2017考研数学二之计算反常积分
反常积分的几种计算方法
反常积分的几种计算方法目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)0 前言 (1)1反常积分的定义 (1)1.1无穷积分的定义 (1)1.2 瑕积分的定义 (2)2 反常积分的计算方法 (3)2.1利用Newton—Leibniz公式计算反常积分…………………………………………32.2利用变量替换法计算反常积分 (3)2.3利用分部积分法计算反常积分 (5)2.4利用分段积分自我消去法计算反常积分 (7)2.5利用方程法计算反常积分 (7)2.6利用级数法计算反常积分 (9)2.7利用待定系数法计算反常积分 (10)结束语 (11)参考文献…………………………………………………………………⎰=+∞→uau Jdx x f )(lim ,)1(则称此极限J 为函数f 在[)+∞,a 上的无穷限反常积分(简称无穷积分),记作⎰+∞=adxx f J )(,)1('并称⎰+∞adx x f )(收敛.如果极限)1(不存在,为方便起见,亦称⎰+∞adx x f )(发散.类似地,可定义f 在(]b ,∞-上的无穷积分:⎰⎰-∞→∞-=buu bdxx f dx x f )(lim )(.)2(对于f 在()+∞∞-,上的无穷积分,它用前面两种无穷积分来定义:dxx f dx x f dx x f aa ⎰⎰⎰+∞∞-+∞∞-+=)()()(.)3(1.2瑕积分的定义定义2设函数f 定义在区间(]b a ,上,在点a 的任一右领域上无界,但在任何内闭区间[](]b a b u ,,⊂上有界且可积.如果存在极限⎰=+→bua u Jdx x f )(lim ,)4(则称此极限为无界函数f 在(]b a ,上的反常积分,记作⎰=badxx f J )(,)4('并称反常积分⎰b adx x f )(收敛.如果极限)4(不存在,这时也说反常积分⎰badx x f )(发散.在定义中,被积函数f 在点a 近旁是无界的,这时点a 称为f 的瑕点,而无界函数反常积分⎰badx x f )(又称为瑕积分.类似地,可定义瑕点为b 时的瑕积分:⎰⎰-→=uabu badx x f dx x f )(lim )(.)5(其中f 在[)b a ,有定义,在点b 的任一左领域上无界,但在任何[][)b a u a ,,⊂上可积.若f 的瑕点()b a c ,⊂,则定义瑕积分dx x f dx x f dx x f bcc aba⎰⎰⎰+=)()()(=⎰⎰+-→→+bvcv u acu dx x f dx x f )(lim )(lim .)6(其中f 在[)(]b c c a ,,⋃上有定义,在点c 的任一领域上无界,但在任何[][)c a u a ,,⊂和[](]b c b v ,,⊂上都可积.当且仅当)6(式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.又若b a ,两点都是f 的瑕点,而f 在任何[]()b a v u ,,⊂上可积,这时定义瑕积分dx x f dx x f dx x f bcc aba⎰⎰⎰+=)()()(=⎰⎰-+→→+vcbv cuau dx x f dx x f )(lim )(lim , )7( 其中c 为()b a ,上任一实数.同样地,当且仅当)7(式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.2反常积分的计算方法在计算反常积分时有三大基本方法:Newton —Leibniz 公式、利用变量替换、利用分部积分法.设dx x f ba⎰)(是反常积分, b 为唯一的奇点(b 为有限数,或∞+),计算dx x f ba⎰)(:2.1利用Newton —Leibniz 公式计算反常积分若)(x f 在[)b a ,连续,且)(x F 为)(x f 的原函数,则)()0(|)()(0a Fb F x F dx x f b a ba--==-⎰.)8(例1 计算⎰-b apa x dx)(的值.解: pa x x f )(1)(-=在(]b a ,上连续,从而在任何[](]b a b u ,,⊂上可积,ax =为其瑕点,故⎰⎰-=-+→b u pa ub ap a x dx a x dx )(lim)(⎪⎩⎪⎨⎧=---≠-----=⎪⎪⎩⎪⎪⎨⎧=-≠--=----⎰.1),ln()ln(,1,1)(1)(.1,)ln(,1,1)()(111p a u a b p p a u p a b p a x p pa x a x dx pp bu bu p b u p⎪⎩⎪⎨⎧≥∞<--=-=--→⎰⎰+.1,,1,1)()(lim )(1p p p a b a x dx a x dx pb u p a u b a p2.2利用变量替换法计算反常积分若)(t ϕ在[)βα,上单调,有连续的导数)(t ϕ',b a a =-=)0(,)(βϕϕ(β为有限数或无穷大),则⎰⎰'=βαϕϕdtt t f dx x f ba)())(()(.