内力组合
内力组合
九 内力组合本章中单位统一为:弯矩kN∙m ,剪力kN ,轴力kN 。
根据前面第四至八章的内力计算结果,即可进行框架各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端柱边及跨中,由于对称性,每层梁取5个控制截面。
柱分为边柱和中柱,每根柱有2个控制截面。
内力组合使用的控制截面标于下图。
(一)梁内力组合1.计算过程见下页表中,弯矩以下部受拉为正,剪力以沿截面顺时针为正 注:(1)地震作用效应与重力荷载代表值的组合表达式为:Eh G E 3S .12S .1S +=其中,S GE 为相应于水平地震作用下重力荷载代表值效应的标准值。
而重力荷载代表值表达式为:∑=+=n1i ik Qi k Q G G ψG k ——恒荷载标准值; Q ik ——第i 个可变荷载标准值;ΨQi ——第i 个可变荷载的组合之系数,屋面活荷载不计入,雪荷载和楼面活荷载均为0.5。
考虑到地震有左震和右震两种情况,而在前面第八章计算地震作用内力时计算的是左震作用时的内力,则在下表中有 1.2(①+0.5②)+1.3⑤和1.2(①+0.5②)-1.3⑤两列,分别代表左震和右震参与组合。
(2)因为风荷载效应同地震作用效应相比较小,不起控制作用,则在下列组合中风荷载内力未参与,仅考虑分别由恒荷载和活荷载控制的两种组合,即1.35①+1.4×0.7③和1.2①+1.4③两列。
ABC D123452211梁内力组合计算表梁内力组合计算表(续)梁内力组合计算表(续)2.根据上表计算所得的弯矩值计算V b ,并同上表的结果比较得梁剪力设计值V ,计算过程见下表 计算公式为:G b n r b l b vb bV l /)M M (V ++=η梁剪力设计值计算表(二)柱内力组合1.计算过程见下表,弯矩以顺时针为正,轴力以受压为正柱内力组合计算表2.根据上表计算所得的弯矩值计算柱剪力设计值,计算见下表计算公式为:n rc l c vc c H /)M M (V +=η(1.1vc =η)3.根据以上计算结果,由式∑∑>b c c M M η验算强柱弱梁,若不满足,则由∑∑=b c cM Mη调整柱端弯矩设计值(ηc =1.1)计算过程见下表(M’cb 和M ’c 分别为调整后的柱端弯矩设计值)(三)内力设计值汇总1.梁内力设计值汇总2.柱内力设计值汇总。
内力组合,配筋
=M-V ;
=V-q
将框架梁轴线处的内力换算为梁支座边缘处的内力值,计算过程见下 表。(梁端负弯矩调幅系数为)
轴线处内力换算为梁支座边缘处内力值(BF 跨)
截面位置
重力荷 内力
载
恒载
轴 线 处 内 力
梁支 座边 缘处 内力
调幅 后梁 支座 边缘 处内 力
载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为 0):×重力荷载+×水平地震。 (3)荷载效应的标准组合 荷载效应的标准组合:×恒载+×活载。
二、框架梁内力组合 选择第四层 BF 框架梁为例进行内力组合,考虑恒载、活载、重力荷载代
梁跨中截面:+Mmax 及相应的 V(正截面设计),有时需组合-M。 梁支座截面:-Mmax 及相应的 V(正截面设计),Vmax 及相应的 M (斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在 同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的 N、V;
截面位置
V(kN)
(kN)
Asv/s= /
左端
右端
(8) 验算最小配箍率 ρ=Asv/(b*s)=201/(250*200)=% ρ=%≥ρmin=%,满足最小配箍率要求
实配四肢箍筋(Asv/s) 8@200 8@200
内力组合
框架梁内力组合考虑了三种内力组合,wk Gk 4S .12S .1 这种内力组合与考虑地震作用的组合相比一般较小,对结构设计不起控制作用,故不予考虑。
对于活荷载作用下的跨中弯矩M 还乘以弯矩调幅系数1.1,再进行内力组合。
各层梁的内力组合结果见表。
表中Gk S ,Qk S 两列中的梁端弯矩M 为经过调幅后的弯矩(调幅系数取0.9)。
框架柱内力组合框架柱在恒荷载、活荷载作用下的轴力应包括纵向框架梁、横向框架梁传来的剪力和框架传来的剪力和框架柱自重。
框架梁内力组合表梁 截面 内力 恒荷载 活荷载 风荷载 1.35恒+1.4x0.7活1.2恒 +1.4活 +1.4x0.6风 1.2恒+1.4x0.7活+1.4风E2B2 E2B2M -43.21 -4.45 -1.47 -62.69 -59.32 -58.27V 37.93 13.32 0.13 64.26 64.27 58.75跨中 M 92.46 31.59 0.23 155.78 155.37 142.23B2E2M -94.17 -15.27 -1.01 -142.09 -135.23 -129.38V 69.39 15.98 0.19 109.34 105.80 99.19 B2A2 B2A2M -74.03 -14.60 -0.46 -114.25 -109.66 -103.79V 51.78 12.34 0.25 82.00 79.62 74.58跨中 M 16.15 6.74 0.51 28.41 29.24 26.70A2B2M -23.99 -5.73 -1.47 -38.00 -38.04 -36.46V 35.10 9.38 0.08 56.58 55.32 51.42 E1B1 E1B1M -71.53 -5.41 -6.10 -101.87 -98.53 -99.68V 90.99 13.39 0.46 135.96 128.32 122.95跨中 M 137.18 30.88 1.17 215.46 208.83 196.52B1E1M -166.57 -15.61 -3.76 -240.17 -224.90 -220.45V 114.45 15.91 0.75 170.10 160.24 153.98 B1A1 B1A1M -139.07 -15.08 -2.34 -202.52 -189.96 -184.94V 96.88 11.03 1.02 141.60 132.55 128.49跨中 M 63.43 16.10 1.88 101.41 100.24 94.53A1B1M -46.24 -6.94 -4.63 -69.23 -69.09 -68.77V 65.93 8.32 0.39 97.16 91.09 87.82框架柱内力组合表柱截面 内力 恒荷载 活荷载 风荷载 1.35恒+1.4x0.7活 1.2恒+1.4活+1.4x0.6风 1.2恒+1.4x0.7活+1.4风E2E1上M 43.21 4.45 1.47 62.69 59.32 58.27 N 59.19 13.32 0.13 92.96 89.79 84.26 下 M 48.68 3.74 1.47 69.38 64.89 64.14 N 59.19 13.32 0.13 92.96 89.79 84.26 E1E0上M 22.86 1.67 4.63 32.50 33.66 35.55 N 190.57 26.71 0.59 283.45 266.57 255.69 下 M 11.43 0.84 9.26 16.25 22.67 27.50 N 190.57 26.71 0.59 283.45 266.57 255.69 B2B1上M 20.13 0.66 1.47 27.82 26.31 26.86 N 146.63 28.32 0.43 225.70 215.97 204.31 下 M 18.90 0.38 1.47 25.89 24.45 25.11 N 146.63 28.32 0.43 225.70 215.97 204.31 B1B0上M 8.60 0.15 4.63 11.76 14.42 16.95 N 384.78 55.26 2.20 573.61 540.95 518.97 下 M 4.30 0.08 9.26 5.88 13.05 18.20 N 384.78 55.26 2.20 573.61 540.95 518.97 A2A1上M 23.99 5.73 1.47 38.00 38.04 36.46 N 56.38 9.38 0.08 85.31 80.86 76.96 下 M 31.86 5.15 1.47 48.06 46.68 45.34 N 56.38 9.38 0.08 85.31 80.86 76.96 A1A0上M 14.35 1.77 4.63 21.11 23.59 25.44 N 162.86 17.70 0.47 237.21 220.61 213.44 下M 7.18 0.09 9.26 9.78 16.52 21.67 N162.86 17.70 0.47 237.21 220.61 213.44截面设计1框架梁配筋计算21c C 30,H R B335α=1.0,f =14.3N /m m ,混凝土钢筋级,22t y f =1.43N/mm ,f =300N/mm ,ξ=0.550由于计算过程较复杂,在框架梁截面设计时,一般近似将框架梁视为矩形.E2B2梁 bxh=250x650(1)跨中正截面m ax 155.78.M K N m =062221040,65040610155.78100.117N /m m ,1.014.3250610s s s c f m m h h m m Mf b h αααα'==-=-=⨯===⨯⨯⨯10.1250.550bξξ=-=<=2s 1010.12514.3250610A /909300c f y f b h f m mξα'⨯⨯⨯⨯===验算适用条件:9090.59%0.2%250610s oA b h ρ===>⨯⨯满足要求。
内力组合及内力调整
7 内力组合及内力调整7.1内力组合各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。
当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。
分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。
由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。
1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。
当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。
计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。
2max182M M M ql +≈-右左 且满足2max 116M ql = (7-1) 式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;l ——梁的计算跨度。
2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。
图7-1 框架梁内力组合图图7-2 调幅前后剪力值变化图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩C R 、D R ——竖向荷载与地震荷载共同作用下梁端支座反力。
左端梁支座反力:()C 1=2GD GC EC ED ql R M M M M l--++;由0M ddx=,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。
毕业设计指导书(框架结构设计)-内力计算及组合
计算杆件固端弯矩时应带符号,杆端弯矩一律以顺时针方向为正,如图3-6。
图 3-6 杆端及节点弯矩正方向
1)横梁固端弯矩:
(1)顶层横梁
自重作用:
板传来的恒载作用:
(2)二~四层横梁
自重作用:
板传来的恒载作用:
2)纵梁引起柱端附加弯矩:(本例中边框架纵梁偏向外侧,中框架纵梁偏向内侧)
顶层外纵梁
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:
