx =+的图象与函数y x =的图象(如图)的交点,使问题得到解决.请回答:(1)当1k =时,使得原等式成立的x 的个数为__________; (2)当01k <<时,使得原等式成立的x 的个数为__________; (3)当1k >时,使得原等式成立的x 的个数为__________. 参考小明思考问题的方法,解决问题:关于x 的不等式240x a x +-<(0a >)只有一个整数解,求a 的取值范围.DFB EAOCxyy = |x |()–5–4–3–2–112345–5–4–3–2–112345oxy()–5–4–3–2–112345–5–4–3–2–112345o五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点(0,3)A ,与x 轴交于点B ,C (点B 在点C 左侧). (1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点(1,2)E --,求直线DE 的表达式;(3)在(2)的条件下,已知点(,0)P t ,过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.28.如图1,在ABC △中,AB AC =,ABC α∠=,D 是BC 边上一点,以AD 为边作ADE △,使A E A D =,180DAE BAC =∠+∠︒.(1)直接写出ADE ∠的度数(用含α的式子表示);(2)以AB ,AE 为边作平行四边形ABFE , ①如图2,若点F 恰好落在DE 上,求证:BD CD =; ②如图3,若点F 恰好落在BC 上,求证:BD CF =.图1图2图3xy()–5–4–3–2–112345–5–4–3–2–112345oECAB DFEBCADFEB CA D29.如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点. ①若1r =,求点M 的纵坐标; ②求r 的取值范围.xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123BAC D O2015年北京海淀中考二模数学试卷答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBCAAACBD二、填空题(本题共18分,每小题3分)题号 11121314 15 16 答案2(1)2y x =-+(1,10)(答案不唯一)40︒2024π3(5,1);(3,7)或(7,3)三、解答题(本题共30分,每小题5分) 17.解:原式2213=-+-24=-.18.解法一:去括号,得22133x x -+≤.移项,得22133x x -+≤.合并,得1533x -≤.系数化为1,得 5x -≥.不等式的解集在数轴上表示如下:.解法二:去分母,得2233x x -+≤. 移项,得2332x x -+≤. 合并,得5x -≤. 系数化为1,得5x -≥.不等式的解集在数轴上表示如下:.19.证明:在ABC △中,∵BAC BCA ∠=∠, ∴AB CB =.∵90BAE BCD ∠=∠=︒, 在Rt EAB △和Rt DCB △中, AB CBBE BD =⎧⎨=⎩, ∴Rt EAB △≌Rt DCB △. ∴E D ∠=∠.-1-2-3-4-5-66543210-1-2-3-4-5-66543210DACBE20.解:原式()()()3444x x x x x x x --=---()2344x x x x x --+=-22444x x x x-+=-. ∵2410x x --=, ∴241x x -=. ∴原式1451+==.21.解:设小明家到学校的距离为x 米.由题意,得403025x x +=. 解得6000x =.答:小明家到学校的距离为6000米.22.解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥. 解得53a ≤.∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.∴方程24310x x a -+-=可化为2420x x -+=. ∴此方程的根为1222,22x x =+=-.四、解答题(本题共20分,每小题5分) 23.(1)证明:∵ED AD ⊥,∴90ADE ∠=︒.在Rt ADE △中,30DAE ∠=︒,4AE =, ∴60DEA =o ∠,122DE AE ==. ∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又∵60EDC C DEA +=∠=o ∠∠, ∴30C DAE ∠==∠o . ∴AD DC =.(2)解:过点A 作AF BC ⊥于点F ,如图.BEACD∴90AFC AFB ∠=∠=︒. ∵4AE =,2EC =, ∴6AC =.在Rt AFC △中,90AFC ∠=︒,30C ∠=︒, ∴132AF AC ==. 在Rt AFB △中,90AFB ∠=︒,tan 3B =, ∴1tan AFBF B==. ∴2210AB AF FB =+=.24.解:(1)8m =;5n =;(2)如图所示:(3)适中.25.(1)证明:连接OE ,OC .在OEC △与OAC △中, OE OAOC OC CE CA =⎧⎪=⎨⎪=⎩, ∴OEC △≌OAC △. ∴OEC OAC ∠=∠. ∵90OAC ∠=︒, ∴90OEC ∠=︒. ∴OE CF ⊥于E . ∴CF 与⊙O 相切. (2)解:连接AD . ∵90OEC ∠=︒, ∴90OEF ∠=︒.FBEACDDFB EAOCDFB EAOC∵⊙O 的半径为3, ∴3OE OA ==.在Rt OEF △中,90OEF ∠=︒,3OE =,4EF =, ∴225OF OE EF =+=,3tan 4OE F EF ==. 在Rt FAC △中,90FAC ∠=︒,8AF AO OF =+=,∴tan 6AC AF F =⋅=. ∵AB 为直径,∴6AB AC ==,90ADB ∠=︒. ∴2BD BC=. 在Rt ABC △中,90BAC ∠=︒, ∴2262BC AB AC =+=.∴32BD =. 26.解:(1)当1k =时,使得原等式成立的x 的个数为1;(2)当01k <<时,使得原等式成立的x 的个数为2;(3)当1k >时,使得原等式成立的x 的个数为1.解决问题:将不等式240(0)x a a x +-<>转化为24(0)x a a x+<>, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点.∵函数4y x=的图象经过点(1,4)A ,(2,2)B ,函数2y x =的图象经过点(1,1)C ,(2,4)D ,若函数2(0)y x a a =+>经过点(1,4)A ,则3a =,结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240(0)x a a x+-<>只有一个整数解.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵抛物线224y mx m m x -++=与y 轴交于点(0,3)A ,∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++. ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即2320x x +-=+. 解得11x =-,23x =.又∵点B 在点C 左侧,∴点的坐标为(1,0)-,点C 的坐标为(3,0). (2)∵2223(1)4y x x x +=---++=,xy ()()()()–5–4–3–2–112345–5–4–3–2–112345CD BA o∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D 的坐标为(1,0).∵直线y kx b =+经过点(1,0)D 和点(1,2)E --, ∴02k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=-⎩.∴直线DE 的表达式为1y x =-. (3)1t <或3t >.28.解:(1)90ADE α∠︒-=.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB EF ∥.∴EDC ABC α∠=∠=. 由(1)知,90ADE α∠︒-=, ∴90ADC ADE EDC ∠=∠+∠=︒. ∴AD BC ⊥. ∵AB AC =, ∴BD CD =.②证明:∵AB AC =,ABC α∠=,∴C B α∠=∠=.∵四边形ABFE 是平行四边形, ∴AE BF ∥,AE BF =. ∴EAC C α∠=∠=. 由(1)知,2DAE α∠=, ∴DAC α∠=. ∴DAC C ∠=∠. ∴AD CD =. ∵AD AE BF ==, ∴BF CD =. ∴BD CF =.29.解:(1)②,③是12T T -联络点.(2)所有12T T -联络点所组成的区域为图中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点,阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于(0,0),xy–4–3–2–11234–3–2–1123B AC D OFEBCADFEBCA D或与直线BD 相切于(0,1),如图所示.又∵⊙M 的半径1r =,∴点M 的坐标为(0,1)-或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为12T T -联络点,符合题意. ∴点M 的坐标为(0,1)-或(0,2). ∴点M 的纵坐标为1-或2.②阴影部分关于直线12y =对称,故不妨设点M 位于阴影部分下方. ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点,阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于(0,0)O ,且⊙M 与直线AD 相离. 作M E AD ⊥于E ,设AD 与BC 的交点为F , ∴MO r =,ME r >,1(0,)2F .在Rt AOF △中,90AOF ∠=︒,1AO =,12OF =,∴2252AF AO OF =+=,25sin 5AO AFO AF ∠==.在Rt FEM △中,90FEM ∠=︒,12FM FO OM r =+=+,25sin sin 5EFM AFO ∠=∠=, ∴5(21)sin 5r ME FM EFM +=⋅∠=. ∴5(21)5r r +>. 又∵0r >, ∴052r <<+.xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123EF B A CD OM2015年北京海淀中考二模数学试卷部分答案解析一、选择题 1.【答案】B【解析】2000000用科学记数法为6210⨯. 2.【答案】D【解析】由题意,得20x -≥,解得2x ≥. 3.【答案】B【解析】一共8个小时,小明刚好在子时观测的概率为2184=. 4.【答案】C【解析】由多边形内角和公式可知,五边形的内角和为540︒,观察各个选项可知,C 选项正确. 5.【答案】A 【解析】正方形ABCD 的面积为2()a b +,分成4个小图形,可知正方形的面积为222a ab b ++. 故可以说明等式()2222a b a ab b +=++成立. 6.【答案】A【解析】甲的波动性较小,故甲的方差小; 通过计算可知,两者的平均数相同. 7.【答案】A【解析】由作图步骤可知,OC O C OD O D ''''===,CD C D ''=, 故根据“边边边”可知,C O D '''△≌COD △,所以A O B AOB '''∠=∠. 8.【答案】C 【解析】小明只需买11个粽子,然后加上赠送的一个即可,故应付钱55元. 9.【答案】B 【解析】根据展开图的性质可知,B 点的位置如图所示, 根据勾股定理可知,5AB =.10.【答案】D【解析】随着点Q 的运动,POQ ∠先变大,再变小,之后再变大,再变小.排除A 、B . 又知图形不是对称的,故选D .二、填空题11.【答案】2(1)2y x =-+【解析】222(21)2(3122)x x x y x x -++=--=++=.12.【答案】(1,10)(答案不唯一)【解析】由()2,5A ,可知反比例函数为10y x=,故另一点只要横纵坐标的积为10即可,如(1,10). 13.【答案】40︒【解析】∵四边形ABCD 内接于⊙O ,100BCD ∠=︒, ∴18010080BAD ∠=︒-︒=︒. ∵AC 平分BAD ∠, ∴BAC ∠的度数为40︒.14.【答案】202【解析】由图可知,90BAC ∠=︒,20AB AC ==,则202BC =.15.【答案】4π3【解析】∵90C ∠=︒,30BAC ∠=︒, ∴60ABC ∠=︒,∴120ABD ∠=︒. ∴»AD 的长为1204ππ11803⨯=.16.【答案】(5,1);(3,7)或(7,3)【解析】由图可知,点B 的坐标为(5,1).为了不让白方获胜,需要将白方3个连在一起的棋子堵住, 故此时黑方应该下在坐标为(3,7)或(7,3)的位置处.。

2015年北京市昌平区中考数学二模试卷(解析版)

2015年北京市昌平区中考数学二模试卷(解析版)