(9) 例2 计算⎰--bax b a x dx))((2的值.解:令θθ22sin cos b a x +=则θθθθcos sin 2sin cos 2b a dx +-=,θθθθθθθ2222222sin )(sin sin sin )1(cos sin cos a b b a b a a b a a x -=+-=+-=-+=-θθθθθθθ2222222cos )(cos cos cos )sin 1(sin cos a b a b a b b a b x b -=-=--=--=-πθθθθθθππ24cos sin )(cos sin )(22))((22020==--=--⎰⎰⎰d a b d a b x b a x dx ba.例 3 证明等式dt ab t f a dx x b ax f ⎰⎰+∞+∞+=+020)4(1)(,其中0,>b a (假设二积分有意义).分析:比较该等式的两边,我们必须使得ab t xbax 42+=+, 因0,,>x b a ,此即要求ab t x b ax 422+=⎪⎭⎫ ⎝⎛+,亦即 22t x b ax =⎪⎭⎫ ⎝⎛-.因此我们选取的变换如下: 证明:令t xbax =-, 此时ab t xbax 42+=+成立,因此可得 )4(212ab t t ax ++=,dt abt a ab t t dx 42422+++=.于是dt abt ab t t ab t f a dx x b ax f 44)4(21)(222000++++⎪⎭⎫ ⎝⎛+=+⎰⎰⎰∞+∞-∞+, 在上式的右边的第一个积分里,令u t -=,⎥⎥⎦⎤⎢⎢⎣⎡++++++-++=+⎰⎰⎰∞+∞+∞+00222222044)4(44)4(21)(dt ab t ab u t ab t f du ab u u ab u ab u f a dx x b ax f 再将u 改写成t ,二积分合并,得dt ab t f a dx x b ax f ⎰⎰+∞+∞+=+020)4(1)(.因此该式得证.2.3利用分部积分法计算反常积分设)(),(x v v x u u ==在[)b a ,上有连续的导数,则⎰⎰⎰'-=='-bab a babadxx u x v x v x u udv dx x v x u )()()()()()(0.(10)例4 计算dx x x ⎰10ln 的值.解:⎰⎰=1021ln 21ln xdx dx x x )1ln (21102102dx xx x x ⎰⋅-⋅=41-=例5 计算积分dx x nx ⎰20cos ln 2cos π.解:(困难在于被积函数中有对数符号ln"",用分部积分法消去ln"")原式nx d x n2sin cos ln 2120⎰=πdx xx nx n x nx n ⎰--=2020cos )sin (2sin 21cos ln 2sin 21ππdx xxnx n ⎰=20cos sin 2sin 21π(我们看到,这里如果被积函数没有分母的x cos ,用积化和差公式,立即可以算出积分值.因此,我们希望设法应用公式∑=+=+nk kt t tn 12cos 21sin )12sin(将被积函数拆开).因为x n x nx x nx )12cos(cos 2cos sin 2sin +-=⋅,dx xx n dx nx n dx x x nx n ⎰⎰⎰+-=202020cos )12cos(2cos 21cos sin 2sin 21πππ, 第一个积分为0,第二个积分令t x -=2π,dx xxn n dx x x nx n ⎰⎰+-=2020cos )12cos(21cos sin 2sin 21ππdt ttn nn ⎰+-=-201sin )12sin(2)1(πdt kt nnk n ⎰∑⎪⎭⎫ ⎝⎛+-==-20112cos 212)1(πnn 4)1(1π--=.例6 计算⎰+∞∞-++nx x dx)22(2.解:()[]⎰⎰+∞∞-+∞∞-++=++n nx dxx x dx 11)22(22 ()⎰+∞∞-+=+=nx t tdt121()n nI tdt21202=+=⎰+∞,分部积分可建立n I 的递推公式: ()()()⎰⎰∞+++∞∞++--+=+=01220221211n n nn tdtnt tttdtI122+-=n n nI nI , 即n n I n n I 2121-=+. 21021π=+=⎰+∞t dt I ,2!)!22(!)!32(21425222321π⋅--=⋅⋅⋅--⋅--=n n I n n n n I n . 在计算n I 时我们也可以利用变量替换法进行求解,令θtan =t ,()()θθπd tdtI n nn ⎰⎰-∞+=+=202202cos 1,再直接引用Walls 公式2!)!22(!)!32(π⋅--=n n .利用分部积分法我们常常可以得到递推公式从而简化运算.