导数综合题分类归纳(1)
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数题型总结(12种题型)
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数常考题型归纳总结
导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。
在高中数学中,导数是一个常考的内容。
为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。
一、常数函数求导常数函数的导数始终为零。
这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。
二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。
设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。
例如,对于y=x^2,求导后得到dy/dx=2x。
对于y=x^3,求导后得到dy/dx=3x^2。
这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。
三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。
即dy/dx = e^x。
这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。
四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。
根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。
这个公式对于解决对数函数的导数问题非常有用。
五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。
我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。
这些公式可以根据求导的定义进行推导,同学们需要牢记。
六、复合函数求导复合函数指的是由多个函数复合而成的函数。
对于复合函数的导数求解,我们可以利用链式法则。
链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。
通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。
高中数学导数大题八类题型总结
1 1
2 x 1
x 1
ln
x
x
1 x
1 2
x
1 x
0
x
1时,1 2
x
1 2
x
1 x
ln
x
2 x 1
x 1
x2 x2
1 1
以上所有不等式,考试时需要用的时候,都要先证明之后再使用
7. 常见不等式的应用
如果说高中的圆锥曲线题目总是要找相等关系,那么高中的导数题归根结底就是找不等关系,因此想要攻克导数这 个关口,放缩思想时刻要保持在脑海里,很多题目,仅仅用一些非常粗暴的放缩,就可以简化计算和解题过程。
与要求不等关系矛盾 2.a 0时,考虑切线特性
直线经过定点0,1 ,刚好也是f 0的位置,那么直观的想法是让直线的斜 率超过函数f x 在x 0处的切线斜率,就可能保证直线始终在函数图像上方 f ' 0 1, 于是猜测a 1
进一步要说明a确实为该取值,还要说明函数是凸函数,即其斜率在x 0之后 递减.通过二阶导得到:
1. 存在性问题
高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题
(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:
证明必然存在交点是单纯的找“特殊点”问题
1. 存在性问题
要点
1. 存在性问题
由于只关注零点的存在性,因此就没有 必要对t(x)求导讨论其单调性,直接使 用零点定即可。
分类讨论一般分两种:一种对参数分类讨论,一种对区间分段讨论,分段讨论 在5中已经提及,这里再提及对参数的分类讨论。
高考中分类讨论众多且考察面广,其原因主要在于:容易考察出学生的分析能 力与对复杂情况区的分处理能力;分类讨论可以在一道题中同时考察多个知识点; 由于考纲的限制,分类讨论成了高中阶段非竞赛学生唯一绕开分离变量、洛必达法 则运用问题:0/0型,无穷/无穷型极限计算的办法
导数题型总结
导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
导数的综合大题及其分类
导数的综合大题及其分类②当a>2时, A >0,设F '(x) = 0的两根为 a —寸a 2—4,X 2 =a + ” a 2—4 其定义域为导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、 极值、最值;利用导数研究不等式;利用导数研究方程的根 (或函数的零点);利用导数研究恒成立问题等•体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用 .题型一利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于 零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.⑶最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在 极值和区间端点函数值中最大的为最大值,最小的为最小值.1已知函数 f(x) = x — -, g(x)= alnx(a € R). X (1)当a>— 2时,求F(x) = f(x) — g(x)的单调区间;1、⑵设h(x) = f(x) + g(x),且h(x)有两个极值点为 X 1,X 2,其中X 1 € 0,2,求h(x”一 h(X 2)的最小值.[审题程序]第步: 在定义域内,依据F '(X) - 0根的情况对F '(X)的符号讨论; 第二步: 整合讨论结果,确定单调区间; 第三步: 建立X 1、X 2及a 间的关系及取值范围;第四步: 通过代换转化为关于X 1(或X 2)的函数,求出最小值.1[规范解答](1)由题意得F(x) = x — X — alnx , x 2— ax + 1(0,+-),贝U F '(x)二X^—令 m(x) = x 2— ax+ 1,贝U △= a 2— 4.①当一2<a<2时,A<0,从而F'(x)>0,二F(x)的单调递增区间为(0,+-);••• F(x)的单调递增区间为0 a—a2 —4和a+产4 +8 ,2F(x)的单调递减区间为a- f二4, a+供二4综上,当一2<a<2时,F(x)的单调递增区间为(0, 当a>2时,F(x)的单调递增区间为0, L F-4和时{J 4 , +8 ,F(x)的单调递减区间为a- f -4, a+童二41(2)对h(x) = x—x+ alnx, x € (0,+ 8)x2+ ax+ 1x2设h'(x)= 0的两根分别为x i, X2,则有X1X2=1 , X1 + X2= —a,1ln_x1 1••• xeX1,从而有 a= — X1—易令 H(x)= h(x)— h 1=X—1+ — X —- Inx —x=2 -x-十nx + x-匕,(x) = 2— nx = 21二X1+皿x x21当 x € 0 , 2 时,H '(x)<0,1••• H(x)在0 , 2上单调递减,又 H(x i) = h(x i)— h 丄=h(x i) — h(X2),X11•••[h(x i) — h(X2)]min = H ㊁=5ln2 — 3.[解题反思]本例(1)中求F(x)的单调区间,需先求出F(x)的定义域,同时在解不等式F '(x)>0 时需根据方程x2— ax + 1 = 0的根的情况求出不等式的解集,故以判别式“ △”的取值作为分类讨论的依据.在⑵中求出h(X1)— h(X2)的最小值,需先求出其解析式.由题可知X1, X2是h '(x) = 0 的两根,可得到X1X2 = 1, X1 + X2=— a,从而将h(X1)— h(X2)只用一个变量 X1导出.从而得到 H(X1)1 、 1 1=h(X1) — h —,这样将所求问题转化为研究新函数H(x)= h(x)— h -在0,-上的最值问题,体现X1 X 2转为与化归数学思想.[答题模板]解决这类问题的答题模板如下:求定义域 — 求出函数的定义域.1求导数准确求出函数的导数J1根据参数的取值范围,结合极值点与 给定区间的位置对导函数的符号进 行分类讨论,确定函数的单调性.