SSCZV. 二级响应程序

合集下载

费思FT6300A系列中小功率电子负载用户手册适用型号(FT6301A-FT6306A)

费思FT6300A系列中小功率电子负载用户手册适用型号(FT6301A-FT6306A)
第 1 章 概述............................................................................................................................................1
1.1 功能和特点........................................................................................................................1 1.2 前面板介绍........................................................................................................................2 1.3 后面板介绍........................................................................................................................3 1.4 VFD 显示信息描述............................................................................................................4 1.5 键盘使用简介....................................................................................................................4 1.6 菜单操作............................................................................................................................6

cmc标准2

cmc标准2

5 管理职责5.1 最高管理者必须通过以下活动,对其建立、实施为达成HSF产品和生产过程并持续改善的承诺提供证据:---向组织传达满足顾客和法律法规的重要性---建立HSF方针;5 管理职责---确保HSF目标的制定;---将HSF纳入管理评审;---提供资源确保HSF产品和产品实现过程的改进;---确保向组织传达有害物质清单.5 管理职责最高管理者必须:---5.2确保顾客的HSF 要求得到确定并予以满足;---5.3 确保HSF方针与公司的宗旨相适应;---5.4.1 确保在组织的相关职能和层次上建立HSF 目标;---HSF目标须是可测量的,并与HSF方针一致---HSF目标须包括以下适当内容的时间表,对在过程或产品(包括采购的产品)中所识别和使用的有害物质的消除。

5 管理职责最高管理者必须:---5.4.2 确保HSF的实施与策划是质量管理体系策划的一部分,并确保HSF目标是整个质量目标的一部分。

而且当体系发生改变时,须保持HSF成果的连续性---5.5.1 确保组织内HSF相关的职责、权限得到规定和沟通---5.5.2指定一名管理者,无论该成员在其他方面的职责如何,须具有以下方面的职责和权限:---确保组织内对其HSF相关要求和职责的意识5 管理职责最高管理者必须:---5.5.3 确保组织内员工了解他们的工作表现与HSF 方针和实施计划的相关性。

---须根据要求,在整个组织内传达有害物质信息。

---5.6 在管理评审中,须包括和报告有关HSF计划的活动如:有害物质的识别和使用,HSF不合格和纠正措施。

5 管理职责以上内容总结了最高管理者承诺和管理评审的要求.6 资源管理在HSF 环境下的资源管理,需在QMS 要求里增加HS 的技术知识。

6.2.1 总则---基于适当的教育、培训、技能和经验,从事影响HSF产品的人员须能胜任。

6 资源管理6.2.2 能力、意识和培训组织应:a)确定从事影响HSF产品质量的人员所必要的能力。

二阶陷波器传递函数

二阶陷波器传递函数

二阶陷波器传递函数二阶陷波器是一种常用的信号处理器件,它具有滤波和抑制频率的功能。

在电子通信领域,二阶陷波器被广泛应用于抑制干扰信号和提高信号质量的过程中。

二阶陷波器的传递函数描述了其输入信号和输出信号之间的关系。

它是一个复数函数,通常用于描述陷波器的频率响应和相位响应。

二阶陷波器的传递函数可以写成以下形式:H(s) = K / (s^2 + s/Q + 1)其中,H(s)表示传递函数,s是复频域变量,K是增益系数,Q是品质因数。

这个传递函数可以用来计算陷波器的输出信号,从而实现对输入信号的滤波和抑制频率的功能。

品质因数Q是二阶陷波器的一个重要参数,它决定了陷波器的带宽和衰减特性。

品质因数越大,陷波器的带宽越窄,衰减特性越陡峭。

品质因数越小,陷波器的带宽越宽,衰减特性越平缓。

因此,在设计二阶陷波器时,需要根据具体的应用需求来选择合适的品质因数。

二阶陷波器的传递函数可以通过多种方法来实现,其中最常见的是使用运算放大器和电容器来构造一个RC滤波器。

RC滤波器以其简单的结构和良好的滤波性能而广泛应用于各种电子设备中。

通过调整电容和电阻的数值,可以改变陷波器的频率响应和相位响应,从而实现不同的滤波和抑制效果。

除了RC滤波器,还可以使用其他电路结构来实现二阶陷波器的传递函数。

例如,使用运算放大器和电感器构造一个RLC滤波器,可以实现更复杂的频率响应和相位响应。

此外,还可以使用数字信号处理器(DSP)来实现二阶陷波器的传递函数,从而实现更高级的滤波和抑制功能。

总结起来,二阶陷波器是一种常用的信号处理器件,通过其传递函数可以描述其输入信号和输出信号之间的关系。

它可以用于滤波和抑制频率,提高信号质量和抑制干扰信号。

在设计二阶陷波器时,需要根据具体的应用需求选择合适的传递函数和电路结构。

二阶陷波器在电子通信领域具有重要的应用价值,对于改善信号质量和抑制干扰信号起到了关键作用。

USB2.0与OTG规范及开发指南(全中文)(1)

USB2.0与OTG规范及开发指南(全中文)(1)
2.1 起因 ......................................................................................................................................... 9 2.2 USB 规范的目标 ....................................................................................................................9 2.3 适用对象 ................................................................................................................................. 9 2.4 本书结构 ................................................................................................................................. 9 第 3 章 背景知识 ...............................................................................................................................10 3.1 USB 的设计目标 ..................................................................................................................10 3.2 使用的分类 ........................................................................................................................... 10 3.3 特色 ....................................................................................................................................... 10 第 4 章 体系结构概述 .......................................................................................................................12 4.1 USB 系统的描述 ..................................................................................................................12

