中考数学试题分类解析汇编第03期专题12探索性问题含解析
中考数学探索性问题的解法.doc
L_J 中考数学探索性问题的解法随着应试教育向素质教育的转轨,加强对学生各方面能力考察的题目成了近年来各省市中考试题中的热门问题,探索性问题便是其中一类应运血生的新题型, 这•类问题对培养学生的创造性思维、想象能力和探索能力有很大帮助。
探索性问题又可分为结论探索型和存在探索型两种。
一、结论探索型问题此类题型一般是在给定题设条件下探求结论,它要求学生在对题设条件或图形认真分析的基础上,进行归纳,大胆猜想,然后通过推理、计算获得结论。
例1、长方形的周长为24cm,面积为64cm2,则这样的长方体()(A)有一个(B)有二个(C)有无数个(D)不存在a +b = 12解:设长方体的长为d,宽为b,贝U、址' = 64a> b可视为X2—12x+64=0的两个根•/ △二(一12) 2-4 X 64 = 144-256V0・.・该方程无实根即a、b不存在,因此选(D)a例2、在宽为a的纸带中剪出直径为a的圆5个,直径为5的圆10个,排列方法如图1,计算所用纸带长度,请考虑能否再设计一种排列方法,使所用纸带的长度比原排列方法节省原材料?ffll图2买•恩•收瓦潟暴圈3分析:通过图1观察易发现图中虚线部分具有典型性,为计算方便,取具有典型的部分(图2)进行分析,计算出结果。
易知,在等腰三角形ABC中,BC边上的高为AD,..a V2 a 今27+ 2 龙4 = 4a + — + — a 十一+ 2a = - a..•原排列方法使用纸带长为 2 2 4 4通过计算启发我们,如果把小圆分别插到大圆中,采用如下的排列方法,(如图3)这时纸带长为,a , 72 ° a ,3 ,9」、 3+18>/23 2 24 4 244- A = (6-4很)a a 0.344a可见改进后的排列方法比较合理例3、如图6、有四个动点P、Q、E、F分别从正方形ABCD的顶点A、B、C、D同时出发,沿着AB、BC、CD、DA以同样的速度向点B、C、D、A移动。
中考数学试题汇编及解析探索型问题课标试题
2021年中考数学试题汇编及解析探究型问题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
探究型问题这类问题往往涉及面很广,主要是探究题设结论是否存在,或者是否成立,或者是让学生自己先猜测结论,再进展研究从而得出正确的结论等等,这些题通常有一定的难度,几乎在全国各地的中考数学试卷中都能见到。
1、〔2021〕如图1,在直角坐标系中,点A的坐标为〔1,0〕,•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点〔OC>1〕,连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.〔1〕试问△OBC与△ABD全等吗?并证明你的结论.〔2〕随着点C位置的变化,点E的位置是否会发生变化,假设没有变化,求出点E•的坐标;假设有变化,请说明理由.〔3〕如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.[解析]〔1〕两个三角形全等∵△AOB、△CBD都是等边三角形∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC即∠OBC=∠ABD∵OB=AB,BC=BD△OBC≌△ABD〔2〕点E位置不变∵△OBC≌△ABD∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt△EOA中,EO=OA·tan60°=3或者∠AEO=30°,得AE=2,∴OE=3∴点E的坐标为〔0,3〕〔3〕∵AC=m,AF=n,由相交弦定理知1·m=n·AG,即AG=m n又∵OC是直径,∴OE是圆的切线,OE2=EG·EF 在Rt△EOA中,3132=〔2-mn〕〔2+n〕即2n 2+n-2m-mn=0解得m=222n nn ++.2、〔2021〕如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式;(2)假设S 梯形OBCD =433,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.假设存在,恳求出所有符合条件 的点P 的坐标;假设不存在,请说明理由.[解析] 〔1〕直线AB 解析式为:y=33-x+3. 〔2〕方法一:设点C坐标为〔x ,33-x+3〕,那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x 〔舍去〕 ∴ C〔2,33〕 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C 〔2,33〕.〔3〕当∠OBP =Rt ∠时,如图①假设△BOP ∽△OBA ,那么∠BOP =∠BAO=30°,BP=3OB=3,∴1P 〔3,33〕. ②假设△BPO ∽△OBA ,那么∠BPO =∠BAO=30°,OP=33OB=1. ∴2P 〔1,3〕. 当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P 〔43,433〕.方法二:设P〔x ,33-x+3〕,得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P 〔43,433〕. ④假设△POB ∽△OBA(如图),那么∠OBP=∠BAO =30°,∠POM =30°.∴ PM =33OM =43. ∴ 4P 〔43,43〕〔由对称性也可得到点4P 的坐标〕.当∠OPB =Rt ∠时,点P 在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:1P 〔3,33〕,2P 〔1,3〕,3P 〔43,433〕,4P 〔43,43〕. 3、〔2021〕如图,在直角坐标系中,以点A 为圆心,以x 轴相交于点B C ,,与y 轴相交于点D E ,.〔1〕假设抛物线213y x bx c =++经过C D ,两点,求抛物线的解析式,并判断点B 是否在该抛物线上.〔2〕在〔1〕中的抛物线的对称轴上求一点P ,使得PBD △的周长最小.〔3〕设Q 为〔1〕中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形.假设存在,求出点M 的坐标;假设不存在,说明理由.[解析] 〔1〕OA =∵AB AC ==(B ∴,C 又在Rt AOD △中,AD =OA =3OD ==∴D ∴的坐标为(03)-,又DC ,两点在抛物线上,231(33)03c c =-⎧⎪⎨++=⎪⎩∴解得3b c ⎧=⎪⎨⎪=-⎩ ∴抛物线的解析式为:2133y x x =--当x =0y =∴点(B 在抛物线上〔2〕2133y x x =--∵21(43x =- ∴抛物线2133y x x =--的对称轴方程为x = 在抛物线的对称轴上存在点P ,使PBD △的周长最小.BD ∵的长为定值 ∴要使PBD △周长最小只需PB PD +最小. 连结DC ,那么DC 与对称轴的交点即为使PBD △周长最小的点. 设直线DC 的解析式为y mx n =+.由30n n =-⎧⎪⎨+=⎪⎩得3m n ⎧=⎪⎨⎪=-⎩∴直线DC的解析式为3y x =-由33y x x ⎧=-⎪⎨⎪=⎩得2x y ⎧=⎪⎨=-⎪⎩ 故点P的坐标为2)-〔3〕存在,设)Q t为抛物线对称轴x =M 在抛物线上要使四边形BCQM 为平行四边形,那么BC QM ∥且BC QM =,点M 在对称轴的左侧.于是,过点Q 作直线L BC ∥与抛物线交于点()m M x t , 由BC QM =得QM =从而m x =-12t =故在抛物线上存在点(M ,使得四边形BCQM 为平行四边形. 4、〔2021〕把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,45C F ∠=∠=,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .〔1〕如图9,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ △∽△.此 时,AP CQ =· .〔2〕将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中090α<<,问AP CQ ·的值是否改变?说明你的理由.〔3〕在〔2〕的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.[解析] 〔1〕8〔2〕AP CQ ·的值不会改变.理由如下:在APD △与CDQ △中,45A C ∠=∠= 18045(45)90APD a a ∠=--+=-90CDQ a ∠=- 即APD CDQ ∠=∠APD CDQ ∴△∽△ AP CDAD CQ=∴22182AP CQ AD CD AD AC ⎛⎫==== ⎪⎝⎭∴BPEFF E 图1 图3图3EF〔3〕情形1:当045a <<时,24CQ <<,即24x <<,此时两三角板重叠局部为四边形DPBQ ,过D 作DG AP ⊥于G ,DN BC ⊥于N ,2DG DN ==∴由〔2〕知:8AP CQ =得8AP x=于是111222y AB AC CQ DN AP DG =--88(24)x x x=--<<情形2:当4590a <≤时,02CQ <≤时,即02x <≤,此时两三角板重叠局部为DMQ △, 由于8AP x =,84PB x=-,易证:PBM DNM △∽△, BM PB MN DN =∴即22BM PB BM =-解得28424PB xBM PB x-==+- 84444xMQ BM CQ x x-=--=---∴ 于是1844(02)24xy MQ DN x x x-==--<-≤综上所述,当24x <<时,88y x x=--当02x <≤时,8444xy x x-=---2484y x x x =⎛⎫-+ ⎪-⎝⎭或法二:连结BD ,并过D 作DN BC ⊥于点N ,在DBQ △与MCD △中,45DBQ MCD ∠=∠=45DQB QCB QDC QDC MDQ QDC MDC ∠=∠+∠=+∠=∠+∠=∠DBQ MCD ∴△∽△MC DBCD BQ=∴4x =- 84MC x=-∴ 284844x x MQ MC CD x x x -+=-=-=--∴ BPG2148(02)24x x y DN MQ x x-+==<-∴≤法三:过D 作DN BC ⊥于点N ,在Rt DNQ △中, 222DQ DN NQ =+ 24(2)x =+- 248x x =-+于是在BDQ △与DMQ △中45DBQ MDQ ∠=∠= DMQ DBM BDM ∠=∠+∠ 45BDM =+∠ BDQ =∠BDQ DMQ ∴△∽△ BQ DQ DQ MQ =∴即4x DQDQ MQ-= 224844DQ x x MQ x x-+==--∴2148(02)24x x y DN MQ x x-+==<-∴≤5、〔2021〕如图,点O 是坐标原点,点A 〔n ,0〕是x 轴上一动点(n <0〕以AO 为一边作矩形AOBC ,点C 在第二象限,且OB =2OA .矩形AOBC 绕点A 逆时针旋转90o得矩形AGDE .过点A 的直线y =kx +m 交y 轴于点F ,FB =FA .抛物线y=ax 2+bx+c 过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM ⊥x 轴,垂足为点M .(1)求k 的值;(2)点A 位置改变时,△AMH 的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.[解析] 〔1〕根据题意得到:E 〔3n ,0〕, G 〔n ,-n 〕当x =0时,y =kx +m =m ,∴点F 坐标为〔0,m 〕 ∵Rt △AOF 中,AF 2=m 2+n 2,∵FB =AF ,∴m 2+n 2=(-2n -m)2, 化简得:m =-0.75n ,对于y =kx +m ,当x =n 时,y =0, ∴0=kn -0.75n , ∴k =0.75〔2〕∵抛物线y=ax 2+bx+c 过点E 、F 、G ,∴ ⎪⎩⎪⎨⎧=-++=-++=c c nb a n n c nb a n 75.039022解得:a =n 41,b =-21,c =-0.75n∴抛物线为y=n 41x 2-21x -0.75n解方程组:⎪⎩⎪⎨⎧-=--=nx y n x x n y 75.075.075.021412 得:x 1=5n ,y 1=3n ;x 2=0,y 2=-0.75n∴H 坐标是:〔5n ,3n 〕,HM =-3n ,AM =n -5n =-4n , ∴△×HM ×AM =6n 2;而矩形AOBC 的面积=2n 2,∴△AMH 的面积∶矩形AOBC 的面积=3:1,不随着点A 的位置的改变而改变.6、〔2021〕如图〔1〕,在以AB 为直径的半圆O 内有一点P ,AP 、BP 的延长线分别交半圆O 于点C 、D .求证:AP ·AC+BP ·BD=AB 2.证明:连结AD、BC,过P作PM⊥AB,那么∠ADB=∠AMP=90o,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP·AC=AM·AB,BP·BD=BM·BA,所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·〔AM+BM〕=AB2.当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:〔1〕如图〔2〕当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?〔2〕如图〔3〕当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.[解析]〔1〕成立.证明:如图〔2〕,∵∠PCM=∠PDM=900,∴点C、D在以PM为直径的圆上,∴AC·AP=AM·MD,BD·BP=BM·BC,∴AC·AP+BD·BP=AM·MD+BM·BC,由,AM·MD+BM·BC=AB2,∴AP·AC+BP·BD=AB2.〔2〕如图〔3〕,过P作PM⊥AB,交AB的延长线于M,连结AD、BC,那么C、M在以PB为直径的圆上,∴AP·AC=AB·AM,①D、M在以PA为直径的圆上,∴BP·BD=AB·BM,②由图象可知:AB=AM-BM,③由①②③可得:AP·AC-BP·BD=AB·〔AM-BM〕=AB2.7、〔2021〕问题背景;课外学习小组在一次学习研讨中,得到了如下两个命题:①如图1,在正三角形ABC中,M,N分别是AC、AB上的点,BM与CN相交于点O,假设∠BON=60°.那么BM=CN:②如图2,在正方形ABCD中,M、N分别是CD、AD上的点.BM与CN相交于点O,假设∠BON=90°.那么BM=CN.然后运用类似的思想提出了如下命题:③如图3,在正五边形ABCDE中,M、N分别是CD,DE上的点,BM与CN相交于点O,假设∠BON=108°,那么BM=CN.任务要求(1)请你从①.②,③三个命题中选择一个进展证明;(2) 请你继续完成下面的探究;①如图4,在正n(n≧3)边形ABCDEF 中,M,N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明)②如图5,在正五边形ABCDE中,M、N分别是DE,AE上的点,BM与CN 相交于点O,∠BON=108°时,试问结论BM=CN是否还成立,假设成立,请给予证明.假设不成立,请说明理由(I)我选[解析]〔1〕如选命题①证明:在图1中,∵∠BON=60°∴∠1+∠2=60°∵∠3+∠2=60°,∴∠1=∠3又∵BC=CA,∠BCM=∠CAN=60°∴ΔBCM≌ΔCAN∴BM=CN〔2〕如选命题②证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90°∵∠3+∠2=90°,∴∠1=∠3又∵BC=CD,∠BCM=∠CDN=90°∴ΔBCM≌ΔCDN∴BM=CN〔3〕如选命题③证明;在图3中,∵∠BON=108°∴∠1+∠2=108°∵∠2+∠3=108°∴∠1=∠3又∵BC=CD,∠BCM=∠CDN=108°∴ΔBCM≌ΔCDN∴BM=CN(2)①答:当∠BON=(n-2)180n时结论BM=CN成立.②答当∠BON=108°时。
中考数学试题分项版解析第03期专题12探索性问题含答案