除了上述的三种基本方法外,根据具体情况,经常用的还有下列几种方法: 2.4利用分段积分自我消去法计算反常积分在这种方法的计算中主要分为两步:第一步:将所需计算的积分区间进行分段;第二步:进行变量替换,通过变量替换可以将分段后的某些积分区间与其中的某些区间相抵消或者合并.例7 计算dx x x⎰+∞+021ln 2的值.解:dx x xdx x x dx x x ⎰⎰⎰+∞+∞+++=+12102021ln 21ln 21ln 2=)11ln 1ln (2122102dx x x x dx x x ⎰⎰∞++++=))1(111ln 1ln (212102xd xx dx x x ⎰⎰∞++++ ))(1ln 1ln (20121021t d t t dx x xxt ⎰⎰+++===))(1ln 1ln (2102102t d t tdx x x ⎰⎰+-+ =0通过上述计算我们可以发现这种方法可以省略很多计算,关键在于对积分区间的分段和变量替换要找到最合适的,否则适得其反. 2.5利用方程法计算反常积分使用方程法计算反常积分是分为两步:第一步:通过变量替换,将原积分进行变形;第二步:将原积分与变形后的积分相加,通过计算相加后的积分从而求出原积分.例8 计算积分⎰=20sin ln 2πxdx I .解:⎰⎰===402202sin ln 4sin ln 2ππtdt xdx I tx=⎰40cos sin 2ln 4πtdt t=)cos ln sin ln 2ln (4404040⎰⎰⎰++πππtdt tdt dt=))2sin(ln sin ln (42ln 4040⎰⎰-++⋅ππππdt t tdt)sin ln sin ln (42ln 42402⎰⎰-+=-=πππππudu tdt tu=⎰+20sin ln 42ln ππtdt=I 42ln +π通过解方程得:32ln π-=I .例9 计算积分dx x I ⎰+∞+=0412.解:dx x x x dx x I ⎰⎰∞+∞++=+=022241212 )1(12022x d x x ⎰+∞+-=dt tt xt ⎰∞+=+-=022112J dx x x =+=⎰∞+04212 则()dx xx J I I ⎰∞+++=+=0421222121 dx xx ⎰∞+++=04211 dx x x x ⎰∞+++=0222111 )1(11022x x d x x -+=⎰+∞ )1(2)1(102x x d xx -+-=⎰+∞ dt t xx t ⎰∞+∞---+=2121 dt t ⎰+∞+=02212+∞=02arctan2t22π=. 2.6利用级数法计算反常积分在运用级数法求反常积分时,关键在于积分区间进行分段,使所求的反常积分可以表示成级数的求和运算,从而简化运算.例10 证明[]⎪⎭⎫⎝⎛--+++=⎭⎬⎫⎩⎨⎧-∞→∞+⎰n n dx x x n ln 11211lim 111 .证明: (1) 当2>x 时,[]xx x x )1(111-≤-,由于dx x x ⎰+∞-1)1(1积分收敛,故[]dx x x ⎰∞+⎭⎬⎫⎩⎨⎧-111收敛. (2) [][]dx x x dx x x n n ⎰⎰⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+∞→∞+1111lim 11[][][][]dx x x dx x x dx x x dx x x n n n⎰⎰⎰⎰-⎭⎬⎫⎩⎨⎧-+⎭⎬⎫⎩⎨⎧-+⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-13221111111111 dx x n dx x dx x n n ⎰⎰⎰-⎭⎬⎫⎩⎨⎧--+⎭⎬⎫⎩⎨⎧-+⎭⎬⎫⎩⎨⎧-=13221111121111 dx x n n ⎰--+++=1111211 n n ln 11211--+++= .因此:[]⎪⎭⎫⎝⎛--+++=⎭⎬⎫⎩⎨⎧-∞→∞+⎰n n dx x x n ln 11211lim 111 .2.7利用待定系数法计算反常积分在使用待定系数法时通常先将有理分式化为部分分式,再通过待定系数求解,在使用这种方法时通常结合多种方法求解. 例11 计算积分⎰+∞++=1)()1(n x x x dxI n .解:(拆为部分分式)设nx A k x A x A x A n x x x n k ++++++++=++ 1)()1(110(n A A A ,,,10 为待定系数).将)()1(n x x x ++ 同乘等式两边.然后k x -=,得)(21)1()1)((1n k k k A k +-⋅⋅⋅-+--=)!(!1)1(k n k k--=!)1(n C k nk-= ),,2,1,0(n k =,其中)!(!!k n k n C kn -=于是dx k x n C I nk k n kn ⎰∑∞+=+-=10)1!)1((dx kx n C nk knk∑⎰=∞++-=011!)1( ∑=∞++-=n k kn k k x C n 01)ln()1(!1.