讨论单调性 —根据函数的单调性,确定极值、最值 的取得情况.讨论极值最値根据分类讨论的结果,对结论进行整合,做到不重不漏.整合结论 —[题型专练]1.设函数 f(x) = (1 + X )2— 2ln(1 + x).(1)求f(x)的单调区间;⑵当0<a<2时,求函数g(x) = f(x) — x 2— ax — 1在区间[0,3]上的最小值. [解](1)f(x)的定义域为(—1,+乂).V f(x)= (1+ x)2— 2ln(1 + x), x € (— 1,+乂),由 f ' (x)>0,得 x>0;由 f ' (x)<0,得一1<x<0.二函数f(x)的单调递增区间为(0,+x ),单调递减区间为(—1,0). ⑵由题意可知 g(x) = (2 — a)x — 2ln(1 + x)(x>— 1), 2则 g ‘ (x)= 2 — a — 1++x =(x) = 2(1 + x)—2 2x x + 21 + x _x + 1-0<a<2,…2 — a>0,令 g‘ (x)= 0,得 x = 2^,a a•••函数g(x)在0, 于上为减函数,在芦a,+乂上为增函数.a 3①当0<严<3,即0vav2时,在区间[0,3]上,2 — a 2a ag(x)在0, 亍上为减函数,在汪,3上为增函数,a 2…g(x)m in = g 2 —a= a —2ln2T^.a 3②当一>3,即3<a<2时,g(x)在区间[0,3]上为减函数,2— a 2…g(x)min = g(3) = 6— 3a—2ln4.3 2综上所述,当 0<a<3时,g(x)min = a— 21 门2——a;3当a<2 时,g(x)min = 6 — 3a — 2ln4.北京卷(19)(本小题13分)已知函数f (x) =e x cos x-x.(I)求曲线y= f (x)在点(0, f (0))处的切线方程;(H)求函数f (x)在区间[0 ,亍]上的最大值和最小值.(19)(共13 分)解:(I)因为f(x) e x cosx x,所以 f (x) e x(cosx sinx) 1, f (0) 0 . 又因为f(0) 1,所以曲线y f(x)在点(0,f(0))处的切线方程为y(H)设h(x) e x(cos x sin x) 1 则h(x) e x(cos x sin x sin x cos x) 2e x sin x21. (12 分) 已知函数 (1) 求 a ;(2) 证明: 21.解: (1)fx的定义域为0,+ 设g x = ax - a - I nx ,贝卩 f x =xg x , f x 0等价于g 因为g 1 =0, g x 0,故g' 1 =0,而g' x a - , g' 1 =a 1,得axf (x) ax 3 ax x Inx,且f (x)f(x)存在唯一的极大值点x 0, 且e 2f(x 。
导数大题综合(含答案)
导数大题综合1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.2.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数()ln f x ax x x =-,且()f x 在e x =处的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.6.(2022春·广东深圳·高二校考期中)已知函数()2ln f x x a x =-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围.7.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2ln f x ax x =+.(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.8.(2022春·广东江门·高二校联考期中)已知函数()32f x x ax bx c =+++的图象在点()1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.10.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2cos sin f x ax ax x x =--(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()1ln f x a x bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222m f x x x-≥+恒成立,求实数m 的取值范围.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()e ln =--x af x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2a f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.18.(2022春·广东江门·高二江门市第二中学校考期中)已知函数()e xf x ax =-,R a ∈.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数19.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2sin 1,R f x x a x a =++∈.(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.20.(2022春·广东东莞·高二校联考期中)已知函数()()22ln f x ax a x x=-++(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1xxf x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln af x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数21()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.24.(2022春·广东广州·高二广州市玉岩中学校考期中)已知2()e (2)e (R)x x f x a a x a =+--∈(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.25.(2022春·广东深圳·高二校考期中)已知函数()21ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥26.(2022春·广东江门·高二江门市新会东方红中学校考期中)已知函数e ()ln e x f x x x x -=--,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12af x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.28.(2022春·广东广州·高二校考期中)已知函数()sin x x x f -=.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.29.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2ln =++f x x ax bx (其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.30.(2022春·广东佛山·高二校联考期中)已知函数()e ()=-∈R x f x ax a .(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.导数大题综合答案1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.所以,函数()f x 的极大值点为12x =,极大值为2ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.(1)()'236f x x x a =-++, =1x -是函数()f x 的一个极值点∴()'190f a -=-+=,∴9a =,∴()'2369f x x x =-++,令()'0f x <,解得1x <-或3x >;令()'0f x >,解得13x -<<.