专题12 探索性问题一、选择题1.(2016湖北省荆州市第9题)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【答案】B点:图形的变化问题2.(2016湖南省邵阳市第10题)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】试题分析:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.考点:(1)、规律型:(2)、数字的变化类3.(2016重庆市第9题)观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是()A.43B.45C.51D.53【答案】C考点:规律题.二、填空题1.(2016广东省茂名市第15题)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.【答案】63+6考点:(1)、坐标与图形变化-旋转;(2)、一次函数图象与几何变换2.(2016广东省梅州市第15题)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (23,0),B (0,2),则点B 2016的坐标为______________.【答案】(6048,2) 【解析】 试题分析:OA =32,OB =2,由勾股定理,得:AB =52,所以,OC 2=2+52+32=6, 所以,B 2(6,2),同理可得:B 4(12,2),B 6(18,2),… 所以,B 2016的横坐标为:1008 6=6048,所以,B 2016(6048,2) 考点:(1)、坐标与图形的变换—旋转;(2)、规律探索;(3)、勾股定理 3.(2016广西省南宁市第17题)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.【答案】44【解析】考点:(1)、规律型:(2)、数字的变化类4.(2016山东省聊城市第17题)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.【答案】(21008,0)由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B 2016的纵横坐标符号与点B 8的相同,横坐标为正值,纵坐标是0,∴B 2016的坐标为(21008,0).考点:(1)、正方形的性质;(2)、规律型;(3)、点的坐标5.(2016山东省泰安市第24题)如图,在平面直角坐标系中,直线l :y =x+2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为 .【答案】12+n -2【解析】试题分析:由题意得OA=O 1A =2,∴O 1B =O 1A =2, 21B B =21A B =4, 32A B =32B B =8, ∴1B (2,0),2B (6,0),3B (14,0)…, 2=22﹣2,6=32﹣2,14=42﹣2,…∴n B 的横坐标为12+n ﹣2.考点:(1)、点的坐标;(2)、规律型;(3)、等腰直角三角形的性质6.(2016山西省第13题)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).【答案】4n+1考点:找规律 三、解答题1.(2016云南省第23题)(12分)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.【答案】(1)、第5个;(2)、)1(1n n ;证明过程见解析;(3)、证明过程见解析.(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.考点:(1)、分式的混合运算;(2)、规律型;(3)、数字的变化类。
例析中考中探索性问题
例析中考中探索性问题索性试题是近几年来中考比较常见的开放型试题,也是中考数学试题中出现的一种新题型。
今后的中考数学试题中必将继续出现这种题型,而且在质量上也会上一个新台阶。
一. 常见的问题的类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目。
2. 结论探索型——给定条件,但无明确结论或结论不惟一。
3. 存在探索型——在一定条件下,需探索发现某种数学关系是否存在。
4. 规律探索型——发现数学对象所具有的规律性与不变性的题目。
二. 常用的解题切入点:1. 利用特殊值(特殊点、特殊数量、特殊线段、特殊位置)进行归纳、概括,从而得出规律。
2. 反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4、类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、探索性问题归纳有四种题型:1、探索题设下的图形或数量之间的关系;2、探索解决问题的方法;3、探索图形具备某性质或关系的条件或结论;4、探索改变题设条件后结论是否变化.四、知识运用举例 (一)条件探索型例1.(呼和浩特市中考)在四边形ABCD 中,顺次连接四边中点E F G H ,,,,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是__ .解:AC BD =或四边形ABCD 是等腰梯形(符合要求的其它答案也可以)。
例2(荆门市中考)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:_____________________. (2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________. (3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是____________________________.(图3、图4用于探究)解:(1)是,此时AD BC ,一组对边平行且相等的四边形是平行四边形.(2)是,在平移过程中,始终保持AB C 1D 1,一组对边平行且相等的四边形是平行四边形. (3)33,此时∠ABC 1=90°,有一个角是直角的平行四边形是矩形. 3,此时点D 与点B 1重合,AC 1⊥BD 1,对角线互相垂直的平行四边形是菱形.(二)结论探索型例1 (北京市中考)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形; (3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)回答正确的给1分(如平行四边形、等腰梯形等).(2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点.∵ 12DCB EBC A ∠=∠=∠,BC 为公共边,∴BCF CBG △≌△. ∴ BF CG =.∵ BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,A BD E FG HCC ADBC AD BD 1B 1C ADB30︒30︒BDA C BO A DEC BOAD E C F图1G∴ BDF BEC ∠=∠.可证BDF CEG △≌△.∴ BD CE =. 所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点.∵12DCB EBC A ∠=∠=∠,BC 为公共边, ∴ BDC CFB △≌△.∴ BD CF =,BDC CFB ∠=∠. ∴ ADCCFE ∠=∠.∵ADC DCB EBC ABE ∠=∠+∠+∠, FEC A ABE ∠=∠+∠,∴ ADC FEC ∠=∠.∴ FEC CFE ∠=∠. ∴ CF CE =. ∴BD CE =. ∴ 四边形DBCE 是等边四边形.说明:在结论探索题中,常见的一类就是探索存在性的问题,这类问题的特点是探求命题的结论是否存在。
【江苏版】2014届中考数学专题(12)探索性问题(九年级上期末考试分类解析汇编)
一. 选择题1.【江阴市青阳片】根据左图中已填出的“√”和“×”的排列规律,把②、③、④还原为( )2.【南京市高淳区】如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t 之间函数关系的图象大致为(▲ ).3.【无锡市惠山北片】定义:(,)(,)f a b b a =,(,)(,)g m n m n =--,例如(2,3)(3,2)f =,(1,4)(1,4)g --=,则((5,6))g f -等于 ( )A .(-6,5)B .(-5,6)C .(6,-5)D .(-5,6)4.【扬州市邗江区】如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x= 1 .其中正确的有 ( )5.【无锡市前洲中学】一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第2014秒时跳蚤所在位置的坐标是()A.(0,672 ) B.(672,0) C.(44,10) D.(10,44)二。
填空题1.【无锡市滨湖中学】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下4个结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0.其中正确的结论有__________________.(填写序号)2.【兴化市茅山中心校】已知集合A中的数与集合B中对应的数之间的关系是某个二次函数.若用x表示集合A中的数,用y表示集合B中的数,由于粗心,小聪算错了集合B中的一个y值,请你指出这个算错的y值为.3.【兴化市茅山中心校】如图,利用两面夹角为135°且足够长的墙,围成梯形围栏ABCD,∠C=90°,新建墙BCD总长为15米,则当CD=米时,梯形围栏的面积为36平方米.∴梯形ABCD面积S=12(AD+BC)•CD=12(15-2x+15-x)•x=36解得:x1=4,x2=6考点: 一元二次方程的应用.4.【兴化市茅山中心校】如图,在等腰Rt△ABC中,∠A=90°,AC=7,点O在AC上,且AO=2,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转90°,得到线段OD,要使点D 恰好落在BC上,则AP的长等于.5.【江阴市青阳片】读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为100n=1n ∑,这里“∑”是求和符号,通过以上材料的阅读,计算()2012n=11n n 1+∑=6.【南京市高淳区】某公园草坪的防护栏形状是抛物线形.为了牢固起见,每段护栏按0.4m 的间距加装不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则其中防护栏支柱A2B27.【南京市高淳区】如图,点A、B在直线MN上,AB=8cm,⊙A、⊙B的半径均为1cm.⊙A 以每秒1cm的速度自左向右运动;与此同时,⊙B的半径也随之增大,其半径r(cm)与时间t(秒)之间满足关系式r=1+t(t≥0) .则当点A出发后▲ 秒,两圆相切.8.【无锡市惠山北片】设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是.(填写所有正确结论的序号)①[0)=0 ②[x)-x的最小值是0 ③[x)-x的最大值是0 ④存在实数x,使[x)-x=0.5成立.9.【扬州市邗江区】我们知道,一元二次方程2x 1=-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足2i 1=-(即方程2x 1=-有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有12324222i i i i i i i i 1()(1)i 1==-=⋅=-==-=,,,,从而对于任意正整数n ,我们可以得到4n 14n i i i i +=⋅=, 同理可得4n 2i 1+=- , 4n 3i i +=- , 4n i 1= .那么2342013i i i i i i ++++⋅⋅⋅++的值为 .三。
专题12探索性问题(第02期)-2021年中考数学试题分项版解析汇编(山东专版)(解析版)
一、选择题:1.(山东济南,第14题,3分)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P (0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C 为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)【答案】A考点:点的坐标.2.(山东日照,第11题,3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66【答案】B考点:完全平方公式.3.(山东泰安,第18题)(3分)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()【答案】C.考点:1.规律型:数字的变化类;2.综合题.4.(山东威海,第12题,3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.92432B.98132C.9812D.88132 【答案】D考点:正多边形和圆5.(山东烟台,第8题,3分)如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外做正方形,其面积标记为2S ,…,按照此规律继续下去,则2015S 的值为( )A .20122()2 B. 20132()2C. 20121()2D. 20131()2【答案】C【解析】考点:勾股定理,正方形的面积,规律探索1.(山东济宁,第15题,3分)若221223127⨯-⨯=-⨯⨯,222222(1223)(3445)(5667)3415⨯-⨯+⨯-⨯+⨯-⨯=-⨯⨯, ……则222222(1223)(3445).........(2n 1)(2n)2(2n 1)n ⎡⎤⨯-⨯+⨯-⨯++--+=⎣⎦【答案】-n(n+1)(4n+3)考点:规律探索2.(山东潍坊,第17题,3分)如图,正△ABC 的边长为2,以BC 边上的高1AB 为边作正11AB C ∆,△ABC 与11AB C ∆公共部分的面积记为1S ;再以正11AB C ∆边11B C 上的高2AB 为边作22AB C ∆,11AB C ∆与22AB C ∆公共部分的面积记为2S ;......,以此类推,则n S = .(用含n 的式子表示).【答案】33 () 24n考点:1.等边三角形的性质;2.特殊角的三角函数值.3.(3分)(2015•聊城,第17题)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.【答案】3+2(n﹣1)考点:规律型:图形的变化类。
中考数学试题汇编专题12探索性问题含解析
