2018年成人高考《数学》试题(理工农医类,共三套) - 副本
2018年成人高考专升本《高等数学(二)》试题及参考答案(共三套)
2018年成人高等学校专升本招生全国统一考试高等数学(二)(模拟试题)答案必须答在答题卡上指定的位置,答在试卷上无效。
.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.当x→2时,下列函数中不是无穷小量的是().A.B.C.D.2.A.-3B.一1C.0D.不存在3.A.B.C.D.4.A.B.C.D.5.A.0B.2x3C.6x2D.3x26.设ƒ(x)的一个原函数为Inx,则ƒ(x)等于().A.B.C.D.7.A.y=x+1B.y=x-1C.D.8.A.0B.e一1C.2(e-1)D.9.A.y4cos(xy2)B.- y4cos(xy2)C.y4sin(xy2)D.- y4sin(xy2)10.设100件产品中有次品4件,从中任取5件的不可能事件是().A.“5件都是正品”B.“5件都是次品”C.“至少有1件是次品”D.“至少有1件是正品”第Ⅱ部分(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.11.12.13.14.15.16.17.18.19.20.三、解答题:21~28题,共70分.解答应写出推理、演算步骤.21.22.23.24.25.(本题满分8分)设事件A与B相互独立,且P(A)=0.6,P(B)=0.7,求P(A+B). 26.27.28.(本题满分10分)求由曲线y=2-x2,),=2x-1及X≥0围成的平面图形的面积S以及此平面图形绕X轴旋转一周所得旋转体的体积Vx.模拟试题参考答案一、选择题1.【答案】应选C.2.【答案】应选D.【解析】本题考查的知识点是分段函数在分段点处的极限计算.分段点处的极限一定要分别计算其左、右极限后,再进行判定.3.【答案】应选A.【提示】本题考查的知识点是基本初等函数的导数公式.只需注意e3是常数即可.4.【答案】应选D.5.【答案】应选C.【解析】本题考查的知识点是函数在任意一点x的导数定义.注意导数定义的结构式为6.【答案】应选A.【提示】本题考查的知识点是原函数的概念,因此有所以选A.7.【答案】应选B.【解析】本题考查的知识点是:函数y=ƒ(x)在点(x,ƒ(x))处导数的几何意义是表示该函数对应曲线过点(x,ƒ(x)))的切线的斜率.由可知,切线过点(1,0),则切线方程为y=x-1,所以选B.8.【答案】应选C.【解析】本题考查的知识点是奇、偶函数在对称区间上的定积分计算.注意到被积函数是偶函数的特性,可知所以选C.9.【答案】应选D.【提示】z对x求偏导时应将y视为常数,则有所以选D.10.【答案】应选B.【解析】本题考查的知识点是不可能事件的概念.不可能事件是指在一次试验中不可能发生的事件.由于只有4件次品,一次取出5件都是次品是根本不可能的,所以选B.二、填空题11.【答案】应填2.12.13.【答案】应填一2sin 2x.【提示】用复合函数求导公式计算即可.14.【答案】应填4.15.【答案】应填1.16.【提示】凑微分后用积分公式.17.【答案】应填2In 2.【解析】本题考查的知识点是定积分的换元积分法.换元时,积分的上、下限一定要一起换.18.19.【答案】20.【答案】应填0.【解析】本题考查的知识点是二元函数的二阶混合偏导数的求法.三、解答题21.【解析】型不定式极限的一般求法是提取分子与分母中的最高次因子,也可用洛必达法则求解.解法1解法2洛必达法则.22.本题考查的知识点是函数乘积的导数计算.23.本题考查的知识点是凑微分积分法.24.本题考查的知识点是定积分的凑微分法和分部积分法.【解析】本题的关键是用凑微分法将ƒ(x)dx写成udυ的形式,然后再分部积分.25.本题考查事件相互独立的概念及加法公式.【解析】若事件A与B相互独立,则P(AB)=P(A)P(B).P(A+B)=P(A)+P(B)-p(AB)=P(A)+P(B)-p(A)P(日)=0.6+0.7-0.6×0.7=0.88.26.本题考查的知识点是利用导数的图像来判定函数的单调区间和极值点,并以此确定函数的表达式.编者希望通过本题达到培养考生数形结合的能力.【解析】(1)(2)因为由上面三式解得α=2,b=-9,c=12.27.本题考查的知识点是二元隐函数全微分的求法.利用公式法求导的关键是需构造辅助函数然后将等式两边分别对x(或y或z)求导.读者一定要注意:对x求导时,y,z均视为常数,而对y或z求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x,y,z)中的三个变量均视为自变量.