第三章二阶系统响应与时域性能指标

第三章二阶系统响应与时域性能指标

第三章二阶系统响应与时域性能指标第三章介绍了二阶系统的响应和时域性能指标。

二阶系统是指具有两个阶数的系统,常见的二阶系统包括二阶低通滤波器和二阶弹簧质量振动系统等。

了解二阶系统的响应和性能指标对于工程实践和控制系统设计非常重要。

首先,我们先介绍了二阶系统的自由响应和强迫响应。

自由响应是指系统在没有外部输入的情况下的响应,主要由系统的初始条件决定。

强迫响应是指系统在受到外部输入信号刺激后的响应,主要由刺激信号的频率和幅值决定。

在讨论自由响应时,我们介绍了二阶系统的特征方程和特征根。

特征方程是描述系统特征的方程,由系统的传递函数决定。

特征根是特征方程的根,决定了系统的稳定性和响应特性。

特征根可以分为实根和共轭复根两种,分别对应系统的欠阻尼和过阻尼响应。

接着,我们讨论了二阶系统的时域性能指标。

其中包括超调量、峰值时间、调节时间和稳态误差等。

超调量反映了系统响应的振荡程度,峰值时间是达到响应峰值所需要的时间,调节时间是达到稳态的时间。

稳态误差则表征了系统输出与目标值之间的差异。

最后,我们通过实例来说明了如何使用MATLAB来计算和绘制二阶系统的时域性能指标。

MATLAB是一种非常方便的工具,可以极大地简化计算和绘图的过程。

通过使用MATLAB,我们可以更加直观地了解二阶系统的响应特性和时域性能。

总之,了解二阶系统的响应和时域性能指标对于工程实践和控制系统设计非常重要。

通过本章的学习,我们可以更好地理解和分析二阶系统的响应特性,为系统设计和调试提供有力支持。

同时,通过使用MATLAB等工具,我们可以更加方便地进行计算和绘图,提高工作效率和准确性。

二阶系统的瞬间响应分析

二阶系统的瞬间响应分析

二阶系统的瞬间响应分析二阶系统是指包含两个自由度的动态系统,通常由二阶微分方程描述。

例如,二阶系统可以用以下形式的微分方程表示:\[m\frac{{d^2y}}{{dt^2}}+c\frac{{dy}}{{dt}}+ky=F(t)\]其中,m是系统的质量,c是系统的阻尼系数,k是系统的刚度,F(t)是外部施加的力。

为了分析系统的瞬态响应,我们可以通过以下步骤进行:1.系统的数学建模:根据实际问题,确定系统的质量、阻尼系数和刚度等参数,并建立系统的数学模型。

2.初始条件的确定:瞬态响应分析需要考虑系统的初始条件,包括初始位移和初始速度等。

3.系统的零输入响应:系统的零输入响应是指在没有外力作用下,系统由初始条件到达新的稳态的过程。

可以通过求解系统的齐次微分方程获得。

齐次微分方程的解可以由系统的特征根决定,特征根的实部和虚部分别决定了系统的阻尼比和固有频率。

4.系统的零状态响应:系统的零状态响应是指在外力作用下,系统由初始条件到达新的稳态的过程。

可以通过求解系统的非齐次微分方程获得。

非齐次微分方程的解包含两部分:自由响应和强迫响应。

自由响应是指没有外力作用下,系统从初始条件到达新的稳态的过程。

强迫响应是指在外力作用下,系统由初始条件到达新的稳态的过程。

5.系统的过渡特性分析:可以通过观察系统的过渡过程,分析系统的过渡时间、峰值时间、峰值超调量等指标,来评估系统的响应速度和稳定性。

二阶系统的瞬态响应分析对于控制系统设计和性能评估非常重要。

通过分析系统的过渡特性,可以了解系统的响应速度和稳定性,为系统的优化和改进提供指导。

此外,瞬态响应分析也有助于了解系统的自振频率和阻尼比等关键参数,从而优化控制器的设计和参数调节。

总之,二阶系统的瞬态响应分析是控制系统设计和性能评估中的重要环节,通过对系统的过渡特性进行分析,可以评估系统的响应速度和稳定性,并优化系统的设计和参数调节,从而满足实际需求。

复旦微电子CPU卡COSFMCOS 2_0用户手册

复旦微电子CPU卡COSFMCOS 2_0用户手册

类型 的协议激活 2.1.
A PICC
........................................................................................................... 11
选择应答请求 2.1.1.
................................................................................................................... 12
1.2.4. EEPROM.............................................................................................................................8
功能模块 1.3.
....................................................................................................................................... 8
FMCOS 2.0
用户手册
FMCOS 2.0 目录
FMCOS 2.0 目录 .........................................................................................................2
1. FMCOS 简介......................................................................................................8

自动控制原理-二阶系统的响应

自动控制原理-二阶系统的响应

荡。
0
Re
t × − jωn
c.∵e(t) = r(t) −c(t) =
1
1−ζ
2
e−ζωnt
sin(ωdt
+
β)
8
∴ess = e(∞) = 0
即系统带有一个积分环节,对单位阶跃输 入,稳态误差为零。
2、临界阻尼情况 (ζ = 1)
此时
G(S)
=
C(S) R(S)
=
(S
ωn2 + ωn )2

R(S)
R(S) S2 +(KKh +1)S + K S2 +2ζωnS +ωn2
27
∴ K = ωn2 = 3.532 = 12.5(rad 2 / S 2 )
Kh
=
2ζωn
K
−1
=
0.178(S )
tr
=
1
ωd

− cos−1 ζ
)
=
0.65(S )
ts
(2%)
=
4
ζωn
= 2.48(S)
28
习题: 3-5
ωd =ωn 1−ζ 2 ---阻尼振荡自然(角)频率
σ = ζ ω n ---衰减系数
4
阻尼比的大小决定了闭环极点在根平面的 位置,反映了解的性质;极点的实部的大 小,决定了指数衰减的快慢;极点虚部的 大小,则决定了系统响应振荡的快慢。
S1+
β

jω 1 − ζ 2 n

S2+ ζωn
5
当输入为单位阶跃函数时,则有
=
1 ,故
S
9

二阶标准响应面函数怎么拟合

二阶标准响应面函数怎么拟合

二阶标准响应面函数怎么拟合
二阶标准响应面函数是一种广泛用于响应面分析的数学模型,它可以用于拟合响应变量与多个影响因子之间的关系,并预测响应变量在不同影响因子水平下的表现。

一般而言,拟合二阶标准响应面函数需要进行以下步骤:
1. 确定模型类型:根据实验设计和响应变量的性质,选择二阶标准响应面函数作为拟合模型。

2. 收集数据:在各种不同影响因子水平下进行实验,记录响应变量的值。

3. 构建设计矩阵:将实验数据整理成设计矩阵,包括响应变量和各个影响因子的水平值。

4. 评估模型拟合度:使用统计软件对设计矩阵进行回归分析,并评估模型的拟合度,包括判定系数、残差分析等。

5. 优化响应变量:根据模型预测结果,选择最优的影响因子水平组合,优化响应变量的表现。

6. 验证模型预测能力:对最优影响因子水平进行实验验证,评估模型预测能力。

总之,拟合二阶标准响应面函数需要进行实验设计、数据收集、模型构建、拟合评估、优化和预测验证等多个步骤,需要仔细分析和综合评估各个影响因子的作用,才能得到可靠的结果。