专题12 探索性问题一、选择题1.(2020年贵州省黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( ) A .2020 B .2020 C .191 D .190 【答案】D 【解析】考点:完全平方公式2. (2020年内蒙古通辽市第10题)如图,点P 在直线AB 上方,且ο90=∠APB ,AB PC ⊥于C ,若线段6=AB ,x AC =,y S PAB =∆,则y 与x 的函数关系图象大致是( )A .B .C .D .【答案】D考点:动点问题的函数图象3.(2020年四川省内江市第12题)如图,过点A (2,0)作直线l :33y x的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2020A 2107的长为( )A .20153()2 B .20163()2 C .20173()2 D .20183()2【答案】B .考点:一次函数图象上点的坐标特征;规律型;综合题.4.(2020年山东省日照市第10题)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.试题分析:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.考点:动点问题的函数图象.5.(2020年山东省日照市第11题)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )A .23B .75C .77D .139 【答案】B .考点:规律型:数字的变化类.6. (2020年湖南省岳阳市第7题)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234201722222++++⋅⋅⋅+的末尾数字是A .0B .2 C.4 D .6 【答案】B . 【解析】试题解析:∵21=2,22=4,23=8,24=16,25=32,26=64,…, ∴2020÷4=506…1,∵(2+4+8+6)×506+2=10122, ∴21+22+23+24+…+22020的末位数字是2,故选B .考点:尾数特征. 二、填空题1.(2020年贵州省毕节地区第20题)观察下列运算过程: 计算:1+2+22+…+210. 解:设S=1+2+22+…+210,① ①×2得2S=2+22+23+…+211,② ②﹣①得 S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32020= .【答案】2018312- .考点:规律型:数字的变化类.2.(2020年贵州省黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2020的坐标为.【答案】(0,﹣2017 3())【解析】考点:规律型:点的坐标3. (2020年湖北省荆州市第14题)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有______个点. 【答案】135【解析】试题分析:仔细观察图形:第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点;第三个图形有3+6+9=3×(1+2+3)=18个点;…第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=3(1)2n n+个点;当n=9时,39102⨯⨯=135个点,故答案为:135.考点:规律型:图形的变化类4. (2020年山东省威海市第16题)某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……按照只有的规律进行下去,第n次拼成的图案用地砖块.【答案】2n2+2n考点:规律题目5. (2020年山东省潍坊市第17题)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.【答案】9n+3考点:规律型:图形的变化类6. (2020年湖南省郴州市第16题)已知12345357911,,,,,25101726a a a a a =-==-==-L ,则8a = .【答案】1765. 【解析】试题分析:由题意给出的5个数可知:a n =221(1)1nn n +-+ ,所以当n=8时,a 8=1765. 考点:数字规律问题.7.(2020年四川省内江市第26题)观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++;第三个等式:3332342111322(2)2121a ==-+⨯+⨯++;第四个等式:4442452111322(2)2121a ==-+⨯+⨯++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n = = ; (3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果); (4)计算:a 1+a 2+…+a n .【答案】(1)666221322(2)+⨯+⨯,67112121-++;(2)221322(2)n n n +⨯+⨯,1112121n n +-++;(3)1443;(4)11223(21)n n ++-+. 【解析】考点:规律型:数字的变化类;综合题.三、解答题1. (2020年湖北省荆州市第20题)(本题满分8分)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【答案】(1)证明见解析(2)△BDE是等腰三角形【解析】考点:1、矩形的性质;2、全等三角形的判定与性质;3、平移的性质2. (2020年山东省威海市第24题)如图,四边形ABCD 为一个矩形纸片,3=AB ,2=BC ,动点P 自D 点出发沿DC 方向运动至C 点后停止.ADP ∆以直线AP 为轴翻折,点D 落到点1D 的位置.设x DP =,P AD 1∆与原纸片重叠部分的面积为y .(1)当x 为何值时,直线1AD 过点C ? (2)当x 为何值时,直线1AD 过BC 的中点E ? (3)求出y 与x 的函数关系式.【答案】(1)当x=2134-时,直线AD 1过点C (2)当x=2102-时,直线AD 1过BC 的中点E (3)当0<x ≤2时,y=x ;当2<x ≤3时,y=242x x+【解析】试题解析:(1)如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC=232+3=13,CD1=13﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(13﹣2)2,解得:x=21343-,∴当x=2134-时,直线AD1过点C;(2)如图2,(3)如图3,当0<x≤2时,y=x,如图4,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=242xx+.考点:1、勾股定理,2、折叠的性质,3、矩形的性质,4、分类推理思想3. (2020年辽宁省沈阳市第24题)四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF(1)如图1,当点E与点A重合时,请直接..写出BF的长;(2)如图2,当点E在线段AD上时,1AE=①求点F到AD的距离②求BF的长(3)若310BF=,请直接..写出此时AE的长【答案】5①点F到AD的距离为3;②74;41AE=1.【解析】试题解析:(1)BF=45;(2) 如图,①过点F作FH⊥AD交AD的延长线于点H,∵四边形CEFG是正方形即点F到AD的距离为3.②延长FH交BC的延长线于点K,∴∠DHK=∠HDC=∠DCK =90°,∴四边形CDHK为矩形,∴HK=CD=4,∴FK=FH+HK=3+4=7∵ECD FEH∆≅∆∴EH=CD=AD=4∴AE=DH=CK=1∴BK=BC+CK=4+1=5,在Rt △BFK 中,BF=22227574FK BK +=+=(3)AE=2+41或AE=1. 考点:四边形综合题.4. (2020年湖南省岳阳市第23题)(本题满分10分)问题背景:已知DF ∠E 的顶点D 在C ∆AB 的边AB 所在直线上(不与A ,B 重合).D E 交C A 所在直线于点M ,DF 交C B 所在直线于点N .记D ∆A M 的面积为1S ,D ∆BN 的面积为2S .(1)初步尝试:如图①,当C ∆AB 是等边三角形,6AB =,DF ∠E =∠A ,且D //C E B ,D 2A =时,则12S S ⋅= ;(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使D 4A =,再将DF ∠E 绕点D 旋转至如图②所示位置,求12S S ⋅的值;(3)延伸拓展:当C ∆AB 是等腰三角形时,设DF α∠B =∠A =∠E =.(I )如图③,当点D 在线段AB 上运动时,设D a A =,D b B =,求12S S ⋅的表达式(结果用a ,b 和α的三角函数表示).(II )如图④,当点D 在BA 的延长线上运动时,设D a A =,D b B =,直接写出12S S ⋅的表达式,不必写出解答过程.【答案】(1)12;(2)12;(3)14(ab )2sin 2α.14(ab )2sin 2α.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴AM AD BD BN=,∴42xy=,∴xy=8,∵S1=12•AD•AM•sin60°=3x,S2=12DB•sin60°=3y,∴S1•S2=3x•32y=32xy=12.同法可证△AMD∽△BDN,可得xy=ab,∵S1=12•AD•AM•sinα=12axsinα,S2=12DB•BN•sinα=12bysinα,∴S1•S2=14(ab)2sin2α.考点:几何变换综合题.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( ) A .1 B .3 C .14- D .742.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒3.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤4.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体5.如图所示的几何体的主视图正确的是( )A .B .C .D .6.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)7.计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 68.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=-B .4504504050x x -=-C .4504502503x x -=+D .4504502503x x -=- 10.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x-=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x -=- 11.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .12.下列关于x 的方程中一定没有实数根的是( )A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在ABC V 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 14.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .15.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x=的图象经过点B ,则k 的值是_____.16.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)17.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.18.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20.(6分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?21.(6分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(8分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=13,求a的值.23.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D 作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.24.(10分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).25.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.26.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).27.(12分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】 先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解. 【详解】解:3,354,x y x y +=⎧⎨-=⎩①② +①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩ 所以74x y a b -=-=. 故选D.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型.2.B【解析】【分析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数.【详解】解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.3.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C4.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.5.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.6.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.7.D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.8.D【解析】【分析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.11.D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.12.B【解析】【分析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x6x90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x=-, 2x x0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.1【解析】【分析】先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.14.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.15【解析】【分析】已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式kyx=中,即可求出k的值.【详解】过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=3,∴点B的坐标是()1,3,把()1,3代入kyx=,得3k=.故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;16.12n1+【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=11n+,∵1111AB BM nD E ME n+==,∴1121BM n BE n +=+, ∴S △ABM :S △ABE1=(n+1):(2n+1),∴S △ABM :11n +=(n+1):(2n+1), ∴S n =121n +. 故答案为121n +. 17..【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.18.【解析】【分析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是. 故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)14 【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.45人【解析】【详解】解:设原计划有x人参加了这次植树活动依题意得:18018021.5x x=+解得x=30人经检验x=30是原方程式的根实际参加了这次植树活动1.5x=45人答实际有45人参加了这次植树活动.21.(1)详见解析;(2)1.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE =BC,根据勾股定理得到DE22BE BD-=6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22BE BD-=6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)710;(2)2222a ba b++;(3101.【解析】【分析】(1)求出BE ,BD 即可解决问题.(2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【详解】解:(1)在Rt △ABC 中,∵∠ACB =91°,a =3,b =4, ∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线,∴∠BDC =91°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯= 5972510DE BE BD ∴=-=-=(2)在Rt △ABC 中,∵∠ACB =91°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC 11S AB CD AC BC 22=⋅=⋅V Q 222222AC BC ab a b CD AB a b a b⋅+∴===++2222a b a b ++. (3)在Rt △BCD 中,22222cos BD BC B a a b a b =⋅==++∴222222222122DE BE BD a b a b a b=-=+=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE 22222232a b a b =++.