求全微分的第三种解法是直接对等式两边求微分,最后解出出,这种方法也十分简捷有效,建议考生能熟练掌握.解法1等式两边对x求导得解法2解法328.本题考查的知识点有平面图形面积的计算及旋转体体积的计算.【解析】本题的难点是根据所给的已知曲线画出封闭的平面图形,然后再求其面积S.求面积的关键是确定对x积分还是对Y积分.确定平面图形的最简单方法是:题中给的曲线是三条,则该平面图形的边界也必须是三条,多一条或少一条都不是题中所要求的.确定对x积分还是对y积分的一般原则是:尽可能用一个定积分而不是几个定积分之和来表示.本题如改为对y积分,则有计算量显然比对x积分的计算量要大,所以选择积分变量的次序是能否快而准地求出积分的关键.在求旋转体的体积时,一定要注意题目中的旋转轴是戈轴还是y轴.由于本题在x轴下面的图形绕x轴旋转成的体积与x轴上面的图形绕x轴旋转的旋转体的体积重合了,所以只要计算x轴上面的图形绕戈轴旋转的旋转体体积即可.如果将旋转体的体积写成上面的这种错误是考生比较容易出现的,所以审题时一定要注意.解由已知曲线画出平面图形为如图2—1—2所示的阴影区域.2018年成人高等学校专升本招生全国统一考试高等数学(二)。
2018年普通高等学校招生全国统一考试(全国Ⅰ卷)数学试题(理工农医类)及答案
0, 0) P(0, 0, 则 H(0, , 为平面 ABFD 的法向量.
3 3 = 4 = . 设 DP 与平面 ABFD 所成角为θ, 则 sinθ= 4 3 HP · DP HP · DP
cos∠BDC = sin∠ADB = (2)由题设及(1)知, 在△BCD 中, 由余弦定理得 BC = BD + DC - 2·BD·DC·cos∠BDC = 25 + 8 - 2×5× 2 2 × = 25. 所以 BC = 5. 18. (12 分)
2 5
2 2 2
2 . 5
BF⊥PF, BF⊥EF, 解: (1)由已知可得, 所以 BF⊥平面 PEF. 又 BF∩平面 ABFD, 所以平面 PEF⊥平面 ABFD. PH⊥平面 ABFD. (2)作 PH⊥EF, 垂足为 H.由(1)得,
3 2
B.3
C. 2 3
D.4
12.已知正方体的棱长为 1, 每条棱所在直线与平面α所成的角相等, 则α截此正方体所得截面 面积的最大值为 A.
3 3 4 2 3 3 3 2 4 3 2
B.
C.
D.
二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。
x-2 y-2 ≤ 0 13.若 x, y 满足约束条件 则 z = 3x + 2y 的最大值为 x-y+1 ≥ 0 , y ≤ 0
A. 2 17
2
B. 2 5
C.3
D.2
2 N 两点, 的直线与 C 交于 M, 3
2018成人高考高起专《数学》真题与答案解析
2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若π<<π,且sin=,则 =( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线- 的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若 =10,则 ,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
2018年成人高考数学真题(理工类)版(最新整理)
数学试题(理工农医类)
第Ⅰ卷(选择题,共 85 分) 一、选择题(本大题共 17 小题,每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是
符合题目要求的)
1.设集合 M {x -1 x 2}, N {x x 1}, 则 M N
(25)(本小题满分 12 分)设椭圆的焦点为 F1( 3,0), F2 ( 3,0) ,其长轴长为 4.
(1)求椭圆的方程;
(2)若直线 y 3 x m 与椭圆有两个不同的交点,求 m 的取值范围. 2
(22)(本小题满分 12 分)已知 ABC 中, A 60o , AB 5, AC 6, 求 BC .
(23)(本小题满分
12
分)已知数列 an的前 n
项和
sn
1
1 2n
,求‘
(1) an的前 3 项;
(2) an 的通项公式.
(24)(本小题满分 12 分)设函数 f (x) x3 3x2 9x .求 (1)函数 f (x) 的导数; (2)函数 f (x) 在区间[1,4]的最大值与最小值.