注意到∑∑==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=+-nk kn k n k knkx k x C k x C 001ln )1()ln()1(∑∑==⎪⎭⎫ ⎝⎛+-+-⋅=n k nk kn k knkx k C C x 001ln )1()1(ln∑=→⎪⎭⎫ ⎝⎛+-+-⋅=nk kn k nx k C x 001ln )1()11(ln (当+∞→x 时),因此 ∑=++-=n k kn k n k C n I 01)1ln()1(!1.结束语反常积分的计算方法灵活多变,对于任一问题都存在多种计算方法,我们在计算时要提取最简便的方法,除了上述的几种计算方法还有很多的计算方法需要我们去探究、归纳、总结,更重要的是我们要学会这些方法的灵活使用.参考文献:[1] 费定辉等,基米多继奇数学分析习题[M],山东:山东科技出版社,1990.[2] 同济大学应用数学系,高等数学[M],北京:高等教育出版社,2002.[3]刘玉莲,傅沛仁.数学分析讲义[M].第二版.北京:高等教育出版社,1996.43-47.[4]周建莹,李正元.高等数学解题指南[M].北京:北京大学出版社,2002.212-214.[5]数学分析第四版上册 .华东师范大学数学系编[M].高等教育出版社,2010.[6] Tom M.Apostol著. Mathematical Analysis[M]. 机械工业出版社,2004.[7] Zorich,. Mathematical. Analysis. [M]. Springer,2004.。
考研数学考试大纲
考研数学考试大纲LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】2017年考研数学(二)考试大纲(原文)2017数学二考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
2017年考研数学二真题及解析
【答案】-1
1 【解析】设 1 ,由题设知 A ,故 2 4 1 2 1 1 1 1 2 a 1 1 3 2a 3 1 1 2 2 2 2
【答案】 【解析】 (13)
1
0
dy
1 y
tan x dx ______ x
(
【答案】 ln cos1 . 【解析】交换积分次序:
dy
0
1
1 x tan x 1 tan x dx dx dy tan xdx ln cos1 . y 0 0 0 x x 1
4 1 2 1 (14)设矩阵 A 1 2 a 的一个特征向量为 1 ,则 a _____ 2 3 1 1
1
因此 B 正确。
(
2 0 0 2 1 0 1 0 0 (8)设矩阵 A 0 2 1 , B 0 2 0 , C 0 2 0 ,则( ) 0 0 1 0 0 1 0 0 2
(A) ab
)
1 2
(B) ab
1 2
(C) ab 0
(D) ab 2
【答案】A
1 x 1 cos x 1 1 1 2 【解析】 lim lim , f ( x) 在 x 0 处连续 b ab . 选 A. x 0 x 0 ax ax 2a 2a 2
(A) 1 2
【答案】 B 【解析】
0 0 0 P AP 1 1 1 AP P A( 1, 2, 3) ( 1, 2, 3) 2 23 , 2 2 2
2017年全国硕士研究生入学统一考试数学(二)真题及答案
2017年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]若函数在x=0处连续,则().A.ab=B.ab=-C.ab=0D.ab=2正确答案:A参考解析:2[单选题]设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1,且f”(x)>0,则().A.B.C.D.正确答案:B参考解析:3[单选题]设数列{x n}收敛,则().A.B.C.D.正确答案:D参考解析:4[单选题]微分方程y”-4y '+8y=e2x(1+cos2x)的特解可设为y*=().A.Ae2x+e2x(Bcos2x+Csin2x)B.Axe2x+e2x(Bcos2x+Csin 2x)C.Ae2x+xe2x(Bcos2x+Csin 2x)D.Axe2x+xe2x(Bcos2x+Csin2x)正确答案:C参考解析:齐次方程y”-4y'+8y=0对应的特征方程为λ2—4λ+8=0,解得λ1,2=2±2i.由于自由项f(x)=e2x+e2x cos2x,因此可设方程y”-4y'+8y=e2x的特解为y1*=Ae2x,设方程y”-4y’+8y=e2x cos2x的特解为y2*=xe2x(Bcos2x+Csin2x),从而原方程的特解可设为5[单选题]设f(x,y)具有一阶偏导数,且对任意的(x,y),都有,则().A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)正确答案:D参考解析:,可知f(x,y)关于x单调递增,关于y单调递减.因此f(0,1)<f(0,0)<f(1,0),故D项正确.6[单选题]甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3.