∵b =3, ∴2a =9﹣a 2,即a 2+2a ﹣9=1.由求根公式得110a =-(负值舍去),即所求a 101.【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)证明见解析;(2)BD=23.【解析】【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB=,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CD BD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD=62⨯=23.【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.24.(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解析】【分析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx-≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.25.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.26. (1)见解析;(2)83π【解析】【分析】(1)根据题意,可得△BOC 的等边三角形,进而可得∠BCO =∠BOC ,根据角平分线的性质,可证得BD ∥OA ,根据∠BDM =90°,进而得到∠OAM =90°,即可得证;(2)连接AC ,利用△AOC 是等边三角形,求得∠OAC =60°,可得∠CAD =30°,在直角三角形中,求出CD 、AD 的长,则S 阴影=S 梯形OADC ﹣S 扇形OAC 即可得解.【详解】(1)证明:∵∠B =60°,OB =OC ,∴△BOC 是等边三角形,∴∠1=∠3=60°,∵OC 平分∠AOB ,∴∠1=∠2,∴∠2=∠3,∴OA ∥BD ,∵∠BDM =90°,∴∠OAM =90°,又OA 为⊙O 的半径,∴AM 是⊙O 的切线(2)解:连接AC ,∵∠3=60°,OA =OC ,∴△AOC 是等边三角形,∴∠OAC =60°,∴∠CAD =30°,∵OC =AC =4,∴CD =2,∴AD = ,∴S 阴影=S 梯形OADC ﹣S 扇形OAC =12×(4+2)×260483603g ππ.【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.27.(1)32;(2)1.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.。
专题12探索性问题(第01期)-2021年中考数学试题分项版解析汇编(广东福建专版)(原卷版)
专题12:探索性问题一、选择题1.(2015•广东深圳,第 12题,3分)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S ⊿BEF =572。
在以上4个结论中,正确的有( )2. (2015•广东梅州市,第7题,3分)对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x ;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( ) A .1 B .2 C .3 D .43.(2015•广东汕尾市,第10题,4分)对于二次函数y = - x 2+ 2x.有下列四个结论:①它的对称轴是直线x = 1;②设y 1 = - x 12+ 2x 1,y 2 = - x 22 + 2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0 < x < 2时,y >0.其中正确结论的个数为( ) A.1B.2C.3D.4二、填空题【5.(2015•广东珠海市,第10题,4分)如图,在△A 1B 1C 1中,已知A 1B 1=7,B 1C 1=4,A 1C 1=5,依次连接△A 1B 1C 1三边中点,得△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点得△A 3B 3C 3,…,则△A 5B 5C 5的周长为 .6.(2015•广东茂名市,第15题,3分)为了求1+3+32+33+…+3100的值,可令M =1+3+32+33+…+3100,则3M =3+32+33+34+…+3101,因此,3M ﹣M =3101﹣1,所以M =101312-,即1+3+32+33+…+3100=101312-,仿照以上推理计算:1+5+52+53+…+52015的值是 .7.(2015•广东,第 15题,3分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 .8.(2015•广东深圳,第 15题,3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳。
中考数学试题分项版解析汇编(第03期)专题12 探索性问题(含解析)
专题12 探索性问题一、选择题1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C .考点:1.规律型:图形的变化类;2.综合题.2.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.C.2 D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.4.(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【答案】B.【解析】试题分析:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选B.考点:规律型:图形的变化类.二、填空题5.(2017山东省济宁市)请写出一个过点(1,1),且与x轴无交点的函数解析式:.【答案】1yx(答案不唯一).考点:1.反比例函数的性质;2.一次函数的性质;3.正比例函数的性质;4.二次函数的性质;5.开放型.6.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题. 三、解答题7.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB . (1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△PAB 周长的最小值.【答案】(1)证明见解析;(2)成立;(34.【解析】试题分析:(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出AF BGAE BA=,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可;(2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论;(2)解:成立;理由如下:根据题意得:AFBG=12,∵AEAB=12,∴AFBG=AEAB,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,当S△PAB=S△OAB,∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=12MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴OF AFOE EG==14,∵MN∥AB,∴AM OFEM OE= =14,∴AM=15AE=15×2=25,由勾股定理得:PA,∴△PAB周长的最小值=2PA+AB4.考点:1.四边形综合题;2.探究型;3.动点型;4.最值问题.8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型.9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:12PP =还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:122x x x +=,122y y y +=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ; 拓展:(3)如图3,点P (2,n )在函数43y x =(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3. 【解析】试题分析:(1)用P 1、P 2的坐标分别表示出OQ 和PQ 的长即可证得结论;(3)设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,则可知OR =OS =2,利用两点间距离公式可求得R 的坐标,再由PR =PS =n ,可求得n 的值,可求得P 点坐标,利用中点坐标公式可求得M 点坐标,由对称性可求得N 点坐标,连接MN 交直线OL 于点E ,交x 轴于点S ,此时EP =EM ,FP =FN ,此时满足△PEF 的周长最小,利用两点间距离公式可求得其周长的最小值. 试题解析:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1,∴Q 1Q =212x x -,∴OQ =OQ 1+Q 1Q =x 1+212x x -=122x x + ,∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ =11222PQ P Q + =122y y +,即线段P 1P 2的中点P (x ,y )P 的坐标公式为x =122x x +,y =122y y +;(2)①∵M (2,﹣1),N (﹣3,5),∴MN ;②∵A (2,2),B (﹣2,0),C (3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x +3=0,y +(﹣1)=2,解得x =﹣3,y =3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP =EM ,FP =FN ,∴PE +PF +EF =ME +EF +NF =MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,43x ),由题意可知OR =OS =2,PR =PS =n ,=2,解得x =﹣65(舍去)或x =65,∴R (65,85)n =,解得n =1,∴P (2,1),∴N(2,﹣1),设M (x ,y ),则22x +=65,12y + =85,解得x =25,y =115,∴M (25,115),∴MN 5,即△PEF 的周长的最小值为5.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题. 10.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD =BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC与⊙O相切;(2)23π.【解析】试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;试题解析:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=12OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=604360π⨯=23π,则阴影部分的面积为S△ODB﹣S扇形DOF=12×2×23π=23π.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(3:1,45°.【解析】试题分析:(1)由正方形的性质证明△APE ≌△CFE ,可得结论;(2)分别证明∠PA E =45°和∠BAC =45°,则∠CAE =90°,即△ACE 是直角三角形; (3)分别计算PG 和BG 的长,利用平行线分线段成比例定理列比例式得:PE PG BC GB =,即2b a ba b a-=-,解得:a b ,得出a 与b 的比,再计算GH 和BG 的长,由角平分线的逆定理得:∠HCG =∠BCG ,由平行线的内错角得:∠AEC =∠ACB =45°.试题解析:(1)∵四边形ABCD 和四边形BPEF 是正方形,∴AB =BC ,BP =BF ,∴AP =CF ,在△APE 和△CFE 中,∵AP =CF ,∠P =∠F ,PE =EF ,∴△APE ≌△CFE ,∴EA =EC ;(3)设CE 交AB 于G ,∵EP 平分∠AEC ,EP ⊥AG ,∴AP =PG =a ﹣b ,BG =a ﹣(2a ﹣2b )=2b ﹣a ,∵PE ∥CF ,∴PE PG BC GB =,即2b a ba b a -=-,解得:a b ,∴a :b :1,作GH ⊥AC 于H ,∵∠CAB =45°,∴HG (b ﹣2b )=(2)b ,又∵BG =2b ﹣a =(2)b ,∴GH =GB ,GH ⊥AC ,GB ⊥BC ,∴∠HCG =∠BCG ,∵PE ∥CF ,∴∠PEG =∠BCG ,∴∠AEC =∠ACB =45°.考点:1.四边形综合题;2.探究型;3.变式探究.12.(2017山西省)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,与过点C 的⊙O 的切线交于点D .(1)若AC =4,BC =2,求OE 的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1(2)∠CDE=2∠A.【解析】试题分析:(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO.再由△AOE∽△ACB,得到OE 的长;(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:1.切线的性质;2.探究型;3.和差倍分.13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【答案】(1)证明见解析;(2)∠ABE=30°.【解析】试题分析:(1)由矩形可得∠ABD =∠CDB ,结合BE 平分∠ABD 、DF 平分∠BDC 得∠EBD =∠FDB ,即可知BE ∥DF ,根据AD ∥BC 即可得证;(2)当∠ABE =30°时,四边形BEDF 是菱形,∵BE 平分∠ABD ,∴∠ABD =2∠ABE =60°,∠EBD =∠ABE =30°,∵四边形ABCD 是矩形,∴∠A =90°,∴∠EDB =90°﹣∠ABD =30°,∴∠EDB =∠EBD =30°,∴EB =ED ,又∵四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.考点:1.矩形的性质;2.平行四边形的判定与性质;3.菱形的判定;4.探究型.14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A (0,﹣1),D (2,0),求⊙F 的半径; (3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.【答案】(1)证明见解析;(2)52;(3)AG =AD +2CD . 【解析】试题分析:(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA =∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB =∠C =90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=52,即⊙F的半径为52;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.考点:1.圆的综合题;2.探究型.15.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 【答案】【探索发现】12;【拓展应用】4ab ;【灵活应用】720;【实际应用】1944.