所以函数()f x 的减区间为()(),1,3,∞∞--+,增区间为()1,3-.(2)由(1)()3239f x x x x =-++,又 ()f x 在[]4,1--上单调递减,在[]1,3-上单调递增,在[]3,4上单调递减∴函数()f x 在的极大值为()327f =,又()476f -=,∴函数()f x 在区间[]4,4-上的最大值为()476f -=.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围..(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.的图象在点1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.(2)由(1)可知,()f x 在[)2,1--上单调递增,在(]1,2-上单调递减,且()115f -=,()212f =-,()28f -=,∴()max 15f x =,()min 12f x =-.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.【详解】(1)由题意知()2cos sin f x x x x x =--,()()21cos sin f x x x x '=-+,[],x ππ∈-时,1cos 0x -≥,sin 0x x ≥,[],x ∴∈-ππ时,()0f x '≥恒成立,所以()f x 单调递增,∴()()()f f x f ππ-≤≤,即()33f x -π≤≤π所以()f x 的值域为[]3,3ππ-.(2)注意到()00f =,()2cos sin cos f x a a x ax x x '=-+-,若1a ≥,()()2cos sin 2cos sin f x ax x x x x x x =--≥--,由(1)知,当[]0,x π∈时,()()00f x f ≥=;当(),x π∈+∞时,2cos sin 2110x x x x x x x -->--=->,所以()0f x ≥恒成立,符合题意;若0a ≤,()()2cos sin f x ax x x =--,当[]0,x π∈时,()0f x ≤,不合题意,舍去;11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()ln f x ax bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222mf x x x-≥+恒成立,求实数m 的取值范围.∴()()min 11g x g ==-⎡⎤⎣⎦,即1m ≤-所以实数m 的取值范围为(],1-∞-.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()ln =--f x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.当1e a <<时,当ln 1a x <<时,()0f x '<,()f x 单调递减;当0ln x a <<或1x >时,()0f x ¢>,()f x 单调递增;当e a =时,()0f x ¢>在定义域上恒成立,()f x 单调递增;当e a >时,当1ln x a <<时,()0f x '<,()f x 单调递减;当01x <<或ln x a >时,()0f x ¢>,()f x 单调递增;综上:当1a ≤时,()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1;当1e a <<时,()f x 的单调递增区间为()0,ln a ,()1,+∞,单调递减区间为()ln ,1a ;当e a =时,()f x 的单调递增区间为()0,∞+;当e a >时,()f x 的单调递增区间为()0,1,()ln ,a +∞;单调递减区间为()1,ln a .15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.∵21336362f f πππ⎛⎫⎛⎫-==-+ ⎪ ⎝⎭⎝⎭,∴()2max 16362f x π=-+.∵()()214f f πππ-==--,()01f =,∴()2min14f x π=--.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1x f x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln f x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.(1)解:()e '=-x f x a x ,因为函数()f x 在0x =处的切线方程为1y x =-,所以(0)1f '=,即1a =,(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.观察图象知,当且仅当01a <<时,直线y 所以a 的取值范围是01a <<.25.(2022春·广东深圳·高二校考期中)已知函数()2ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12f x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.。
导数压轴大题归类 (解析版)
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
导数题型分类大全(附答案)
由题意得, 是 的两个根,解得, .
再由 可得 .∴ .
(2) ,
当 时, ;当 时, ;
当 时, ;当 时, ;
当 时, .∴函数 在区间 上是增函数;
在区间 上是减函数;在区间 上是增函数.
函数 的极大值是 ,极小值是 .
(3)函数 的图象是由 的图象向右平移 个单位,向上平移4 个单位得到的,
所以,函数 在区间 上的值域为 ( ).
而 ,∴ ,即 .
于是,函数 在区间 上的值域为 .
令 得 或 .由 的单调性知, ,即 .
综上所述, 、 应满足的条件是: ,且 .
7.已知函数 ,
(Ⅱ)设函数 ,求函数 的单调区间;
(Ⅲ)若在 上存在一点 ,使得 成立,求 的取值范围
8.设函数 .
(1)若 的图象与直线 相切,切点横坐标为2,且 在 处取极值,求实数 的值;
题型五:利用导数研究函数的图象
1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D )
(A) (B) (C) (D)
2.函数 ( A )
3.方程 ( B )
A、0 B、1 C、2 D、3
※题型六:利用单调性、极值、最值情况,求参数取值范围
1.设函数
(1)求函数 的单调区间、极值.
解得 ,又 ∴a的取值范围是
2.已知函数f(x)=x3+ax2+bx+c在x=- 与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间
(2)若对x〔-1,2〕,不等式f(x)c2恒成立,求c的取值范围。
解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b
由f( )= ,f(1)=3+2a+b=0得a= ,b=-2
高考导数压轴题型归类总结
⑴当a 0时,f (x) x2e x ,f '(x) (x2 2x)e x,故f '(1) 3e.
所以曲线y f (x)在点(1, f (1))处的切线的斜率为3e.
f '(x) x (a 2)x 2a 4ae . ⑵
2
2
x
w.w.w. k.s.5.u.c.o.m
令f '(x) 0,解得x 2a,或x a 2.由a 2 知, 2a a 2. 3
函数f ( x)在x 2a处取得极大值f (2a),且f (2a) 3ae 2a . w.w.w.k.s.5.u.c.o.m
函数f (x)在x a 2处取得极小值f (a 2),且f (a 2) (4 3a)ea2.
② 若a < 2 ,则 2a > a 2 ,当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
5
已知函数 f (x) =ln(1+ x )- x + x x2 ( k ≥0). 2
(Ⅰ)当 k =2时,求曲线 y = f (x) 在点(1, f (1))处的切线方程;
(Ⅱ)求 f (x) 的单调区间.