- 1 -。

泵站二次信号对点流程

泵站二次信号对点流程

泵站二次信号对点流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!泵站二次信号对点流程一、前期准备1. 熟悉泵站的二次系统原理图和接线图,了解各个信号的含义和作用。

增强控制器的抗干扰能力

增强控制器的抗干扰能力

Freescale Semiconductor Application NoteAN2764 Rev. 0, 06/2005Improving the Transient Immunity Performance ofMicrocontroller-Based Applicationsby:Ross Carlton, Greg Racino, John SuchytaFreescale Semiconductor, Inc.IntroductionIncreased competition among appliance manufacturers, as well as market regulatory pressures, are challenging original equipment manufacturers (OEMs) to reduce the cost of their products while ensuring compatible operation in increasingly severe electro-magnetic environments. As a result of this focus on cost control, implementing the necessary transient immunity protections to prevent appliance malfunction due to transients on power and signal lines is becoming ever more challenging for the appliance designer. Because traditional power supply designs and electro-magnetic interference (EMI) controls are sacrificed for lower-cost solutions, the appliance designer must develop new techniques to meet applicable regulatory electro-magnetic compatibility (EMC) requirements.This application note discusses the effects of transient electrical disturbances on embedded microcontrollers (MCUs) and suggests practical hardware and software design techniques that can provide cost-effective protection for electrical fast transients (EFT), electrostatic discharge (ESD), and other power line or signal line transients of short duration. Although this discussion is targeted at appliance manufacturers, these principles also apply to applications in consumer, industrial, and automotive electronics.The ChallengeThe ChallengeAs real-world electrical disturbances are understood and modeled, new standards are developed to characterize, monitor, and qualify the effects of these disturbances in applications. These standards provide guidance for the appliance system designer and challenges for the integrated circuit (IC) and component designers.EnvironmentThe transient immunity environment for commercial electrical and electronic products includes both electrostatic discharge (ESD) and electrical fast transients (EFT). These transients are defined inIEC61000-4-21 (or ANSI C63.16) and IEC 61000-4-42, respectively. These standards include test methods that are performed by the OEM designer to meet product specifications and regulatory requirements.The ESD waveform is intended to simulate the discharge from a human operator. The electrostatic discharge is injected at any location that the operator is likely to touch. This includes all user accessible controls and external connectors. The test levels for ESD vary widely depending on application. Values for air and contact discharge can be as low as 2 kV for commercial applications or as high as 20 kV for some automotive applications. The ESD waveform specified in IEC 61000-4-2 has a rise time of0.7ns to1.0 ns, resulting in a noise bandwidth (1/πt r) of approximately 450 MHz.The EFT waveform is intended to simulate the transients created by the switching of relays or the interruption of inductive loads on the power mains. Though primarily intended for injection on the product’s AC power cord, the EFT waveform can also be injected onto signal and control lines to simulate the coupling of the EFT onto these lines. Although test levels for the EFT transient are specified with amplitudes as high as to 4 kV, higher levels of immunity performance are sometimes required for particularly severe environments. The EFT waveform specified in IEC 61000-4-4 has a rise time of3.5ns to 6.5 ns resulting, in a noise bandwidth (1/πt r) of approximately 90 MHz.Issues In Embedded ApplicationsLow-cost, MCU-based embedded applications are particularly susceptible to performance degradation during ESD and EFT events. This sensitivity to fast rise time transients is to be expected, even for MCUs running at relatively low clock frequencies. This sensitivity is due to the process technologies used. Today’s semiconductor process technologies for low-cost, 8-bit and 16-bit MCUs implement transistor gate lengths in the 0.65 µm to 0.25 µm range. These gate lengths are capable of generating and responding to signals with rise times in the sub-nanosecond range (or an equivalent bandwidth of greater than 300 MHz). As a result, an MCU is capable of responding to ESD or EFT signals injected onto its pins.The Challenge In addition to the process technology, MCU performance in the presence of an ESD or EFT event is affected by the design of the IC and its package, the design of the printed circuit board (PCB), the software running on the MCU, the design of the system, and the characteristics of the ESD or EFT waveform when it reaches the MCU. The relative impact of each performance driver (where to focus effort for maximum effect) is shown in the pie chart in Figure1.Figure1. Performance Driver Impact on Application Transient ImmunityIC design considerations, other than those directly related to the process technology, have an effect on MCU performance when subjected to transients. These design considerations include the composition of ESD suppression devices on I/O pins, the design and layout of I/O pin structures, and any dedicated EMC circuitry. ESD devices, which are normally designed to prevent damage during part handling and PCB assembly operations, can range from simple diodes and FET snap back mode protection to complex active filters. The design of these ESD protection components must ensure compatibility with the need for powered and operational transient protection. The design and layout of I/O pin structures must be done carefully to prevent device damage due to electrical over-stress (EOS) and unwanted current injection. EMC controls and other techniques, such as physical separation or circuit isolation, will also impact transient immunity performance — potentially at a significant cost due to die size impact.The choice of MCU package has an effect on transient immunity performance. The primary package characteristics that impact transient immunity performance are package type and package dimensions. The package type will determine the baseline impedance of the package pins due to the resistance and coupling (capacitive and inductive) to adjacent pins and/or bond wires. If the package employs a substrate to connect the die bond pads to the package pins, its impedance characteristics will also impact performance. Note that while there are exceptions, similar package types tend to have similar performance characteristics because they have similar capacitances and impedances. Package dimensions influence PCB layout and composition. For example, surface-mount packages generally have smaller footprints than equivalent through-hole packages that can reduce overall PCB dimensions or provide more space to implement board-level suppression techniques.The ChallengeAreas of MCU VulnerabilityConsidering that most MCUs are specified and designed to generate and respond to signals with rise times comparable to ESD and EFT events, vulnerability to these events should be expected. Areas of MCUs that are typically vulnerable to ESD and EFT signals include:•Power and ground pins•Edge-sensitive digital inputs•High-frequency digital inputs•Analog inputs•Clock (oscillator) pins•Substrate•Multiplexed pin functions•ESD protection circuitrySome MCUs have multiple power and ground pins to isolate high speed digital functions from low speed or noise-sensitive analog functions. These supply pins should be filtered appropriately to prevent disturbances in one functional area from affecting another. Low-cost MCUs may have only a single set of power and ground pins, which makes isolation difficult, and consequentially makes filtering more important. A transient that gets propagated to a supply line can potentially disrupt any circuit connected to the power distribution system.Edge-sensitive inputs are particularly vulnerable to transients. These inputs are usually timer or external interrupt inputs. Even with external low-pass filtering connected to the input, a sufficiently large transient can inject enough energy to disrupt MCU operation. Transients that don’t disrupt the MCU can still be propagated as glitches (see Figure2).GLITCHFigure2. Transient Generation of Logic GlitchesHigh speed digital inputs, such as clock and data inputs, are less likely to have low-pass filtering and consequently can register transients as valid data pulses. External isolation techniques are necessary to eliminate this vulnerability.Analog inputs are generally lower impedance than digital inputs and can experience physical damage if not protected during ESD and EFT transients. However, on most MCUs, the analog inputs are multiplexed with general-purpose I/O pins and have a small sampling window in which the lower input impedance is active. A transient appearing at an analog input pin during an analog-to-digital conversion will result in distorted data due to the signal disruption. Effective software filtering techniques help mitigate this vulnerability.The Challenge Most MCUs have a built-in oscillator amplifier so that an external crystal or resonator is all