2015年北京市昌平区中考数学二模试卷一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000,这个数用科学记数法表示为()A.165×104B.1.65×105C.1.65×106D.0.165×107 2.(3分)如图,数轴上有A,B,C,D四个点,其中表示﹣3的相反数的点是()A.点A B.点B C.点C D.点D3.(3分)用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为()A.B.C.D.4.(3分)四张质地、大小相同的卡片上,分别画上如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.B.C.D.15.(3分)如图,直线AB∥CD,Rt△DEF如图放置,∠EDF=90°,若∠1+∠F=70°,则∠2的度数为()A.20°B.25°C.30°D.40°6.(3分)五一期间(5月1日﹣7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是()A.24B.25C.26D.277.(3分)如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB 的长为()A.2B.4C.D.28.(3分)小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°10.(3分)如图,正方形ABCD的边长为5,动点P的运动路线为AB→BC,动点Q的运动路线为BD.点P与Q以相同的均匀速度分别从A,B两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P运动的路程为x,△BPQ的面积为y,则下列能大致表示y与x的函数关系的图象为()A.B.C.D.二、填空题(共6道小题,每小题3分,共18分)11.(3分)分解因式:my2﹣9m=.12.(3分)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是.13.(3分)已知:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分∠ACB,交AD于点F,点E为AB的中点.若EF=2,则BD=.14.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=.15.(3分)在阳光体育课上,小腾在打网球,如图所示,网高0.9m,球刚好打过网,而且落在离网6m的位置上,则球拍击球的高度h=m.16.(3分)如图所示,是一张直角三角形纸片,其中有一个内角为30°,最小边长为2,点D、E分别是一条直角边和斜边的中点,先将纸片沿DE剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是.三、解答题(共6道小题,每小题5分,共30分)17.(5分)计算:.18.(5分)如图,AB⊥AD,AE⊥AC,∠E=∠C,DE=BC.求证:AD=AB.19.(5分)求不等式≤x的负整数解.20.(5分)已知x2﹣4x﹣1=0,求代数式2x(x﹣3)﹣(x﹣1)2+3的值.21.(5分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=﹣的图象交于A(﹣1,m),B(n,﹣3)两点,一次函数y=kx+b的图象与y 轴交于点C.(1)求一次函数的解析式;(2)点P是x轴上一点,且△BOP的面积是△BOC面积的2倍,求点P的坐标.22.(5分)自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?四、解答题(共4道小题,每小题5分,共20分)23.(5分)如图,在矩形ABCD中,AB=3,BC=6,对角线交于点O.将△BCD 沿直线BD翻折,得到△BED.(1)画出△BED,连接AE;(2)求AE的长.24.(5分)我区某学校为了提升学生的体艺素养,准备开设空手道、素描、剪纸三项活动课程,为了解学生对各项活动的兴趣,随机抽取了部分学生进行调查(每人从中必须选取一项,且只能选一项),将调查结果绘制成下面两个统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25.(5分)如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.26.(5分)【阅读学习】刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD=(用含x的式子表示),可求得sin2α==.【问题解决】已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ=,求sin2β的值.五、解答题(共3道小题,第23,24小题各7分,第25小题8分,共22分)27.(7分)已知抛物线y=ax2+bx+c经过原点O及点A(﹣4,0)和点B(﹣6,3).(1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线y=2x沿y轴向下平移后与(1)中所求抛物线只有一个交点C,平移后的直线与y轴交于点D,求直线CD的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD距离最短的点的坐标及该最短距离.28.(7分)如图,在平行四边形ABCD中,AB=5,BC=12,对角线交于点O,∠BAD的平分线交BC于E、交BD于F,分别过顶点B、D作AE的垂线,垂足为G、H,连接OG、OH.(1)补全图形;(2)求证:OG=OH;(3)若OG⊥OH,直接写出∠OAF的正切值.29.(8分)在平面直角坐标系xOy中,给出如下定义:形如y=a(x﹣m)2+a (x﹣m)与y=a(x﹣m)2﹣a(x﹣m)的两个二次函数的图象叫做“兄弟抛物线”.(1)试写出一对兄弟抛物线的解析式与;(2)判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是否为兄弟抛物线?如果是,求出a与m的值;如果不是,请说明理由;(3)若一对兄弟抛物线各自与x轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线x=2且开口向上,请直接写出这对兄弟抛物线的解析式.2015年北京市昌平区中考数学二模试卷参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000,这个数用科学记数法表示为()A.165×104B.1.65×105C.1.65×106D.0.165×107【考点】1I:科学记数法—表示较大的数.【解答】解:将1650000用科学记数法表示为:1.65×106.故选:C.2.(3分)如图,数轴上有A,B,C,D四个点,其中表示﹣3的相反数的点是()A.点A B.点B C.点C D.点D【考点】13:数轴;14:相反数.【解答】解:∵﹣3的相反数是:﹣(﹣3)=3,∴表示﹣3的相反数的点是点D.故选:D.3.(3分)用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【解答】解:从正面看易得第一层有1个正方形,第二层有3个正方形.故选:A.4.(3分)四张质地、大小相同的卡片上,分别画上如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.B.C.D.1【考点】R5:中心对称图形;X4:概率公式.【解答】解:∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个,∴P(中心对称图形)=,故选:C.5.(3分)如图,直线AB∥CD,Rt△DEF如图放置,∠EDF=90°,若∠1+∠F=70°,则∠2的度数为()A.20°B.25°C.30°D.40°【考点】JA:平行线的性质.【解答】解:∵AB∥CD,∴∠ABD+∠BDC=180°,∵∠ABD=∠1+∠F=70°,∴∠BDC=110°,∵∠EDF=90°,∴∠2=∠BDC﹣∠EDF=20°.故选:A.6.(3分)五一期间(5月1日﹣7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是()A.24B.25C.26D.27【考点】VD:折线统计图;W4:中位数.【解答】解:把这组数据从小到大排列为:23℃,24℃,24℃,25℃,26℃,28℃,30℃,最中间的数是25,则中位数是25;故选:B.7.(3分)如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB 的长为()A.2B.4C.D.2【考点】KW:等腰直角三角形;M5:圆周角定理.【解答】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴AB==2.故选:D.8.(3分)小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元【考点】9A:二元一次方程组的应用.【解答】解:设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付8+4=12元,故选:C.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【考点】KG:线段垂直平分线的性质;N2:作图—基本作图.【解答】解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.10.(3分)如图,正方形ABCD的边长为5,动点P的运动路线为AB→BC,动点Q的运动路线为BD.点P与Q以相同的均匀速度分别从A,B两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P运动的路程为x,△BPQ的面积为y,则下列能大致表示y与x的函数关系的图象为()A.B.C.D.【考点】E7:动点问题的函数图象.【解答】解:P点在AB上运动时,y=(5﹣x)×=﹣x2+x,0<x ≤5)抛物线的一部分;点P在BC上运动时,y=(x﹣5)×=x2﹣x(5<x≤5).抛物线的一部分.故选:B.二、填空题(共6道小题,每小题3分,共18分)11.(3分)分解因式:my2﹣9m=m(y+3)(y﹣3).【考点】55:提公因式法与公式法的综合运用.【解答】解:my2﹣9m=m(y2﹣9)=m(y+3)(y﹣3).故答案为:m(y+3)(y﹣3).12.(3分)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.【考点】AA:根的判别式.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴△=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k≤1且k≠0.13.(3分)已知:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分∠ACB,交AD于点F,点E为AB的中点.若EF=2,则BD=4.【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【解答】解:∵CA=CD,CF平分∠ACB,∴点F是AD的中点,又∵点E为AB的中点,∴EF是△ABC的中位线,∴BD=2EF=2×2=4.故答案为:4.14.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=6.【考点】A6:解一元二次方程﹣配方法.【解答】解:移项,得x2+6x=﹣3,配方,得x2+6x+9=﹣3+9,所以,(x+3)2=6.故答案是:6.15.(3分)在阳光体育课上,小腾在打网球,如图所示,网高0.9m,球刚好打过网,而且落在离网6m的位置上,则球拍击球的高度h= 1.5m.【考点】SA:相似三角形的应用.【解答】解:∵DE∥BC,∴△ADE∽△ACB,DE:BC=AE:AB,则,∴h=1.5m.故答案为:1.5.16.(3分)如图所示,是一张直角三角形纸片,其中有一个内角为30°,最小边长为2,点D、E分别是一条直角边和斜边的中点,先将纸片沿DE剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是8或4+2.【考点】PC:图形的剪拼.【解答】解:如图1将△ABC沿EF剪下,可拼成矩形BCDE.∵∠ABC=90°,∠A=30°,∴,即.∴AB=2.矩形BCDE的周长=2BC+2BE=2BC+AE=2×2+2=4+2;如图2将△ABC沿EF剪下,可拼成梯形DCFE.∵EF是三角形的中位线,∴EF=.∴BD=1.∵∠ABC=90°,∠A=30°,∴AC=2CB=4.∵DE=AF.∴FC+DE=AC=4.∴梯形四边形的周长=EF+BD+BC+FC+DE=1+1+2+4=8.故答案为:8或4+2.三、解答题(共6道小题,每小题5分,共30分)17.(5分)计算:.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【解答】解:原式=1+3+3×+3=4+4.18.(5分)如图,AB⊥AD,AE⊥AC,∠E=∠C,DE=BC.求证:AD=AB.【考点】KD:全等三角形的判定与性质.【解答】证明:∵AB⊥AD,AE⊥AC,∴∠EAC=∠DAB=90°,即∠EAD+∠DAC=∠CAB+∠DAC.∴∠EAD=∠CAB,在△ADE和△ABC中,,∴△ADE≌△ABC(AAS),∴AD=AB.19.(5分)求不等式≤x的负整数解.【考点】C7:一元一次不等式的整数解.【解答】解:去分母,得4+x﹣6≤2x,移项,合并,得﹣x≤2,系数化为1,得x≥﹣2,所以原不等式的负整数解为﹣2,﹣1.20.(5分)已知x2﹣4x﹣1=0,求代数式2x(x﹣3)﹣(x﹣1)2+3的值.【考点】4J:整式的混合运算—化简求值.【解答】解:原式=2x2﹣6x﹣x2+2x﹣1+3=x2﹣4x+2,∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴原式=1+2=3.21.(5分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=﹣的图象交于A(﹣1,m),B(n,﹣3)两点,一次函数y=kx+b的图象与y轴交于点C.(1)求一次函数的解析式;(2)点P是x轴上一点,且△BOP的面积是△BOC面积的2倍,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)∵点A(﹣1,m),B(n,﹣3)在反比例函数的图象上,∴m==6,﹣3=,∴n=2.∴A(﹣1,6),B(2,﹣3),∵一次函数y=kx+b的图象过A(﹣1,6),B(2,﹣3)两点,∴,解方程组得∴一次函数的解析式为y=﹣3x+3;(2)∵一次函数y=﹣3x+3与y轴交点C(0,3),且B(2,﹣3)∴△BOC面积=3,∵P是x轴上一点,且△BOP的面积是△BOC面积的2倍,∴设P(a,0),∴×|a|×3=6,解得,a=±4.∴点P的坐标为(4,0)或(﹣4,0).22.(5分)自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?【考点】8A:一元一次方程的应用.【解答】解:设老张家到单位的路程是x千米,依题意,得13+2.3(x﹣3)=8+2(x﹣3)+0.8x,解这个方程,得x=8.2,答:老张家到单位的路程是8.2千米.四、解答题(共4道小题,每小题5分,共20分)23.(5分)如图,在矩形ABCD中,AB=3,BC=6,对角线交于点O.将△BCD 沿直线BD翻折,得到△BED.(1)画出△BED,连接AE;(2)求AE的长.【考点】KQ:勾股定理;LB:矩形的性质;PB:翻折变换(折叠问题).【解答】解:(1)画法:①以B为圆心,BC长为半径画弧,再以D为圆心,DC长为半径画弧,两弧交于点E;②连接BE、DE,得△BED;连接AE;如图1所示:(2)连接CE交BD于点F;如图2所示:∵将△BCD沿直线BD翻折,得到△BED,∴BD垂直平分CE.∵四边形ABCD是矩形,AB=3,BC=6,∴∠BED=∠BCD=90°,DE=DC=AB=3,EB=BC=6.∴;∴.∵,∴.∴.∴.∵BD垂直平分CE,O为AC中点,∴OF为△ACE的中位线,∴AE=2OF=.24.(5分)我区某学校为了提升学生的体艺素养,准备开设空手道、素描、剪纸三项活动课程,为了解学生对各项活动的兴趣,随机抽取了部分学生进行调查(每人从中必须选取一项,且只能选一项),将调查结果绘制成下面两个统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【解答】解:(1)女生总人数:10÷20%=50(人),素描的女生人数为:50﹣10﹣16=24(人),补全条形统计图,如图所示.(2)50+30+6+14=100(人),所以样本容量为100;故答案为:100.(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数:1200×=360(人).答:全校学生中喜欢剪纸的有360人.25.(5分)如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【解答】解:(1)DF与⊙O相切.∵∠CDB=∠CAB,又∵∠CDB=∠BFD,∴∠CAB=∠BFD.∴AC∥DF.∵半径OD垂直于弦AC于点E,∴OD⊥DF.∴DF与⊙O相切.(2)∵半径OD垂直于弦AC于点E,AC=8,∴.∵AB是⊙O的直径,∴.在Rt△AEO中,.∵AC∥DF,∴△OAE∽△OFD.∴.∴.∴.26.(5分)【阅读学习】刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD=x(用含x的式子表示),可求得sin2α==.【问题解决】已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ=,求sin2β的值.【考点】KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【解答】解:【阅读学习】∵S=AB•CD=AC•BC,△ABC∴CD===x.∵AB=x,∴OC=AB=x,∴sin2α===.故答案为x,;【问题解决】如图,连接NO,并延长交⊙O于Q,连接MQ,MO,作MH⊥NO于H.在⊙O中,∠NMQ=90°.∵∠Q=∠P=β,OM=ON,∴∠MON=2∠Q=2β.∵tanβ=,∴设MN=k,则MQ=2k,∴NQ=.∴OM=NQ=.∵,∴.∴MH=.在Rt△MHO中,sin2β=sin∠MON=.五、解答题(共3道小题,第23,24小题各7分,第25小题8分,共22分)27.(7分)已知抛物线y=ax2+bx+c经过原点O及点A(﹣4,0)和点B(﹣6,3).(1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线y=2x沿y轴向下平移后与(1)中所求抛物线只有一个交点C,平移后的直线与y轴交于点D,求直线CD的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD距离最短的点的坐标及该最短距离.【考点】H6:二次函数图象与几何变换;H8:待定系数法求二次函数解析式.【解答】解:(1)∵抛物线经过(0,0),(﹣4,0),(﹣6,3)三点,∴,解得,∴抛物线的解析式为.∵,∴抛物线的顶点坐标为(﹣2,﹣1);(2)设直线CD的解析式为y=2x+m,根据题意,得,化简整理,得x2﹣4x﹣4m=0,由△=16+16m=0,解得m=﹣1,∴直线CD的解析式为y=2x﹣1;(3)平移后的解析式为y=x2+x+4 ①,作直线MN∥CD且与平移后的抛物线切于G点,作GH⊥CD于H,设直线MN的解析式为y=2x+n②,联立①②整理,得x2﹣4x+16﹣4n=0,∵直线MN与抛物线相切,∴△=16﹣4(16﹣4n)=0解得n=3直线MN的解析式为y=2x+3 ③,联立①③,解得x=2,y=7,∴G(2,7),直线GH⊥MN,设直线GH的解析式为y=﹣x+b′④,将G点坐标④,得﹣1+b′=7,解得b′=8,GH的解析式为y=﹣x+8 ⑤,联立GH与CD,得,解得,H(,),∴GH==新抛物线上到直线CD距离最短的点的坐标(2,7),该最短距离.28.(7分)如图,在平行四边形ABCD中,AB=5,BC=12,对角线交于点O,∠BAD的平分线交BC于E、交BD于F,分别过顶点B、D作AE的垂线,垂足为G、H,连接OG、OH.(1)补全图形;(2)求证:OG=OH;(3)若OG⊥OH,直接写出∠OAF的正切值.【考点】LO:四边形综合题.【解答】解:(1)如图1所示,(2)如图2,延长AE、DC交于点P.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴∠DAE=∠AEB,∠BAE=∠DP A.∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∠DAE=∠DP A.∴BA=BE,DA=DP,又∵BG⊥AE,DH⊥AE,∴G为AE中点,H为AP中点.又∵O为AC中点,AD=BC,∴OG=CE=(BC﹣BE)=(AD﹣AB),OH=CP=(DP﹣CD)=(AD ﹣AB),∴OG=OH.(3)作PK⊥AC交AC的延长线于K.若OG⊥OH,由(2)可知,OH∥DP,OG∥BC,∴BC⊥DP,∴四边形ABCD是矩形,AC==13,易证DA=DP=12,PC=7,由△PCK∽△DCA,可得==,可得CK=,PK=,∴AK=,∴tan∠OAF==.29.(8分)在平面直角坐标系xOy中,给出如下定义:形如y=a(x﹣m)2+a (x﹣m)与y=a(x﹣m)2﹣a(x﹣m)的两个二次函数的图象叫做“兄弟抛物线”.(1)试写出一对兄弟抛物线的解析式y=2(x﹣3)2+2(x﹣3)与y=2(x ﹣3)2﹣2(x﹣3);(2)判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是否为兄弟抛物线?如果是,求出a与m的值;如果不是,请说明理由;(3)若一对兄弟抛物线各自与x轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线x=2且开口向上,请直接写出这对兄弟抛物线的解析式.【考点】H3:二次函数的性质;HA:抛物线与x轴的交点.【解答】解:(1)抛物线y=2(x﹣3)2+2(x﹣3)与y=2(x﹣3)2﹣2(x﹣3)是兄弟抛物线;故答案为y=2(x﹣3)2+2(x﹣3),y=2(x﹣3)2﹣2(x﹣3);(2)二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线,理由如下:∵y=x2﹣x=(x﹣1)2+(x﹣1),y=x2﹣3x+2=(x﹣1)2﹣(x﹣1),∴二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线.此时a=1,m=1.(3)设对称轴为直线x=2且开口向上的抛物线解析式为y=2(x﹣2)2+k(k <0),如图,∵△P AB为直角三角形,∴△P AB为等腰直角三角形,∴AB=﹣2k,∴B(2﹣k,0),把B(2﹣k,0)代入y=2(x﹣2)2+k得2k2+k=0,解得k1=0(舍去),k2=﹣,∴A(,0),B(,0),∴抛物线解析式为y=2(x﹣)(x﹣),当y=2(x﹣)(x﹣﹣1),则与y=2(x﹣)(x﹣﹣1)成一对兄弟抛物线的另一个二次函数为y=2(x﹣)(x﹣+1)=2(x﹣)(x﹣),即y=2(x ﹣)(x ﹣)与y =2(x ﹣)(x ﹣)为兄弟抛物线;当y =2(x ﹣)(x ﹣+1),则与y =2(x ﹣)(x ﹣+1)成一对兄弟抛物线的另一个二次函数为y =2(x ﹣)(x ﹣﹣1)=2(x ﹣)(x ﹣),即y =2(x ﹣)(x ﹣)与y =2(x ﹣)(x ﹣)为兄弟抛物线.。