【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得PN =a ﹣ahPQ ,设PQ =x ,由S 矩形PQMN=PQ •PN ═2()24a h ahx h --+,据此可得; 【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE =EH 20、CD =DH =16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF =DH =16、CG =HE =20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可;【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tan B =tan C 知EB =EC 、BH =CH =54,EH =43BH =72,继而求得BE =CE =90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 试题解析:【探索发现】∵EF 、ED 为△ABC 中位线,∴ED ∥AB ,EF ∥BC ,EF =12BC ,ED =12AB ,又∠B =90°,∴四边形FEDB 是矩形,则ABCS S ∆矩形FEDB=12EF DE AB BC ⋅⋅=112212BC ABAB BC ⋅⋅=12,故答案为:12;【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即=P N h P Q a h -,∴PN =a ﹣ahPQ ,设PQ =x ,则S 矩形PQMN =PQ •PN =x (a ﹣a h x )=2a x ax h -+ =2()24a h ah x h --+,∴当PQ =2h 时,S 矩形PQMN 最大值为4ab ,故答案为:4ab ;【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵∠FAE=∠DHE,AE=AH,∠AEF=∠HED,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=12(AB+AF)=24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为12×BG•BF=12×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tan B=tan C=43,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=12BC=54cm,∵tan B=EHBH=43,∴EH=43BH=43×54=72cm,在Rt△BHE中,BE=90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为14BC•EH=1944cm2.答:该矩形的面积为1944c m2.考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题.16.(2017江苏省连云港市)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB.AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .【答案】(1)∠ABE =∠ACD ;(2)证明见解析. 【解析】试题分析:(1)证得△ABE ≌△ACD 后利用全等三角形的对应角相等即可证得结论; (2)利用垂直平分线段的性质即可证得结论. 试题解析:(1)∠ABE =∠ACD ;在△ABE 和△ACD 中,∵AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD ;(2)∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC .考点:1.等腰三角形的性质;2.线段垂直平分线的性质;3.探究型. 17.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S . 如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由. 迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S =矩形四边形;实验探究:11112ABCD A B C D EFGH S S S =-矩形矩形四边形;迁移应用:(1)EG =2;(2)172.【解析】试题分析:问题呈现:只要证明S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=12,=12, =12,=12,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题.试题解析:问题呈现:证明:如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∠A =90°,∵AE =DG ,∴四边形AEGD 是矩形,∴S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,∴S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC .实验探究:结论:2S 四边形EFGH =S 矩形ABCD ﹣.理由:∵ =12, =12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG .(2)∵2S 四边形EFGH =S 矩形ABCD +,∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5﹣1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=12)2②如图5﹣2中,当G 与D 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=21=2,∵22,∴矩形EFGH 的面积最大值=172.考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.【答案】(1)证明见解析;(2)①AB2=4CE•CF.【解析】试题分析:(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)解:①∵∠DCF =∠DCE =135°,∴∠CDF +∠F =180°﹣135°=45°,∵∠CDF +∠CDE =45°,∴∠F =∠CDE ,∴△CDF ∽△CED ,∴CD CF CE CD =,即CD 2=CE •CF ,∵∠ACB =90°,AC =BC ,AD =BD ,∴CD =12AB ,∴AB 2=4CE •CF ;②如图,过D 作DG ⊥BC 于G ,则∠DGN =∠ECN =90°,CG =DG ,当CE =4,CF =2时,由CD 2=CE •CF 得CD =∴在Rt △DCG 中,CG =DG =CD •sin∠DCG =×sin45°=2,∵∠ECN =∠DGN ,∠ENC =∠DNG ,∴△CEN ∽△GDN ,∴CN CE GN DG ==2,∴GN =13CG =23,∴DN =3.考点:1.几何变换综合题;2.探究型;3.和差倍分;4.综合题.。
中考数学专题讲座 探索性问题.docx
中考数学专题讲座探索性问题概述:探索性题目一般作为压轴题或次压轴题出现,题目较难,难在结论不肯定,要通过探索证明或计算,得出结论,并给予肯定或否定回答:这种题目的结论有多样性,需要解题的周密考虑,解这种题目有两种方法:一种是假定结论成立,去证明它的可能性或存在性;另一种是从条件出发直接证明或计算回答存在或不存在.典型例题精析例1.如图1,分别以直角三角形ABC三边为直径向外作三个半圆,其而积分别用S】、S2、S3表示,则不难证明Si=S2+S3.(1)如图2所示,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用Si、S?、S3表示,那么Si、S2、S3之间有什么关系?(不必证明)(2)如图3所示,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用Si、S2、S3表示,请你确定$、S2、S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其而积分别为S|、S2、S3表示,使Si、S?、S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?并证明你的结论;(4)类比(1)、(2)、(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2.(1)S|二S2+S3;(2)S]=S2+S3,证明如下:显然:Si寻,(也可用三角形相似证明)(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:.Sc + S3 ci~ 4- b~ ]S| c2S|=S2+S3-(4)分别以直角三角形ABC的三边为一边向外作相似图形,其而积分别用Si、S2> S3 表示,则S]=S2+S3・例2.如图1,。
0|和002外切于P, AB是OO1和002的公切线,A、B是切点,直线AP、BP分别交©02, OOi 于F、E.(1)求证:AE、BF分别为(DO】、(DO?的直径;(2)求证:AB2=AEBF;(3)如图2,当图1中的切点P变为两圆一个交点时,结论AB2=AE BF还成立吗?若成立,请证明;若不成立,请说明理由.分析:(1)即证ZAPE二ZBPF二90°,过P作二圆公切线,可证明.(2)证明△ ABE^ABFA 可得.(3)同样可证厶ABE^ABFA.AZE=ZBAF, ZF=ZABE.中考样题训练1.如图,在直角坐标系中,0是原点,A、13、C三点的坐标分别为A (18, 0) , B (18,6) , C (8, 6),四边形0ABC是梯形,点P、Q同时从原点出发,分别作饼速运动,其中点P 沿0A向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终S| c点时,另一点也停止运动.(1)求出直线0C的解析式及经过0、A、C三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D,使得以0、A、D为顶点的三角形与全等,请直接写出点D的坐标.(3)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(4)设从出发起,运动了t秒钟,当P、Q两点运动的路程之和恰好等于梯形OABC周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出I的值; 如不可能,请说明理由.2.如图,(DO?与的弦I3C切于C点,两圆的另一个交点为D,动点A在00,±,直线AD与(DO?交于点E,与直线BC交于点F.(1)如图1,当点A在CD上时,求证:①△FDC'S^FCE;②AB〃EC;(2)如图2,当点A在BD上时,是否仍有AI3〃EC?请证明你的结论.3.如图,OA和是外离两圆,©A半径长为2, OB的半径长为1, AB二4, P为连结两圆圆心的线段AB上的一点,PC切OA于点C, PD切OB于点D.(1)若PC二PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC+PD二4?如果存在,问这样的卩点有几个;并求出PB的值;如果不存在,说明理由;(3)当点P在线段AB上运动到某处,使PC丄PD时,就有△ APC-APBD,请问:除上述情况外,当点卩在线段AB上运动到何处(说明叩的长为多少;或卩C、PD具有何种关系) 时,这两个三角形仍相似;并判断此时直线CP与的位置关系,证明你的结论.4.三月三,放风筝,图中是小明制作的风筝,他根据DE二DF, EII=FH,不用度量,就知道ZDEH二ZDFH .请你用所学知识给予证明.D考前热身训练1.填空题(1)观察下列等式,你会发现什么规律?3X5=15,而15=41 2 3 4-1,5X7二35,而35二6「1,・・・11X13=143,而143=12-1,…(2)如图,以△ABC的边AB为直径作00交BC于D,过00的切线交AC于E,使得DE丄AC,贝IJA ABC的边必须满足的是.2.己知反比例函数y二土(kHO)和一次函数y=-x+8.x2若一次函数和反比例函数的图象交于点(4, m),求m和k;3k满足什么条件时,这两个函数图象有两个不同的交点?4设(2)中的两个交点为A、B,试判定ZAOB是锐角还是钝角?3.如图,在直角坐标系xOy屮,以点A (0, -3)为圆心作圆与x轴相切,与OA外切于点P, B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C.将你猜想到的规律用只含一个字母的式子表示出来D作条件B2(1)设OA的半径为门,OB的半径为H,且r2=-r.,求公切线DP的长及直线DP的函3数解析式;(2)若OA的位置大小不变,点B在x轴正半轴上移动,OB与OA始终外切,过D作(D B的切线DE, E为切点,当DE二4时,B点在什么位置?从解答中能发现什么?答案:中考样题看台1.(1) y=— x.4・ 3 2 27..y=- — x2+ — x40 20(2) D (10, 6)3 3(3)当Q在0C上运动吋,可设Q (m, -m),依题意有:m2+ (-m2) = (2t) 2.4 4 88 8 6m—— t., Q ( — t, — t) , (0WtW5)5 5 5当Q在BC上时,Q点所走过的路程为2t・V0C=10, ・・・CQ二2t-10,・・・Q点在横坐标为2t-10+8二2t-2,・・・Q (2t-2, 6) (5<tW10).(4)I梯形OABC的周长为44,当Q点在0C上,P运动的路程为t,则Q运动的路程为(22-t)3△OPQ中,0P边上的高为:(22-t) X依题意有:—t (22-t)2 整理得:12-22t+140=0. ・・・这样的t 不存在.当Q 在BC 上时,Q 走过的路程为22-1, ・・・CQ 的长为:22-t-10=12-t,・・・S 梯形OCQP =—X6 (22-t-10+t)二36H84X — ,2 2・•・这样的t 值也不存在.综上所述,不存在这样的t 值,使得直线PQ 同时平分梯形的周长和面积.2.(1)①・.・BC 切(DO?于C,・・・ZECF 二ZCDF,又ZF=ZF, /.AFDC^AFCE.② 又 V ZADC-ZABC, ZECF 二ZCDF,AZABC=ZECF, AAB^EC(2)有 AB//EC,证明:・.・BC 切 OO?于 C, A ZBCE=ZD,又 VABCD 内接于 OOp /.ZABF=ZD, /. ZBCE=ZABF, A ABEC3.(1) TPC 切OA 于点 C,・・・PC 丄AC, PC 2=PA 2-AC 2,同理 PD 2=PB 2-BD 2,TPOPD, /.PC 2- AC 2=PB 2-BD 2,设 PB=x, PA 二4-x 代入得 x 2-l= (4-x) 2-22,13 13 1319 解得x=—, 1<—<2,即PB 的长为亠(PA 长为—>2).8 8 88(2)假定有在一点P 使PC 2+PD 2=4,设PB 二x,则 PD 2=X 2-1, PC 2= (4-X ) 2-22,代入条件得(4-x) 2-22+x 2-l=4,解得 x=2± —,2•・・P 在两圆间的圆外部分,・・・1<PB<2,即l<x<2,满足条件的P 点只有一个,这时PB 二2-4513 1S ZSOPQ =—t (22~t) X — , S 梯形 OABC 二—(180+10) X 6-84.2 5 23 (1)X — —84 X —,52AA=222-4X140<0,(3)当PC: PD二2: 1 或PB二一时,也有△ PCA^APDB,3Ar 7 PC AP这时,在APCA与APUB中—= - = —(或仝匚)ZC=ZD-RtZ,BD 1 PD BPAAPCA^APDB, AZBPD=ZAPC=ZBPE (E 在CP 的延长线上),AB点在ZDPE的角平分线上,B到PD与PE的距离相等,VOB与PD相切,AOB也与CP的延长线PE相切.4.证明:连结DH在△。
中考数学考试考点解密探索性问题(含解析)
