八年级下册数学培优几何题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学培优几

何题

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何旋转

一.选择题(共3小题)

1.(武汉)如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:

①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.

其中正确的结论()

A .只有①②B

只有①③C

只有②③D

①②③

2.(广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是()

A .B

2C

1+D

3

3.(德阳)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是()

A .(﹣b,b+a)B

(﹣b,b﹣a)C

(﹣a,b﹣a)D

(b,b﹣a)

二.解答题(共27小题)

4.(南宁)已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).

(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求y与x之间的函数关系式;

(2)在(1)的条件下,y是否有最大值若有,请求出最大值;若没有,请说明理由;

(3)如图2,当点B的坐标为(﹣1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小求出此时点E的坐标.

5.(聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).

(1)求直线AB的解析式;

(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.

6.(沈阳)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).

(1)求直线l1,l2的表达式;

(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.

①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)

②若矩形CDEF的面积为60,请直接写出此时点C的坐标.

7.(佳木斯)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).

(1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;

(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形若存在,请直接写出点Q的坐标;若不存在,请说明理由.

8.(漳州)如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.

(1)填空:点C的坐标是(_________,_________),点D的坐标是(_________,

_________);

(2)设直线CD与AB交于点M,求线段BM的长;

(3)在y轴上是否存在点P,使得△BMP是等腰三角形若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.

9.(黑龙江)如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2﹣6x+8=0的两个根(OA<OB),点C在y轴上,且OA:AC=2:5,直线CD垂直于直线AB于点P,交x轴于点D.

(1)求出点A、点B的坐标.

(2)请求出直线CD的解析式.

(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形若存在,请直接写出点M的坐标;若不存在,请说明理由.

10.(河池)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C.

(1)求直线l的解析式;

(2)若点P(x,0)在线段OA上运动,过点P作l的平行线交直线y=x于D,求△PCD的面积S与x的函数关系式;S有最大值吗若有,求出当S最大时x的值;

(3)若点P(x,0)在x轴上运动,是否存在点P,使得△PCA成为等腰三角形若存在,请写出点P的坐标;若不存在,请说明理由.

11.(济南)如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.

(1)求直线BD的函数表达式;

(2)求线段OF的长;

(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.

12.(卧龙区二模)如图,已知直线l1:y1=x,l2:y2=x+1,l3:,无论x取何值,y总取y1、y2、

y3中的最小值,

(1)求y关于x的函数表达式(写出x的取值范围);

(2)直接写出y的最大值.

13.如图,已知直线AB的解析式是y=﹣2x+4,直线AC的解析式是y=x+4,过C点作CE⊥AB,垂足为E,交y 轴于点D.求点D的坐标.

14.如图,已知一次函数y=x+2与y=﹣2x+6的图象相交于A点,函数y=﹣2x+6的图象分别交x轴、y轴于点B,C,函数y=x+2的图象分别交x轴、y轴于点E,D.

(1)求A点的坐标;

(2)求△ABE的面积.

15.(2011黄石)先化简,后求值:,其中.

16.(2011呼伦贝尔)先化简,再求值:,其中x=5.

17.(2011黑龙江)先化简,再求值:÷(2x﹣),其中x=+1.

18.(2011河南)先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值

代入求值.

19.(2010邢台二模)规律:

如图1,直线m∥n,A、B为直线n上的点,C、P为直线m上的点.如果A、B、C为三个定点,点P在m上移动,那么无论点P移动到何位置,△ABP与△ABC的面积总相等,其理由是_________.

应用:

(1)如图2,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是

_________.

(2)如图3,四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,求

△ACF的面积.

(3)如图4,五边形ABCDE和五边形BFGHP都是正五边形,若正五边形ABCDE的边长为

a,求△ACH的面积(结果不求近似值).

相关文档
最新文档