C . -2
D . -3
13 .每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为 0.6 ,甲、乙各自独立地射向目标,
则恰有一人击中的概率为
A . 0.44
B . 0.6
C . 0.8
D .1
14 .已知一个球的体积为 32 ,则它的表面积为 3
A . 4 B . 8 C .16
D . 24
B . y x-1 2
C . y 2x 1 D . y 1-2x
7 .若 a, b, c 为实数,且 a 0 。设甲: b2 4ac 0 ,乙: ax2 bx c 0 有实数根,则
2018成人高考高起专《数学》真题及答案解析
2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是()3.y=的定义城为A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.为实数,且a>b,>5.<,则D.6.函数y=6sinxcosc的最大值为()A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则()A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段ABA.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是()A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=()A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)=()A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为()A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=()A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为(),共65分))21.若不等式|ax+1|<2的解集为{x|-<x<},则a=.三.解答题(本大题共4小题,共49分.22.(本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
2018年普通高等学校招生全国统一考试理科数学高考第三套(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
2018成人高考数学[专升本]试题和答案解析[三套试题]
完美.格式.编辑2017年成人高考专升本高等数学模拟试题一一. 选择题(1-10 小题,每题 4 分,共40 分)1. 设limx 0 sinaxx =7,则a的值是()A 17B 1C 5D 72. 已知函数f(x) 在点x0处可等,且 f ′(x0)=3,则l imh 0 f(x0+2h)-f(x 0)h等于()A 3B 0C 2D 63. 当x 0 时,sin(x 2+5x3)与x2 比较是()A 较高阶无穷小量B较低阶的无穷小量C等价无穷小量D同阶但不等价无穷小量4. 设y=x-5+sinx ,则y′等于()A -5x -6 +cosxB -5x -4+cosxC -5x -4 -cosxD -5x -6-cosx25. 设y= 4-3x ,则f′(1) 等于()A 0B -1C -3D 36. (2ex-3sinx)dx 等于()A 2ex+3cosx+c B 2e x+3cosx C 2e x-3cosx D 117.d x2 dx 等于()1-xA 0B 1C D2yx 8. 设函数z=arctanz,则x等于()2zx yA-yx2+y2B 2+y2Byx2+y2C 2+y2Cxx2+y2D 2+y2D-xx2+y22+y22z2x+y 则9. 设y=ex y=()2x+y B 2e2x+y C e2x+y D –e2x+y A 2ye10. 若事件 A 与B 互斥,且P(A )=0.5 P(AUB )=0.8,则P(B)等于()A 0.3B 0.4C 0.2D 0.1二、填空题(11-20 小题,每小题 4 分,共40 分)11. lim (1-x 12x=x )2xKe x<012. 设函数f(x)= 在x=0 处连续,则k=Hcosx x ≥0-x 是f(x) 的一个原函数,则f(x) =13. 函数-ex 的极值点x= 14. 函数y=x-e.整理专业.资料完美.格式.编辑14.设函数y=cos2x ,求y″=15.曲线y=3x 2 -x+1 在点(0,1)处的切线方程y=16.1x-1dx =17.(2ex-3sinx)dx =318. 2 cos x sin xdx=19.设z=exy,则全微分dz=三、计算题(21-28 小题,共70 分)1. limx 1x2-12-1 2x2-x-12. 设函数y=x 3e2x, 求dy3. 计算xsin(x 2+1)dx4. 计算1ln(2 x 1) d xx -2 -1 0 1 25. 设随机变量x 的分布列为(1) 求a 的值,并求P(x<1)y 0.1 a 0.2 0.1 0.3 (2) 求D(x)xe6. 求函数y=1+x的单调区间和极值7. 设函数z=(x,y) 是由方程x2+y2+2x-2yz=e z 所确定的隐函数,求dz8. 求曲线y=ex,y=e-x 与直线x=1 所围成的平面图形面积专业.资料.整理完美.格式.编辑2017年成人高考专升本高等数学模拟试题一答案一、(1-10 小题,每题 4 分,共40 分)20. D 2. D 3. C 4. A 5. C 6. A 7. C 8.A 9. B 10. A二、(11-20 小题,每小题 4 分,共40 分)-2 12. 