解:(I)当 k 2 时, f (x) ln(1 x) x x2 , f '(x) 1 1 2x 1 x
(0,)
,
令 g(x) ax2 x 1 a, x (0,),
8. (是一道设计巧妙的好题,同时用到 e 底指、对数,需要构造函数,证存在且唯一时结合零 点存在性定理不好想,⑴⑵联系紧密)
已知函数 f (x) ln x, g(x) ex.
⑴若函数 φ (x) = f (x)- x 1 ,求函数 φ (x)的单调区间; x1
2
以下分两种情况讨论:
历年高考函数导数综合题解题思路归纳总结
历年高考函数导数综合题解题思路归纳总结导数综合题是高考数学中的重要题型,主要涉及函数、导数、不等式等知识点,需要具备较强的逻辑思维、推理能力和数学应用能力。
以下是历年高考函数导数综合题的解题思路详细归纳总结:考察的题型分5大类,23个小类一、求函数的单调性1.求函数的导数;2.根据导数的符号判断函数的单调性;3.根据单调性判断函数的极值点或最值点;4.根据极值点或最值点进行参数取值范围的求解。
二、切线问题1.求函数的导数;2.根据导数的几何意义求出切线的斜率;3.根据切线的定义写出切线方程;4.根据切线方程和已知条件求解参数。
三、不等式恒成立问题1.求函数的导数;2.根据导数的符号判断函数的单调性;3.根据函数的单调性和最值求解不等式恒成立的参数范围。
四、零点问题1.求函数的导数;2.根据导数的符号判断函数的单调性;3.根据函数的零点和单调性求解参数的范围。
五、多变量问题1.分别对各个变量求导;2.利用导数研究各个变量的单调性和最值;3.根据函数的图像和性质求解参数的范围。
高考导数综合题的突破点1.导数的定义和性质:导数作为微积分的基本概念,其定义和性质是解决导数综合题的基础。
学生需要熟练掌握导数的计算公式和运算法则,理解导数在研究函数中的意义和应用。
2.切线与导数的关系:切线是导数的几何意义所在,也是导数综合题中常见的考点。
学生需要理解切线的定义和性质,掌握切线方程的求解方法,能够利用导数求曲线的切线。
3.函数的单调性与导数的关系:单调性是函数的重要性质之一,而导数则是研究函数单调性的重要工具。
学生需要理解导数与函数单调性之间的关系,能够通过导数的符号判断函数的单调性。
4.极值与最值的求解:极值和最值是导数综合题中常见的考点。
学生需要掌握极值和最值的求解方法,理解极值和最值的几何意义,能够利用导数求函数的极值和最值。
5.不等式与导数的关系:不等式是导数综合题中常见的考点之一。
学生需要理解导数在处理不等式问题中的作用,掌握利用导数证明不等式的方法。
高考压轴题!导数的综合应用题型归类及详细解析
高考压轴题!导数的综合应用题型归类及详细解析
导数的综合应用题型归类是高考每年必然考察的主要内容,填空题和选择题都出现过相关的考试试题,小题更是每年高考必考。
为了让同学们更好地掌握此类问题解题方法、技巧与思路,轻松拿下相关的试题12分,这里给同学们准备了高考大题类型规范训练。
其中包括题组点对点训练和题型模板训练。
题组点对点的训练,就是把高考的相关类型题,结合考点和教材内容知识点进行强化训练,以求迅速掌握此类小题涵盖的知识点和类型题解题思路,从而迅速提升解决此类问题的能力。
易错易混训练就是通过此类大题得训练,强化容易出现错误的知识点,通过训练达到进一步的掌握,同时对容易混淆不清的知识点进行梳理归类。
以后再遇到此类问题,就能轻松解决问题。
即将要高考了,小编把最美好的祝愿送给你们——我亲爱的同学们,在这里衷心地预祝同学们在2020年高考中超常发挥考出优异的成绩,金榜题名考上理想大学!。
导数的综合大题及其分类
导数得综合应用就是历年高考必考得热点,试题难度较大,多以压轴题形式出现,命题得热点主要有利用导数研究函数得单调性、极值、最值;利用导数研究不等式;利用导数研究方程得根(或函数得零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想得运用、题型一 利用导数研究函数得单调性、极值与最值题型概览:函数单调性与极值、最值综合问题得突破难点就是分类讨论.(1)单调性讨论策略:单调性得讨论就是以导数等于零得点为分界点,把函数定义域分段,在各段上讨论导数得符号,在不能确定导数等于零得点得相对位置时,还需要对导数等于零得点得位置关系进行讨论.(2)极值讨论策略:极值得讨论就是以单调性得讨论为基础,根据函数得单调性确定函数得极值点.(3)最值讨论策略:图象连续得函数在闭区间上最值得讨论,就是以函数在该区间上得极值与区间端点得函数值进行比较为标准进行得,在极值与区间端点函数值中最大得为最大值,最小得为最小值.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )得单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)得最小值.[审题程序]第一步:在定义域内,依据F ′(x )=0根得情况对F ′(x )得符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间得关系及取值范围;第四步:通过代换转化为关于x 1(或x 2)得函数,求出最小值.[规范解答] (1)由题意得F (x )=x -1x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4、①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )得单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0得两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )得单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42与⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )得单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42、 综上,当-2≤a ≤2时,F (x )得单调递增区间为(0,+∞); 当a >2时,F (x )得单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42与⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )得单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42、 (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞) 求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,设h ′(x )=0得两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1,从而有a =-x 1-1x 1、令H (x )=h (x )-h ⎝⎛⎭⎫1x=x -1x +⎝⎛⎭⎫-x -1x ln x -⎣⎡⎦⎤1x-x +⎝⎛⎭⎫-x -1x ·ln 1x =2⎣⎡⎦⎤⎝⎛⎭⎫-x -1x ln x +x -1x, H ′(x )=2⎝⎛⎭⎫1x 2-1ln x =2(1-x )(1+x )ln x x 2、 当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0, ∴H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln2-3、[解题反思] 本例(1)中求F (x )得单调区间,需先求出F (x )得定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0得根得情况求出不等式得解集,故以判别式“Δ”得取值作为分类讨论得依据.在(2)中求出h (x 1)-h (x 2)得最小值,需先求出其解析式.由题可知x 1,x 2就是h ′(x )=0得两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x 在⎝ ⎛⎭⎪⎫0,12上得最值问题,体现转为与化归数学思想.