计时开始后乙追上甲的时刻记为t0(单位:S),则().A.t0=10B.150<20C.t0=25D.t0>25正确答案:C参考解析:从0到t0这段时间内,甲、乙的位移分别为当乙追上甲时,7[单选题]设A为三阶矩阵,P=(α1,α2,α3)为可逆矩阵,使得,则A(α1+α2+α3)=().A.α1+α2B.α2+2α3C.α2+α3D.α1+2α2正确答案:B参考解析:因此A(α1,α2,α3)=Aα1+Aα2+Aα3=α2+2α3.8[单选题]A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B参考解析:由|λE—A|=0,可知A的特征值为2,2,1.因为3-r(2E-A)=2,所以A可相似对角化,且A~C.由|λE-B |=0,可知B的特征值为2,2,1.因为3-r(2E-B)=1,所以B不可相似对角化,但C显然可相似对角化,因此B与C不相似.故B项正确.9[填空题]_______.参考解析:y=x+2【解析】10[填空题]_______.参考解析:【解析】11[填空题]_______.参考解析:1【解析】12[填空题]设函数f(x,y)具有一阶连续偏导数,且df(x,y)=ye y dx+x(1+y)e y dy,f(0,0)=0,则f(x,y)=_______.参考解析:xye y【解析】,.由于f(x,y)=,因此,则得c(y)=C.又f(0,0)=0,可得C=0,因此f(x,y)=xye y13[填空题]_______.参考解析:-lncos1【解析】交换积分次序求解.14[填空题]_______.参考解析:-1【解析】设α=(1,1,2)T,由题设知Aα=λα,故有从而可得λ=1,a=-1.15[简答题]参考解析:令x-t=u,则t=x-u,dt=-du,从而16[简答题]设函数f(u,v)具有2阶连续偏导数,y=f(e x,cos x),求,。
考研数学二真题及解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则() (A)12ab =(B)12ab =-(C)0ab = (D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a ++→→-==Q 在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则() 【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx x dx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则()()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D. (4)微分方程的特解可设为(A )22(cos 2sin 2)x x Ae e B x C x ++(B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)x x Ae xe B x C x ++(D )22(cos 2sin 2)x x Axe e B x C x ++ 【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±故特解为:***2212(cos 2sin 2),x x y y y Ae xe B x C x =+=++选C. (5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则() (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为0120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+ 【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
17考研数二真题答案及解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当lim sin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有lim sin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为 (A )22(cos2sin 2)xx Ae e B x C x ++ (B )22(cos2sin 2)x x Axe e B x C x ++ (C )22(cos2sin 2)xx Aexe B x C x ++ (D )22(cos2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos2)cos2,(cos2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos2sin 2),x x y y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( )(A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