2 13. e-x 14. 0 15.-4cos2x 16. y=-x+1 17. ln x 1 +c 18. 2e x+3cosx+c9. e19. 1xy(ydx+xdy) 4 20. dz=e三、(21-28 小题,共70 分)1. limx 1x (x-1)(x-1) 2 2-12-12x 3 2-x-1 =(x-1)(2x+1) =2. y′=(x 3) ′e2x+(e 2x) ′x 3=3x2e2x+2e2x x3 =x2e2x(3+2x) dy=x 2e2x dx3. xsin(x 2+1)dx =12 sin(x2+1)d(x 2+1) =12cos(x2+1)+c2+1)+c111 4. ln(2x+1)dx =xln(2x+1)0 -2x(2x+1)dx =ln3-{x-12ln(2x+1)} 10 =-1+32ln30 05. (1) 0.1+a+0.2+0.1+0.3=1 得出a=0.3P(x<1), 就是将x<1 各点的概率相加即可,即:0.1+0.3+0.2 =0.6(2) E(x)=0.1 (×-2)+0.3 (-×1)+0.2 0×+0.1 ×1+0.3 ×2=0.2D(x)=E{xi-E(x)} 2=(-2-0.2) 2×0.1+(-1-0.2) 2×0.3+(0-0.2) 2×0.2+(1-0.2) 2×0.1+(2-0.2) 2×0.3=1.96 6. 1) 定义域x≠-1e x(1+x)-ex(1+x)-ex2 = 2) y′ =(1+x)x xe(1+x)23)令y′=0, 得出x=0( 注意x=1 这一点也应该作为我们考虑单调区间的点) x专业.资料.整理完美.格式.编辑(-∞,1)-1 (-1,0)0 (0,+∞)y 0- 无意义- +y′无意义F(0)=1 为小极小值函数在(-∞,1)U(-1,0)区间内单调递减在(0,+∞)内单调递增该函数在x=0 处取得极小值,极小值为 121.fx=2x+2,fy=2y-2zfzz=-2y-ez x =-fxfz2(x+1)z=2y+eaz ay ==-fyfz2y-2z 2y-2z= z) =z-(2y+e 2y+e 2(x+1)dz= z dx+2y+e 2y-2zz dy 2y+e22.如下图:曲线y=ex,y=ex,y=e-x , 与直线x=1 的交点分别为A(1,e),B(1,e -1 ) 则xy=e1x x )S= (e e dx 0 = (e x -x+e )1 -10 =e+e-2xy=e-1B专业.资料.整理2017年成人高考专升本高等数学模拟试题二答案必须答在答题卡上指定的位置,答在试.卷.上.无.效...。
2018年省考数学全国卷(理工农医卷) 精品
2018年普通高等学校招生全国统一考试数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}2.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg5. 已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A. 220x -25y =1B. 25x -220y =1C.280x -220y =1 D. 220x -280y =16. 函数f (x )=sinx-cos(x+6π)的值域为A [ -2 ,2]B [-3,3]C [-1,1 ]D [-32 , 32] 7. 在△ABC 中,AB=2 AC=3 AB ²BC = 1,则BC= A 3 B 7 C 22 D 238 ,已知两条直线l1:y=m 和l2:y=821m+(m>0),l1与函数y=|log2x|的图像从左至右相交于点A,B ,l2与函数y=|log2x|的图像从左至右相交于点C,D 。
2018年成考高起点数学考试真题及答案
C.x+y=0 D.x+y-2=0 答案:C 二、填空题:本大题共 4 小题,每小题 4 分,共 16 分,把答案填在题中横线上。 18.若平面向量 a=(x,1),b=(1,-2),且 a//b,则 x= 答案:-1/2 19.若二次函数 f(x)=ax2+2x 的最小值为-1/3,则 a= 答案:3 20.某次测试中 5 位同学的成绩分别为 79,81,85,75,80,则他们的成绩的平均数为 答案:80 21.函数 y=2x-2 的图像与坐标轴的交点共有 答案:2 个 三、解答题:本大题共有 4 小题,共 49 分。解答应写出推理、演算步骤。 22.(本小题满分 12 分) 在三角形 ABC 中,AB=2,BC=3,B=60°。求 AB 及△ABC 的面积。Biblioteka 25.(本小题满分 12 分)
答案:C 10.下列函数中,函数值恒为负值的是 A.y=x B.y=-x2-1 C.y=x3 D.y=-x2+1 答案:B 11.过点(0,1)且与直线 x+y+1=0 垂直的直线方程为 A.y=x+1 B.y=2x+1 C.y=x D.y=x-1
答案:A 12.设双曲线 x2/16-y2/9=1 的渐近线的斜率为 k,则|k|= A.9/16 B.16/9 C.4/3 D.3/4 答案:D 13.642/3+log1/381= A.8 B.14 C.12 D.10 答案:B 14.若 tanα=3,则 tan(α+π/4)= A.-2 B.1/2 C.2 D.-4 答案:A 15.函数 y=ln(x-1)2+1/(x-1)的定义域为 A.{x|x<-1 或 x>1} B.{x|x<或 x>1} C.{x|-1<x<1} D.R 答案:B 16.某同学每次投篮投中的概率,该同学投篮 2 次,只投中 1 次的概率为 A.12/25 B.9/25 C.6/25 D.3/5 答案:A 17.曲线 y=x3-4x+2 在点(1,-1)处的切线方程为 A.x-y-2=0 B.x-y=0