[答题模板] 解决这类问题得答题模板如下:[题型专练]1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )得单调区间;(2)当0<a <2时,求函数g (x )=f (x )-x 2-ax -1在区间[0,3]上得最小值. [解] (1)f (x )得定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞),∴f ′(x )=2(1+x )-21+x =2x (x +2)x +1、由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0、∴函数f (x )得单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -21+x =(2-a )x -a 1+x 、∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a,∴函数g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,+∞上为增函数. ①当0<a 2-a<3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,3上为增函数, ∴g (x )min =g ⎝ ⎛⎭⎪⎫a 2-a =a -2ln 22-a 、②当a 2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4、综上所述,当0<a <32时,g (x )min =a -2ln 22-a ;当32≤a <2时,g (x )min =6-3a -2ln4、北京卷(19)(本小题13分)已知函数f (x )=e xcos x −x 、(Ⅰ)求曲线y = f (x )在点(0,f (0))处得切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上得最大值与最小值、 (19)(共13分)解:(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=、 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处得切线方程为1y =、(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-、 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减、所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<、 所以函数()f x 在区间π[0,]2上单调递减、因此()f x 在区间π[0,]2上得最大值为(0)1f =,最小值为ππ()22f =-、 21、(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥、 (1)求a ;(2)证明:()f x 存在唯一得极大值点0x ,且230()2e f x --<<、21、解:(1)()f x 得定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x、当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增、所以x=1就是()g x 得极小值点,故()()1=0≥g x g 综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x 、因为()()'f x h x =,所以x=x 0就是f(x)得唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0就是f(x)在(0,1)得最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -题型二 利用导数研究方程得根、函数得零点或图象交点题型概览:研究方程根、函数零点或图象交点得情况,可以通过导数研究函数得单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象得走势规律,标明函数极(最)值得位置,通过数形结合得思想去分析问题,可以使问题得求解有一个清晰、直观得整体展现.已知函数f (x )=(x +a )e x ,其中e 就是自然对数得底数,a ∈R 、(1)求函数f (x )得单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2得零点个数,并说明理由. [审题程序]第一步:利用导数求函数得单调区间; 第二步:简化g (x )=0,构造新函数; 第三步:求新函数得单调性及最值; 第四步:确定结果.[规范解答] (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x 、 令f ′(x )=0,得x =-a -1、当x 变化时,f (x )与f ′(x )得变化情况如下:x (-∞,-a -1)-a -1 (-a -1,+∞)f ′(x ) -0 +f (x )故f ((2)结论:函数g (x )有且仅有一个零点. 理由如下:由g (x )=f (x -a )-x 2=0,得方程x e x -a =x 2, 显然x =0为此方程得一个实数解, 所以x =0就是函数g (x )得一个零点. 当x ≠0时,方程可化简为e x -a =x 、 设函数F (x )=e x -a -x ,则F ′(x )=e x -a -1, 令F ′(x )=0,得x =a 、当x 变化时,F (x )与F ′(x )得变化情况如下:即F (x )所以F (x )得最小值F (x )min =F (a )=1-a 、 因为a <1,所以F (x )min =F (a )=1-a >0, 所以对于任意x ∈R ,F (x )>0, 因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.典例321、(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥、 (1)求a ;(2)证明:()f x 存在唯一得极大值点0x ,且230()2e f x --<<、21、解:(1)()f x 得定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x、当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增、所以x=1就是()g x 得极小值点,故()()1=0≥g x g 综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x 、因为()()'f x h x =,所以x=x 0就是f(x)得唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0就是f(x)在(0,1)得最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (x )得单调区间得关键就是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 得解转化为研究函数F (x )=e x -a -x 得最值,从而确定F (x )零点,这种通过构造函数、研究函数得最值从而确定函数零点得题型就是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题得答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 得图象如图所示.(1)求c ,d 得值;(2)若函数f (x )在x =2处得切线方程为3x +y -11=0,求函数f (x )得解析式;(3)在(2)得条件下,函数y =f (x )与y =13f ′(x )+5x +m 得图象有三个不同得交点,求m 得取值范围. [解] 函数f (x )得导函数为f ′(x )=3ax 2+2bx +c -3a -2b 、(1)由图可知函数f (x )得图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0、(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).由函数f (x )在x =2处得切线方程为3x +y -11=0,得⎩⎨⎧f (2)=5,f ′(2)=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (x )=x 3-6x 2+9x +3、(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9、 函数y =f (x )与y =13f ′(x )+5x +m 得图象有三个不同得交点, 等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根, 等价于g (x )=x 3-7x 2+8x -m 得图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),g ⎝⎛⎭⎫3=6827-m ,g (4)=-16-m , 当且仅当⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827、 所以m 得取值范围为⎝⎛⎭⎫-16,6827、21、(12分)已知函数)f x =(a e 2x +(a ﹣2) e x﹣x 、 (1)讨论()f x 得单调性;(2)若()f x 有两个零点,求a 得取值范围、21、解:(1)()f x 得定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x xf x ae a e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减、(ⅱ)若0a >,则由()0f x '=得ln x a =-、当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增、 (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点、(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+、(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<、 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点、设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->、 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点、 