数学二考反常积分的审敛法吗
数学二考反常积分的审敛法吗
在数学二考试中,我们学习了反常积分的概念和相关的定义,其中包括无穷积分和间断点积分。
但是在计算反常积分的过程中,有时候会遇到无法直接求解的情况,这时候就需要使用审敛法来判断反常积分的敛散性。
审敛法是一种用于判断反常积分敛散性的方法,它主要是通过对反常积分的比较或对比较项的积分进行判断。
具体来说,如果反常积分的比较项收敛,则反常积分也收敛;反之,如果比较项发散,则反常积分也发散。
审敛法的应用范围非常广泛,包括但不限于以下几种情况:当反常积分中含有无穷区间或者无限间断点时,当反常积分被限定在某一区间内时,以及当反常积分中含有复杂函数形式时。
总的来说,审敛法是一种非常重要的数学工具,它可以帮助我们更好地理解反常积分的敛散性,同时也可以提高我们在数学二考试中的成绩。
- 1 -。
2017数学2考研真题及答案详解
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
考生姓名:考生编号:2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)若函数在处连续,则()(A)(B)(C)(D)(2)设二阶可导函数满足且,则()(3)设数列收敛,则()当时,当时,当时,当时,(4)微分方程的特解可设为(A)(B)(C)(D)(5)设具有一阶偏导数,且对任意的,都有,则(A)(B)(C)(D)(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线(单位:),虚线表示乙的速度曲线,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则()(A)(B)(C)(D)(7)设为三阶矩阵,为可逆矩阵,使得,则()(A)(B)(C)(D)(8)设矩阵,则()(A)(B)(C)(D)二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 曲线的斜渐近线方程为_______(10) 设函数由参数方程确定,则______(11)_______(12) 设函数具有一阶连续偏导数,且,,则(13)(14)设矩阵的一个特征向量为,则三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限(16)(本题满分10分)设函数具有2阶连续偏导数,,求,(17)(本题满分10分)求(18)(本题满分10分)已知函数由方程确定,求的极值(19)(本题满分10分)设函数在区间上具有2阶导数,且,证明:方程在区间内至少存在一个实根;方程在区间内至少存在两个不同实根。
反常积分的计算
当 a 为 瑕 点 时 , a f ( x )dx [ F ( x )]b a F (b ) lim F ( x )
x a
b
当 b 为 瑕 点 时 , a f ( x )dx [ F ( x )]b a lim F ( x ) F ( a )
ta x a
可采用简记形式
首页
b f ( x ) dx [ F ( x )] a F (b ) lim F ( x ) a x a
b
上页
返回
下页
结束
铃
二、无界函数的反常积分
无界函数反常积分的定义 设函数f(x)在区间(a, b]上连续, 点a为f(x)的瑕点 函数f(x) 在(a, b]上的反常积分定义为
1 dx ( a >0) 的 敛 散 性 a x p 1 1 解 当 p 1 时 , dx dx [ln x ] a a x a xp 1 1 x1 p ] 当 p <1 时 , dx [ a a xp 1 p
x x
( ) 2 2
首页
上页
返回
下页
结束
铃
a
f ( x )dx [ F ( x )] a lim F ( x ) F ( a ) x
例2 2 计算反常积分 例 解
0
te pt dt ( p 是 常 数 , 且 p >0)
b
t
f ( x )dx
首页
上页
返回
下页
结束
铃
二、无界函数的反常积分
无界函数反常积分的定义 设函数f(x)在区间(a, b]上连续, 点a为f(x)的瑕点 函数f(x) 在(a, b]上的反常积分定义为
反常积分计算技巧
反常积分计算技巧嘿,朋友们!今天咱们来唠唠反常积分这个有点小调皮的家伙。
你可以把反常积分想象成一个在数学世界里不走寻常路的小怪兽。
首先呢,对于无穷区间上的反常积分,就像是一场没有尽头的马拉松。
比如说从a到正无穷的积分,就好比你在一条永远跑不到头的跑道上计算面积。
这个时候,极限就成了我们的魔法棒。
我们把这个无穷区间分成一段一段的,就像把马拉松分成一个个小赛程。
当这个小段不断趋近于无穷的时候,我们就用极限来抓住这个小怪兽的尾巴。