高考最新-2018年湖北省高考数学(理工农医类)试卷 精品
2018年湖北省高考数学(理工农医类)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟。
第I 部分(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1. 设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( ) A. 9 B. 8 C. 7 D. 6 2. 对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件。
其中真命题的个数是 ( ) A. 1 B. 2 C. 3 D. 4 3. =++-ii i 1)21)(1( ( )A. i --2B. i +-2C. i -2D. i +2 4. 函数|1|||ln --=x e y x 的图象大致是( )5. 双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A. 163B. 83C. 316 D. 386. 在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( ) A. 0 B. 1 C. 2 D. 37. 若∈<<=+απαααα则),20(tan cos sin ( )A. )6,0(π B. )4,6(ππ C. )3,4(ππ D. )2,3(ππ8. 若1)11(lim 21=---→xb x a x ,则常数b a ,的值为 ( )A. 4,2=-=b aB. 4,2-==b aC. 4,2-=-=b aD. 4,2==b a9. 若x x x sin 32,20与则π<<的大小关系 ( )A. x x sin 32>B. x x sin 32<C. x x sin 32=D. 与x 的取值有关 10. 如图,在三棱柱ABC —A ′B ′C ′中,点E 、F 、H 、 K 分别为AC ′、CB ′、A ′B 、B ′C ′的中点,G 为△ABC 的重心. 从K 、H 、G 、B ′中取一点作为P , 使得该棱柱恰有2条棱与平面PEF 平行,则P 为 ( ) A. K B. H C. G D. B ′11. 某初级中学有学生270人,其中一年级118人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段。
2018成人高考高起点数学考试真题和答案解析
2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
成人高考2018年《数学》真题
c a2 b2 7 ,则焦距 2c 2 7
12.【答案】B
【解析】抛物线 y2 6x 的焦距为 F 3 ,0 ,则直线 AF 的斜率
2
k
0 1
3 0
2 3
2
13.【答案】C
【解析】该女生不在两端的不同排法有 C21C33 12 种 14.【答案】C
【解析】 a mb 1,t m1,2 1 m,t 2m,又因 a mb 平行于向量 (-2,1),则1 1 m 2 t 2m,化简得 2t 3m 1 0
D. y x2 1
7.函数 y log2x 2的图像向上平移一个单位后,所得图像对应的函
数为( )
A. y log2 x 1 B. y log2 x 21 C. y log2 x 21 D. y log2 x 3 8.在等差数列an中,a1 1,公差 d 0 ,a2 ,a3 ,a6 成等比数列,则 d
C.{2,4,8}
D.{2,4,6,8}
2.不等式 x2 2x < 0 的解集为( )
A.x 0 < x < 2 B.x 2 < x < 0 C.x x < 0或x > 2 D.x x < -2或x > 0
3.曲线
y
2 1
x
的对称中心是(
)
A.(-1,0) B.(1,0)
C.(2,0)
D.(0,1)
3
3 27
在 x 1时取得极小值 f 1 4 < 0, f 2 1 > 0 ,根据(1)关于 f x 单调
性的结论,可知 f x 有 3 个零点
25.【答案】
(1)由已知可得 C 的长半轴的长 a 2 ,半焦距 c 3 ,故 C 的短半轴
2018年成人高考高数真题及答案解析
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim0( ) A.e B.2 C.1 D.0 2.设x y cos 1+=,则dy=( )A.()dx x sin 1+B.()dx x sin 1-C.xdx sinD.xdx sin - 3.若函数()x x f 5=,则()='x f ( ) A.15-x B.15-x x C.5ln 5x D.x 5 4.=-⎰dx x21( ) A.C x +-2ln B.C x +--2ln C.()C x +--221D.()C x +-2215.()='⎰dx x f 2( ) A.()Cx f +221B.()C x f +2C.()C x f +22D.()C x f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11 A.0 B.2 C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz( ) A.y xy 232++ B.y xy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是( ) A.柱面 B.球面 C.旋转抛物面 D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ( )A.0B.1C.2D.410.