that is needed to ensure a stable high-frequency system clock. The oscillator pins can pass noise pulses as valid clock edges and are considered to be the most vulnerable inputs to the system. Appropriate PCB layout is the preferred method to eliminate this risk.As shown in Figure3, transients can travel from the point of entry and affect circuits via several paths. Signal path #1 results from the I/O pin input circuitry attempting to process the transient as if it were data.A false signal can be sent to core circuitry, such as the Serial Peripheral Interface (SPI) which can cause data corruption. As shown by signal path #2, system input signals that exceed the power rails of the MCU will inject current into the I/O pin structure as soon as the signal level exceeds the ESD protection diode’s forward bias voltage. The I/O pin structure and on-chip ESD protection network can dissipate small amounts of injected energy. However, if the injected current is greater than the local circuit can handle, this excessive current can find alternative paths through the supply rails or substrate and disrupt other circuitry. The final signal path, shown by #3, is due to current being injected into the device substrate. Substrate injection currents can flow to remote locations on the die and disrupt sensitive analog circuitry. Current injection is generally minimized by using series resistors.V DDV SSFigure3. Transient Current Injection Paths Inside the MCUGeneral-purpose MCUs have I/O ports that can have more that one function multiplexed on a pin. An electrical disturbance that causes enough energy to disrupt digital logic can also affect the local circuitry that selects the pin function. The resulting fault could change the pin state, the pin directionality, or the pin function.Vulnerability is particularly troublesome for general-purpose MCUs that are designed to meet the needs of many applications. For these MCUs, it is impractical or impossible to protect all vulnerable areas without adversely affecting functional performance in at least some applications.Application-specific MCUs can be protected with greater success, but some vulnerability will continue to exist if the operational frequency or bandwidth of the MCU overlaps the bandwidth of the ESD and EFT signals.The ChallengeMCU Failure ModesFailure modes for integrated circuits (ICs) are typically classified into one of five categories as specified in IEC 62132-1 and shown in Table 1. The classification is determined by the performance of the IC in the presence of the ESD or EFT signal. This performance is dependent on the type of IC and its functional and parametric operation as documented in its data sheet.Freescale’s interpretation of the IEC’s classification of IC EMC degradation specific to MCUs is shown in Table 2. The resulting table recognizes that there are two distinct levels of recovery for IEC level C: external reset and power-on reset (or cycling power). Each of these functions can be performed with external circuitry or by operator intervention.For MCUs, performance degradation can take many forms. Common forms of temporary degradation include but are not limited to internal reset, latch-up, memory corruption, and code runaway. MCUs with internal reset circuits can generally resume operation without operator involvement if the fault is an unexpected reset or code runaway that is caught by a watchdog timer. External reset circuits may be required when internal reset circuits are not suitable. Recovery from latch-up and volatile memory corruption (RAM) requires cycling the power to the system. Nonvolatile memory corruption (FLASH, EEPROM) requires a more extensive process of re-programming the system, which can be viewed as aTable 1. IEC Classification of IC Performance Degradation ClassDescription AAll functions of the IC perform as designed during and after exposure to a disturbance.BAll functions of the IC perform as designed during exposure; however, one or more of them may go beyond the specified tolerance. All functions return automatically to within normal limits after the disturbance is removed. Memory functions shall remain Class A.CA function of the IC does not function as designed during exposure but returns automatically to normal operation after the disturbance is removed. DA function of the IC does not function as designed during exposure and does not return to normal operation until the disturbance is removed and the IC is reset by simple operator action.E One or more functions of the IC do not perform as designed during and after exposureand cannot be returned to normal operation.Table 2. Freescale Classification of MCU Performance DegradationClassDescription ANormal performance within the specification limits during application of the transient BTemporary degradation or loss of function or performance which is self-recoverable after the transient is removed. Device returns to normal performance.CTemporary degradation or loss of function or performance which requires an external reset after the transient is removed. Device returns to normal performance.DTemporary degradation or loss of function or performance which requires that power be cycled after the transient is removed. Device returns to normal performance.E Permanent degradation or loss of function which is not recoverable due to damage orloss of dataHardware Techniques temporary MCU degradation if the system can be re-worked, or as a permanent degradation if it cannot be re-worked.Permanent degradation is typically due to silicon damage that can cause increased leakage current on input/output (I/O) pins or power pins. The damage can affect analog measurements, input impedances, and output drive strength. With increased leakage current, the electronic system may still operate within specification for a while, but it may ultimately fail due to damage from the transient stress. Other permanent degradation can be caused by melted or fused power traces and bond wires resulting in opens and/or shorts.Impact of MCU Design TrendsThe MCU design trend that particularly impacts transient immunity performance is the drive to continually reduce the minimum gate length of individual field effect transistors (FETs), making them smaller and faster. This trend is the result of market pressure on semiconductor manufacturers to reduce the cost of their products by making die sizes smaller. The result is that maintaining the immunity performance of MCUs is becoming increasingly difficult. When coupled with continuing cost reductions by OEMs at the application or system level, the immunity problem becomes more severe.MCU designers are challenged to develop better methods to dissipate the energy injected during a transient event. Although designers would appreciate more area in which to include transient suppression circuits, this is generally not allowed in order to keep the die size and cost to a minimum. Some of the remaining options available to the designer include modifying semiconductor attributes (doping and materials) and changing the vertical structure of the I/O pin.Hardware TechniquesThe hardware design techniques used for an application will establish the baseline immunity performance. The purpose of hardware techniques is to protect the MCU from performance degradation or long-term MCU reliability problems.Hardware techniques should be maximized to ensure desired EMC performance before attempting any software techniques. This is important because software techniques do not reduce the level of transients to which the MCU is exposed — they only reduce the impact of these signals on system operation. Even though the application performance may not be degraded, exposure to transients can adversely affect long-term reliability.In order to produce an application that meets both the regulatory EMC requirements and minimizes cost, the design process must be both methodical and iterative. Rigorous system and PCB design methodologies are required to ensure quality and consistency in the design process. Without such methodologies, achieving EMC compliance will be accidental and unrepeatable. The design process must also be iterative to ensure the best possible system design and PCB layout. A design that minimizes cost cannot be completed properly in one pass — regardless of the quality of personnel or tools. An EMC-compliant, low-cost application is the result of close and consistent collaboration between the EMC engineer and all other engineering disciplines (i.e., electrical engineers, mechanical engineers, PCB layout engineers, etc.).Hardware TechniquesTransient Suppression and Control ComponentsComponents used to suppress or control transients, as well as their implementation details and RF characteristics, are described in technical documentation from the component manufacturers as well as in many books, papers, and articles. Therefore, this application note will not go into detail on component selection and specific usage. The following paragraphs provide a basic description of how the most typically used components are employed in low-cost designs for achieving the desired level of transient immunity.Components used to suppress or control transients can be grouped into two main