(1)确定各杆件在该节点的转动刚度
杆件的转动刚度与杆件远端的约束形式有关,如图3-1:
(a)杆件在节点A处的转动刚度
(b)某节点各杆件弯矩分配系数
图 3-1 A节点弯矩分配系数(图中 )
(2)计算弯矩分配系数μ
(3)相交于一点杆件间的弯矩分配
(3)求某柱柱顶左侧及柱底右侧受拉最大弯矩——该柱右侧跨的上、下邻层横梁布置活荷载,然后隔跨布置,其它层按同跨隔层布置(图3-4c);
当活荷载作用相对较小时,常先按满布活荷载计算内力,然后对计算内力进行调整的近似简化法,调整系数:跨中弯矩1.1~1.2,支座弯矩1.0。
(a)(b) (c)
图 3-4 竖向活荷载最不利布置
∑Mik/l
V1/A=gl/2+u-∑Mik/l
M=gl/2*l/4+u*1.05-MAB-V1/A*l/2
4
21.9
4.08
2.25
6
12.24
41.06
-30.54
2.55
50.75
-60.24
3
16.61
4.08
2.25
6
12.24
31.14
内力组合 (2)
5.7 内力组合: 5.7.1 确定抗震等级:结构抗震等级应根据烈度、结构类型和房屋高度确定。
对于框架—剪力墙结构,还应判别总框架承受的地震倾覆力矩是否大于总地震倾覆力矩(0M )的50%,为此,应计算总框架承受的地震倾覆力矩(0v M )。
由前表得:1001111417.037v fii i M Vh KN m ==⋅=∑0235322.937311.55240.5247940.793M KN m =+⨯=则有:0011417.0130.0.4490.50247940.793v M M ==< 因此,本工程应按框架—剪力墙结构中的框架确定抗震等级,查规范得本工程的框架抗震等级为三级,剪力墙抗震等级为二级。
5.7.2 组合表见附录 5.8 截面设计: 5.8.1 内力调整:对第1、7、9层构件内力进行调整,且为实现大震不倒的目标仅对有地震力参与的内力进行调整.5.8.1.1 强柱弱梁的调整——放大柱端弯矩顶层柱柱端弯矩不必放大,一层柱下端直接乘以放大系数1.15,其余层柱对轴压比0.15≥的进行柱端弯矩放大,放大系数 1.1c η=。
下面以第7层A 柱上端截面为例说明计算方法,其余计算过程从略,计算结果见表1-47。
柱轴压比31803.71100.310.1519.1550550c Nf A μ⨯===>⨯⨯,可见需调整内力' 1.1421.30463.43224.79''463.43260.61224.79174.94174.94''463.43202.82224.79174.94ccbcb cb c cb ct ct ct c cb ct MMKN mM M M KN m M M M M M KN mM M η==⨯===⨯=++==⨯=++∑∑∑∑表1-47 强柱弱梁内力调整计算表)m调整后-189.80 表中:弯矩正、负号同内力组合值。
2017毕业设计--框架内力组合(梁端弯矩)
梁端正弯矩
M GEk
M 1.3M Ehk 1.0 M GEk
M Ehk
框架结构梁柱的内力组合第三部分
框架结构
梁的内力组合
构件的内力组合,由EXCEL表格计算。
框架结构梁柱的内力组合第三部分 梁的内力组合 梁弯矩以梁上部受拉为负,下部受拉为正 均为柱端弯矩
框架结构
活载满跨
左、右震
这张表是前面工作的总结!
框架结构梁柱的内力组合第三部分 梁的内力组合
分左、右震
框架结构
4
框架结构梁柱的内力组合第三部分 梁内力组合
Sd γGj SG j γQ1 L1SQ1k γQi γL i ψci SQik
j 1
k
框架结构
m
n
i 2
荷载规范3.2.5 基本组合的荷载分项系数,应按下列规定采用: G j 永久荷载的分项系数: 当其效应对结构不利时 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时应取1.0;
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合
3.3.2 对持久设计状况、短暂设计状况和地震设计状况,当用内力的形式表达时, 结构构件应采用下列承载能力极限状态设计表达式:
γ0S≤R R=R(fc,fs,ak,…)/γRd
(3.3.2—1) (3.3.2—2)
式中:γ0——结构重要性系数:在持久设计状况和短暂设计状况下,对安全等级为一 级(甲乙)的结构构件不应小于1.1,对安全等级为二级的结构构件不应小于1.0 (丙),对安全等级为三级的结构构件不应小于0.9;对地震设计状况下应取1.0; S——承载能力极限状态下作用组合的效应设计值:对持久设计状况按作用的基本组 合计算;对地震设计状况应按作用的地震组合计算; R——结构构件的抗力设计值; R(· )——结构构件的抗力函数; γRd——结构构件的抗力模型不定性系数:静力设计取1.0,对不确定性较大的结构构 件根据具体情况取大于1.0的数值;抗震设计应用承载力抗震调整系数γRE代替γRd;
第七章-内力组合
-98.5282
-95.3882
-102.29
-64.4735
M
68.24
27.54
12.603
-18.2556
-14.5966
-23.351
37.679
-69.779
C4D4
M
-68.58
-22.51
6.719
-6.719
77.76
-77.76
-113.81
-115.093
-72.8894
-91.7026
-102.193
-119.125
5.286
-196.89
V
-67.62
-24.59
-1.671
-7.929
-67.131
V
-12.96
-0.88
-1.333
1.333
-16.87
16.87
-16.784
-18.376
-17.4182
-13.6858
-18.3404
-14.9812
-38.011
5.851
跨中
M
-32.24
-1.43
0
0
0
0
-40.69
-44.954
-38.688
-38.688
-69.261
-100.696
-98.9193
-93.808
-74.8405
M
69.53