微分方程1='y y 的通解为( ) A.C x y +=2 B.Cx y +=221C.Cx y =2D.C x y +=22 二、填空题:11~20小题,每小题4分,共40分 11.曲线43623++-=x x x y 的拐点为___________ 12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________ 14.若x e y 2=,则=dy ___________ 15.()=+⎰dx x 32___________ 16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________ 18.=∑∞=031n n___________ 19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________ 三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim 2231---→x x x x23.设函数()()23ln 2++=x x x f ,求()0f '' 24.求23sin lim x tdt x x ⎰→25.求⎰xdx x cos26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdy y x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】01cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -= 3.【答案】C【解析】()()5ln 55x x x f ='=' 4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰22122212 6.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=221 11.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6) 12.【答案】3-e【解析】()()[]()33310131lim 31lim --⋅-→→=-+=-e x x xx xx13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111xx x x f +=+-=' 14.【答案】dx e x 22【解析】()x x e e y 222='=',则dx e dy x 22= 15.【答案】C x x ++32 【解析】()C x x dx x ++=+⎰3322 16.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x17.【答案】2【解析】22cos222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1 【解析】100=-=∞+-+∞-⎰x x e dx e20.【答案】xy 4【解析】22y x z =,22xy xz =∂∂,xy y x z 42=∂∂∂ 21.【答案】()3sin 3limlim 00==--→→xxx f x x()()a a x x f x x =+=++→→3lim lim 0且()a f =0因为()0=x x f 在处连续 所以()()()0lim lim 00f x f x f x x ==+-→→3=a22.【答案】()1123lim 1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim11113lim2121=+++=+--++=→→x x x x x x x x x x23.【答案】()()()22392332+-=''++='x x f x x f故()490-=''f24.【答案】2002003cos 31lim 3sin lim xt x tdtx x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x25.【答案】⎰⎰-=xdx x x xdx x sin sin cos C x x x ++=cos sin26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x , 当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数 当1<x <0时,()0<x f ',此时()x f 为单调减少函数 故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x dx x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018年成人高考高起专数学试题含答案
C. = log2 ( + 2) 䁢 1 8.在等差数列 中, 1 = 1,公差
D. = log2 ( + 2) + 1 0, 2, , 6成等比数列,则 =
()
A.1
B. − 1
C. − 2
D.2
9.从 1,2, ,4,5 中任取 2 个不同的数,这 2 个数都是偶数的概率为 ( )
A. 10
B.
B. − 2 D. 2
13.若 1 名女生和 3 名男生排成一排,则该女生不在两端的不同排法共有
()
A.24 种
B.12 种
C.16 种
D.8 种
14.已知平面向量 = (1, ), = ( 䁢 1,2),若 + 룈 平行于向量( − 2,1),则
()
A.2 䁢 룈 + 1 = 0
B.2 + 룈 + 1 = 0