2012年中考数学二轮复习考点解密探索性问题Ⅰ、综合问题精讲:探索性问题是指命题中缺少一定地条件或无明确地结论,需要经过推断,补充并加以证明地题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件地题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定地前提下,需探索发现某种数学关系是否存在地题目.探索型问题具有较强地综合性,因而解决此类问题用到了所学过地整个初中数学知识.经常用到地知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式地求法(图象及其性质)、直角三角形地性质、四边形(特殊)地性质、相似三角形、解直角三角形等.其中用几何图形地某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题地主要手段和途径.因此复习中既要重视基础知识地复习,又要加强变式训练和数学思想方法地研究,切实提高分析问题、解决问题地能力.Ⅱ、典型例题剖析【例1】如图2-6-1,已知抛物线地顶点为A(O,1),矩形CDEF地顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线地解析式;(2)如图2-6-2,若P点为抛物线上不同于A地一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴地垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR地形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点地三角形和以点Q、R、M为顶点地三角形相似,若存在,请找出M点地位置;若不存在,请说明理由.⑴解:方法一:∵B点坐标为(0,2),∴OB=2,∵矩形CDEF面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2). 设抛物线地解析式为2y ax bx c =++. 其过三点A(0,1),C(-2.2),F(2,2).得1242242xa b c a b c=⎧⎪=-+⎨⎪=++⎩解得1,0,14a b c ===∴此抛物线地解析式为2114y x =+方法二:∵B 点坐标为(0,2),∴OB =2, ∵矩形CDEF 面积为8,∴CF=4. ∴C 点坐标为(一2,2).根据题意可设抛物线解析式为2y ax c =+. 其过点A(0,1)和C(-2.2)124c a c=⎧⎨=+⎩解得1,14a c == 此抛物线解析式为2114y x =+(2)解:①过点B 作BN BS ⊥,垂足为N .∵P 点在抛物线y=214x +l 上.可设P 点坐标为21(,1)4a a +.∴PS =2114a +,OB =NS =2,BN=a .∴PN=PS —NS=2114a -在Rt PNB 中.PB 2=222222211(1)(1)44PN BN a a a +=-+=+∴PB =PS =2114a +②根据①同理可知BQ =QR. ∴12∠=∠, 又∵13∠=∠, ∴23∠=∠,同理∠SBP =∠B ∴2523180∠+∠=︒∴5390∠+∠=︒∴90SBR ∠=︒. ∴△SBR 为直角三角形. ③方法一:设,PS b QR c ==,∵由①知PS =PB =b .QR QB c ==,PQ b c =+.∴222()()SR b c b c =+--∴SR =假设存在点M .且MS =x ,别MR=x .若使△PSM ∽△MRQ ,则有b x=即20x bc -+=∴12x x =∴SR =∴M 为SR 地中点. 若使△PSM ∽△QRM ,则有b x =.∴x =.∴1MR x c QB ROMS x b BP OS ==-===. ∴M 点即为原点O.综上所述,当点M 为SR 地中点时.∆PSM ∽ΔMRQ ;当点M 为原点时,∆PSM ∽∆MRQ .方法二:若以P 、S 、M 为顶点地三角形与以Q 、M 、R 为顶点三角形相似, ∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况.当∆PSM ∽∆MRQ 时.∠SPM =∠RMQ ,∠SMP =∠RQM . 由直角三角形两锐角互余性质.知∠PMS+∠QMR =90°.∴90PMQ ∠=︒. 取PQ 中点为N .连结MN .则MN =12PQ=1()2QR PS +.∴MN 为直角梯形SRQP 地中位线,∴点M 为SR 地中点当△PSM ∽△QRM 时,RM QR QBMS PS BP ==.又RM RO MS OS=,即M 点与O 点重合.∴点M 为原点O.综上所述,当点M 为SR 地中点时,∆PSM ∽△MRQ ;当点M 为原点时,∆PSM ∽△QRM.点拨:通过对图形地观察可以看出C 、F 是一对关于y 轴地对称点,所以(1)地关键是求出其中一个点地坐标就可以应用三点式或 y=ax 2+c 型即可.而对于点 P 既然在抛物线上,所以就可以得到它地坐标为(a ,14 a 2+1).这样再过点B 作BN ⊥PS .得出地几何图形求出PB 、PS 地大小.最后一问地关键是要找出△PSM 与△MRQ 相似地条件.【例2】探究规律:如图2-6-4所示,已知:直线m ∥n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点.(1)请写出图2-6-4中,面积相等地各对三角形;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有________与△ABC 地面积相等.理由是:_________________.解决问题:如图 2-6-5所示,五边形 ABCDE 是张大爷十年前承包地一块土地地示意图,经过多年开垦荒地,现已变成如图2-6-6所示地形状,但承包土地与开垦荒地地分界小路(2-6-6中折线CDE )还保留着;张大爷想过E 点修一条直路,直路修好后,要保持直路左边地土地面积与承包时地一样多,右边地土地面积与开垦地荒地面积一样多.请你用有关地几何知识,按张大爷地要求设计出修路方案(不计分界小路与直路地占地面积).(1)写出设计方案.并画出相应地图形; (2)说明方案设计理由.解:探究规律:(l )△ABC 和△ABP ,△AOC 和△ BOP 、△CPA 和△CPB .(2)△ABP ;因为平行线间地距离相等,所以无论点P 在m 上移动到任何位置,总有△ABP与△ABC同底等高,因此,它们地面积总相等.解决问题:⑴画法如图2-6-7所示.连接EC,过点D作DF∥EC,交CM于点F,连接EF,EF即为所求直路位置.⑵设EF交CD于点H,由上面得到地结论可知:SΔECF=SΔECD,SΔHCF=SΔEDH,所以S五边形ABCDE=S五边形ABCFE,S五边形EDCMN=S四边形EFMN.点拨:本题是探索规律题,因此在做题时要从前边问题中总结出规律,后边地问题要用前边地结论去一做,所以要连接EC,过D作DF∥EC,再运用同底等高地三角形地面积相等.【例3】如图2-6-8所示,已知抛物线地顶点为M(2,-4),且过点A(-1,5),连结AM交x轴于点B.⑴求这条抛物线地解析式;⑵求点B地坐标;⑶设点P(x,y)是抛物线在x轴下方、顶点M左方一段上地动点,连结PO,以P为顶点、PQ为腰地等腰三角形地另一顶点Q在x轴上,过Q作x轴地垂线交直线AM于点R,连结PR.设面PQR地面积为S.求S与x之间地函数解析式;⑷在上述动点P(x,y)中,是否存在使SΔPQR=2地点?若存在,求点P地坐标;若不存在,说明理由.解:(1)因为抛物线地顶点为M(2,-4)所以可设抛物线地解析式为y=(x-2)2-4.因为这条抛物线过点A(-1,5)所以5=a(-1-2)2-4.解得a=1.所以所求抛物线地解析式为y=(x—2)2-4(2)设直线AM地解析式为y=kx+ b.因为A(-1,5), M(2,-4)所以524k bk b-+=⎧⎨+=-⎩,解得k=-3,b=2.所以直线AM地解析式为y=3x+2.当y=0时,得x= 23,即AM与x轴地交点B(23,0)(3)显然,抛物线y=x2-4x过原点(0,0〕当动点P (x ,y )使△POQ 是以P 为顶点、PO 为腰且另一顶点Q 在x 轴上地等腰三角形时,由对称性有点 Q (2x ,0)因为动点P 在x 轴下方、顶点M 左方,所以0<x <2.因为当点Q 与B (23 ,0)重合时,△PQR 不存在,所以x ≠13 ,所以动点P (x ,y )应满足条件为0<x <2且x ≠13 ,因为QR 与x 轴垂直且与直线AM 交于点R , 所以R 点地坐标为(2x ,-6x+2) 如图2-6-9所示,作P H ⊥OR 于H , 则PH=|||2|,|62|Q P x x x x x QR x -=-==-+而S=△PQR 地面积=12 QR ·P H= 12 |62|x x -+下面分两种情形讨论:①当点Q 在点B 左方时,即0<x <13 时,当R 在 x 轴上方,所以-6x +2>0. 所以S=12(-6x +2)x=-3x 2+x ;②当点Q 在点B 右方时,即13 <x <2时点R 在x 轴下方,所以-6x +2<0. 所以S=12 [-(-6x +2)]x=3x 2-x ;即S 与x 之间地函数解析式可表示为2213(0)313(2)3x x x S x x x ⎧-+<<⎪⎪=⎨⎪-<<⎪⎩(4)当S=2时,应有-3x 2+x =2,即3x 2-x+ 2=0,显然△<0,此方程无解.或有3x 2-x =2,即3x 2-x -2=0,解得x 1 =1,x 2=-23 当x=l 时,y= x 2-4x=-3,即抛物线上地点P (1,-3)可使S ΔPQR =2; 当x=-23<0时,不符合条件,应舍去.所以存在动点P ,使S ΔPQR =2,此时P 点坐标为(1,-3)点拨:此题是一道综合性较强地探究性问题,对于第(1)问我们可以采用顶点式求得此抛物线,而(2)中地点B是直线AM与x轴地交点,所以只要利用待定系数法就可以求出直线AM,从而得出与x轴地交点B.(3)问中注意地是Q点所处位置地不同得出地S与x 之间地关系也随之发生变化.(4)可以先假设存在从而得出结论.Ⅲ、综合巩固练习:(100分90分钟)观察图2-6-10中⑴)至⑸中小黑点地摆放规律,并按照这样地规律继续摆放.记第n个图中小黑点地个数为y.解答下列问题:⑴填下表:⑵当n=8时,y=___________;⑶根据上表中地数据,把n作为横坐标,把y作为纵坐标,在图2-6-11地平面直角坐标系中描出相应地各点(n,y),其中1≤n≤5;⑷请你猜一猜上述各点会在某一函数地图象上吗?如果在某一函数地图象上,请写出该函数地解析式.2.(5分)图2-6-12是某同学在沙滩上用石子摆成地小房子.观察图形地变化规律,写出第n个小房子用了_____________块石子.3.(10分)已知Rt△ABC中,AC=5,BC=12,∠ACB =90°,P是AB边上地动点(与点A、B不重合),Q是BC边上地动点(与点B、C不重合).⑴如图2-6-13所示,当PQ∥A C,且Q为BC地中点时,求线段CP地长;⑵当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ地长地取值范围,若不可能,请说明理由.4.如图2-6-14所示,在直角坐标系中,以A(-1,-1),B(1,-1),C(1,1),D(-1,l)为顶点地正方形,设正方形在直线:y=x及动直线l:y=-x+2a(-l≤a<1)上方2部分地面积为S(例如当a取某个值时,S为图中阴影部分地面积),试分别求出当a=0,a=-1时,相应地S地值.5.(10分)如图2-6-15所示,DE是△ABC地中位线,∠B=90○,AF∥B C.在射线A F 上是否存在点M,使△MEC与△A DE相似?若存在,请先确定点M,再证明这两个三角形相似;若不存在,请说明理由.6.如图2-6-16所示,在正方形ABCD中,AB=1,AC是以点B为圆心.AB长为半径地圆地一段弧点E是边AD上地任意一点(点E与点A、D不重合),过E作AC所在圆地切线,交边DC于点F石为切点.⑴当∠DEF=45○时,求证点G为线段EF地中点;⑵设AE=x,FC=y,求y关于x地函数解析式;并写出函数地定义域;⑶图2-6-17所示,将△DEF沿直线EF翻折后得△D1EF,当EF=56时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(图2-6-18为备用图)7.(10分)取一张矩形地纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图2-6-19(1)所示;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上地对应点B′,得Rt△AB′E,如图2-6-19(2)所示;第三步:沿EB′线折叠得折痕EF,如图2-6-19⑶所示;利用展开图2-6-19(4)所示探究:(l)△AEF是什么三角形?证明你地结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.8.(10分)某校研究性学习小组在研究有关二次函数及其图象性质地问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a ≠0),当实数a 变化时,它地顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3(a ≠0)地顶点地横坐标减少1a,纵坐标增加1a ,得到A 点地坐标;若把顶点地横坐标增加1a ,纵坐标增加1a,得到B 点地坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3(a ≠0)上.⑴请你协助探求出实数a 变化时,抛物线y=ax 2+2x+3(a ≠0)地顶点所在直线地解析式; ⑵问题⑴中地直线上有一个点不是该抛物线地顶点,你能找出它来吗?并说明理由;⑶在他们第二个发现地启发下,运用“一般→特殊→一般”地思想,你还能发现什么?你能用数学语言将你地猜想表述出来吗?你地猜想能成立吗?若能成立,请说明理由.9.已知二次函数地图象过A (-3,0),B (1,0)两点.⑴当这个二次函数地图象又过点以0,3)时,求其解析式;⑵设⑴中所求M次函数图象地顶点为P,求SΔAPC:SΔABC地值;⑶如果二次函数图象地顶点M在对称轴上移动,并与y轴交于点D,SΔAMD:SΔABD地值确定吗?为什么?10.(13分)如图2-6-20所示,在Rt△ABC中,∠ACB=90°,BC地垂直平分线DE,交BC于D,交AB于E,F在DE上,并且A F=CE.⑴求证:四边形ACEF是平行四边形;⑵当∠B地大小满足什么条件时,四边形A CEF是菱形?请回答并证明你地结论;⑶四边形ACEF有可能是正方形吗?为什么?版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.2MiJT。
中考数学试卷精选汇编探索性问题含解析试题
探究性问题制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一、选择题1.〔2021凉山州〕观察图中正方形四个顶点所标的数字规律,可知,数2021应标在〔〕A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【答案】D.考点:1.规律型:点的坐标;2.规律型.2.〔2021〕以下说法中正确的选项是〔〕A.“翻开电视,正在播放?新闻联播?〞是必然事件B.“x2<0〔x是实数〕〞是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了理解夏季冷饮场上冰淇淋的质量情况,宜采用普查方式调查【答案】C.【解析】试题分析:选项A中的事件是随机事件,应选项A错误;.选项B 中的事件是不可能事件,应选项B 错误;. 选项C 中的事件是随机事件,应选项C 正确;.选项D 中的事件应采取抽样调查,普查不合理,应选D 错误;. 应选C .考点:1.概率的意义;2.全面调查与抽样调查;3.随机事件;4.探究型.3.〔2021〕用大小相等的小正方形按一定规律拼成以下图形,那么第n 个图形中小正方形的个数是〔 〕A .2n +1B .21n - C .22n n + D .5n ﹣2 【答案】C .考点:规律型:图形的变化类.4.〔2021〕如下图,以下各三角形中的三个数之间均具有一样的规律,根据此规律,最后一个三角形中y 与n 之间的关系是〔 〕A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .考点:规律型:数字的变化类. 二、填空题5.〔2021〕百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的简史,如:HY 四位“19 99 12 20〞标示回归日期,最后一行中间两位“23 50〞标示面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,那么这个和为 .【答案】505. 【解析】试题分析:1~100的总和为:〔1+100〕×100÷2=5050,一一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.考点:规律型:数字的变化类.6.〔2021〕下面是“经过直线外一点作这条直线的垂线〞的尺规作图过程::直线l和l外一点P.〔如图1〕求作:直线l的垂线,使它经过点P.作法:如图2〔1〕在直线l上任取两点A,B;〔2〕分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;〔3〕作直线PQ.所以直线PQ就是所求的垂线.请答复:该作图的根据是.【答案】到线段两个端点的间隔相等的点在线段的垂直平分线上〔A、B都在线段PQ的垂直平分线上〕.考点:作图—根本作图.7.〔2021〕我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角〞.