categories: •Components that shunt transient currents (voltage limiters)•Components that block transient currents (current limiters)Note that depending on the rise time (frequency bandwidth) of the transient, a component may function as either a shunt or a block. For instance, at a slow rise time (low frequency bandwidth) an inductor will have little impedance (a shunt). At faster rise times (higher frequency bandwidth), an inductor will have greater impedance (a block). As a result, transient suppression components must be carefully selected for the optimal operating conditions. The actual performance of the component in the application will depend on the frequency-based characteristics of the component and the board layout.ResistorsSeries resistance between two nodes can provide inexpensive and effective transient protection blocking or limiting transients with frequency-independent resistance. Resistance can be used to create low-pass filters and to decouple power domains. Series resistance is primarily suited to protecting digital or analog signals that carry low currents and can accept a modest voltage drop (across the series resistance). Typically, wire-wound or carbon-composition resistors are used due to their ability to survive large transient currents. Important characteristics to consider when selecting resistors are the steady-state maximum power rating, maximum working voltage, and dielectric withstand voltage. The parasitic shunt capacitance and series inductance of a resistor do not require special consideration in transient protection applications.CapacitorsCapacitors are used in a variety of transient protection roles: bypassing or charge storage (as a limiter of voltage variations) and power decoupling (as a shunt element in a low-pass filter or a series element in a high-pass filter). In either role, the capacitor can be used to effectively shunt fast transients of limited energy, such as ESD or EFT. Capacitors are not practical for shunting larger transient currents due to lightning, surge, or switching large inductive loads. Important characteristics to consider when selecting capacitors are the maximum DC voltage rating, parasitic inductance, parasitic resistance, andover-voltage failure mechanism. When used in conditions where the maximum voltage rating may be exceeded, capacitors should be of the self-healing type, such as the metallized polyester film capacitor. Ferrite Beads and InductorsFerrite beads and inductors are used to decouple power domains by creating low-pass filters. In these applications, a series ferrite bead or inductor is used to block or limit transients with frequency-dependent impedance. Series inductance is primarily suited to protecting power lines and digital or analog signalsHardware Techniques that carry high currents or cannot accept the voltage drop imposed by a series resistance. Important characteristics to consider when selecting ferrite beads or inductors are the maximum DC current rating, parasitic resistance, permeability of the ferrite material, DC resistance, and parasitic inter-winding capacitance in the case of wound inductors.Common-Mode ChokesCommon-mode chokes present a large inductance in series with common-mode sources and small or negligible inductance in series with differential-mode sources. These inductances suppresscommon-mode signals while having a negligible effect on power frequency differential-mode signals. As a result, the common-mode choke is one of the most effective transient protection components. When used with capacitors to form a low-pass filter, common-mode chokes can be even more effective. Important characteristics to consider when selecting a common-mode choke are the maximum differential-mode DC current rating, common-mode inductance, differential-mode inductance, and DC resistance.FiltersFilters are used to achieve greater performance than single capacitive or inductive components. Filters use multiple capacitive and inductive components that are specifically selected to achieve the desired performance.Transient Voltage SuppressorsThe transient voltage suppressor (TVS) is used to control and limit the voltage developed across any two or more terminals. The TVS accomplishes this task by clamping the voltage level and diverting transient currents from sensitive circuitry when a trigger voltage is reached. TVS devices tend to have response times in inverse proportion to their current-handling capability. As a result, two devices (one with slow response and high current capability and one with fast response but low current capability) are often required to achieve the desired protection level.TVS devices can be used to suppress transients on the AC mains, DC mains, and other power supply systems. They can also be used to clamp transient voltages generated by the switching of inductive loads within an application.VaristorsThe varistor (or voltage-variable resistor) is a non-linear, symmetrical, bipolar device that dissipates energy into a solid, bulk material such as a metal oxide in the case of the common metal oxide varistor (MOV). As a result, the varistor will effectively clamp both positive and negative high current transients. The one issue with varistors is that the actual trigger voltage can vary widely from the specified value. Transient protection designs using varistors must accommodate this characteristic. Currently, MOVs are the best of the available non-linear devices for the protection of electronics from transient voltages propagating on the AC mains.Hardware TechniquesAvalanche and Zener DiodesThe avalanche and Zener diodes are silicon diodes intended for operation in the reverse breakdown mode. The primary difference between these two diodes is the mechanism of reverse breakdown: avalanche or Zener. Typically, the Zener diodes have a reverse breakdown voltage of less than 5 V while diodes with reverse breakdown voltages of greater than 8 V use the avalanche mechanism.System Power and Signal EntryThe first and best opportunity to eliminate transient immunity problems is at the point of power or signal entry into the application. If the immunity signal can be sufficiently suppressed at this point, the remaining hardware and software techniques may not be necessary. The impact of this is twofold: the risk on noncompliance is reduced or eliminated; and the cost and effort in other areas of the design are reduced. Examples of point of entry power filters and signal line filters are shown in Figure4 and Figure5, respectively. Power filters are readily available from numerous vendors in both standard and custom packages. Filter performance can also be selected from standard offerings or customized for the particular application.STANDARD FILTERS CUSTOM FILTERSFigure4. Point of Entry Power Filter Examples Array Figure5. Point of Entry Signal Line Filter ExamplesHardware TechniquesIf power and signal connections to the application are not optimized for transient suppression at the point of entry, the compliance problem increases in complexity because control of the immunity signals has been lost. The result is that all of the remaining hardware and software techniques may be needed to ensure good EMC performance.These two conditions are illustrated in Figure 6. Transient suppression devices suitable for point of entry applications are readily available from numerous suppliers or, if needed or desired, custom solutions can be designed.Figure 6. Point of Entry Filter PlacementSystem Connector LocationIf power and signals are filtered at their point of entry into the application, the location of connectors is not critical. However, if the power and signals are not filtered, connector location becomes very important. In this case, connectors should be located so that the cable’s length between the application chassis and the connected load is as short as possible. A short connection will reduce the amount of energy radiated into the chassis but will have no effect on the conducted immunity signal. In addition, separate power connectors from signal connectors as much as possible.System Cable RoutingWhere cable lines are unfiltered, never, under any circumstances, route power lines and signal lines in the same cable bundle. Doing so will only ensure that the noise on the power/signal lines will be coupled to the other signal/power lines in the bundle. Failing to follow this rule will serve to maximize the complexity of the problem by ensuring many more noisy signals in the system.Where cable lines are filtered, power and signal lines may be routed together in the same cable bundle only if there is no possibility of creating a self-compatibility problem. For instance, a self-compatibility problem may exist if the application contains subsystems or components that generate transient noise (e.g., relays, motors, and compressors) as a result of normal operation. If the possibility of a self-compatibility problem exists, default to the rule for unfiltered lines.CONDUCTEDFILTERPCB2PCB1CONDUCTEDRADIATEDPCB2PCB1Filtered — Conducted immunity signal suppressed. Clean power supplied to PCB1 and no internal radiation.No Filter — Conducted immunity signal propagates to PCB1 and radiates to couple to PCB2 and interior cables.。