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案一. 选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9-的相反数是A.19-B.19C.9-D.92.首届中国(北京)国际服务贸易交易会(京交会)于往年年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒4.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则BOM∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2A.180,160 B.160,180 C.160,160 D.180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t ( 单位:秒),他与教练的距离为y ( 单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二. 填空题( 本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 . 纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部( 不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n ( n 为正整数)时,m = ( 用含n 的代数式表示.)三. 解答题( 本题共30分,每小题5分) 13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.( 1)求一次函数的解析式;( 2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四. 解答题( 本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ( 1)求证:BE 与O ⊙相切;( 2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:( 1)补全条形统计图并在图中标明相应数据;( 2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? ( 3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:( 1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数北京市轨道交通已开通线路相关数据统计表(截至2010年底) 开通时间 开通线路 运营里程(千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;( 2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横. 纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位( 00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2015年北京市东城区初三二模数学试卷及答案

2015年北京市东城区初三二模数学试卷及答案

北京市东城区2014--2015学年第二学期综合练习(二)数 学 试 卷 2015.6学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图,数轴上有A ,B ,C ,D 四个点,其中到原点距离相等的两个点是 A .点B 与点DB .点A 与点CC .点A 与点DD .点B 与点C2.据统计,中国每年浪费的食物总量折合粮食约为50 000 000 吨,将50 000 000用科学记数法表示为 A . 5×107B . 50×106C . 5×106D . 0.5×1083. 下列运算正确的是A .236a a a ⋅= B .336a a a += C .22a a -=- D .326()a a -= 4.甲、乙、丙、丁四名运动员参加了射击预选赛,他们射击的平均环数-x 及其方差2s 如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,应选运动员A .甲B .乙C .丙D .丁5. 如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是 6.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为13,则a 等于 A .1B . 2C .3D . 47. 如图,将△ABC 沿BC 方向向右平移2cm 得到△DEF ,若△ABC 的周长为16cm ,则四边形ABFD 的周长为8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =25°,则∠ACB 的度数为 A . 90°B . 95°C . 100°D . 105°9.如果三角形的一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是A B,10. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图象大致是A .B .C .D .二、填空题(本题共18分,每小题3分)11x 的取值范围是 .12.如图,AB //CD ,∠D = 27°,∠E =36°.则∠ABE 的度数是 .13.一次函数y kx b =+ 的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是_________________.14.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是_________________2cm .第12题图 第14题图15. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为 .16.如图,已知A 1,A 2,……,A n ,A n +1在x 轴上,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1,连接A 1B 2,B 1A 2,BAF CDEA 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,……,P n ,△A 1B 1P 1,△A 2B 2P 2,……,△A n B n P n 的面积依次为S 1,S 2,……,S n ,则S 1= ,S n = . 三、解答题(本题共30分,每小题5分)17.计算:(101π8sin 454-⎛⎫+- ⎪⎝⎭18.如图,点A ,F ,C ,D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB DE =,BC EF ∥, 求证:AF =DC .19.若实数a 满足2210a a --=,计算4(1)(1)2(2)a a a a +--+的值. 20. 已知关于x 的方程21(1)(1)04k x k x ---+=有两个相等的实数根,求实数k 的值.21. A ,B 两个火车站相距360km .一列快车与一列普通列车分别从A ,B 两站同时出发相向而行,快车的速度比普通列车的速度快54km/h ,当快车到达B 站时,普通列车距离A 站还有135km .求快车和普通列车的速度各是多少?22.如图,一次函数1y k x b =+的图象经过A (0,﹣2),B (1,0)两点,与反比例函数2k y x=的图象在第一象限内的交点为M (m ,4). (1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说明理由.四、解答题(本题共20分,每小题5分)23.如图,矩形ABCD 中,点O 为AC 的中点,过点O 的直线分别与AB ,CD交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC .求证:(1)四边形EBFD 是菱形;(2)MB : OE=3:2 .24.以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根 据图中信息解答下列问题:(1)2015年全国普通高校毕业生人数年增长率约是多少?(精确到0.1%) (2)2013年全国普通高校毕业生人数约是多少万人?(精确到万位) (3)补全折线统计图和条形统计图.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F .(1)求证:DF 是⊙O 的切线;(2)若DF =3,DE =2.①求BEAD值;②求FAB 26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差. 请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP 长的最小值是 . 图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值.五.解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由. 28. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,图连接BE ,AD .(1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这 个封闭图形的等分线。