综上,a 得取值范围为(0,1)、题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上就是减函数,同时若F (a )≤0,由减函数得定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )得符号,可考虑分别研究f (x )、g (x )得单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数f (x )=e xx 、(1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处得切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处得切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0、[规范解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0、(2)证明:设函数g (x )=f (x )-2(x -ln x )=e xx -2x +2ln x ,x ∈(0,+∞), 则g ′(x )=e x (x -1)x 2-2+2x =(e x -2x )(x -1)x 2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2、当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0、 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0、 令g ′(x )=(e x -2x )(x -1)x 2=0,则x =1、 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0、所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).[解题反思] 本例中(2)得证明方法就是最常见得不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )得最值来完成.在求g (x )得最值过程中,需要探讨g ′(x )得正负,而此时g ′(x )得式子中有一项e x -2x 得符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )得正负问题,此题瞧似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也就是易忽视得一个方向.[答题模板] 解决这类问题得答题模板如下:[题型专练]3.(2017·福建漳州质检)已知函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处得切线方程为y =⎝ ⎛⎭⎪⎫1e -1x +1、(1)求a ,b ; (2)证明:f (x )>0、[解] (1)函数f (x )得定义域为(0,+∞).f ′(x )=a e x-b x ,由题意得f (1)=1e ,f ′(1)=1e -1,所以⎩⎪⎨⎪⎧a e =1e ,a e -b =1e -1,解得⎩⎨⎧a =1e2,b =1、(2)由(1)知f (x )=1e 2·e x-ln x 、因为f ′(x )=ex -2-1x 在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也就是最小值. 由f ′(x 0)=0,得e x 0-2=1x 0,则x 0-2=-ln x 0、故f (x )≥f (x 0)=e x 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0、 4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 得值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222nK ()(1)(﹤m ,求m 得最小值. 21、解:(1)()f x 得定义域为()0,+∞、①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 就是()f x 在()0,+x ∈∞得唯一最小值点、 由于()10f =,所以当且仅当a =1时,()0f x ≥、 故a =1(2)由(1)知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2nx 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222nn nln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 得最小值为3、21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 得单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析题型四 利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数得最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数得单调性,求出最值,进而得出相应得含参不等式,从而求出参数得取值范围.已知函数f (x )=12ln x -mx ,g (x )=x -ax (a >0).(1)求函数f (x )得单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 得取值范围. [审题程序]第一步:利用导数判断f (x )得单调性,对m 分类讨论;第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ;第三步:求函数得导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x -m , 当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得x =12m ;由⎩⎨⎧ f ′(x )>0,x >0得0<x <12m ;由⎩⎨⎧f ′(x )<0,x >0得x >12m 、综上所述,当m ≤0时,f ′(x )得单调递增区间为(0,+∞);当m >0时,f (x )得单调递增区间为⎝ ⎛⎭⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎫12m ,+∞、(2)若m =12e 2,则f (x )=12ln x -12e 2x 、 对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2]上f (x )得最大值为f (e 2)=12,g ′(x )=1+a x 2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上就是增函数,g (x )min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 得取值范围为(0,3].[解题反思] 本例(1)得解答中要注意f (x )得定义域,(2)中问题得关键在于准确转化为两个函数f (x )、g (x )得最值问题.本题中,∀x 1,x 2有g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max 、若改为:∃x 1,∀x 2都有g (x 1)≥f (x 2),则有g (x )max ≥f (x )max 、若改为:∀x 1,∃x 2都有g (x 1)≥g (x 2),则有g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题得答题模板如下:[题型专练]4.已知f (x )=x ln x ,g (x )=-x 2+ax -3、(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 得取值范围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x , 设h (x )=2ln x +x +3x (x >0), 则h ′(x )=(x +3)(x -1)x 2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4、即实数a 得取值范围就是(-∞,4].(2)证明:问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)). 又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e 、 设m (x )=x e x -2e (x ∈(0,+∞)), 则m ′(x )=1-xe x , 易知m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立. ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4、即实数a 得取值范围就是(-∞,4]. 题型五:二阶导主要用于求函数得取值范围23.(12分)已知函数f (x )=(x+1)lnx ﹣a (x ﹣1).(I )当a=4时,求曲线y=f (x )在(1,f (1))处得切线方程; (II )若当x ∈(1,+∞)时,f (x )>0,求a 得取值范围. 