二阶系统的瞬态响应(实验报告)

二阶系统的瞬态响应(实验报告)

二阶系统的瞬态响应一、实验目的1.通过实验了解参数:阻尼比、阻尼自然频率的变化对二阶系统动态性能的影响。

2.掌握二阶系统动态性能的测试方法。

二、实验数据和曲线1. 当阻尼自然频率一定,阻尼比变化时,对二阶系统动态性能影响。

(1)系统处于欠阻尼状态阻尼比 =0.2时,二阶系统的单位阶跃响应曲线:根据实验测量数据可得对应参数如下:调节时间为:0.3184s系统稳态值为:3.071第一次峰值为:4.993超调量=((第一次峰值-系统稳态值)/系统稳态值)*100%=62.5%(2)系统处于欠阻尼状态,阻尼比ζ=0.707时,二阶系统的单位阶跃响应曲线:根据实验测量数据可得对应参数如下:调节时间为:0.2307s系统稳态值为:3.04第一次峰值为:3.188超调量=((第一次峰值-系统稳态值)/系统稳态值)*100%=4.8%(3)系统处于临界阻尼状态,阻尼比ζ=1时,二阶系统的单位阶跃响应曲线:根据实验测量数据可得对应参数如下:调节时间为:0.2105s系统稳态值为:3.042处于临界状态,无超调现象发生(4)系统处于过阻尼状态,阻尼比 =2时,二阶系统的单位阶跃响应曲线:根据实验测量数据可得对应参数如下:调节时间为:1.8647s系统稳态值为:3.013过阻尼条件下无超调现象发生。

ω变化时,对二阶系统动态性能影响。

2.当阻尼比一定,nω=1时,二阶系统的单位阶跃响应曲线:(1)系统阻尼自然频率n根据实验测量数据可得对应参数如下:调节时间为:0.9886s系统稳态值为:2.984过阻尼条件下无超调现象发生。

ω=100时,二阶系统的单位阶跃响应曲线:(2)系统阻尼自然频率n根据实验测量数据可得对应参数如下:调节时间为:0.2950s系统稳态值为:3.042第一次峰值为:4.867超调量=((第一次峰值-系统稳态值)/系统稳态值)*100%=59.9% 三、实验结论。

常用技术服务响应文件范本

常用技术服务响应文件范本

常用技术服务响应文件范本(总65页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第1章技术及服务响应书1.1概述中兴监控产品线成立于1995年,产品专门针对机房、基站内的动力设备和环境量进行集中监控。

经过十几年时间的发展,积累了丰富的经验,为运营商实现对基站机房内动力设备和环境监控提供先进、成熟、实用的系统,整体优势明显,主要表现于以下几点:1.技术和经验积累十四年的监控产品生产和服务经验,产品成熟度高,公司获得系统集成二级资质和安防一级资质,实施能力强;2.物流供货能力年生产能力18个亿,实施的机房基站数量超过25万套,通过项目积累,根据动力设备配置的特点,公司物流体系实现复合包装,大大提高了供货能力和供货时间,同时提高了工程施工的效率。