2015年北京市西城区中考数学二模试卷和答案

2015年北京市西城区中考数学二模试卷和答案

2015年北京市西城区中考数学二模试卷一、选择题(本题共30分,每小题3分)1.(3分)2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为()A.0.12×109B.1.2×107C.1.2×108D.12×1072.(3分)如图,BD∥AC,AD与BC交于点E,如果∠BCA=50°,∠D=30°,那么∠DEC等于()A.75°B.80°C.100° D.120°3.(3分)64的立方根是()A.±8 B.±4 C.8 D.44.(3分)函数y=中,自变量x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≥﹣25.(3分)如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果,AC=6,那么AE的长为()A.3 B.4 C.9 D.126.(3分)某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是()A.35 B.26 C.25 D.207.(3分)若一个正六边形的半径为2,则它的边心距等于()A.2 B.1 C.D.28.(3分)如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB 与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°9.(3分)如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标为()A.(,1)B.(﹣1,) C.(﹣,1) D.(﹣,﹣1)10.(3分)在平面直角坐标系xOy中,点M的坐标为(m,1).如果以原点为圆心,半径为1的⊙O上存在点N,使得∠OMN=45°,那么m的取值范围是()A.﹣1≤m≤1 B.﹣1<m<1 C.0≤m≤1 D.0<m<1二、填空题(本题共18分,每小题3分)11.(3分)若(m+2)2+=0,则m﹣n=.12.(3分)若一个凸n边形的内角和为1080°,则边数n=.13.(3分)两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm,光屏在距小孔30cm处,小华测量了蜡烛的火焰高度为2cm,则光屏上火焰所成像的高度为cm.14.(3分)请写出一个图象的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式:.15.(3分)如图,在平面直角坐标系xOy中,直线y=3x与双曲线y=(n≠0)在第一象限的公共点是P(1,m).小明说:“从图象上可以看出,满足3x>的x的取值范围是x>1.”你同意他的观点吗?答:.理由是.16.(3分)如图,在平面直角坐标系xOy中,点D为直线y=2x上且在第一象限内的任意一点,DA1⊥x轴于点A1,以DA1为边在DA1的右侧作正方形A1B1C1D;直线OC1与边DA1交于点A2,以DA2为边在DA2的右侧作正方形A2B2C2D;直线OC2与边DA1交于点A3,以DA3为边在DA3的右侧作正方形A3B3C3D,…,按这种方式进行下去,则直线OC1对应的函数表达式为,直线OC3对应的函数表达式为.三、解答题(本题共30分,每小题5分)17.(5分)如图,△ABC是等边三角形,D,E两点分别在AB,BC的延长线上,BD=CE,连接AE,CD.求证:∠E=∠D.18.(5分)计算:2cos30°+()﹣1+|1﹣|﹣(3﹣π)0.19.(5分)已知x2﹣5x﹣4=0,求代数式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.20.(5分)解方程:.21.(5分)列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.(5分)已知关于x的函数y=mx2+(m﹣3)x﹣3.(1)求证:无论m取何实数,此函数的图象与x轴总有公共点;(2)当m>0时,如果此函数的图象与x轴公共点的横坐标为整数,求正整数m的值.四、解答题(本题共20分,每小题5分)23.(5分)如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=6,求线段D′F的长.24.(5分)1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段﹣﹣人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.(5分)如图1,AB为⊙O的直径,弦CD⊥AB于点E,点F在线段ED上.连接AF并延长交⊙O于点G,在CD的延长线上取一点P,使PF=PG.(1)依题意补全图形,判断PG与⊙O的位置关系,并证明你的结论;(2)如图2,当E为半径OA的中点,DG∥AB,且时,求PG的长.26.(5分)(1)小明遇到下面一道题:如图1,在四边形ABCD中,AD∥BC,∠ABC=90°,∠ACB=30°,BE⊥AC于点E,且∠CDE=∠ACB.如果AB=1,求CD边的长.小明在解题过程中发现,图1中,△CDE与△相似,CD的长度等于,线段CD与线段的长度相等;他进一步思考:如果∠ACB=α(α是锐角),其他条件不变,那么CD的长度可以表示为CD=;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt△OMN中,∠MON=90°,OM<ON,OQ⊥MN于点Q,直线l经过点M,且l∥ON.请在直线l上找出点P的位置,使得∠NPQ=∠ONM.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知一次函数y1=kx+b(k≠0)的图象经过(2,0),(4,1)两点,二次函数y2=x2﹣2ax+4(其中a>2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a的代数式表示);(2)利用函数图象解决下列问题:①若a=,求当y1>0且y2≤0时,自变量x的取值范围;②如果满足y1>0且y2≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.28.(7分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.29.(8分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点,△PMN为图形G关于点P的τ型三角形.(1)如图1,已知点,B(3,0),以原点O为圆心的⊙O的半径为1.在A,B两点中,⊙O的τ型点是,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可)(2)如图2,已知点E(0,2),点F(m,0)(其中m>0).若线段EF为原点O的τ型线,且线段EF关于原点O的τ型三角形的面积为,求m的值;(3)若H(0,﹣2)是抛物线y=x2+n的τ型点,直接写出n的取值范围.2015年北京市西城区中考数学二模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为()A.0.12×109B.1.2×107C.1.2×108D.12×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将120 000 000用科学记数法表示为1.2×108.故选:C.2.(3分)如图,BD∥AC,AD与BC交于点E,如果∠BCA=50°,∠D=30°,那么∠DEC等于()A.75°B.80°C.100° D.120°【分析】先根据平行线的性质得∠DAC=∠D=30°,然后根据三角形外角性质求解.【解答】解:∵BD∥AC,∴∠DAC=∠D=30°,∴∠DEC=∠EAC+∠C=30°+50°=80°.故选:B.3.(3分)64的立方根是()A.±8 B.±4 C.8 D.4【分析】根据开立方的方法,求出的值,即可判断出64的立方根是多少.【解答】解:∵=4,∴64的立方根是4.故选:D.4.(3分)函数y=中,自变量x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≥﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:B.5.(3分)如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果,AC=6,那么AE的长为()A.3 B.4 C.9 D.12【分析】根据平行线分线段成比例定理,得到比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,又AC=6,∴AE=4,故选:B.6.(3分)某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是()A.35 B.26 C.25 D.20【分析】根据加权平均数的计算公式进行计算即可,把所有户家庭的节电量加起来,再除以100,就得到这100户家庭的节电量的平均数.【解答】解:这100户家庭的节电量的平均数是(20×20+30×30+40×30+50×20)÷20=35(千瓦时).故选:A.7.(3分)若一个正六边形的半径为2,则它的边心距等于()A.2 B.1 C.D.2【分析】根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:已知正六边形的半径为2,则正六边形ABCDEF的外接圆半径为2,连接OA,作OM⊥AB于点M,得到∠AOM=30°,则OM=OA•cos30°=.则正六边形的边心距是.故选:C.8.(3分)如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB 与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°【分析】连结OB,如图,根据切线的性质得∠ABO=90°,则利用互余可计算出∠AOB=90°﹣∠A=56°,再利用三角形外角性质得∠C+∠OBC=56°,加上∠C=∠OBC,于是有∠C=×56°=28°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣34°=56°,∵∠AOB=∠C+∠OBC,∴∠C+∠OBC=56°,而OB=OC,∴∠C=∠OBC,∴∠C=×56°=28°.故选:A.9.(3分)如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标为()A.(,1)B.(﹣1,) C.(﹣,1) D.(﹣,﹣1)【分析】作AD⊥轴于D,作CE⊥x轴于E,则∠ADO=∠OEC=90°,得出∠1+∠2=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠2,由AAS证明△OCE≌△AOD,OE=AD=,CE=OD=1,即可得出结果.【解答】解:作AD⊥轴于D,作CE⊥x轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴OD=1,AD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=,CE=OD=1,∴点C的坐标为(﹣,1);故选:C.10.(3分)在平面直角坐标系xOy中,点M的坐标为(m,1).如果以原点为圆心,半径为1的⊙O上存在点N,使得∠OMN=45°,那么m的取值范围是()A.﹣1≤m≤1 B.﹣1<m<1 C.0≤m≤1 D.0<m<1【分析】令⊙O与x轴的交点为N1、N2,过点N1、N2分别做N1M1、N2M2垂直于直线y=1于点M1、M2,根据⊙O的半径为1即可找出N1、N2、M1、M2的坐标,再结合在半径为1的⊙O上存在点N,使得∠OMN=45°,即可得出点M在线段M1M2上,从而得出m的取值范围.【解答】解:令⊙O与x轴的交点为N1、N2,过点N1、N2分别做N1M1、N2M2垂直于直线y=1于点M1、M2,如图所示.则点N1(﹣1,0)、N2(1,0),M1(﹣1,1),M2(1,1),∵在半径为1的⊙O上存在点N,使得∠OMN=45°,∴点M在线段M1M2上,∴﹣1≤m≤1.故选:A.二、填空题(本题共18分,每小题3分)11.(3分)若(m+2)2+=0,则m﹣n=﹣3.【分析】根据非负数的性质,可列方程求出m、n的值,再代值计算即可.【解答】解:根据题意得:m+2=0,n﹣1=0,∴m=﹣2,n=1,∴m﹣n=﹣2﹣1=﹣3.故答案为:﹣3.12.(3分)若一个凸n边形的内角和为1080°,则边数n=8.【分析】直接根据内角和公式(n﹣2)•180°计算即可求解.【解答】解:(n﹣2)•180°=1080°,解得n=8,故答案为:8.13.(3分)两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm,光屏在距小孔30cm处,小华测量了蜡烛的火焰高度为2cm,则光屏上火焰所成像的高度为3cm.【分析】如图,OE=20cm,OF=30cm,AB=2cm,通过证明△OAB∽△OCD得到=,然后利用比例性质求CD即可.【解答】解:如图,OE=20cm,OF=30cm,AB=2cm,∵AB∥CD,∴△OAB∽△OCD,∴=,即=,∴CD=3(cm),即光屏上火焰所成像的高度为3cm.14.(3分)请写出一个图象的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式:y=x2﹣2x+1.【分析】由对称轴确定顶点的横坐标为1,由经过(0,1)点确定x=0时,y=1,根据二次函数的顶点式写出解析式.本题答案不唯一.【解答】解:∵抛物线的对称轴是直线x=1,∴设抛物线的解析式为y=a(x﹣1)2+k,∵经过(0,1)点,∴令a=1,∴抛物线的解析式为y=x2﹣2x+1,故答案为y=x2﹣2x+1(答案不唯一).15.(3分)如图,在平面直角坐标系xOy中,直线y=3x与双曲线y=(n≠0)在第一象限的公共点是P(1,m).小明说:“从图象上可以看出,满足3x>的x的取值范围是x>1.”你同意他的观点吗?答:不正确.理由是x的取值范围是﹣1<x<0或x>1.【分析】由题意,根据反比例函数对称性得到直线y=3x与双曲线y=(n≠0)在第三象限的公共点的横坐标为﹣1,根据函数的图象即可求得满足3x>的x 的取值范围.【解答】解:∵直线y=3x与双曲线y=(n≠0)在第一象限的公共点是P(1,m).∴直线y=3x与双曲线y=(n≠0)在第三象限的公共点是(﹣1,﹣m).由图象可知:满足3x>的x的取值范围是﹣1<x<0或x>1,故答案为:不正确,x的取值范围是﹣1<x<0或x>1.16.(3分)如图,在平面直角坐标系xOy中,点D为直线y=2x上且在第一象限内的任意一点,DA1⊥x轴于点A1,以DA1为边在DA1的右侧作正方形A1B1C1D;直线OC1与边DA1交于点A2,以DA2为边在DA2的右侧作正方形A2B2C2D;直线OC2与边DA1交于点A3,以DA3为边在DA3的右侧作正方形A3B3C3D,…,按这种方式进行下去,则直线OC1对应的函数表达式为y=x,直线OC3对应的函数表达式为y=.【分析】设点D的坐标为(m,2m),则点C1的坐标为(3m,2m),设直线OC1的解析式为y=kx,将点C1的坐标代入解析式可求得k的值;然后将x=m代入OC1的解析式,求得A2的纵坐标,从而可求得DA2的长度,然后可求得点C2的坐标,从而可求得直线OC2的解析式,同理可求得直线OC3的解析式.【解答】解:设点D的坐标为(m,2m),由正方形的四条边都相等可知:点C1的坐标为(3m,2m),设直线OC1的解析式为y=k1x,将C1(3M,2m)代入得:2m=k1•3m,解得k1=,所以直线OC1的解析式为y=;将x=m代入y=得:y=,∴点A2的坐标为(m,m)由正方形的性质可知:点C2的坐标为(,2m),设直线OC2的解析式为y=k2x,将点(,2m)代入得:k2=∴直线OC2的解析式为y=x,将x=m代入y=得:y=,∴点A3的坐标为(m,)由正方形的性质可知:点C3的坐标为(,2m),设直线0C3的解析式为y=k3x,将点C3的坐标代入解析式得k3=∴直线OC3的解析式为y=x.故答案为:;.三、解答题(本题共30分,每小题5分)17.(5分)如图,△ABC是等边三角形,D,E两点分别在AB,BC的延长线上,BD=CE,连接AE,CD.求证:∠E=∠D.【分析】先利用等边三角形的性质得AC=BC,易得∠ACE=∠CBD=120°,因为BD=CE,利用SAS定理证得结论.【解答】证明:如图1,∵△ABC是等边三角形,∴AC=BC,∠ACB=∠ABC=60°,∵D,E两点分别在AB,BC的延长线上,∴∠ACE=∠CBD=120°,在△ACE和△CBD中,,∴△ACE≌△CBD(SAS),∴∠E=∠D.18.(5分)计算:2cos30°+()﹣1+|1﹣|﹣(3﹣π)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2×+3+﹣1﹣1=2+1.19.(5分)已知x2﹣5x﹣4=0,求代数式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.【分析】先算乘法,再合并同类项,最后整体代入求出即可.【解答】解:(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)=x2﹣4﹣(2x2﹣5x+2)=x2﹣4﹣2x2+5x﹣2=﹣x2+5x﹣6,∵x2﹣5x﹣4=0,∴x2﹣5x=4,∴原式=﹣(x2﹣5x)﹣6=﹣4﹣6=﹣10.20.(5分)解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母,得3x﹣(x﹣3)=2,去括号,得3x﹣x+3=2,整理,得2x=﹣1,解得:x=﹣,经检验,x=﹣是原方程的解.21.(5分)列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.【分析】设牙膏每盒x元,牙刷每支y元,根据第一天和第二天两天的营业额列出x和y的二元一次方程组,求出x和y的值,进而求出第三天卖出牙膏的盒数.【解答】解:设牙膏每盒x元,牙刷每支y元,由题意,得,解得,(盒).答:第三天卖出牙膏8盒.22.(5分)已知关于x的函数y=mx2+(m﹣3)x﹣3.(1)求证:无论m取何实数,此函数的图象与x轴总有公共点;(2)当m>0时,如果此函数的图象与x轴公共点的横坐标为整数,求正整数m的值.【分析】(1)分为两种情况:一次函数(m=0时),二次函数(m≠0),根据根与系数的关系得出即可;(2)求出二次函数与x轴交点的横坐标,即可得出答案.【解答】解:(1)当m=0 时,该函数为一次函数y=﹣3x﹣3,它的图象与x轴有公共点,当m≠0 时,二次函数y=mx2+(m﹣3)x﹣3,△=(m﹣3)2﹣4m×(﹣3)=m2﹣6m+9+12m=m2+6m+9=(m+3)2,∵无论m取何实数,总有(m+3)2≥0,即△≥0,∴方程mx2+(m﹣3)x﹣3=0有两个实数根.∴此时函数y=mx2+(m﹣3)x﹣3的图象与x轴有公共点,综上所述,无论m取何实数,该函数的图象与x轴总有公共点;(2)∵m>0,∴该函数为二次函数,它的图象与x轴的公共点的横坐标为,∴x1=﹣1,,∵此抛物线与x轴公共点的横坐标为整数,∴正整数m=1或3.四、解答题(本题共20分,每小题5分)23.(5分)如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=6,求线段D′F的长.【分析】(1)先证明四边形AFCE是平行四边形,再运用有一组邻边相等的平行四边形是菱形来进行证明;(2)作AG⊥BE于点G,因为D′F=DF,又易证DF=BE,用勾股定理分别计算BG、EB即可.【解答】(1)证明:如图1,∵点C与点A重合,折痕为EF,∴∠1=∠2,AE=EC.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠3=∠2.∴∠1=∠3.∴AE=AF.∴AF=EC.又∵AF∥EC,∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE为菱形.(2)解:如图2,作AG⊥BE于点G,则∠AGB=∠AGE=90°,∵点D的落点为点D′,折痕为EF,∴D'F=DF.∵四边形ABCD为平行四边形,∴AD=BC.又∵AF=EC,∴AD﹣AF=BC﹣EC,即DF=BE.∵在Rt△AGB中,∠AGB=90°,∠B=45°,AB=,∴AG=GB=6.∵四边形AFCE为平行四边形,∴AE∥FC.∴∠4=∠5=60°.∵在Rt△AGE中,∠AGE=90°,∠4=60°,∴.∴.∴.24.(5分)1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段﹣﹣人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是③④(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过 1.3%.(精确到0.1%)【分析】(1)根据增长率的意义即可求解;(2)用1减去其它三个部分所占百分比求出首都功能核心区所占百分比,即可补全“2014年末北京市常住人口分布图”,利用扇形统计图及功能区域分布图可知2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到1055万人;(3)设2015年的全市常住人口的年增长率为x,根据到2015年底,北京市要将全市常住人口数控制在2180万以内列出不等式,解不等式即可.【解答】解:(1)由折线统计图可知,从2009~2014年,北京市常住人口的年增长率都是正数,所以全市常住人口数在逐年增加,由2009末年1755万增加到2014年末2151.6万,故①②错误;2014年末全市常住人口比2013年末增加:2151.6﹣2114.8=36.8万,故③正确;由图可知,从2011年到2014年全市常住人口的年增长率连续递减,故④正确;(2)首都功能核心区所占百分比为:1﹣49.03%﹣31.83%﹣8.85%=10.29%.“2014年末北京市常住人口分布图”补全如下:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到1055万人;(3)设2015年的全市常住人口的年增长率为x,根据题意得2151.6(1+x)≤2180,解得x≤0.013.即2015年的全市常住人口的年增长率应不超过1.3%.故答案为③④;1.3%.25.(5分)如图1,AB为⊙O的直径,弦CD⊥AB于点E,点F在线段ED上.连接AF并延长交⊙O于点G,在CD的延长线上取一点P,使PF=PG.(1)依题意补全图形,判断PG与⊙O的位置关系,并证明你的结论;(2)如图2,当E为半径OA的中点,DG∥AB,且时,求PG的长.【分析】(1)先补全图形,如图1,连接OG,根据等腰三角形的性质,由PF=PG,∠1=∠2.由OG=OA得到∠3=∠A,而∠A+∠AFE=90°,加上∠2=∠AFE,所以∠3+∠1=90°,于是可根据切线的性质判断PG与⊙O相切;(2)如图2,连接CG,利用DG∥AB得到∠GDC=∠OEC=90°,则根据圆周角定理得CG为⊙O的直径,由于OE=OA=OC,根据含30度的直角三角形三边的关系得∠C=30°,然后在Rt△CGP,利用三角函数可计算出PG的长.【解答】解:(1)如图1,PG与⊙O相切.证明如下:连接OG,∵PF=PG,∴∠1=∠2.又∵OG=OA,∴∠3=∠A,∵CD⊥AB于点E,∴∠A+∠AFE=90°,又∵∠2=∠AFE,∴∠3+∠1=90°,即∠OGP=90°,∴OG⊥PG.∵OG为⊙O的半径,∴PG与⊙O相切;(2)解:如图2,连接CG,∵CD⊥AB于点E,∴∠OEC=90°,∵DG∥AB,∴∠GDC=∠OEC=90°,∴CG为⊙O的直径.∵E为半径OA的中点,∴OE=OA=OC,∴∠C=30°,而PG与⊙O相切,∵∠CGP=90°,∴PG=CG•tan30°=4×=4.26.(5分)(1)小明遇到下面一道题:如图1,在四边形ABCD中,AD∥BC,∠ABC=90°,∠ACB=30°,BE⊥AC于点E,且∠CDE=∠ACB.如果AB=1,求CD边的长.小明在解题过程中发现,图1中,△CDE与△CAD相似,CD的长度等于,线段CD与线段BC的长度相等;他进一步思考:如果∠ACB=α(α是锐角),其他条件不变,那么CD的长度可以表示为CD=;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt△OMN中,∠MON=90°,OM<ON,OQ⊥MN于点Q,直线l经过点M,且l∥ON.请在直线l上找出点P的位置,使得∠NPQ=∠ONM.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)【分析】(1)根据AD∥BC,得到∠DAC=∠ACB,又∠CDE=∠ACB,得到∠CAD=∠CDE,又∠ACD=∠DCE,得到△CDE∽△CAD,求出CD的长,得到CD=BC,根据正切求出BC的长,得到CD的长;(2)根据CD=BC,确定点P的位置,作图即可.【解答】解:(1)∵AB=1,∠ACB=30°,∴BC=,AC=2,CE=,∵AD∥BC,∴∠DAC=∠ACB=30°,∵∠CDE=∠ACB,∴∠CAD=∠CDE,又∵∠ACD=∠DCE,∴△CDE∽△CAD;∴=,∴CD2=AC•AE=3,则CD=,∴CD=BC;在Rt△ABC中,∠ACB=α,∴BC=,∴CD=;(2)如图2,以点N为圆心,ON为半径作弧,交直线l于点P,则点P为符合题意的点.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知一次函数y1=kx+b(k≠0)的图象经过(2,0),(4,1)两点,二次函数y2=x2﹣2ax+4(其中a>2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a的代数式表示);(2)利用函数图象解决下列问题:①若a=,求当y1>0且y2≤0时,自变量x的取值范围;②如果满足y1>0且y2≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.【分析】(1)根据待定系数法即可求得一次函数的解析式;把y2=x2﹣2ax+4通过配方转化成顶点式即可求得顶点坐标.(2)①当时,,画出函数的图象,根据图象即可求得自变量x 的取值范围;②根据题意结合图象可知x=3,把x=3代入y2=x2﹣2ax+4≥0即可求得a的取值;【解答】解:(1)∵一次函数y1=kx+b(k≠0)的图象经过(2,0),(4,1)两点,∴解得∴.∵,∴二次函数图象的顶点坐标为(a,4﹣a2).(2)①当时,.如图,因为y1>0且y2≤0,由图象得2<x≤4.②由①可知a=时,2<x≤4有两个整数,∴a<,∵如果满足y1>0且y2≤0时的自变量x的取值范围内恰有一个整数,∴x=3,当x=3时,y2=x2﹣2ax+4≤0,解得a≥,∴≤a<.28.(7分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.29.(8分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点,△PMN为图形G关于点P的τ型三角形.(1)如图1,已知点,B(3,0),以原点O为圆心的⊙O的半径为1.在A,B两点中,⊙O的τ型点是点A,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可)(2)如图2,已知点E(0,2),点F(m,0)(其中m>0).若线段EF为原点O的τ型线,且线段EF关于原点O的τ型三角形的面积为,求m的值;(3)若H(0,﹣2)是抛物线y=x2+n的τ型点,直接写出n的取值范围.【分析】(1)利用等边三角形的判定定理,由新定义易得⊙O的τ型点;(2)作OL⊥EF于点L,如图2,根据新定义,利用三角形面积公式易得OL的长,由勾股定理易得EL的长,利用锐角三角函数得m;(3)由H(0,﹣2)是抛物线y=x2+n的τ型点,可得∠AHO=30°,∠OAH=60°,可表示出通过H点的直线解析式为y=x﹣2,由当x2+n=x﹣2有解时,才有H(0,﹣2)是抛物线y=x2+n的τ型点,即△=3﹣4(n+2)≥0,即可求出n的取值范围.【解答】解:(1)如图1,∵JK=2,OJ=OK,AO⊥JK,∴AJ==2,同理可得:AK=2,∴△AJK为正三角形,同理可得△AMN为正三角形,故点A为⊙O的τ型点,画图见图1,△AMN(或△AJK)为⊙O关于该τ型点的τ型三角形,故答案为:点A;(2)如图2,作OL⊥EF于点L,∵线段EF为点O的τ型线,∴OL即为线段EF关于点O的τ型三角形的高,∵线段EF关于点O的τ型三角形的面积为,∴正三角形的边长为,OL=∵OE=2,OF=m,∴,∴,。