那遇到瑕积分呢,就像是在一个到处是陷阱的迷宫里找宝藏。
瑕点就像迷宫里的那些危险陷阱。
比如说函数在某一点无界,这个点就是瑕点。
我们要小心翼翼地绕过这个陷阱来计算积分。
这时候呢,把积分拆分成两部分,一部分在瑕点左边,一部分在瑕点右边,就像从陷阱的两边偷偷绕过去一样。
再说说换元法在反常积分里的运用吧。
换元就像是给这个小怪兽换了一身衣服,让它看起来没那么吓人。
比如说,我们用一个合适的变量替换,就像给它穿上了一件伪装服,原本复杂的积分可能就变得简单多啦。
这就好比你把一个看起来很凶的怪兽,通过一个魔法道具,变成了一只温顺的小绵羊。
分部积分法在反常积分里也是个有趣的家伙。
它就像两个小伙伴在玩跷跷板。
一个函数是跷跷板的这头,另一个函数是那头。
通过不断地让它们在跷跷板上上下下,我们就能算出反常积分的值。
有时候这个跷跷板会晃得很厉害,那我们就得更小心地控制两边的力量,也就是函数的选择。
比较判别法呢,就像是在一群小怪兽里找出最厉害的那个。
我们找一个已知的积分来和要计算的反常积分比较。
如果已知的积分像一个大力士,我们要算的积分像个小瘦子,而且小瘦子比大力士还小,那小瘦子的积分就是收敛的。
这就好比在一群小动物里,你看到一只小兔子比一头大象还小很多,那你就知道这只小兔子肯定没大象那么“占地方”。
还有极限判别法,这就像是给反常积分做一个身体检查。
通过检查它在某个点或者趋近于无穷的时候的极限情况,来判断它是健康的(收敛)还是生病的(发散)。
反常积分
例10 计算∫0 解
1
ln(1 + x ) dx . 2 (2 + x )
∫0
1
1 ln(1 + x ) 1 dx = − ∫0 ln(1 + x )d 2 (2 + x ) 2+ x
1
1 1 ln(1 + x ) = − + ∫0 2 + x d ln(1 + x ) 2 + x 0
1
例7 计算广义积分 解
∫
2
1
dx . x ln x
∫1
2
dx 2 dx = lim ∫1+ε x ln x ε →0+ x ln x
2
= lim ∫1+ε
ε → 0+
ε → 0+
d (ln x ) 2 = lim [ln(ln x )]1+ε ε → 0+ ln x
= lim [ln(ln 2) − ln(ln(1 + ε ))]
1
Q f ( x ) = ∫1
x2
sin t dt , t
sin t f (1) = ∫1 dt = 0, t
1
sin x 2 2 sin x 2 f ′( x ) = , ⋅ 2x = 2 x x
1 1 2 1 ∴ ∫0 xf ( x )dx = f (1) − ∫0 x f ′( x )dx 2 2 1 1 1 1 2 = − ∫0 2 x sin x dx = − ∫0 sin x 2dx 2 2 2 1 1 2 1 = [cos x ]0 = (cos 1 − 1). 2 2
∫
+∞
2 π
二无界函数反常积分
a
f (x) dx
a a
b
v.p.a f (x) dx
(c为瑕点, a c b)
lim
0
c
a
f (x)dx
b
c
f (x) dx
注意: 主值意义下反常积分存在不等于一般意义下反 常积分收敛 .
思考与练习
P256 题 1 (1) , (2) , (7) , (8)
机动 目录 上页 下页 返回 结束
2
27
机动 目录 上页 下页 返回 结束
内容小结
积分区间无限 1. 反常积分
被积函数无界
2. 两个重要的反常积分
,
(
p
1 1)
a
p1
,
常义积分的极限
p 1 p 1
,
q 1
机动 目录 上页 下页 返回 结束
说明: (1) 有时通过换元 , 反常积分和常义积分可以 互 相转化 .
例如 ,
1 0
1
x
x
则有类似牛 – 莱公式的计算表达式 :
a f (x) dx F(x)
F() F(a)
b
f (x) dx F(x)
f (x) dx F(x)
F(b) F() F() F()
机动 目录 上页 下页 返回 结束
例1. 计算反常积分
解:
[arctan x ]
( )
22
当 q ≥ 1 时, 该广义积分发散 .
机动 目录 上页 下页 返回 结束
例7.
求
解:
积分.
I
0
11
f
( x) f 2(x)
d
x
的无穷间断点, 故 I 为反常
二无界函数反常积分
x1 p 1 p
a
, a 1 பைடு நூலகம் , p 1
p 1 p 1
因此, 当 p >1 时, 反常积分收敛 , 其值为 a 1 p ; p 1
当 p≤1 时, 反常积分发散 .
机动 目录 上页 下页 返回 结束
例3. 计算反常积分
解: 原式 t e pt p
1 p2
e pt
1 p2
1 e pt d t
P256
作业
1 (4) , (5) , (6) , (9) , (10) ; 2; 3
提示: P256 题2
d x
2 x (ln x)k
d(ln x) 2 (ln x)k
当k 1时,
I
(k
)
2
x
dx (ln x)k
(k
1 1)(ln
2)k
1
令 f (k) (k 1)(ln 2)k1, 求其最大值 .