在标准化配置的基础上,同比友商公司物流发货能力提高了倍,而发货时间则缩短了45%;相应的施工时间则可以提高30%以上。

这对湖南电力来说大大节省了建设时间,为项目的正常使用提供了保障。

按照我司物流惯例,更好的服务用户,货物发至各地市指定收货地址。

3.项目组织能力通过多年的项目经验积累,项目实施能力大大提高。

对大规模基站站点规模具有成熟的项目组织,这种项目组织能力是经过了大量的项目实践证明了的。

几百个站点和上千过万个站点对项目整理组织、实施能力的要求是完全不一样的,同时对系统的优化和完善也是通过长期的经验才能实现系统的稳定、实用。

4.维护经验方面经历了大量的工程与维护,我司积累了大量维护经验。

湖南地区成立专门的维护团队,专职负责动环监控产品维护工作,在人员组织和分配上,实行1+N的维护模式,即1个地市配备一名中兴力维维护工程师,再加上N个经过考核认证的工程公司人员,组建成完善的服务维护体系。

1.2设备配置清单衡阳电业局信息中心动环监控配置清单表1.3投标设备的情况及环境要求包括设备描述、各种接口特性、安装方式及物理尺寸、供电方式、温度、1.4投标设备技术指标一览表1.5投标产品关键技术特点1.6技术对比列表技术对比表323333341.7技术服务、支持、保修中兴力维在长沙设立了售后维护中心,在每个地市均配有专职服务人员。

二阶系统响应_串联校正

二阶系统响应_串联校正

Uo 。
图 5-3
加 PI 校正的电路图
200K 20K 4uF 125K 2uF 5K 200K + 100K
0.1uF 1M + 100K 1uF +

1M 1M
1M +
0.1uF 100K +
100K
Uo

图 5-4
加 PID 校正的电路图
9
/quty88/
模拟线路图如图 5-3。 观察 PI 校正加入后的阶跃响应,记下超调量σ和过渡过程时间 tS。 (4) 要求 Kv=100 1/秒,ωC≥25 1/秒,σ≤25%,设计一个 PID 装置。这里给出 一个参考的 PID 校正: GC ( S ) = 模拟电路图如图 5-4。 观察 PID 校正加入后的阶跃响应,记下超调量σ和过渡过程时间 tS。 (0.5S + 1)(0.2 S + 1) (4.5S + 1)(0.01S + 1)
GC ( S ) = 0.04 S + 1 0.004 S + 1
模拟线路图如图 5-2。 观察 PD 校正加入后的阶跃响应,记下超调量σ和过渡过程时间 tS。 (3) 要求 Kv=100 1/秒,ωC≥5 1/秒,σ≤40%,设计一个 PI 校正装置。这里给 出一个参考的 PI 校正:
GC ( S ) = 0.5S + 1 10 S + 1
3
/quty88/
双击桌面上的控制理论模拟试验图标, PC 显示 “TAP-II 控制理论模拟实验” 等字样后进入主窗口,主窗口中有实验说明,见图 3。顶部是主菜单条,主菜单 条下有图标方式的工具按钮。
图 3 软件主菜单及实验说明

二阶系统的瞬间响应分析

二阶系统的瞬间响应分析

二阶系统的瞬间响应分析一、实验目的1. 熟悉二阶模拟系统的组成。

2. 研究二阶系统在不同参数状态下的单位阶跃响应,并分别测量出系统的超调量σp、峰值时间tp和调整时间ts。

3. 研究增益K对二阶系统阶跃响应的影响。

二、实验仪器TKKL-1控制理论实验箱、TDS1001B数字存储示波器、万用表、U盘、台式电脑三、实验原理图为二阶系统的方框图,它的闭环传递函数C(S)K/(T1T2)ωn²R(S)= S²+S/T1+K/(T1T2)= S²+2ξωns+ωn²由上式求得ωn=√ K/(T1T2)ξ=√T2/(4T1K)若令T1=0.2S,T2=0.5S,则ωn=√10K ,ξ=√0.625/K因此只要改变K值,就能同时改变ωn和ξ的值,由此可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。

四、实验内容1、按开环传递函数G(S)= K/(0.5S(0.2S+1))的要求,设计相应的实验线路图。

实验线路图如下,令r(t)=1.00V,改变R2的数值,在示波器上观察不同K(K=10,5,1,0.625)下闭环二阶系统的瞬态响应曲线,并由图求得相应的σp、t p和t s的值。

2、实验前按所设计的二阶系统,计算K=10,K=1,K=0.625三种情况下的ξ和ωn值。

据此,求得相应的动态性能指标σp、t p和t s,并与实验所得出的结果作比较。

五、实验数据处理1.根据实验中不同K值闭环二阶系统的瞬态响应曲线,所求得的σp、t p和t s值。

(Δ=0.06)K值tr (ms) tp (ms) Mp (%) ts (ms)10 190.0 350.0 48.0 11905 320.0 520.0 28.0 10401 1440 1780 2.000.625 2280 22802.计算K=10,K=1,K=0.625三种情况下的ξ和ωn值。

二阶动态电路的响应实验报告

二阶动态电路的响应实验报告

二阶动态电路的响应实验报告二阶动态电路的响应实验报告引言:二阶动态电路是电子工程中常见的一种电路结构,它由两个电容和两个电感组成。

在实际应用中,我们经常需要研究二阶动态电路的响应特性,以便更好地设计和优化电路。

本实验旨在通过实际测量和分析,探究二阶动态电路的响应特性,并得出相关结论。

实验目的:1. 研究二阶动态电路的频率响应特性;2. 掌握测量电路的方法和技巧;3. 分析实验结果,得出结论并进行讨论。

实验装置和方法:1. 实验装置:二阶动态电路实验箱、函数发生器、示波器等;2. 实验方法:a. 搭建二阶动态电路实验装置;b. 设置函数发生器的频率和幅度,并连接到电路输入端;c. 使用示波器测量电路输入和输出的波形,并记录数据;d. 改变函数发生器的频率和幅度,重复测量并记录数据。