北京市2015年中考数学二模试题

北京市2015年中考数学二模试题

2015年中考数学二模试题学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92A C 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是A . 10 B. 14 C. 16 D. 406.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示:设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .98.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 289. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将 矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 910. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 .12.分解因式:22312x y -.13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ). 16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .17.已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .18.计算:-2018cos60(2π⎛⎫- ⎪⎝⎭.19.解不等式12212333x x --≥,并把它的解集在数轴上表示出来.20.已知a b -2(2)(2)4(1)a b b a a -+-+-的值.21.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于A (-3,1),B (1,n )两点. (1)求反比例函数和一次函数的表达式;(2)设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标.22.列方程或方程组解应用题:23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB . (1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.24.某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:(说明:40---55分为不合格,55---70分为合格,70---85分为良好,85---100分为优秀) 请根据以上信息,解答下列问题: (1)表中的a = ,b= ;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为 .25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,PA ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:PA 是⊙O 的切线; (2)若BC =4 ,求AD 的长.正正正 正26.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .图1 图2图328.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么PA 、PB 、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想:PA 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB 后得到△P′C B ,并且可推出△PBP′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①PA =4,PC=PB= .②用等式表示PA 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积;(3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.图1图2草稿纸北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°. 又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt△ADH 中,342cos =∠⋅=AD AH .………………………………………………3分42sin =∠⋅=AD DH .∵四边形ABEF 是菱形,∴CD= AB=BE=5,Rt△CDH 中,322=-=DH CD CH . ………………………………………………4分 ∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分(2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分∵PA ∥BC ,∴∠PAO =∠BEO =90°.∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分(2)解:根据(1)可得CE =21BC=2. Rt△ACE 中,122=-=CE AC AE . ………………………………3分 ∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分又∵∠D =∠C ,∴AD =52tan =DAB .………………………………………………………5分 26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ···················· 1分=4.即0∆>.∴方程有两个不相等的实数根. ··················2分 (2) 解:由求根公式,得2(1)22a x a -±=. ∴1x =或21x a=-. ······················· 3分 0a >,1x >2x ,11x ∴=,221x a=-. ······················· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2.∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分∴PA =P ′C ,∠A =∠BCP ′.在四边形ABCP 中,∵∠ABC =60°,∠APC =30°,∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形.∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例:如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y ,把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-, ∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称,∴N (-4,6).∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分(3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=,将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y .∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C 则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-4NC =)241(2t t t ----=t t +241. 则44412t t t t PC NC -=--+=,44t t OBNB -=-=. ∴OBNB PC NC =. 又∵∠NCP =∠NBO =90°,∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。