䁢 + = 0;又直线经过点(1, 䁢 2),故 1 䁢 × ( 䁢 2) + = 0,则 =䁢 7,
即所求直线方程为 䁢 䁢 7 = 0
19.【答案】
8
【考情点拨】本题考查了贝努利试验的知识点.
【应试指导】恰有 2 次正面向上的概率是
=
㈮42(
1 2
)2(1
䁢
1 2
)4䁢2
=
.
8
20.【答案】− 24
5.【答案】A
【考情点拨】本题考查了三角函数的周期的知识点.
【应试指导】最小正周期
=
=
.
2
6.【答案】A
【考情点拨】本题考查了函数的奇偶性的知识点.
【应试指导】A 项, = ( ) = 2 + 1,则 ( 䁢 ) = ( 䁢 )2 + 1 = 2 + 1 =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年成人高等学校招生全国统一考试(共三套)数学试题(理工农医类)(考试时间120分钟)第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分。
共85分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2+5x+6=0),B={x|x2-12x+35=0),则A∩B=()A.{-2,-3}B.{5,7}C.{-2,-3,5,7}2.()A.是偶函数B.是奇函数且是单调增函数C.是奇函数且是单调减函数D.既不是奇函数也不是偶函数3.log34·log48·log8m=log416,则m为()A.9/2B.9C.18D.274.5.如果函数ƒ(x)在区间[a,6]上具有单调性,且ƒ(a)·ƒ(b)<0,则方程ƒ(x)=0在区间[a,b]上()A.至少有一个实根B.至多有一个实根C.没有实根D.必有唯一实根6.一个科研小组共有8名科研人员,其中有3名女性.从中选出3人参加学术讨论会,选出的人必须有男有女,则有不同选法()A.56种B.45种C.10种D.6种7.如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么()A.a=3,b=6B.a=3,b=-2C.a=1/3,b=-6D.a=1/3,b=68.()B.-2D.49.中心在原点,一个焦点为(0,4)且过点(3,0)的椭圆的方程是()10.已知向量a,b满足|a|=3,| b |=4,且a和b的夹角为120º,则a·b为()C.6D.-611.()12.设函数ƒ(x)=x(x-1)(x-2)(x-3),则ƒˊ(0)=()A.-6B.0C.1D.313.()A.椭圆B.圆,但需除去点(1,0)C.圆D.圆,但需除去点(-1,0)14.已知盒子中有散落的围棋棋子15粒,其中6粒黑子,9粒白子,从中任意取出2粒恰好是同一色的概率是()15.已知正三棱锥S—ABC的三个侧面均为等腰直角三角形,且底面边长为压,则此棱锥的体积为()16.不等式ax2+bx+24<0的解集为x>2或x<-4,则()A.a=-3,b=-68.a=3,b=-6C.a=-3,b=6D.a=3,b=617.设命题甲:k=1,命题乙:直线y=kx与直线y=x+1平行,则()A.甲是乙的必要条件但不是乙的充分条件B.甲是乙的充分条件但不是乙的必要条件C.甲既不是乙的充分条件也不是乙的必要条件D.甲是乙的充分必要条件第Ⅱ卷(非选择题,共65分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.18.若ƒ(x)=x2-ax+1有负值,则a的取值范围是__________.19.直线y=x+m和曲线有两个交点,则聊的取值范围是__________.20.21.直线3x+4y-12=0与x轴,y轴分别交于A,B两点,0为坐标原点,则△OAB的周长为______________.三、解答题:本大题共4小题,共49分,解答应写出推理、演算步骤.22.(本小题满分12分)已知等差数列{a n}中,公差d>0,其前n项和为S n,且满足:a2·a3=45,a1+a4=14.(Ⅰ)求数列{a n}的通项公式;23.(本小题满分12分)已知函数ƒ(x)=|x|,函数g(x)=| x-1 |.(Ⅰ)解不等式ƒ(x)≥g(x);(Ⅱ)定义分段函数ƒ(x)如下:当ƒ(x)≥g(x)时,F(x)=ƒ(x);当ƒ(x)<g(x)时,F(x)=g(x).结合(Ⅰ)的结果,试写出F(x)的解析式;(Ⅲ)对于(Ⅱ)中的函数F(x),求F(x)的最小值.24.(本小题满分12分)在△ABC中,已知其度数成等差数列的三个角A,B,C的对应边长a,b,c成等比数列,求证△ABC为正三角形.25.(本小题满分13分)如图,过抛物线y2=2px(p>0)上一定点P(x o,y o)(y o>0)作两条直线,分别交抛物线于A(x1,y1),B(x2,y2)两点.模拟试题参考答案一、选择题1.【考点指要】本题考查集合中交集的概念,当集合中元素为方程的解时,交集即为方程的公共解.2.B【解析】由y=tan x的图象易知,其在【考点指要】本题考查函数奇偶性、单调性的概念,是历年必考内容,要解答本题必须清楚函数y=3.【考点指要】本题考查对数的性质、运算法则及换底公式,是考生必须掌握的基本知识.4.【考点指要】本题考查同角三角函数的关系和二倍角公式.5.D【解析】ƒ(x)在区间[a,b]上具有单调性,故ƒ(x)在区间[a,b]上单调递增或单调递减.又ƒ(a)·ƒ(b)<0,故ƒ(x)=0必有唯一实根.【考点指要】本题考查对函数的单调性的了解.根据题意,构造图象,如图所示,显然必有唯一实根.6.B【解析】由题意,共有3女5男,按要求可选的情况有:1女2男,2女1男,故【考点指要】本题是组合应用题.考生应分清本题无顺序要求,两种情况的计算结果用加法(分类用加法).7.D【解析】结合反函数的定义及题意得y=ax+2与y=3x-b互为反函数,因为y=ax+2的【考点指要】本题考查反函数的性质,即互为反函数的图象关于直线y=x对称.8.