机动 目录 上页 下页 返回 结束
则也有类似牛 – 莱公式的
的计算表达式 :
若 b 为瑕点, 则
b
a
f
(x)
dx
F
(b
)
F
(a)
若 a 为瑕点, 则
b
a
f
(x)
dx
F
(b)
F
(a
)
若 a , b 都为瑕点, 则
b
a
f
(x)
dx
F
(b
)
F
(a
)
注意: 若瑕点 c (a,b), 则
b
a
f
( x) dx
存在 , 则称此极限为 f (x) 的无穷限反常积分, 记作
《反常积分》的计算与收敛性的判定小结与课件节选
《反常积分》的计算与收敛性的判定小结与课件节选1、定义法求积分值与判定积分的敛散性定义法计算反常积分及判定反常积分的收敛性的依据:定积分的计算与积分结果求极限基本思路与步骤:(1)通过将无穷限的反常积分转换为有限区间上的定积分和将无界函数的反常积分转换为有界函数的定积分计算;(2)对积分结果求极限;(3)根据极限的存在性和极限值来计算得到反常积分的值或者判定反常积分的敛散性。
2、反常积分收敛性的判定方法高等数学课程中判定方法对照正项常值级数收敛性判定的比较审敛法与相类似的结论:p-积分与q-积分(1) 无穷区间上的反常积分收敛性判定方法的比较审敛法,基于p-积分的结论(2) 无界函数的反常积分收敛性判定方法的比较审敛法,基于q-积分的结论【注1】对于同时包含两类反常积分的积分,借助积分对积分区间的可加性,分别转换为两类反常积分计算积分值或判定积分的收敛性。
【注2】对于一个反常积分转换为几个基本的反常积分进行收敛性的判定时,值得注意的是,只要一项积分发散,则整个积分发散。
【注3】反常积分同样可以使用“偶倍奇零”化简积分计算,注意能够使用的前提是反常积分收敛。
【注4】具体内容与方法参考以下课件的部分内容和教材中的例题。
【注5】关于反常积分敛散性判定的基本思路、方法与步骤详细的讨论视频教学可以参见“第五届全国大学生数学竞赛初赛非数学竞赛试题解析”在线课堂中填空题第2题“一元函数反常积分敛散性判定的一般思路与方法”中的五个教学与学习视频!●第1节:无穷限反常积分敛散性判定的定义法●第2节:无穷限反常积分敛散性判定的比较法●第3节:无界函数的反常积分敛散性判定的定义法●第4节:无界函数的反常积分敛散性判定的比较法●第5节:反常积分敛散性判定的基本方法与步骤实例分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017考研数学二之计算
反常积分
反常积分是考研数学二的一个必考知识点,每一年至少会出一道题.关于这个知识点,可以理解成定积分的极限运算,记住第一章极限的相关知识和定积分的相关知识就可以解答。
首先一起来看一下今年的考题:
以上是反常积分所有可能考到的知识点。
当然,有一年是个例外,2010年的一道选择题则考到了反常积分的审敛法。
对于这一点,有超纲的嫌疑,可以先不用管它。
好了,现在我们来看看。
所以,,①收敛,②发散,选B。
总结:对于反常积分的计算,一般来讲,把被积函数写出来,然后再求极限,极限存在那么就收敛,极限不存在就发散,并不需要用到反常积分的审敛法来出来。
当然了,立志于考130分以上的同学,可以学习一下反常积分的审敛法。
When you are old and grey and full of sleep,
And nodding by the fire, take down this book,
And slowly read, and dream of the soft look
Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true,
But one man loved the pilgrim soul in you,
And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled
And paced upon the mountains overhead
And hid his face amid a crowd of stars.
The furthest distance in the world
Is not between life and death
But when I stand in front of you
Yet you don't know that
I love you.
The furthest distance in the world
Is not when I stand in front of you
Yet you can't see my love
But when undoubtedly knowing the love from both Yet cannot be together.
The furthest distance in the world
Is not being apart while being in love
But when I plainly cannot resist the yearning
Yet pretending you have never been in my heart. The furthest distance in the world
Is not struggling against the tides
But using one's indifferent heart
To dig an uncrossable river
For the one who loves you.
When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,
And loved the sorrows of your changing face; And bending down beside the glowing bars,
Murmur, a little sadly, how love fled
And paced upon the mountains overhead
And hid his face amid a crowd of stars.
The furthest distance in the world
Is not between life and death
But when I stand in front of you
Yet you don't know that
I love you.
The furthest distance in the world
Is not when I stand in front of you
Yet you can't see my love
But when undoubtedly knowing the love from both Yet cannot be together.
The furthest distance in the world
Is not being apart while being in love
But when I plainly cannot resist the yearning
Yet pretending you have never been in my heart. The furthest distance in the world
Is not struggling against the tides
But using one's indifferent heart To dig an uncrossable river
For the one who loves you.。