(完整版)初中数学用因式分解法解一元二次方程及答案

(完整版)初中数学用因式分解法解一元二次方程及答案

初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。

2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。

2015年北京13区中考数学二模分类汇编及答案——选填最后一道

2015年北京13区中考数学二模分类汇编及答案——选填最后一道

(东城)10. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图象大致是A .B .C .D .16.如图,已知A 1,A 2,……,A n ,A n +1在x 轴上,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,……,P n ,△A 1B 1P 1,△A 2B 2P 2,……,△A n B n P n 的面积依次为S 1,S 2,……,S n ,则S 1= ,S n = .(西城)10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <116.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .(海淀)10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是AB C D16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.(朝阳)10. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .(丰台)10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C D16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .(顺义)10.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,3AOBMN到图③的位置停止运动.如果设运动时间为x ,大小正方形重叠部分的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是C.B.A.D.16.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…,n A在x 轴的正半轴上,且1=2OA ,212OA OA =,322OA OA =,…,12n n OA OA -=,点1B ,2B ,3B ,…,n B 在第一象限的角平分线l 上,且11A B ,22A B ,…,n nA B 都与射线l 垂直, 则1B 的坐标是_ _____, 3B 的坐标是_ _____,n B 的坐标是_ _____.(昌平)10.如图,正方形ABCD 的边长为5,动点P 的运动路线为AB →BC ,动点Q 的运动路线为BD .点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则下列能大致表示y 与x 的函数关系的图象为16. 如图所示,是一张直角三角形纸片,其中有一个内角为30︒,最小边长为2,点D 、E 分别图③图②图①是一条直角边和斜边的中点,先将纸片沿DE 剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是 .(石景山)10.在平面直角坐标系中,四边形ABCD 是菱形,其中点B 的坐标是(0,2),点D 的坐标是(34,2),点M 和点N 是两个动点,其中点M 从点B 出发沿BA 以每秒1个单位的速度做匀速运动,到点A 后停止,同时点N 从B 点出发沿折线BC →CD 以每秒2个单位的速度做匀速运动,如果其中一点停止运动,则另一点也停止运动,设M 、N 两点的运动时间为x ,BMN ∆的面积是y ,下列图象中能表示y 与x 的函数关系的图象大致是A B C D16.在平面直角坐标系xOy 中,我们把横,纵坐标都是整数的点叫做整点,已知在函数()50050<<+-=x x y 上有一点()n m P ,(,m n 均为整数),过点P 作x PA ⊥轴于点A ,y PB ⊥轴于点B ,当2=m 时,矩形PAOB 内部(不包括边界)有47个整点,当3=m 时,矩形PAOB 内部有92个整点,当4=m 时,矩形PAOB 内部有_________个整点,当=m 时,矩形PAOB 内部的整点最多_______.(门头沟)10.在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度 的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N , 直线m 运动的时间为t (秒).设△OMN 的面积为S ,那么能反 映S 与t 之间函数关系的大致图象是yxOM AB C Nmxy OA BCA B C D16.在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点P 第2次碰到矩形 的边时,点P 的坐标为 ;当点P 第 6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.(平谷)10.在平行四边形ABCD 中,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP ,AD 与平行四边形的边所围成的图形面积为y ,表示y 与x 的函数关系的图象大致如下图,则AB 边上的高是A .3B .4C .5D .616.在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P 1,使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;.…照此规律重复下去.则点P 3的坐标为 ;点P n 在y 轴上,则点P n 的坐标为 .通州10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度......y 之间的关系用图象描述大致是( )A .B .C .D . 16.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为11112=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2015= .房山10. 如图,在矩形A BCD 中,AB =2,点E 在边AD 上,∠ABE =45°,BE=DE ,连接BD ,点P 在线段DE 上,过点P 作PQ ∥BD 交BE 于点Q ,连接QD .设PD =x ,△PQD 的面积为y ,则能表示y 与x 函数关系的图象大致是第10题图A B C D16.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…,和点1C ,2C ,3C ,…,分别在直线1y x =+和x 轴上,则点B 1的坐标是; 点B n 的坐标是 .(用含n 的代数式表示)怀柔10.小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t ,小丽与学校的距离为S .下面能反映S 与t 的函数关系的大致图象是16.已知等腰△ABC 中,AD⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为__________. 答案 东城 10,B 1616;24+2n n 西城朝阳10(写出一个正确结果给1分)丰台顺义10,C 16. 1A (1,1),3A (4,4),11n n n A --(2,2).(每空1分)昌平石景山10,D 16.135;25. 门头沟平谷通州10. B . 16.34. 房山10.C16. ()111B , ,()121,2n n n B --怀柔。

2015年北京市丰台区中考数学二模试卷-含详细解析

2015年北京市丰台区中考数学二模试卷-含详细解析

2015年北京市丰台区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.的倒数等于()A. 3B.C.D.2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是()A. B. C. D.3.下面的几何体中,主视图为三角形的是()A. B.C. D.4.函数中,自变量x的取值范围是()A. B. C. D. 或5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是()A. B. C. D.6.下面的几何图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.7.如图,A,B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,如果△ABC的面积记为S,那么()A.B.C.D.8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同“”)甲乙 C. 丙 D. 丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.10.如图,点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),AB=4,M是OA的中点,设线段MN的长为x,△MNO的面积为y,那么下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.因式分解:a3-4a=______.12.如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,如果=,AE=6,那么EC的长为______.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是______m.14.将二次函数y=x2-4x+5化为y=(x-h)2+k的形式,那么h+k=______.15.在四边形ABCD中,如果AB=AD,AB∥CD,请你添加一个条件,使得该四边形是菱形,那么这个条件可以是______.16.如图,在平面直角坐标系xOy中,直线l的表达式是y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交y 轴于点A2;再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此作法进行下去,点B4的坐标为______,OA2015=______.三、计算题(本大题共2小题,共10.0分)17.计算:(-1)2015+-|-|+2cos45°.18.已知=3,求代数式(1-)•的值.四、解答题(本大题共11小题,共62.0分)19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.解不等式组:.21.已知关于x的方程mx2-(m+3)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?23.如图,在▱ABCD中,E为BC边上的一点,将△ABE沿AE翻折得到△AFE,点F恰好落在线段DE上.(1)求证:∠FAD=∠CDE;(2)当AB=5,AD=6,且tan∠ABC=2时,求线段EC的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是______;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB是⊙O的直径,以AB为边作△ABC,使得AC=AB,BC交⊙O于点D,联结OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=时,求BE的长.26.问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积______;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.27.在平面直角坐标系xOy中,抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.(1)求抛物线及直线AB的解析式;(2)点C在抛物线上,且点C的横坐标为3.将抛物线在点A,C之间的部分(包含点A,C)记为图象G,如果图象G沿y轴向上平移t(t>0)个单位后与直线AB只有一个公共点,求t的取值范围.28.已知△ABC是锐角三角形,BA=BC,点E为AC边的中点,点D为AB边上一点,且∠ABC=∠AED=α.(1)如图1,当α=40°时,∠ADE=______°;(2)如图2,取BC边的中点F,联结FD,将∠AED绕点E顺时针旋转适当的角度β(β<α),得到∠MEN,EM与BA的延长线交于点M,EN与FD的延长线交于点N.①依题意补全图形;②猜想线段EM与EN之间的数量关系,并证明你的结论.29.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数,在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数y=-(x<0)和y=2x-3(x<2)是不是有上界函数?如果是有上界函数,求其上确界;(2)如果函数y=-x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2-2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.答案和解析1.【答案】A【解析】解:∵3×=1,∴的倒数等于3.故选:A.根据倒数的定义求解.主要考查了倒数的定义:两个乘积为1的数互为倒数,0没有倒数.2.【答案】B【解析】解:0.00006=6×10-5,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.4.【答案】B【解析】解:根据题意得:x-2≥0,解得:x≥2.故选:B.根据二次根式的性质,被开方数大于等于0,就可以求解.本题考查的知识点为:二次根式的被开方数是非负数.5.【答案】C【解析】解:∵共10个粽子,红枣馅的有3个,∴P(吃到红枣馅粽子)=,故选:C.用红枣馅的粽子个数除以所有粽子的个数即可利用概率公式求得概率.本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.6.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】A解:设点A的坐标为(x,y),则B(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积=2x×2y÷2=2xy=2×2=4.故选:A.本题可根据A、B两点在曲线上可设出A、B两点的坐标以及取值范围,再根据三角形的面积公式列出方程,即可得出答案.本题主要考查了反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S=|k|.解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.8.【答案】D【解析】解:由于丁的方差较小、平均数较大,故选丁.故选:D.此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.【答案】A【解析】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF-∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A.过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.10.【答案】D【解析】解:∵AB=4,∴OA=OB=2,∵M是OA的中点,∴OM=AM=1,∵点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),线段MN的长为x,∴1<x<3,故B选项错误;连结AN,BN,过点N作NP⊥AB于P,∠ANB=90°,设PM=a,则AP=1-a,BP=a+3.易证△ANP∽△NBP,∴=,∴NP2=AP•BP=(1-a)(a+3)=-a2-2a+3,∵NP2=MN2-PM2=x2-a2,∴x2-a2=-a2-2a+3,∴a=,∴NP2=x2-a2=x2-()2==,∵y=OM•NP=×1×=,∴当x=时,NP有最大值2,此时y=1.最大A选项中,y与x是一次函数关系,不符合题意;C选项中,y取最大值时,x<2,不符合题意;只有D选项符合题意.故选:D.先求出自变量x的取值范围是1<x<3,得出B选项错误;再连结AN,BN,过点N作NP⊥AB于P,求出y与x的函数关系式为y=,进而判断D选项正确.本题考查了动点问题的函数图象,求出y与x的函数关系式是解题的关键,有一定难度.11.【答案】a(a+2)(a-2)【解析】解:a3-4a=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2).首先提取公因式a,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.【答案】10【解析】解:∵DE∥BC,∴==,∵AE=6,∴EC=10,故答案为:10.根据DE∥BC,可得==,再根据AE=6可得EC=AE÷=10,进而可选出答案.本题主要考查了平行线分线段成比例定理,关键是掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.13.【答案】【解析】解:根据题意,可得,∴(m),即的长是m.故答案为:.首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.【答案】3【解析】解:y=x2-4x+5=(x-2)2+1,则h=2,k=1,所以h+k=2+1=3.故答案是:3.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).15.【答案】AB=CD【解析】解:条件可以为AB=CD,理由是:∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=CD.此题是一道开放型的题目,答案不唯一,如AD∥BC或AC⊥BC等.本题考查了菱形的判定定理,平行四边形的判定的应用,能正确运用菱形的判定定理进行推理是解此题的关键,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.16.【答案】(8,8);22014【解析】解:直线y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,可知B1点的坐标为(,1),以原点O为圆心,OB1长为半径画弧交y一轴于点A2,OA2=OB1=2OA1=2,点A2的坐标为(0,2),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(0,4),B3的坐标为(4,4),点A4的坐标为(0,8),B4的坐标为(8,8),此类推便可求出点A n的坐标为(0,2n-1).所以点A2015的坐标为(0,22014).所以OA2015=22014.故答案为:(8,8),22014.先根据一次函数方程式求出B1点的坐标,在根据B1点的坐标求出A2点的坐标,由此得到点A4的坐标,以此类推总结规律便可求出点A n的坐标,进而求得OA2015的值.本题主要考查了一次函数的应用,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.17.【答案】解:原式=-1+2-+2×=1.【解析】原式第一项利用乘方的意义化简,第二项利用立方根的定义计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=•=•=,由=3,得到x=3y,则原式==.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【解析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.20.【答案】解:∵解不等式①得:x≤-2,解不等式②得:x<0,∴不等式组的解集为x≤-2.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式(组)的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.【答案】(1)证明:∵m≠0,∴方程mx2-(m+3)x+3=0(m≠0)是关于x的一元二次方程,∴△=(m+3)2-4×m×3=(m-3)2,∵(m-3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x=,∴x1=1,x2=,∵方程的两个实数根都是整数,且有一根大于1,∴为大于1的整数,∵m为整数,∴m=1.【解析】(1)先计算判别式得到△=(m+3)2-4×m×3=(m-3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x1=1,x2=,然后利用整除性即可得到m的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.22.【答案】解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×,解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程,注意不要忘记检验.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵将△BAE沿AE翻折得到△FAE,点F恰好落在线段DE上,∴△ABE≌△AFE,∴∠B=∠AFE,∴∠AFE=∠ADC,∵∠FAD=∠AFE-∠1,∠CDE=∠ADC-∠1,∴∠FAD=∠CDE;(2)过点D作DG⊥BE,交BE的延长线于点G.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,CD=AB=5,∴∠2=∠B,∠3=∠EAD,由(1)可知,△ABE≌△AFE,∴∠B=∠AFE,∠3=∠4,∴∠4=∠EAD,∴ED=AD=6,在Rt△CDG中,tan∠2=tan∠ABC==2,∴DG=2CG,∵DG2+CG2=CD2,∴(2CG)2+CG2=52,∴CG=,DG=2,在Rt△EDG中,∵EG2+DG2=DE2,∴EG=4,∴EC=4-.【解析】(1)由平行四边形的性质和翻折的性质得出∠B=∠ADC,∠B=∠AFE,得出∠AFE=∠ADC,即可得出结论;(2)过点D作DG⊥BE,交BE的延长线于点G.由平行四边形的性质得出∠2=∠B,∠3=∠EAD,由翻折的性质得出∠B=∠AFE,∠3=∠4,得出∠4=∠EAD.得出ED=AD=6,由三角函数得出DG=2CG,根据勾股定理得出DG2+CG2=CD2,求出CG、DG,再根据勾股定理求出EG,即可得出EC.本题考查了平行四边形的性质、全等三角形的判定与性质、翻折变换、勾股定理;熟练掌握平行四边形和翻折变换的性质,并能进行推理计算是解决问题的关键.24.【答案】2;0.10;4;0.20;6;0.30;80≤x<90【解析】解:(1)如表和图:(3)200×(0.30+0.25)=110.(1)根据尚未累计的5个数所在的组,以及频数的计算公式即可补全图表;(2)根据中位数的定义,就是大小处于中间位置的数即可做出判断;(3)利用总人数乘以对应的频率即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【答案】解:(1)∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠C=∠ODB,∴OD∥AC,(2)连接AD,∵AB为直径,∴AD⊥BD,∴∠ADC=90°,∵AB=10,cos∠ABC=,∴BD=BD=AB•cos∠ABC=2,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,在Rt△CDF中,cos C==,∴CF=2.∴AF=8.∵OD∥AC,∴△ODE∽△AFE,∴=,∴=,∵OB=OA=OD=AB=5,∴BE=.【解析】(1)若要证明OD∥AC,则可转化为证明∠C=∠ODB即可;(2)连接AD,首先利用已知条件可求出BD的长,再证明△ODE∽△AFE,利用相似三角形的性质,对应边的比值相等即可求出BE的长.本题考查了圆的切线性质,及解直角三角形的知识和相似三角形的判定和性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.26.【答案】4.5【解析】解:(1)△ABC的面积是4.5,理由是:S△ABC=S-S△CMA-S△AOB-S△BNC矩形MONC=4×3-×4×1-×2×1-×3×3=4.5,故答案为:4.5;(2)如图2的△MNP,-S△MON-S△PAN-S△MBPS△MNP=S矩形MOAB=5×3-×5×1-×2×4-×3×1=7,即△MNP的面积是7.-S△CMA-S△AOB-S△BNC,根据面积公式求(1)根据图形得出S△ABC=S矩形MONC出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.27.【答案】解:(1)∵抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.∴ ,解得,.∴抛物线的表达式是y=-2x2+4x+1.设直线AB的表达式是y=mx+n,∴ ,解得,,∴直线AB的表达式是y=-2x+5;(2)∵点C在抛物线上,且点C的横坐标为3.∴C(3,-5).点C平移后的对应点为点C′(3,t-5),代入直线表达式y=-2x+5,解得t=4.结合图象可知,符合题意的t的取值范围是0<t≤4.【解析】(1)把点A、B分别代入二次函数解析式,列出关于a、b的方程组,通过解方程组求得系数a、b的值;同理,求得直线方程;(2)结合图象解题.本题考查了待定系数法求函数解析式,二次函数图象的几何变换,要熟练掌握画图的能力和识别图形的能力.28.【答案】70【解析】解:(1)70;∵AB=BC,∠ABC=α=40°,∴∠A=70°,∵∠AED=α=40°∴∠ADE=70°;(2)①见右图;②EM=EN.证明:∵∠ABC=∠AED=α.BA=BC,∴∠A=∠EDA=∠ACB=90°-,∴EA=ED,∵E是AC中点,∴EA=EC,∴EA=EC=ED,∴∠ADC=90°,∵∠EAM=180°-∠EAD=180°-(90°-)=90°+,∵点F是BC中点,∴FB=FD,∴∠FDB=∠ABC=α,∴∠EDN=∠EDA+∠ADN=∠EDA+∠FDB=90°-+α=90°+,∴∠EAM=∠EDN,∵∠AED绕点E顺时针旋转适当的角度,得到∠MEN,∴∠AED=∠MEN,∴∠AED-∠AEN=∠MEN-∠AEN,即∠MEA=∠NED,在△EAM和△EPN中,∴△EAM≌△EPN(ASA),∴EM=EN.(1)根据等腰三角形的性质和三角形的内角和定理可求;(2)①根据题意画图即可;②首先证明EA=ED=EC,得到∠ADC=90°,然后求出∠EAM=∠EDN,易证△EAM≌△EDN,所以EM=EN.本题主要考查了等腰三角形的性质和判定,直角三角形斜边中线等于斜边的一半,如果三角形一边中线等于这条边的一半,那么这个三角形是直角三角形,三角形内角和定理以及三角形全等的性质与判定,挖掘三角形全等的条件是解决问题的关键.29.【答案】解:(1)根据有界函数定义,y=(x<0)不是有上界函数;y=2x-3(x<2)是有上界函数,上确界是1;(2)∵在y=-x+2中,y随x的增大而减小,∴上确界为2-a,即2-a=b,又b>a,所以2-a>a,解得a<1,∵函数的最小值是2-b,∴2-b≤2a+1,得a≤2a+1,解得a≥-1,综上所述:-1≤a<1;(3)函数的对称轴为x=a,①当a≤3时,函数的上确界是25-10a+2=27-10a,∴27-10a=3,解得a=,符合题意;②当a>3时,函数的上确界是1-2a+2=3-2a,∴3-2a=3,解得a=0,不符合题意.综上所述:a=.【解析】(1)根据有界函数函数的定义和上确界定义分析即可;(2)根据函数的上确界和函数增减性得到2-a=b,函数的最小值为2-b,根据b >a,函数的最小值不超过2a+1,列不等式求解集即可;(3)根据对称轴方程x=a和上确界为3,分类讨论a≤3时和a>3时,列方程求解.本题主要考查了对定义函数的理解和一次函数的性质的灵活运用;一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;能够正确理解有界函数和上确界是解决问题的关键.。