这个三角形给出了()na b +〔n =1,2,3,4…〕的展开式的系数规律〔按a 的次数由大到小的顺序〕: 请根据上述规律,写出20162()x x-展开式中含2014x项的系数是 .【答案】﹣4032.考点:1.整式的混合运算;2.阅读型;3.规律型.8.〔2021〕设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2﹣n ,假设这列数为﹣1,3,﹣2,a ,﹣7,b …,那么b = . 【答案】128. 【解析】试题分析:根据题意得:a =23﹣〔﹣2〕=11,那么b =211﹣〔﹣7〕=128.故答案为:128. 考点:规律型:数字的变化类.9.〔2021〕如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点〔1,0〕作x 轴的垂线交l 2于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进展下去,那么点A 2021的坐标为.【答案】〔21008,21009〕.【解析】试题分析:观察,发现规律:A 1〔1,2〕,A 2〔﹣2,2〕,A 3〔﹣2,﹣4〕,A 4〔4,﹣4〕,A 5〔4,8〕,…,∴A 2n +1〔(2)n -,2(2)n⨯-〕〔n 为自然数〕. ∵2021=1008×2+1,∴A 2021的坐标为〔〔﹣2〕1008,2〔﹣2〕1008〕=〔21008,21009〕.故答案为:〔21008,21009〕.考点:1.一次函数图象上点的坐标特征;2.规律型;3.一次函数的应用.10.〔2021〕如图,一段抛物线:y =﹣x 〔x ﹣2〕〔0≤x ≤2〕记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进展下去,直至得到C 6,假设点P 〔11,m 〕在第6段抛物线C 6上,那么m = .【答案】﹣1.考点:1.二次函数图象与几何变换;2.抛物线与x 轴的交点;3.规律型. 11.〔2021〕反比例函数ky x=〔k ≠0〕的图象如下图,那么k 的值可能是 〔写一个即可〕.【答案】答案不唯一,只要k <0即可,如k =-1. 【解析】试题分析:∵双曲线的两支分别位于第二、第四象限,∴k <0,∴k 可取﹣1.故答案为:答案不唯一,只要k <0即可,如k =-1. 考点:1.反比例函数的性质;2.开放型.12.〔2021〕古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,假设把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,那么x n +x n +1=. 【答案】2(1)n +.考点:规律型:数字的变化类.三、解答题13.〔2021〕感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:D B=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:D B=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,那么AB﹣AC= 〔用含a的代数式表示〕【答案】探究:证明见解析;应用:2a.考点:1.全等三角形的断定与性质;2.探究型.14.〔2021〕如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E 作EG⊥DE,使EG=DE,连接FG,FC.〔1〕请判断:FG与CE的数量关系是,位置关系是;〔2〕如图2,假设点E,F分别是边CB,BA延长线上的点,其它条件不变,〔1〕中结论是否仍然成立?请作出判断并给予证明;〔3〕如图3,假设点E,F分别是边BC,AB延长线上的点,其它条件不变,〔1〕中结论是否仍然成立?请直接写出你的判断【答案】〔1〕FG=CE,FG∥CE;〔2〕成立;〔3〕成立.考点:1.四边形综合题;2.探究型;3.变式探究.15.〔2021〕如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及假设干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在22A B上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等间隔平行排放〔最后一个矩形状框的边C n D n与点E间的间隔应不超过d〕,A1C1∥A2C2∥A3C3∥…∥A n C n.〔1〕求d的值;〔2〕问:C n D n与点E间的间隔能否等于d?假如能,求出这样的n的值,假如不能,那么它们之间的间隔是多少?【答案】〔1224-;〔23242-.考点:1.垂径定理;2.存在型;3.规律型.16.〔2021〕小宇想测量位于池塘两端的A、B两点的间隔.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.假设直线AB与EF之间的间隔为60米,求A、B两点的间隔.【答案】40203考点:1.解直角三角形的应用;2.探究型.17.〔2021〕问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E 处〔如图②〕,易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE2CD,从而得出结论:A C+BC2CD.简单应用:〔1〕在图①中,假设AC2BC=22CD= .〔2〕如图③,AB是⊙O的直径,点C、D在⊙上,AD BD,假设AB=13,BC=12,求CD的长.拓展规律:〔3〕如图④,∠ACB=∠ADB=90°,AD=BD,假设AC=m,BC=n〔m<n〕,求CD的长〔用含m,n的代数式表示〕〔4〕如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,假设点E满足AE=13AC,CE=CA,点Q为AE的中点,那么线段PQ与AC的数量关系是.172 2;〔3〕2()2n m-;〔4〕2PQ=1356+AC或者2PQ=3516-AC.【答案】〔1〕3;〔2〕考点:1.圆的综合题;2.探究型;3.分类讨论;4.和差倍分;5.压轴题.18.〔2021〕如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.OA=OB=10cm.〔1〕当∠AOBcm〕〔2〕保持∠AOB=18°不变,在旋转臂OBcm〕〔参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器〕【答案】〔1〕cm;〔2〕cm.∴BE=2BD=2AB•sincmcm.考点:1.解直角三角形的应用;2.探究型.19.〔2021〕如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角〔∠CDB=45°〕,在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角〔∠EDB=53°〕,那么钢线ED的长度约为多少米?〔结果准确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33〕【答案】10.考点:1.解直角三角形的应用;2.探究型.制卷人:打自企;成别使;而都那。
中考数学中探索性问题的分析
中考数学中探索性问题的分析陈和萍近年来,探索性问题在中考试卷中频频出现,成为中考试卷中的一个亮点,探索性问题的形式多种多样,取材广泛,解决这类问题,往往需要我们展开观察、试验,类比、归纳、猜想等一系列的探索活动,通过探索性问题的解题活动,不仅有利于促进数学知识和数学方法的巩固和掌握,有利于思维品质的提高,也有利于自主探索、创新精神的培养。
一、探索数据规律例1 观察下列等式,你会发现什么规律?1553=⨯而14152-=3575=⨯而16352-=6397=⨯而18632-=将你猜想到的规律用只含一个字母的式子表示出来:_______。
答案:()()()1n 21n 21n 22-=+⨯-例2 观察下列顺序排列的等式:1109=+⨯11219=+⨯21329=+⨯31439=+⨯41549=+⨯猜想:第n 个等式(n 为正整数)应该为_______。
答案:()9n 10n 1n 9-=+-()()[]11n 10n 1n 9+-=+-或。
点评:在解决这种探索数据规律的问题时,我们通常是先考查一些特殊的情况,通过观察、分析、归纳、验证,然后得出一般性的结论,在解题的过程中,我们往往需要对题目中的数据进行适当变化,以使得数据的规律更加明显。
二、探索函数关系例3 用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S ,它各边上格点的个数和为x 。
(1)图1中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数多边形的序号① ② ③ ④ … 多边形的面积S2 3 4 … 各边上格点的个数和x 4 5 6 8 … 答:S=___________。
(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2个格点,此时所画的各个多边形的面积S 与它各边上格点的个数和x 之间的关系式是:S=_______。
(3)请你继续探索,当格点多边形内部有且只有n 个格点时,猜想S 与x 有怎样的关系?答:S=_______。
中考数学复习专题讲座探究型问题(含详细参考答案)
中考数学复习专题讲座探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件.例1 (2015•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF 和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.考点:菱形的性质;二次函数的最值;全等三角形的判定与性质;等边三角形的性质。
中考数学试题分项版解析汇编第期专题探索性问题含解析8
专题12:探索性问题一、选择题1.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里 D.3里【答案】C考点:等比数列2.(2017山东临沂第11题)将一些相同的“d”按如图所示摆放,观察每个图形中的“d”的个数,若第n个图形中“d”的个数是78,则n的值是()A.11 B.12 C.13 D.14【答案】B【解析】试题分析:第一个图形有1个○,第二个图形有1+2=3个○,第三个图形有1+2+3=6个○,第四个图形有1+2+3+4=10个○,……第n个图形有1+2+3+……+n=(1)2n n+个○,故(1)2n n+=78,解得n=12或n=-13(舍去).故选:B考点:规律探索3.(2017山东日照第11题)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.4.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.4【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)5.(2017浙江湖州第10题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从44⨯的正方形网格图形中(如图1),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有2020⨯的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要跳马变换的次数是( )A .13B .14 C.15 D .16【答案】B【解析】试题分析:根据图一可知,延AC 或AD 可进行下去,然后到CF ,从而求出3格,然后依次进行下去,而20×20格共21条线,所以可知要进行下去,正好是(20+1)÷7×2=14.故答案为:14.考点:1、勾股定理,2、规律探索二、填空题1.(2017山东滨州第18题)观察下列各式:2111313=-⨯, 2112424=-⨯ 2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________. 【答案】2354(1)(2)n n n n +++ .2,(2017山东菏泽第14题)如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 33-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 33-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .【答案】()3333+【解析】试题分析: ∵直线x y 33-=∴∠AOB=60°∵在ABO ∆中,OB=1,OA=2,AB=3∴332+=OO ,∵ABO ∆每旋转三次看做一个整体,∴()3336OO 12+=.如图,过点12O 向x 轴画垂线,∵()3336OO 12+=,︒=∠6012OE O ,∴()3333+=OE ,即点12O 的纵坐标为()3333+.3.(2017浙江湖州第15题)如图,已知30∠AOB =,在射线OA 上取点1O ,以1O 为圆心的圆与OB 相切;在射线1O A 上取点2O ,以2O 为圆心,21O O 为半径的圆与OB 相切;在射线2O A 上取点3O ,以3O 为圆心,32O O 为半径的圆与OB 相切;⋅⋅⋅;在射线9O A 上取点10O ,以10O 为圆心,109O O 为半径的圆与OB 相切.若1O 的半径为1,则10O 的半径长是 .【答案】512(或29)考点:1、圆的切线,2、30°角的直角三角形4.(2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE【解析】试题分析:已知90C ∠=°,BD 平分ABC ∠,DE 垂直平分AB ,利用角平分线性质定理可知DC=DE ;根据已知条件易证BCD ∆≌BED ∆,根据全等三角形的性质可得BC=BE.5.(2017浙江舟山第15题)如图,把n 个长为1的正方形拼接成一排,求得71tan ,31tan ,1tan 321=∠=∠=∠C BA C BA C BA ,计算=∠C BA 4tan ,……,按此规律,写出=∠C BA n tan (用含n 的代数式表示).【答案】113 , 211n n -+. 【解析】 试题分析:如图,过点C 作CE ⊥A 4B 于E ,易得∠A 4BC=∠BA 4A 1,故tan ∠A 4BC=tan ∠BA 4A 1=14,在Rt △BCE 中,由tan ∠A 4BC=14,得BE=4CE ,而BC=1,则BE=,CE=, 而A 4=所以A 4E=A 4, 在Rt △A 4EC 中,tan ∠BA 4C=4113CE A E =;根据前面的规律,不能得出tan ∠ BA 1C=1101⨯+,tan ∠ BA 2C 1211⨯+, tan ∠ BA 3C=1321⨯+,tan ∠ BA 4C=1431⨯+,则可得规律tan ∠ BA n C=211(1)11n n n n =⨯-+-+.故答案为;考点:解直角三角形.三、解答题1.(2017山东临沂第25题)数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若ACB ACD ∠=∠=60ABD ADB ∠=∠=︒,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC ≌V V ,从而容易证明ACE V 是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC V 绕着点A 逆时针旋转60︒,使AB 与AD 重合,从而容易证明ACF V 是等比三角形,故AC CF =,所以AC BC CD =+.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=45ABD ADB ∠=∠=︒”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=ABD ADB α∠=∠=”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【答案】(1)AC (2)BC+CD=2AC•cos α【解析】试题分析:(1)先判断出∠ADE=∠ABC ,即可得出△ACE 是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC 也可以先判断出点A ,B ,C ,D 四点共圆)(2)先判断出∠ADE=∠ABC ,即可得出△ACE 是等腰三角形,再用三角函数即可得出结论.试题解析:(1)AC ;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,AB ADABC ADE BC DE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴AC,∵CE=CE+DE=CD+BC,∴AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,AB ADABC ADE BC DE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.