24.59
5.039
-5.039
63.17
-63.17
117.862
118.4555
90.4906
76.3814
120.7685
四、内力组合
四、内力组合
1、梁的内力组和合
梁的内力组合按:
① 1.2恒荷载+1.4活荷载;
② 1.2恒荷载+1.4风荷载
③ 1.2恒荷载-1.4风荷载
④ 1.2恒荷载+1.4×0.8×(风荷载+活荷载)
⑤ 1.2恒荷载+1.4×0.8×(活荷载-风荷载)
其中风荷载作用考虑左右2种组合,在表中只用+.-取值
5种不同情况取最大值恒荷载取值见表3-4,活荷载取值见表3-8,风荷载取值见表3-12;注意一:梁端弯矩组合时考虑折减0.8的系数,跨中最大弯矩取调幅后的值,风荷载考虑左右风正负弯矩的影响不进行调幅;
注意二:梁端弯距左正右负,剪力左正右负,风荷载正负无所谓;组合表4-1
2、柱的内力组合
柱的轴力计算:N=P+V,N柱顶=N上柱底+V上层梁,N柱底=N柱顶+P
P为结点集中荷载加柱自重
V为主梁传给柱的剪力
柱A的内力组合: 表4-2
柱B的内力组合:表4-3
柱C的内力组合:表3-4。
内力组合表 (2)
附录2 内力组合表附录2.1 框架梁的内力组合表层次截面内力S GK S QKS EK S EK组合一组合二组合三组合四组合五组合六组合七组合八组合九组合十组合十一组合十二组合十三剪力调整左风右风左震右震一层AM -92.23-24.57(-24.74)43.80 -27.30 160.80 -171.40 -145.06 -49.35 -148.89 -86.43 -176.02 -111.79 -171.51 -30.91 -130.45 62.65 -261.25 78.34 -245.56144.04 V94.1024.4(24.4)-10.40 6.50 -38.30 40.90 147.08 98.36 122.02 130.56 151.85 142.21 156.41 79.54 103.20 66.10 153.62 48.03 135.55跨中M120.4835.52(35.64)2.65 -1.65 9.50 -10.10 194.30 148.29 142.27 192.67 187.25 199.68 196.07 124.19 118.17 133.73 114.62 112.99 93.88B左M-110.84-31.03(-30.77)-38.50 24.00 -141.80 151.20 -176.44 -186.91 -99.41 -220.61 -141.86 -212.38 -159.88 -164.74 -77.24 -251.86 33.82 -232.92 52.75 V99.6026.3(26.2)-10.40 6.50 -38.30 40.90 156.34 104.96 128.62 139.55 160.85 151.50 165.69 85.04 108.70 72.63 160.15 53.47 140.99B右M-20.91-5.78(-5.36)21.10 -13.20 77.50 -82.90 -33.18 4.45 -43.57 -5.79 -49.01 -16.17 -44.98 8.63 -39.39 54.33 -102.06 57.87 -98.52121.80 V23.905.8(4.7)-18.90 11.50 -69.40 74.30 36.80 2.22 44.78 12.17 50.48 22.07 47.61 -2.56 40.00 -49.91 108.88 -54.37 104.41跨中M 1.20-0.36(-1.08)-2.60 1.65 -9.45 10.15 0.94 -2.20 3.75 -2.29 3.07 -0.92 2.65 -2.44 3.51 -8.62 10.49 -8.72 10.39CM-0.17-0.255(-0.77)-26.30 16.50 -96.40 103.20 -0.56 -37.02 22.90 -33.66 20.26 -22.57 13.38 -36.99 22.93 -93.80 100.81 -93.83 100.78 V 3.700.1(1.1)-18.90 11.50 -69.40 74.30 4.58 -22.02 20.54 -19.25 19.06 -10.78 14.75 -22.76 19.80 -72.35 86.44 -73.07 85.71二层AM-89.17-24.31(-24.99)31.50 -19.70 137.20 -142.80 -141.03 -62.90 -134.58 -97.94 -162.45 -117.74 -160.74 -45.07 -116.75 42.28 -230.72 57.53 -215.48110.30 V93.8024.4(24.4)-7.60 4.70 -32.90 34.30 146.72 101.92 119.14 133.73 149.23 144.16 154.49 83.16 100.38 71.77 146.02 53.75 128.00跨中M123.6036(35.28)1.55 -1.00 7.10 -7.35 198.72 150.49 146.92 195.63 192.42 203.44 201.30 125.77 122.20 134.04 119.95 112.85 98.76B左M-109.57-30.77(-31.03)-28.40 17.70 -123.00 128.10 -174.56 -171.24 -106.70 -206.03 -147.95 -201.92 -163.20 -149.33 -84.79 -232.49 12.33 -213.73 31.09 V99.9026.3(26.2)-7.60 4.70 -32.90 34.30 156.70 109.24 126.46 143.44 158.94 154.26 164.59 89.26 106.48 78.91 153.16 59.70 133.95B右M-22.95-6.035(-5.19)15.20 -9.50 66.10 -68.90 -35.99 -6.26 -40.84 -15.99 -47.11 -24.13 -44.88 -1.67 -36.25 41.46 -90.17 45.29 -86.33101.40 V25.60 6(4.6) -13.40 8.30 -58.40 60.90 39.12 11.96 42.34 21.40 48.74 29.18 47.41 6.84 37.22 -5.95 95.75 -40.82 91.01跨中M 2.28-0.48(-0.96)-1.60 1.00 -7.05 7.35 2.06 0.50 4.14 0.12 3.39 1.26 3.45 0.04 3.68 -5.25 8.79 -5.52 8.52CM-1.190.34(0.68)-18.40 11.50 -80.20 83.60 -0.95 -27.19 14.67 -24.18 13.49 -16.73 8.39 -26.95 14.91 -78.96 80.75 -78.83 80.87 V 2.00 0.3 (1) -13.40 8.30 -58.40 60.90 2.82 -16.36 14.02 -14.11 13.24 -8.26 9.97 -16.76 13.62 -61.98 69.84 -62.41 69.42注:表中组合一到组合十三的荷载组合式子以及剪力的调整见计算书的4.6.2节()中的数值为雪荷载作用下的内力;弯矩M的单位为kN·m,剪力V的单位为kN。
广厦说明书第章
第7章内力组合和调整进行内力组合和调整的一般步骤:(1)在结构计算分析求出结构单工况内力后,根据规范要求及用户输入的调整系数,对单工况内力进行调整;(2)将调整后的内力进行内力组合;(3)对组合内力根据规范要求进行调整,得到设计内力;(4)最后根据设计内力进行截面验算与配筋。
1 总原则1.1 承载能力极限状态设计荷载效应组合为了贯彻执行强制性条文,计算模块的荷载基本组合公式统一采用荷载规范第3.2.3条的组合规则。
组合公式如下:活载控制的组合按《建筑结构荷载规范》的第3.2.3-1条:其中:符合说明见《建筑结构荷载规范》的第3.2.3-1条。
恒载的分项系数当不利时取1.2,有利时取1.0 ,倾覆、滑移验算取0.9;活荷载和风荷载的分项系数取1.4;活荷载和风荷载的组合系数分别取0.7和0.6。
恒载控制的组合按《建筑结构荷载规范》的第3.2.3-2条:其中:γG取1.35,符号说明见《建筑结构载荷规范》的第3.2.3-2条。
地震荷载的组合按《建筑抗震设计规范》的第5.4.1条:其中:符号说明见《建筑结构荷载规范》的第5.4.1条。
1.2 正常使用极限状态设计荷载效应组合标准组合(短期效应组合)按《建筑结构载荷规范》的第3.2.8条:其中:符号说明见《建筑结构载荷规范》的第3.2.8条。
准永久组合(长期效应组合)按《建筑结构载荷规范》的第3.2.10条:其中:符号说明见《建筑结构载荷规范》的第3.2.10条。
需要强调的是在地基承载力计算时,要采用上部荷载的标准组合式。
2 内力组合2.1 分项系数、组合值系数和准永久值系数可以设置以下系数:系数名称缺省值恒荷载分项系数γG=1.2活荷载分项系数γL=1.4非屋面活载组合值系数ψL=0.7屋面活载组合值系数ψL =0.7γEG=0.5活载重力荷载代表值系数吊车荷载分项系数γc=1.4吊车荷载组合值系数ψc=0.7吊车重力荷载代表值系γEC=0.0数雪荷载分项系数γs=1.4雪荷载组合值系数ψs=0.7温度荷载分项系数γT=1.4温度组合值系数ψT=0.7风荷载分项系数γW=1.4风荷载组合系数ψW=0.6水平地震荷载分项系数γEh=1.3竖向地震荷载分项系数γEV=0.5非屋面活载准永久值系=0.4数屋面活载准永久值系数=0.4吊车荷载准永久值系数=0.5雪荷载准永久值系数=0.22.2 结构荷载工况分类建筑结构荷载工况分类如下:工况类型荷载工况恒荷载重力类恒荷载:结构自重、装修等计入质量的恒荷载重力类恒载:预应力荷载等不计入质量的恒荷载非重力类恒载:土侧压力、水侧压力和水浮力荷载等不计入质量的恒荷载可变荷载重力活载:规范定义的楼面活荷载,计入质量吊车荷载,可计入质量雪荷载,计入质量风荷载:可考虑8个方向温度:升温和降温地震作用地震作用:可考虑8个方向(工况)偶然偏心地震作用:可考虑8个方向(工况)人防荷载人防等效静力荷载2.3 恒荷载、活荷载、风荷载和温度荷载作用组合1、1.35重力恒载+ψLγL重力活载2、1.35恒载+ψLγL重力活载3、γG恒载+γL重力活载+γs雪荷载4、1.0恒载+γL重力活载+γs雪荷载5、γG恒载+γW风力6、1.0恒载+γW风力7、γG恒载±γT温度8、1.0恒载±γT温度9、γG恒载+γL重力活载+γs雪荷载+ψWγW风力±ψTγT温度10、1.0恒载+γL重力活载+γs雪荷载 +ψWγW风力±ψTγT温度11、γG恒载+ψLγL重力活载+ψsγs雪荷载+γW风力±ψTγT温度12、1.0恒载+ψLγL重力活载+ψsγs雪荷载+γW风力±ψTγT温度13、γG恒载+ψLγL重力活载+ψsγs雪荷载+ψWγW风力±γT温度14、1.0恒载+ψLγL重力活载+ψsγs雪荷载+ψWγW风力±γT温度其中:恒载为重力恒载+非重力类恒载,γL、γs、γW、γT为活荷载、雪荷载、风荷载和温度荷载的分项系数,缺省按规范民用结构取值,工业结构可由用户输入;ψL、ψs、ψW、ψT为活荷载、雪荷载、风荷载和温度荷载的组合值系数,缺省按规范民用结构取值,工业结构可由用户输入。
内力组合
5.2梁的内力组合首先要确定好构件的控制截面。
对于梁,其控制截面为梁端和跨中;对于柱子,其控制截面在柱底及柱顶。