北京市海淀区2014年中考二模数学试题(扫描版)

北京市海淀区2014年中考二模数学试题(扫描版)

海淀区九年级第二学期期末测评数学试卷答案及评分参考2014.6 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:011||π12cos302--++-()()122=-+-…………………………………………………………4分=1. …………………………………………………………………………………5分14.323 1.x yx y+=⎧⎨-=⎩,①②解:由①3⨯+②得, 510x=.解得, 2x=. …………………………………………………………………………2分把2x=代入①得,1y=. ……………………………………………………………4分∴原方程组的解为2,1.xy=⎧⎨=⎩……….……………………………………………………5分15.证明:在△CAE和△DBE中,,,,C DCEA DEBEAEB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAE≌△DBE.……………………………………………………………………3分∴CE=DE.……………………………………………………………………………4分∵EA= EB,∴CE+EB=DE+EA.即BC=AD. ……………………………………………………5分16. 解:∵22440,a ab b-+=2(2)0.a b-=∴………………………………………………………………………1分A2.a b =∴ ……………………………………………………………………………2分∵0ab ≠, ∴2222()()()()a b a ba b a b a b a b a b ++⋅-=⋅---+2a ba b+=+ ………………………………………………………3分 222b bb b+=+ ………………………………………………………4分 4.3= ……………………………………………………………5分 17. 解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤ …………………………………………………………4分 答:这份快餐最多含有56克的蛋白质. …………………………………………5分18.解:(1)A (1)m ,在4y x=的图象上,∴441m ==. …………………………………………………………………………1分 ∴A 点的坐标为(14),.∵A 点在一次函数2+=kx y 的图象上,4 2 .k =+∴ 2 .k =∴2 2.y x =+∴一次函数的解析式为 …………………………………………………2分令0,y =即220x +=,解得1x =-.∴点B 的坐标为(-1,0). ………………………………………………………3分 (2)点P 的坐标为(2,2);点C 的坐标为(3,0). ………………………………5分 四、解答题(本题共20分,每小题5分)19.(1)证明:∵点D 、E 分别是边BC 、AC 的中点,∴DE ∥AB . ……………………………………………………………………1分 ∵AF ∥BC ,∴四边形ABDF 是平行四边形. ………………………………………………2分(2)解:过点F 作FG ⊥AC 于G 点. ∵BC=4,点D 是边BC 的中点,∴BD=2.由(1)可知四边形ABDF 是平行四边形, ∴AF =BD=2. ∵∠CAF =45°,∴AG =. …………………………………………………………………3分在Rt △FGC 中,∠FGC =90°,,∴=…………………………………………………4分 ∴AC =AG+GC=113.22CAFSAC FG =⋅=⨯= ……………………………………5分 20. 解:(1)二;……………………………………………………………………………1分(2)……………………………………3分(3)三;77. ………………………………………………………………………5分21. 证明:(1)连接OC .∵OA OC =,∴1 2.∠=∠.又∵312,∠=∠+∠∴32 1.∠=∠ 又∵421∠=∠,∴4 3.∠=∠ ……………………1分 ∴OC ∥DB . ∵CE ⊥DB ,∴OC ⊥CF .又∵OC 为⊙O 的半径,∴CF 为⊙O 的切线. ………………………………………………………2分 (2)连结AD .在Rt △BEF 中,∠BEF =90°, BF =5,3sin 5F =,∴3BE =. ……………………………………………………………………3分 ∵OC ∥BE ,∴FBE △∽FOC △.∴.FB BEFO OC= 设⊙O 的半径为r ,∴53.5r r=+A∴152r =. ……………………………………………………………………4分 ∵AB 为⊙O 直径, ∴15AB =. ∴90ADB ∠=. ∵4EBF ∠=∠, ∴F BAD ∠=∠. ∴3sin sin .5BD BAD F AB ∠=== ∴3.155BD = ∴9BD =.……………………………………………………………………5分22. 解:(1; …………………………………………………………………1分……………………………………………………………2分(2)…………………4分最大三角形的斜边长分别是2a ,2a .………………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)222(1)421(1)m m m m m ∆=-+=++=+,……………………………1分由0m >知必有10m +>,故0∆>.∴方程①总有两个不相等的实数根. ……………………………………………2分 (2)令10y =,依题意可解得(1,0)A -,(,0)B m .∵平移后,点A 落在点'(1,3)A 处,∴平移方式是将点A 向右平移2个单位,再向上平移3个单位得到. ∴点(,0)B m 按相同的方式平移后,点'B 为(2,3)m +. ……………………3分 则依题意有2(2)(9)(2)2(1)3m m m m +--+++=. …………………………4分 解得13m =,252m =-(舍负). ∴m 的值为3. ………………………………………………………………………5分(3)32k =. ………………………………………………………………………7分24.解:(1)…………………………………………………2分(2)连接BF .∵将ABD △沿射线BC 方向平移,得到FCE △,∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC .∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC =BF . ……………………………………3分∵AD BE ⊥,∴EF BE ⊥. …………………………………4分∵AD a =,AC b =,∴EF a =,BF b =.∴BE =. ………………………………………………………………5分(3)180α︒-; α . ……………………………………………………………7分25. 解:(1)①P 2,P 3; ……………………………………………………………………2分②P (-4,6)或P (4,-2). …………………………………………………4分 (2)①解:∵⊙P 同时为正方形ABCD 与正方形EFGH 的“等距圆”,∴⊙P 同时过正方形ABCD 的对称中心E 和正方形EFGH 的对称中心I . ∴点P 在线段EI 的中垂线上.∵A (2,4),正方形ABCD 的边CD 在x 轴上;F (6,2),正方形EFGH 的边HE 在y 轴上,∴E (0,2),I (3,5)∴∠I EH=45°,设线段EI 的中垂线与y 轴交于点L ,与x 轴交于点M ,∴△LIE 为等腰直角三角形,LI ⊥y 轴,∴L (0,5),∴△LOM 为等腰直角三角形,LO=OM∴M (5,0),∴P 在直线y=-x +5上,∴设P (p ,-p +5)过P 作PQ ⊥直线BC 于Q ,连结PE ,∵⊙P 与BC 所在直线相切,∴PE=PQ ,∴()()222522p p p +-+-=+,解得:15p =+,25p =-∴.12(5(5P P +--..……………………………………5分 ∵⊙P 过点E ,且E 点在y 轴上,--=--.…6分∴⊙P在y轴上截得的弦长为22242=44②0r r<<>+…………………………………………………8分注:其他解法请参照给分.。