【解答】解:(I )当a=4时,f (x )=(x+1)lnx ﹣4(x ﹣1). f (1)=0,即点为(1,0),函数得导数f ′(x )=lnx+(x+1)•﹣4, 则f ′(1)=ln1+2﹣4=2﹣4=﹣2,即函数得切线斜率k=f ′(1)=﹣2, 则曲线y=f (x )在(1,0)处得切线方程为y=﹣2(x ﹣1)=﹣2x+2; (II )∵f (x )=(x+1)lnx ﹣a (x ﹣1), ∴f ′(x )=1++lnx ﹣a ,∴f ″(x )=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处得切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a得取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数得导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数得切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处得切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数得最值问题、此法适用于方便分离参数并可求出函数最大值与最小值得情况,若题中涉及多个未知参量需分离出具有明确定义域得参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。
高中数学导数练习题(分类练习)讲义
导数专题经典例题剖析考点一:求导公式。
1 3例1. f (x)是f(x) x 2x 1的导函数,贝y f(-1)的值是 _______________________________3解析:f' x =x22,所以f' -1 =1^3答案:3考点二:导数的几何意义。
1例2.已知函数y = f(x)的图象在点M (1, f (1)处的切线方程是y x 2,则2f(1) f (1> _______________ 。
1 」1解析:因为k ,所以f' 1 ,由切线过点M(1, f (1)),可得点M的纵坐标为2 25 5-,所以f 1;=—,所以f 1 • f' 1 A32 2答案:33 2例3.曲线y二x -2x -4x 2在点(1,-3)处的切线方程是___________________ 。
解析:y' = 3x2-4x-4,•点(1,-3)处切线的斜率为k=3-4-4 =「5,所以设切线方程为y二_5x b,将点(1, -3)带入切线方程可得 b = 2,所以,过曲线上点(1, - 3) 处的切线方程为:5x,y-2=0答案:5x y -2 =0点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例4•已知曲线C : y =x3 -3x2 2x ,直线l : y =kx,且直线l与曲线C相切于点x0, y0 x0 = 0,求直线l的方程及切点坐标。
解析:;直线过原点,则k 0 X Q = 0 。
由点x 0,y 0在曲线C 上,则 Xy 0 = X Q 3 _ 3X Q 2 2X Q , 西=X Q 2 -3X Q 2。
又 y' = 3x 2 _ 6x 2 , 在X Q-。
所以,直线l 的方程为yx ,切点坐标是 44、 、 1直线I 的方程为y - - — x , 4本小题考查导数几何意义的应用。
解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。
导数专题的题型总结
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
《高中数学导数》题型分类非常全
导数1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x ='1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v-= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 2.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
完整版)导数的综合大题及其分类
完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
导数的综合大题及其分类
导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导(2) (3)⎝ ⎛⎦⎥⎤0,12,求h (x 1[[规范解答] (1)由题意得F (x )=x -1x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )(2)设h ∴x 2令H =x =2⎣⎡⎝⎛H ′(又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎛⎪⎫1在 ⎛⎪⎫0,1上的最值问题,体现转为与化归数学思想.[1(1)(2) [解∵f ∴f 由(2)则∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a,∴函数g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,+∞上为增函数.①当0<a 2-a<3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,3上为增函数,∴g (x )min =g ⎝ ⎛⎭⎪⎫a 2-a =a -2ln 22-a .②当a 2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4.综上所述,当0<a <3时,g (x )min =a -2ln 2;(19又因为当x ∈所以(h 因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<. 21.解:(1)()f x 的定义域为()0,+∞设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g 综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=--设()h x =当x ⎛∈ ⎝1,+2⎛⎫∞ ⎪⎝⎭单调递增又()2h e -(00,x x ∈因为('f 由()0'f x 由(0x ∈因为x=x 所以2<e -律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R .(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答](1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.,+∞).所以F(x)的最小值F(x)min=F(a)=1-a.因为a<1,所以F(x)min=F(a)=1-a>0,所以对于任意x∈R,F(x)>0,因此方程e x-a=x无实数解.所以当x≠0时,函数g(x)不存在零点.综上,函数g(x)有且仅有一个零点.典例321.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<. 21.解:(1)()f x 的定义域为()0,+∞设()g x =因为()1g 若a =1()g x 单调递增.综上,(2设()h x =当x ⎛∈ ⎝1,+2⎛⎫∞ ⎪⎝⎭单调递增又()2h e -(00,x x ∈因为('f 由()0'f x 由()00,1x ∈得()01'<4f x因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得 所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 的解转化为研究函数F (x )=e x -a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示. (1)求c ,d 的值;(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;(3)在(2)的条件下,函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值范围. [解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b .g ⎝⎛⎭⎫23=27-m ,g (4)=-16-m ,当且仅当⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g ?4?=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827. 所以m 的取值范围为⎝⎛⎭⎫-16,6827.21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减.当(x ∈在(ln -(2(ⅱ)ln a .(观①当a ②当a ③当a 又(f -由于综上,题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )的符号,可考虑分别研究f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数f (x )=e xx .(1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处的切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.