考虑到对称的因素,每层梁的控制截面只需选取1、2、3、4、5个控制截面柱子选取6、7两个控制截面,具体选取如下:为了使表格制作的更美观简洁,下面将比较繁琐的文字叙述替换成字母:A=1.2*×恒荷载+1.4×活荷载B=1.2×恒载+0.9×1.4×(活荷载+左风荷载)C=1.2×恒载+0.9×1.4×(活荷载+右风荷载)D=1.35×恒载+0.7×1.4×活荷载E=1.2×(恒载+0.5×活载)+1.3×地震作用F=1.2×(恒载+0.5×活载)+1.3×地震作用梁的内力设计值如下表所示:首层梁内力组合(单位:弯矩KN.M,剪力KN)5.3柱的内力组合首层柱内力组合(单位:弯矩KN.M,轴力KN,剪力KN)二层柱内力组合(单位:弯矩KN.M,轴力KN,剪力KN)三层柱内力组合(单位:弯矩KN.M,轴力KN,剪力KN)四层柱内力组合(单位:弯矩KN.M,轴力KN,剪力KN)顶层柱内力组合(单位:弯矩KN.M,轴力KN,剪力KN)5.4 内力最不利组合设计由以上各种内力组合可得各层梁、柱的最大组合内力设计值,如下表:5.5内力调整为了保证框架结构具有满足工程要求的抗震性能,考虑到框架结构强柱弱梁、强剪弱弯、强结点弱构件的抗震设计原则,保证梁端的破坏要先于柱端的破坏,弯曲破坏要先于剪切破坏,构件的破坏要先于节点的破坏,因此应对以上最大内力组合设计值进行调整。
1 首先根据强柱弱梁原则对梁柱端弯矩进行内力调整。
⑴框架柱上、下端的截面弯矩设计值按下式计算:∑∑=b cM M1.1且不应小于由公式算得的Mc 值。
(其中,∑M c 为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和∑M b 为节点左右梁端截面反时针或顺时针方向组合的弯矩设计值之和,当节点左右梁端的弯矩均为负时,绝对值较小的弯矩应取零。
内力组合
层 数
内力 恒
活*1.1
风
雪
无震组合 1.2恒+1.4 活 +1.4*0.6 右风
1
-M V
梁 左 端
2
-M V
3
-M V
4
-M V
5
-M V
层 数
内力 恒
-182.51 126.82 -188.51 126.81 -188.12 126.95 -191.31 127.09 -155.18 106.52
-62.67 41.24 -64.86 41.18 -64.70 41.21 -63.73 41.23 -17.29 10.27
-41.55 10.31 -33.93 8.67 -24.93 6.23 -16.49 4.06 -7.90 1.85
活*1.1
风
雪
-56.97
-332.87
37.49
212.81
19.12 354.56 -5.74 29.06 269.15 -18.25 29.06 183.74 -15.99 32.57 98.33
124.07 2358.81
-8.10 181.48 1850.09 -69.04 173.78 1341.86 -62.50 163.15 837.21
柱 上 端
地震
-121.84 31.47
-121.48 31.06
-108.65 25.78 -81.13 20.29 -29.31 13.64
1.2恒+1.4*0.7 活 +1.4
1.35恒+1.4 *0.7活
左风
1.0(恒+0.5 活) +1.3右 震
1.2(恒+0.5 活) +1.3左 震
内力组合及内力调整
攀枝花学院毕业设计 7 内力组合及内力调整7 内力组合及内力调整7.1内力组合各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。
当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。
分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。
由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。
1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。
当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。
计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。
2max 182M M M ql +≈-右左 且满足2max 116M ql = (7-1)式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;l ——梁的计算跨度。
2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。
图7-1 框架梁内力组合图图7-2 调幅前后剪力值变化图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩C R 、D R ——竖向荷载与地震荷载共同作用下梁端支座反力。
左端梁支座反力:()C 1=2GD GC EC ED ql R M M M M l--++;由0M ddx=,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。
内力组合
j 1 i 1 1 3
Mq=8.8+ 0.5 × 20 = 18.8kN•m
例题计算心得:
当题目给出荷载作用标准值时,计算不同荷载组合下的内力 值时有两种方法: 方法1: 用力学方法计算内力(荷载作用效应)标准值,再 计算相关组合下的内力值。 方法2:先将荷载作用的标准值乘以分项系数(以及组合值
M2=11.88+ 19.6= 31.48kN•m
例题
例6:一简支梁,梁跨计算长度为8m,荷载的标准值:均 布永久荷载(包括梁自重)gk=1.1kN/m,跨中永久集中荷 载,PG=100kN;可变荷载qk=2.5kN/m,结构设计使用年 限为50年,试求简支梁跨中截面的荷载效应设计值M。
永久荷载引起的弯矩标准值:Mg=1/8gkl2+1/4PGl=1/8 × 1.1 × 82+1/4 × 100 ×8 =208.8kN•m 可变荷载引起的弯矩标准值:Mg=1/8qkl2=1/8 × 2.5 × 82=20kN•m
1 3
Mf=2.5+ 0.5 × 1.5+0 ×0.4 + 0.2 ×0.2 = 3.29kN•m 荷载效应的准永久组合
M q SG kj qi SQ ik
j 1 i 1 1 3