2015北京初三数学二模试题及答案WORD

2015北京初三数学二模试题及答案WORD

中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。

2015年北京市朝阳区和西城区高三二模数学理试题及答案(word版)

2015年北京市朝阳区和西城区高三二模数学理试题及答案(word版)

北京市朝阳区理科数学2015学年度第二学期高三综合练习2015.5第一部分(选择题共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,集合,则=().B.C.D.2.执行如图所示的程序框图,则输出的n的值是().A.7 B.10 C.66 D.1663.设为虚数单位,,“复数是纯虚数”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知平面上三点A,B,C,满足,则=().A.48 B.-48 C.100 D.-1005.已知函数,若对任意的实数x,总有,则的最小值是().A.2 B.4 C.D.26.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().7.已知函数,若对任意,都有成立,则实数m的取值范围是().8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().第Ⅱ卷(非选择题共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.展开式中含项的系数是__________.10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN过圆心B.若AM=2,,则AD=__________.12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则,中,面积的最大值是__________.14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为__________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共13分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.如图,在直角梯形ABCD中,.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;(Ⅱ)求直线BD和平面BCE所成角的正弦值;(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.18.(本小题共13分)已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为14.(Ⅰ)求椭圆C的离心率及焦点坐标;(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.19.(本小题共14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;(Ⅲ)若函数有两个不同的极值点,,求证:.20.(本小题共13分)已知数列,是正整数1,2,3,,n的一个全排列.若对每个都有或3,则称为H数列.(Ⅰ)写出满足的所有H数列;(Ⅱ)写出一个满足的数列的通项公式;(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.参考答案及评分标准高三数学(理科)一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案 A B B C A C D B二、填空题:题号(9)(10)(11)(12)(13)(14)答案三、解答题:15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.16.(本小题共13 分)解:(Ⅰ)由题意可得:题 A B C答卷数180 300 230抽出的答卷数 3 5 2应分别从题的答卷中抽出份,份.(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.;;;;;.随机变量的分布列为:所以.17.(本小题共14分)证明:(Ⅰ)由已知得,.因为平面平面,且平面平面,所以平面,由于平面,所以.(Ⅱ)由(1)知平面所以,.由已知,所以两两垂直.以为原点建立空间直角坐标系(如图).因为,则,,,,所以,,设平面的一个法向量.所以,即.令,则.设直线与平面所成角为,因为,所以.所以直线和平面所成角的正弦值为.(Ⅲ)在为原点的空间直角坐标系中,,,,,.设,即.,则,,.若平面,则.即..解得.则,.18.(本小题共13分)解:(Ⅰ)椭圆的方程可化为,则,,.故离心率为,焦点坐标为,.(Ⅱ)由题意,直线的斜率存在,可设直线的方程为,,,则,.由得.判别式.所以,,因为直线与直线的斜率之积为,所以,所以.化简得,所以,化简得,即或.当时,直线方程为,过定点.代入判别式大于零中,解得.当时,直线的方程为,过定点,不符合题意.故直线过定点.19.(本小题共14分)解:(Ⅰ)当时,,.由,解得,.当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的单调增区间为,单调减区间为.(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.因为在上为增函数.当,即当时,函数在上有且只有一个零点,设为,当时,,即,为减函数;当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.同理时,可判断在为减函数,不合题意.综上.(Ⅲ).因为函数有两个不同的零点,即有两个不同的零点,即方程的判别式,解得.由,解得,.此时,.随着变化,和的变化情况如下:+ +极大值极小值所以是的极大值点,是的极小值点,所以是极大值,是极小值所以因为,所以,所以.20.(本小题共13分)解:(Ⅰ)满足条件的数列有两个:.(Ⅱ)由(1)知数列满足,把各项分别加后,所得各数依次排在后,因为,所得数列显然满足或,,即得数列.其中,.如此下去即可得到一个满足的数列为:(其中)(写出此通项也可以(其中))(Ⅲ)由题意知,,且.有解:①,,,则,这与是矛盾的.②时,与①类似可得不成立.③时,,则不可能成立.④时,若或,则或.若或,则,类似于③可知不成立.④时,若同号,则,由上面的讨论可知不可能;若或,则或;⑤时,若异号,则,不行;若同号,则,同样由前面的讨论可知与矛盾.综上,只能为或,且(2)中的数列是的情形,将(2)中的数列倒过来就是,所以为或.北京市西城区2015 年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1 至2 页,第Ⅱ卷3 至6 页,共150 分.考试时长120 分钟.考生务必将答案答在答题纸上,在试卷上作答无效。

北京市西城区2015届高三二模数学(理)试题 含解析

北京市西城区2015届高三二模数学(理)试题 含解析

汽车租赁中的车辆保险费用分摊范本近年来,汽车租赁行业的发展迅速,租车已成为一种常见的出行方式。

然而,在租车过程中,车辆保险费用分摊问题一直备受争议。

为了明确车辆保险费用的分摊范本,保障租车双方的权益,本文将对汽车租赁中的车辆保险费用分摊进行探讨。

一、保险费用的定义及计算方式在汽车租赁中,保险费用指的是为了保障车辆投保人和驾驶人的车辆安全而支付的费用。

计算保险费用时,通常会考虑车辆的价值、车型、驾驶人的驾龄和行驶记录等因素。

二、车辆保险费用的责任划分1.基本强制保险根据我国法律规定,每一辆机动车都必须购买基本强制保险,即交强险。

交强险保障的是在道路交通事故中由被保险人负责的人身伤亡、财产损失责任,费用由所有机动车车主共同分摊。

2.商业保险除了基本强制保险外,车辆租赁公司还可以按照客户的需求为租车提供商业保险,例如车损险、第三者责任险等。

商业保险的费用由租车双方通过协商决定,并在租车合同中明确注明。

三、车辆保险费用分摊的原则1.保险费用由使用方承担汽车租赁中,保险费用应由租车使用方承担。

使用方在租车之前应明确了解并同意支付相应的保险费用。

2.按照使用时间分摊车辆保险费用的分摊应根据租车的使用时间进行合理划分。

通常情况下,按照天数进行分摊是一种常见的方式。

四、车辆保险费用的分摊例子假设小明在租赁一辆汽车,租期为7天,每日租金为100元,保险费用为50元/天。

则车辆保险费用的分摊可以按照以下方式计算:保险费用总额 = 每日保险费用 ×租期天数保险费用总额 = 50元/天 × 7天 = 350元小明需要支付的保险费用 = 每日租金 ×租期天数 ×保险费用占租金比例小明需要支付的保险费用 = 100元 × 7天 × 50% = 350元五、车辆保险费用的支付方式车辆保险费用的支付方式可以根据租车双方的协商而定。

一种常见的做法是,在租车时支付全部保险费用,然后在还车时根据实际使用天数进行退还或调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B M O
C N D
A
x
A
B
C
D
第Ⅱ卷(共 90 分)
二、填空题(本题共 18 分,每小题 3 分) 11.分解因式: 2x 2 8xy 8 y 2 . 12.分式
A D
x 1 的值为零的条件是___________. x 1
2
B
C
13.如图,四边形 ABCD 为矩形,添加一个条件:, 可使它成为正方形. 14. 如图所示, 已知函数 y x b 和 y ax 1 的图象交点为 M , 则不等式 x b ax 1 的 解集为___________.
A
15.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面 镜子放在与假山 AC 距离为 21 米的 B 处,然后沿着射线 CB 退后到点 E ,这时恰好在镜子里看到山头 A ,利用皮尺测量 BE 2.1 米,若小 宇的身高是 1.7 米,则假山 AC 的高度为________________.
D E B Cபைடு நூலகம்
16.在平面直角坐标系 xOy 中,我们把横,纵坐标都是整数的点叫做整点,已知在函数
y x 500 x 50 上有一点 Pm, n ( m, n 均为整数) ,过点 P 作 PA x 轴于
点 A , PB y 轴于点 B ,当 m 2 时,矩形 PAOB 内部(不包括边界) 有 47 个整 点,当 m 3 时,矩形 PAOB 内部有 92 个整点,当 m 4 时,矩形 PAOB 内部有个整 点,当 m 时,矩形 PAOB 内部的整点最多. 三、解答题(本题共 30 分,每小题 5 分) 17.已知:如图, OM 是 AOB 的平分线, C 是 OM 上一点,且 CD OA 于 D , CE OB 于 E ,AD EB . 求证:AC CB . O
y
B 出发沿 BA 以每秒 1 个单位的速度做匀速运动, 到点 A 后 停止,同时点 N 从 B 点出发沿折线 BC → CD 以每秒 2 个
单位 的速度做匀速运动,如果其中一点停止运动,则另一点 也停止运动,设 M 、 N 两点的运动时间为 x , BMN 的 面积是 y , 下列图象中能表示 y 与 x 的函数关系的图象大致 是
0, 3. 有四张背面完全相同且不透明的卡片, 每张卡片的正面分别写有数字 2 , 3 , 8,
将它们背面朝上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是 无理数的概率是 A.
1 4
B.
3 1 C. D.1 2 4
友 诚 信 爱 国 信 善
4.如图是每个面上都有一个汉字的正方体的一种展开图, 那么在正方体的表面,与“友”相对的面上的汉字是 A.爱 B.国 C.善 D.诚
第Ⅰ卷(共 30 分)
一、选择题(本题共 30 分,每小题 3 分) 在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在 题后括号内. 1. 4 的相反数是 A. 4 B. 4 C.
1 4
D.
1 4
C. 0.8 106 D. 80 104
2.将 800000 用科学记数法表示为 A. 0.8 107 B. 8 105
8.等腰三角形一个角的度数为 50 ,则顶角的度数为 A. 50 B. 80 C. 65 D. 50 或 80
A
9.如图,等边△ABC 及其内切圆与外接圆构成的图形中,若外接圆的半径 为 3,则阴影部分的面积为 A. 2 B. 3 C. 4 D. 6
B C
10.在平面直角坐标系中,四边形 ABCD 是菱形,其中点 B 的坐标是(0,2) ,点 D 的坐标 是( 4 3 ,2) ,点 M 和点 N 是两个动点,其中 点 M 从点
2 2 设两同学得分的平均数依次为 x甲 , x乙 ,得分的方差依次为 S甲 , S乙 ,则下列关系中完
全正确的是
2 2 2 2 A. x甲 x乙 , S甲 B. x甲 x乙 , S甲 S乙 S乙 2 2 2 2 C. x甲 x乙 , S甲 D. x甲 x乙 , S甲 S乙 S乙
石景山区 2014-2015 学年初三综合练习
数学试卷
学校班级姓名
1.本试卷共 8 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 考 生 须 知 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答, 其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.
A
B
5.如图, AB // CD , AC 的垂直平分线交 CD 于点 F ,交 AC 于点 E , 连接 AF ,若 BAF 80 ,则 C 的度数为 A. 40 B. 50 C. 60 D. 80
C
B
E
F
D
6.如图,△ABC 中,∠C=90° ,∠B=60° ,AC= 2 3 ,点 D 在 AC 上,以
C O
E A
D
CD 为直径作⊙O 与 BA 相切于点 E,则 BE 的长为 A. 2 C.2 B. 3 D.3
7.在某校科技节“知识竞赛”中共进行四次比赛,甲、乙两个参赛同学,四次比赛成绩情况 下表所示: 次数 甲 乙 第一次 9.7 9.2 第二次 10 10 第三次 10 9.7 第四次 8.4 9.2
D C E B M
A
1 18.计算: 8 2 4cos 60 3 2 19.用配方法解方程: x 4 x 1 0
3
2
20.若
a b a a2 ,求代数式 1 的值. 2 2 2 3 a 2b a 4ab 4b
m m 0 的图象交于 A a, 2a 1 、 B 3a, a . x
21.在平面直角坐标系 xOy 中, O 是坐标原点;一次函数 y kx b k 0 图象与反比例 函数 y
(1)求一次函数与反比例函数的表达式; (2)求 ABO 的面积.
相关文档
最新文档