实验结果与分析:通过实验测量和数据记录,我们得到了二阶动态电路在不同频率下的输入和输出波形。

根据这些数据,我们可以进行进一步的分析和讨论。

1. 频率响应特性:通过改变函数发生器的频率,我们测量了二阶动态电路在不同频率下的幅频特性曲线。

实验结果显示,电路在低频时,输出信号的幅度基本保持不变;而在高频时,输出信号的幅度逐渐减小。

这是因为电路的频率响应特性决定了其对不同频率信号的传输能力。

2. 相频特性:除了幅频特性,我们还测量了二阶动态电路的相频特性。

实验结果显示,在低频时,输入和输出信号的相位差较小,基本保持同相;而在高频时,输入和输出信号的相位差逐渐增大,呈现出相位滞后的特性。

这是因为电路的频率响应特性决定了其对不同频率信号的相位传输能力。

3. 谐振频率:我们还测量了二阶动态电路的谐振频率,即电路在响应某一特定频率时,输出信号幅度达到最大值的频率。

实验结果显示,电路的谐振频率与电路参数(如电容、电感等)有关,通过调节这些参数,我们可以改变电路的谐振频率。

结论:通过本实验,我们深入了解了二阶动态电路的响应特性。

我们发现,电路的频率响应特性决定了其对不同频率信号的传输和相位传输能力。

Ⅱ级应急响应方案

Ⅱ级应急响应方案

II级应急响应方案一、善后工作(一)受灾群众救助。

发生重大灾情时,灾区政府负责灾害救助的组织、协调和指挥工作。

根据救灾工作实际需要,各有关部门和单位派联络员参加防汛抗旱指挥机构办公室日常工作。

(二)防汛抢险物料补充。

针对当年防汛抢险物料消耗情况,按分级筹措和常规防汛要求,及时补充到位。

(三)水毁工程修复。

对影响当年防洪安全的水毁工程,要尽快修复,力争在下次洪水到来前恢复主体功能;遭到毁坏的交通、电力、通信、水文以及防汛专用通信设施,要尽快组织修复,恢复功能。

(四)蓄滞洪区运用补偿。

蓄滞洪区分洪运用后,按照《蓄滞洪区运用补偿暂行办法》进行补偿。

(五)灾后重建。

各相关部门要尽快组织灾后重建工作。

灾后重建原则上按原标准恢复,在条件允许情况下,可提高标准重建。

(六)防汛抗旱防台风工作评价。

各级防汛抗旱指挥机构办公室组织相关部门对防汛抗旱防台风工作的各个方面和环节进行定性和定量的总结、分析和评估,总结经验,查找问题,提出改进建议。

七、新冠疫情防控(-)各地要做好避险转移人员转移过程中的疫情防控工作,强化疫情防控组织体系,严格转移过程防护,落实疫情防控责任和措施。

(二)各地要落实转移人员安置期间的疫情防控措施,转移人员要分区安置,对出入安置场所实施管控,严格控制安置场所人员规模。

要强化值班值守,落实疫情管控报告制度,及时向相关部门报送疫情防控信息。

(三)涉及新冠疫情中高风险区内的群众转移避险,要根据当地疫情防控要求,对避险安置场所实施封闭管理,对密切接触者送集中隔离点进行医学观察。

必要时,选择新的场所安置避险转移人员。

二、∏级应急响应1.出现下列情况之一的,为II级响应:(1)1个河系预测或发生20至50年(含50年)一遇大洪水;(2)2个及以上河系预测或发生10至20年(含20年)一遇较大洪水;(3)主要行洪河道堤防发生漫溢、决口等重大险情;(4)预报国家级调度的蓄滞洪区之一需启用;(5)大中型水库出现可能危及水库安全的严重险情或发生超校核水位情况;(6)多座小型水库可能发生漫坝或垮坝,严重威胁周边城镇、下游重要基础设施、人员安全等;(7)省气象台发布暴雨红色预警信号, 省气象灾害防御指挥部启动重大气象灾害(暴雨) I级响应,经会商研判后,视情启动;(8)省自然资源厅同时发布2个及以上沿海市台风风暴潮橙色警报或海浪红色警报,经会商研判后,视情启动;(9)2个及以上市发生严重干旱或1个市发生特大干旱;(10)1座大城市发生严重干旱或2座及以上中等城市发生特大干旱.(11)其他需要启动应急响应的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应急结束
(1)应急终止条件及程序
事故现场得以控制,环境符合有关标准,导致次生、衍生事故隐患消除后,经应急总指挥批准后,现场应急终止。
(2)应急终止后续工作
a.事故情况按国家法律及集团制度要求如实上报政府相关部门及文化集团安监部;
b.应急指挥部组织各应急小组进行现场清理、解除警戒、善后处理、事故调查等工作;
二级响应程序
编号:HD-KM-ZTYL-SS01-CZ025
版本:V1.0
二级响应程序
主责部门:质监部日期:2020年10月22日
会签部门:日期:
修订记录
日期
版本号
内容
撰稿人
审核人
批准人
2020.10.22
V1.0
标准化文件编制
Xቤተ መጻሕፍቲ ባይዱX
XXX
二级应急响应
工作事项
工作要求/管控要点
二级响应
Ⅱ级事件:需调用公司各个职能部门资源、且能在短时间内进行控制的火灾、爆炸、物体打击、车辆伤害、机械伤害、触电等突发事件,事故影响仅限于园区内,未对外界造成影响;
(1)如:1)未引起游客高度关注并可在15分钟内解救游客的高空滞留事件。
(2)2)游客受到过度惊吓、身体严重不适、严重划伤摔伤、关节脱臼等需送医的伤情。
(3)3)游客不可见区域的初始火灾事件。
(4)4)小范围公司可控的群体性事件。(群体性投诉等)
(5)5)个别游客发生食品卫生事件。(餐厅就餐后恶心、呕吐、腹泻等)
c.事故发生区域责任部门组织成立事故调查组。各职能部门将应急过程中的信息(事故发生时间、地点、报警时间和报警人员、事故救援经过、人员伤亡情况、事故直接经济损失等)移交给事故调查组;
其他
1.本标准化文件由昆明恒大主题娱乐管理有限公司负责制订、修订、补充和解释。
2.此前相关管理规定,凡与本化文件有抵触的,均依照文件执行。
三级响应程序
(1)Ⅱ级响应由公司总经理担任应急救援指挥部总指挥,负责现场应急救援的总体调度,Ⅱ级响应总指挥有权调用公司所有应急资源。
(2)Ⅲ级响应现场救援指挥需要调动其它部门资源时,可先调动,以支援事故救援,待事态控制后第一时间报告相关部门。
(3)需要调动全公司各类资源且在短时间内能够进行控制的火灾事故、爆炸事故、物体打击事故、车辆伤害事故、机械伤害事故、触电事故等,事故影响仅限于乐园内,未对外界造成影响。
3.本文件自发布之日起生效执行。
支持文件
文件编号
文件名称
KMLY-WM-13-5-0-0-0
应急响应
支持表单
表单编号
表单名称
保管单位
保存期限
相关文档
最新文档