Mq=2.5+ 0.4 ×1.5+0 ×0.4 + 0.2 ×0.2 = 3.14kN•m
例题
例4.已知,一屋面板,在各种荷载作用下的跨中弯矩标 准值如下所示:永久荷载产生的弯矩 MG=2.0kNm,上 人屋面可变荷载产生的弯矩为MQ=1.1kNm ,重现期 为100年情况下雪荷载产生的弯矩标准值为 Ms=0.5kNm。设计使用年限为100年。
内力组合
8框架内力组合8.1 框架梁内力组合8.1.1 最不利内力现浇钢筋混凝土框架一般为刚性节点,框架梁的两个端部截面是负弯矩和剪力最大的部位。
在水平荷载作用下,框架梁端部还会产生弯矩。
跨中截面通常会产生最大正弯矩,有时也可能出现负弯矩。
因此,框架梁的控制截面是两端支座处的截面和跨中截面。
框架梁的控制截面最不利内力组合有以下几种: 梁端支座截面max M -、max M +和max V ; 梁跨中截面max M +、max M -(可能出现)。
8.1.2 框架梁内力汇总框架梁AB 、BC 在各种荷载作用下内力表如下:表8-1 框架梁AB 内力表8-2 框架梁BC内力8.1.3 换算到梁边支座截面内力框架梁的控制截面是跨内最大弯矩处和支座处。
为计算简便,通常取跨中截面为控制截面;支座截面一般由受弯和受剪承载力控制,梁支座截面最不利位置在柱边,配筋是采用梁端截面内力,而不是轴线处的内力。
柱边梁端截面剪力和弯矩按下式计算:()2+='VV bg-p(8-1)-M⋅'='M2bV(8-2)式中M'、-梁端柱边截面的剪力和弯矩;V'V、-内力计算得到的梁端柱轴线截面的剪力和弯矩;Mpg+-作用在梁上的竖向分布恒荷载和活荷载。
Array框架梁AB、BC在各种荷载作用下内力换算到梁边支座的内力见表8-3、4:表8-3 框架梁AB换算到柱边后的内力表8-4 框架梁BC换算到柱边后的内力8.1.4 横向框架梁内力组合(1)可变荷载效应控制时1.2恒+1.4活1.2恒+0.9⨯1.4(活+风)(2)永久荷载效应控制时1.35恒+0.7⨯1.4活横向框架梁内力组合结果见表8-5:表8-5 横向框架梁内力组合8.1.5 横向框架梁考虑地震作用内力组合进行抗震设计时,结构构件的地震作用内力效应和其它荷载内力效应组合的设计值,应按下式计算:表8-6 横向框架梁考虑地震作用内力组合8.2.2 框架柱内力汇总各层框架柱在各种荷载作用下的内力见表8-7:表8-7 框架柱在各种荷载作用下的内力框架柱一般内力组合一般组合采用三种形式:(1)可变荷载效应控制时1.2恒+1.4活1.2恒+0.9×1.4(活+风)(2)永久荷载效应控制时1.35恒+0.7×1.4活框架柱一般内力组合结果见表8-8:表8-8 框架柱一般内力组合8.2.4 框架柱考虑地震作用内力组合进行抗震设计时,结构构件的地震作用内力效应和其他荷载内力效应组合的设计值,应按下式计算:1.2重力荷载+1.3水平地震作用表8-9 框架柱考虑地震作用内力组合续表8-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
端点
E
D左
D右
C DE跨中 CD跨中
荷载类型
内力
恒载 -111.65 111.48 115.33 -112.67 -28.7 30.74 -9.74
5.44 157.15 -12.95
活载 -36.71 24.7 39.68 -25.55 -11.2 8.68 -0.98 -0.69 31.82 -0.43
内力 内力
荷载类型
恒载 113.14 375.48 77.3 402.2 -75.57 440.11 -63.77 466.82
14 194.58 1.88 221.3
活载 30.55 25.33 20.84 25.33 -22.39 39.34 -12.79 39.34 2.73 -0.7 0.44 -0.7
y 0.0318 0.0322 0.0585 0.0327 -0.0733 -0.0571 0.0400 0.0039 0.0907 0.0203 -0.0829
x1 0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5 0.5 0.5 0.5
x 0.78 0.78 0.78 0.78 0.78 0.78
三层柱内力组合
129.59 1095.72 115.81 1131.79 -93.45 1356.99 -96.38 1393.07 17.85 517.52
C下
端点 E上 E下 D上 D下 C上 C下
端点 E上 E下 D上 D下 C上 C下
1.61 409.33
0.47 1.02
-14.02 -22.33
一层梁内力组合
-177.13 174.10 188.91 -177.75 -56.18 53.05 -14.26 9.74 251.45 -20.21
四层柱内力组合
182.68 531.72 124.78 567.79 -123.96 632.70 -98.62 668.76 21.58 262.00 2.97 298.07
荷载类型
内力
恒载 17.62 1571.56 39.68 1604.78 -44.92 1973.63 -24.8 2006.86 13.48 756.37 6.13 789.59
活载 13.88 103 5.28 103 -10.76 148.95 -3.96 148.95 0.42 3.85 0.16 3.85
1.2
风载 48.7 -12.03 39.1 -12.03 34.3 -31.28 43.9 -31.28 4.77 -4.77
地震 52.3 -12.91 42 -12.91 36.8 -33.57 47.1 -33.57 5.14 -5.14
端点 E上 E下 D上 D下 C上 C下
端点 E上 E下 D上 D下 C上
0.65
0.0446
0.6
0.61
0.65
0.0806
0.6
0.61
0.65
0.0248
0.6
0.61
0.65
-0.0771
0.6
0.61
0.65
-0.1020
0.6
0.61
0.65
0.0419
0.7
0.71
0.75
0.0175
0.7
0.71
0.75
0.0670