考点:1、几何变换综合题,2、全等三角形的判定,3、四边形的内角和,4、等腰三角形的判定和性质2.(2017山东日照第18题)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC (答案不唯一).试题分析:(1)由SSS 证明△DCA ≌△EAC 即可;(2)先证明四边形ABCD 是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.考点:矩形的判定;全等三角形的判定与性质.3.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=134 ,BC=374. 【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.试题解析:(1)AE ;GF ;1:2(2)解:∵四边形EFGH 是叠合矩形,∠FEH=90°,EF=5,EH=12;∴= =13;由折叠的轴对称性可知:DH=NH,AH=HM,CF=FN;易证△AEH ≌△CGF;∴CF=AH;∴AD=DH+AH=HN+FN=FH=13.(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134,BC=374.4.(2017湖南湘潭第26题)如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不与点A B、及AB的中点F重合),连接OM.过点M作ME AB⊥于点E,以BE为边在半圆同侧作正方形BCDE,过M点作O的切线交射线DC于点N,连接BM、BN.(1)探究:如左图,当M动点在AF上运动时;①判断OEM MDN∆∆是否成立?请说明理由;②设ME NCkMN+=,k是否为定值?若是,求出该定值,若不是,请说明理由;③设MBNα∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M在FB上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)【答案】(1)①成立,理由见解析;②为定值1;③α为定值45°;(2)不发生变化.试题解析:(1)①成立,理由如下:过点M作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,∴∠MEO=∠MDN=90°,∴∠MOE+∠EMO=90°过M 点的O 的切线交射线DC 于点N ,∴∠OMN=90°,∴∠DMN+∠EMO=90°∴∠MOE=∠DMN∴△OEM ∽△MDN②k 是定值1,理由如下:过点B 作BG ⊥MN,∵过M 点的O 的切线交射线DC 于点N ,∴∠OMN=90°,∵BG ⊥MN,∴∠BGM=90°,∴∠OMN=∠BGM=90°,∴OM ∥BG∴∠OMB=∠MBG,∵OM=OB∴∠OMB=∠OBM,∴∠OBM=∠MBG,∴△BME ≌△BMG,∴BM=MG,BG=BE,∵正方形BCDE ,∴BG=BC∴△BNG ≌△BCN,∴GN=CN∴MN=MG+NG=ME+CN 即1ME NCk MN +==③α为定值45°,理由如下:由②知:∠OBM=∠MBG, △BNG ≌△BCN,∴∠GBN=∠CBN,∵正方形BCDE ,∴∠EBC=90°,∴∴∠MBN=01452EBC ∠=(2)不发生变化.。
规律探索性问题(含解析)
规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
2020年中考数学考点分类讲解-探索性问题(含解析)
2020年中考数学考点分类讲解探索性问题Ⅰ、综合问题精讲:探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直角三角形等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力.Ⅱ、典型例题剖析【例1】如图2-6-1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2-6-2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由.⑴解:方法一:∵B点坐标为(0,2),∴OB=2,∵矩形CDEF 面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2)。
设抛物线的解析式为2y ax bx c .其过三点A(0,1),C(-2.2),F(2,2)。
中考数学试题分项版解析汇编第期专题探索性问题含解析
专题12 探索性问题一、选择题1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④ 【答案】C.考点:基本作图.2. (2017浙江衢州第10题)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8。
则图中阴影部分的面积是( )A.π225B. π10C. π424+D. π524+ 【答案】A. 【解析】试题解析:作直径CG ,连接OD 、OE 、OF 、DG .∵CG 是圆的直径,∴∠CDG=90°,则==8,又∵EF=8, ∴DG=EF , ∴DG EF =, ∴S 扇形ODG =S 扇形OEF , ∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.故选A .考点:1.圆周角定理;2.扇形面积的计算.3.(2017山东德州第9题)公式KP L L +=0表示当重力为P 时的物体作用在弹簧上时弹簧的长度. 0L 表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示。
下面给出的四个公式中,表明这是一个短而硬的弹簧的是( )A .L=10+0.5PB .L=10+5PC .L=80+0.5PD .L=80+5P 【答案】A 【解析】试题分析:A 和B 中,L 0=10,表示弹簧短;A 和C 中,K=0.5,表示弹簧硬; 故选A考点:一次函数的应用4. (2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为( )A.121 B.362 C.364 D.729【答案】C考点:探索规律5.(2017浙江宁波第12题)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( )A.3B.4C.5D.6【答案】A.【解析】试题分析:根据题意可知,最少知道3个小矩形的周长即可求得大矩形的面积.考点:矩形的性质.6.(2017重庆A卷第10题)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A .73B .81C .91D .109 【答案】C . 【解析】试题解析:第①个图形中一共有3个菱形,3=12+2; 第②个图形中共有7个菱形,7=22+3; 第③个图形中共有13个菱形,13=32+4; …,第n 个图形中菱形的个数为:n 2+n+1; 第⑨个图形中菱形的个数92+9+1=91. 故选C .考点:图形的变化规律.7.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 【答案】B 【解析】试题解析:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2, ∴AB=4,根据旋转不变性可知,A′B′=AB=4, ∴A′P=PB′,∴PC=12A′B′=2, ∵CM=BM=1,又∵PM ≤PC+CM ,即PM ≤3,∴PM 的最大值为3(此时P 、C 、M 共线). 故选B .考点:旋转的性质.8.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7 【答案】C 【解析】试题解析:①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形; ②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形; ③以C 为圆心,BC 长为半径画弧,交AC 于点F ,△BCF 就是等腰三角形; ④作AC 的垂直平分线交AB 于点H ,△ACH 就是等腰三角形; ⑤作AB 的垂直平分线交AC 于G ,则△AGB 是等腰三角形; ⑥作BC 的垂直平分线交AB 于I ,则△BCI 是等腰三角形.故选C.考点:画等腰三角形.9.(2017贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【答案】D.【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.考点:完全平方公式.10.(2017四川泸州第12题)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为,3),P是抛物线y=14x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6 【答案】C.【解析】试题解析:过点M作ME⊥x轴于点E,交抛物线y=14x2+1于点P,此时△PMF周长最小值,∵F(0,2)、M(3),∴ME=3,,∴△PMF周长的最小值=ME+FM=3+2=5.故选C.考点:1.二次函数的性质;2.三角形三边关系.11.(2017四川自贡第11题)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.186【答案】C.【解析】试题解析:由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,∵3×5﹣1=14,; 5×7﹣3=32; 7×9﹣5=58; ∴m=13×15﹣11=184. 故选C . 考点:数字规律. 二、填空题1. (2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a+6.考点:图形的拼接.2. (2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】试题解析:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣34x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y﹣12=0,∴=3,∴.考点:1.切线的性质;2.一次函数的性质.3.(2017浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限。
专题12探索性问题-2021年中考数学试题分项版解析汇编(原卷版)
专题12:探索性问题一、选择题1.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里2.(2017山东临沂第11题)将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第n个图形中“”的个数是78,则n的值是()A.11 B.12 C.13 D.143.(2017山东日照第11题)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()4.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.45.(2017浙江湖州第10题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从544⨯的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有2020⨯的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要跳马变换的次数是( )A .13B .14 C.15 D .16二、填空题1.(2017山东滨州第18题)观察下列各式: 2111313=-⨯, 2112424=-⨯……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________. 2,(2017山东菏泽第14题)如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 33-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 33-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .3.(2017浙江湖州第15题)如图,已知30∠AOB =,在射线OA 上取点1O ,以1O 为圆心的圆与OB 相切;在射线1O A 上取点2O ,以2O 为圆心,21O O 为半径的圆与OB 相切;在射线2O A 上取点3O ,以3O 为圆心,32O O 为半径的圆与OB 相切;⋅⋅⋅;在射线9O A 上取点10O ,以10O 为圆心,109O O 为半径的圆与OB 相切.若1O 的半径为1,则10O 的半径长是 .4.(2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .5.(2017浙江舟山第15题)如图,把n 个长为1的正方形拼接成一排,求得71tan ,31tan ,1tan 321=∠=∠=∠C BA C BA C BA ,计算=∠C BA 4tan ,……,按此规律,写出=∠C BA n tan (用含n 的代数式表示).三、解答题1.(2017山东临沂第25题)数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若ACB ACD ∠=∠=60ABD ADB ∠=∠=︒,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC ≌,从而容易证明ACE 是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC 绕着点A 逆时针旋转60︒,使AB 与AD 重合,从而容易证明ACF 是等比三角形,故AC CF =,所以AC BC CD =+.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=45ABD ADB ∠=∠=︒”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=ABD ADB α∠=∠=”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.2.(2017山东日照第18题)如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.3.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.4.(2017湖南湘潭第26题)如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在AF 上运动时;①判断OEMMDN ∆∆是否成立?请说明理由; ②设ME NC k MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由; ③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M 在FB 上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题12 探索性问题
一、选择题
1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()
A.B.C.D.
【答案】C.
考点:1.规律型:图形的变化类;2.综合题.
2.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()
A.2017πB.2034πC.3024πD.3026π
【答案】D.
考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.
3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()
A.4 B.C.2 D.0
【答案】A.
【解析】
试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.
考点:1.规律型:图形的变化类;2.综合题.
4.(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为。