【考点指要】本题考查求极限的基本方法.当 x=1时9.【考点指要】本题考查椭圆的标准方程.要注意所求椭圆的焦点在Y轴上.其实若注意到(3,0)为短轴端点,可直接知b=3,c=4.则有a=5.10.D【解析】a·b=| a | | b| cos a=3×4×cos120º=-6.【考点指要】本题考查向量数量积的计算.11.【考点指要】本题考查复数的相关知识.12.A【解析】ƒˊ(x)=(x-1)(37-2)(x-3)+x(x-2)(x-3)+x(x-1)(x-3)+x(x-1)·(x-2),ƒˊ(0)=(-1)×(-2)×(-3)=-6.【考点指要】本题考查函数乘积的求导法则.要注意ƒˊ(0)的概念是先求ƒˊ(x)再将x=0代入.解题时若注意到取0将使后三项为0,可直接得13.【考点指要】本题考查将参数方程变为普通方程的14.A【解析】设15粒棋子中任取2粒,“恰好同色”的事件为A,“恰好都是黑子”的事件为A1,【考点指要】本题考查互斥事件的意义及对公式的了解.15.A【解析】如图,点0为顶点S在底面ABC内的射影,由于三棱锥S—ABC是正棱锥,所以点0为AABC的中心,连接C。
并延长交AB于点D,连接SD,则CD⊥AB,SD⊥AB,又知等边△ABC由已知三个侧面均为等腰直角三角形,所以∠SBA=45º,【考点指要】本题考查正三棱锥的性质,三棱锥的体积.注意:①正三棱锥顶点在底面的射影即为底面三角形的中心,其连线SO为正三棱锥的高;②将空间问题转化为解平面三角形的问题是考生应掌握的解题思路.16.【考点指要】与一元二次方程结合起来是解本题醮关键,这是历年成考的常见题.17.【考点指要】本题考查对充分必要条件的理解.二、填空题18.【考点指要】本题考查对二次函数的图象与性质、二次不等式的解法的掌握.19.20.【考点指要】本题考查离散型随机变量X的数学期望的求法.21.【考点指要】本题考查对直线方程的理解.三、解答题22.23.【考点指要】本题主要考查不等式的解法和分段函数等知识.对于分段函数的问题,通常是先分段研究再综合.24.【考点指要】本题应用等差中项和等比中项的概念解斜三角形,此类题型是成人高考的重点题型.25.【考点指要】本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.2018年成人高等学校招生全国统一考试数学试题(理工农医类)(考试时间120分钟)第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题。
每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A.{1,2,3}B.{2}C.{1,3,4}D.{4}2.()3.()A.-2B.0C.1D.24.若x>2,那么下列四个式子中①x2>2x②xy>2y;③2x>x;正确的有()A.4个B.3个C.2个D.1个5.设函数ƒ(x)=x2-1,则ƒ(x+2)=()A.x2+4x+5B.x2+4x+3C.x2+2x+D.x2+2x+36.若5x=3,5y-1=4,则52x+y ()A.12B.36C.144D.1807.()8.某小组共10名学生,其中女生3名,现选举2人当代表,至少有1名女生当选,则不同的选法共有()A.21种B.24种C.27种D.63种9.在x0y面中,点P(5,3)沿向量a=(-5,-3)平移后变为()A.(0,0)B.(2,-2)C.(-2,2)D.(2,2)10.一个圆柱的轴截面面积为Q,那么它的侧面积是()A.1/2πQB.πQC.2πQD.以上都不对11.()12.()13.三角形顶点为(0,0),(1,1),(9,1),平行于y轴且等分此三角形面积的直线方程为()A.x=5/2B.x=3C.z=7/2D.x=414.()A.10B.15C.40/3D.2015.()16.()17.设一次函数的图象过点(1,1)和(-2,0),则该一次函数的解析式为()A.y=1/3x+2/3B.y=1/3x-2/3C.y=2x-1D.y=x+2第Ⅱ卷(非选择题,共65分)二、填空题:本大题共4小题。
每小题4分,共16分,把答案填在题中横线上.18.函数ƒ(x)=e x ln x的导数是___________.19.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的2倍,则m的值是__________.20.21.如图所示,正三角形P1P2P3,点A,C,B分别为边P1P2,P2P3,P3P1的中点,沿AB,BC,CA折起,使P1,P2,P3三点重合后为点P,则折起后二面角P-AB-C的余弦值为__________.三、解答题:本大题共4小题。
共49分,解答应写出推理、演算步骤.22.(本小题满分12分)已知数列{a n}的前n项和S n=nb n,其中{b n}是首项为1,公差为2的等差数列.(I)求数列{a n}的通项公式;23.(本小题满分12分)24.(本小题满分12分)(Ⅰ)求m的值;(Ⅱ)如果P是两曲线的一个公共点,且F1是椭圆的另一焦点,求△P F1F2的面积.25.(本小题满分13分)已知函数ƒ(x)=x3+ax2+bx+c,当x=-1时取得极大值7.当x=3时取得极小值,求ƒ(x)的极小值及此时a,b,c的值.模拟试题参考答案一、选择题1.【考点指要】本题主要考查集合的运算,集合的运算是成人高考的必考内容.2.【考点指要】本题考查对反三角函数的概念的理解.对于arcsina这个符号可从以下三句话来理解:①这是一个角;③这个角的正弦值是a.同理:arccos a这个符号可以从下面三句话来理解:①这是一个角;②这个角在区间[0,π]上;③这个角的余弦值是a.因此.本题的意思就是:在[0,π]上。