0.7
0.71
0.75
0.0300
0.7
风载 -11.3 -2.46 -5.64 -2.46 -15.8 -3.94 -11.3 -3.94 -11.3 -6.41 -5.64 -6.41
荷载类型
恒载 83.58 774.38 72.45 801.1 -59.94 950.3 -60.83 977.02 12.9 382.61
活载 17.1 51.33 18.37 51.33 -12.79 75.6 -14.55 75.6 0.44 1.02
-67.68 117.11 193.78 -151.87 14.31 -6.45 47.98 -36.81 194.05 -21.01
层梁内力组合
内力组合
-175.98 167.76 188.48 -171.57 -56.47 51.97 -13.17 8.55 241.26 -17.33
-109.71 149.16 232.31 -183.14 -11.52 11.28 42.27 -30.83 242.58 -23.51
层柱内力组合
486.04 121.94 518.10 -122.03 583.21 -94.43 615.26 20.62 232.52 2.87 264.58
内力组合
160.02 479.39 111.91 511.46 -138.80 572.74 -106.88 604.79 6.00 224.54 -4.30 256.60
内力组合
-137.14 136.29 162.74 -144.14 -67.97 59.14 -13.64 11.51 219.71 -27.58
-120.10 129.82 166.55 -143.58 -57.76 49.52 -1.13 3.21 216.71 -29.07
层梁内力组合
内力组合
-188.16 168.60 195.19 -170.73 -48.92 48.69 -13.44 5.21 230.78 -15.58
-151.29 157.42 214.28 -174.88 -25.86 27.42 15.32 -14.74 229.97 -19.07
层梁内力组合
内力组合
-185.37 168.36 193.95 -170.97 -50.12 49.04 -13.06 5.56 233.13 -16.14
风载 -25.1 -30.16 -54.85 -30.16 -41.8 -48.27 -58.6 -48.27 -25.1 -78.43 -54.9 -78.43
地震 -25.4 -46.93 -55.4 -46.93 -42.2 -75.1 59.3 -75.1 -25.4 -122.03 -55.4 -122.03
风载 10.07 -2.46 7.29 -2.46 6.31 -6.41 9.71 -6.41 1.7 -1.7
地震 36 -8.29 24.5 -8.29 21.2 -21.56 32.71 -21.56 5.72 -5.72
端点
E
D左
D右
C DE跨中 CD跨中
荷载类型
内力
恒载 -113.03 111.61 115.91 -112.54 -28.19 30.55 -9.85
三层梁内力组合
-189.36 174.94 195.75 -176.91 -48.62 49.66 -14.43 6.32 241.19 -17.37
二层梁内力组合
-186.70 174.70 194.58 -177.14 -49.72 50.01 -14.11 6.67 243.34 -17.90
124.24 1001.12 112.66 1033.18 -89.83 1246.20 -93.37 1278.26 16.10 460.56
95.38 983.11 92.42 1015.17 -126.98 1218.30 -123.08 1250.37 -10.43 432.28
-58.92 116.56 188.65 -152.42 8.65 -4.43 49.36 -34.80 200.96 -25.69
风载 -26.6 -18.14 -26.58 -18.14 -42.5 -29.02 -42.5 -29.02 -26.6 -47.15 -26.58 -47.15
地震 -30.1 -34.02 -30.1 -34.02 -48.2 -54.44 -48.2 -54.44 -30.1 -88.46 -30.1 -88.46
-132.10 152.87 228.08 -179.43 -13.65 16.54 30.42 -25.63 232.89 -20.30
-46.81 108.65 167.72 -136.61 -29.11 23.41 30.26 -17.66 201.45 -31.78
-68.17 117.15 194.08 -151.83 14.53 -6.98 49.02 -37.34 193.64 -21.43
-0.0803
0.6
0.63
0.65
-0.0572
0.6
0.63
0.65
0.0200
0.7
0.72
0.75
0.0354
0.7
0.72
0.75
0.0658
0.7
0.72
0.75
0.0304
0.7
0.72
0.75
-0.0740
0.7
0.72
0.75
-0.0877
0.7
0.72
0.75
0.0157
0.6
0.61
风载 38.2 -9.55 31.5 -9.55 27.7 -24.83 34.4 -24.83 3.35 -3.35
地震 51 -12.82 42.6 -12.82 37.5 -33.34 45.9 -33.34 4.21 -4.21
四层梁内力组合
-135.78 138.99 160.24 -146.60 -66.86 59.98 -14.18 11.98 225.33 -28.27
风载 -21 -8.59 -14.02 -8.59 -30.9 -13.74 -25.2 -13.74 -21 -22.33
地震 -38.1 -8.29 -19 -8.29 -53.2 -13.27 -38.1 -13.27 -38.1 -21.56 -19 -21.56