[=e x x ,=e x·x -e xx 2=e x?x -1?x 2,=e 24,又切点为⎝ ⎛2(2)则设则当令当-ln x ). [构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·福建漳州质检)已知函数f (x )=a e x -b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝⎛⎭⎪⎫1e -1x +1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′x-b ,由题意得=1,=1-(2)当由故4、【(1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n ()(1)(﹤m ,求m 的最小值.21.解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =121(进而得出相应的含参不等式,从而求出参数的取值范围.已知函数f (x )=12ln x -mx ,g (x )=x -ax (a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对?x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围. [审题程序]第一步:利用导数判断f(x)的单调性,对m分类讨论;第二步:对不等式进行等价转化,将g(x1)≥f(x2)转化为g(x)min≥f(x)max;第三步:求函数的导数并判断其单调性进而求极值(最值);第四步:确定结果.[规范解答](1)f(x)=12ln x-mx,x>0,所以f′(x)=12x-m,当m≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.x?<0,得x.=g(2)=2(0,3].[解题反思]本例(1)的解答中要注意f(x)的定义域,(2)中问题的关键在于准确转化为两个函数f(x)、g(x)的最值问题.本题中,?x1,x2有g(x1)≥f(x2)?g(x)min≥f(x)max.若改为:?x1,?x2都有g(x1)≥f(x2),则有g(x)max≥f(x)max.若改为:?x1,?x2都有g(x1)≥g(x2),则有g(x)min≥f(x)min要仔细体会,转化准确.[答题模板]解决这类问题的答题模板如下:[题型专练]4.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x , 设则(2)又f (当x 当设则m ′(x )=1-xe x , 易知m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立. ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a≤h(x)min=4.即实数a的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.f(1)?﹣则f则曲线(II∴f+lnx=,∵x>1∴f∴f①a≤2∴f(x②a>2函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f (1)=0,即点为(1,0),函数的导数f′(x )=lnx+(x+1)?﹣4, 则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2, 则曲线y=f (x )在(1,0)处的切线方程为y=﹣2(x ﹣1)=﹣2x+2; (II )∵f (x )=(x+1)lnx ﹣a (x ﹣1),∴f′(x )=1++lnx ﹣a ,∴f″(x )=,∵x >1,∴f″(x )>0,∴f′(x )在(1,+∞)上单调递增,∴f′(x )>f′(1)=2﹣a . ①a≤2,f′∴f (x ②a >2函数f (x 由f (1).此法二、未(1(2 ①若0a =,则()f x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln(2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a-∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()x f x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.a 23[ln(2a a-.21.(1(2[1,)+∞ )对a 分0x =(2)f x=()当a≥1而h(0故h(xf当0<a当0<xx∈则a≤当0综上,a。
导数经典题型归类(共12类)
导数经典题型归类(共12类)导数题型目录1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.知零点个数求参数范围‚含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.点睛导数的几何意义:函数y=f(某)在点某=某0处的导数f’(某0)的几何意义是曲线在点某=某0处切线的斜率。
二.方法点拨: 1.求切线①若点是切点:(1)切点横坐标某0代入曲线方程求出y0(2)求出导数f′(某),把某0代入导数求得函数y=f(某)在点某=某0处的导数f′(某0)(3)根据直线点斜式方程,得切线方程:y -y0=f′(某0)(某-某0).②点(某0,y0)不是切点求切线:(1)设曲线上的切点为(某1,y1);(2)根据切点写出切线方程y-y1=f′(某1)(某-某1)(3)利用点(某0,y0)在切线上求出(某1,y1);(4)把(某1,y1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f′(某0)②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式四.跟踪练习1.(2022全国卷Ⅲ)已知f(某)为偶函数,当某<0时,f(某)=f(-某)+3某,则曲线y=f(某)在点(1,-3)处的切线方程是2.(2022新课标全国Ⅱ)设曲线y=a某-ln(某+1)在点(0,0)处的切线方程为y=2某,则a=A.0B.1C.2D.33.(2022全国卷Ⅱ)若直线y=k某+b是曲线y=ln某+2的切线,也是曲线y=ln(某+1)的切线,则b=4.(2022江西)若曲线y=e-某上点P处的切线平行于直线2某+y+1=0,则点P的坐标是5.(2022江苏)在平面直角坐标系中,若曲线y=a某2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7某+2y+3=0平行,则a+b=6.(2022新课标全国)设点P在曲线y=e某上,点Q在曲线y=ln(2某)上,则▕PQ▏的最小值为A.1-ln2B.(1-ln2)C.1+ln2D.(1+ln2)7.若存在过点(1,0)的直线与曲线y=某3和y=a某2+某-9都相切,则a等于8.抛物线y=某2上的点到直线某-y-2=0的最短距离为A.B.C.D.19.已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是10.已知函数f(某)=2某3-3某.(1)求f(某)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(某)相切,求t的取值范围.11.已知函数f(某)=4某-某4,某∈R.(1)求f(某)的单调区间(2)设曲线y=f(某)与某轴正半轴的交点为P,曲线在点P处的切线方程为y=g (某),求证:对于任意的实数某,都有f(某)≤g(某)(3)若方程f(某)=a(a为实数)有两个实数根某1,某2,且某1<某2,求证:某2-某1≤-+4.导数专题二利用导数四则运算构造新函数一.知识点睛导数四则运算法则:[f(某)±g(某)]’=f′(某)±g′(某)[f(某)·g (某)]’=f′(某)·g(某)+f(某)·g′(某)[]′=二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数综合大题分类
导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.表达了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.〔1〕单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进展讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为根底,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进展比拟为标准进展的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.函数f (*)=*-1*,g (*)=a ln *(a ∈R ).(1)当a ≥-2时,求F (*)=f (*)-g (*)的单调区间;(2)设h (*)=f (*)+g (*),且h (*)有两个极值点为*1,*2,其中*1∈⎝ ⎛⎦⎥⎤0,12,求h (*1)-h (*2)的最小值.[审题程序]第一步:在定义域,依据F ′(*)=0根的情况对F ′(*)的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立*1、*2及a 间的关系及取值围;第四步:通过代换转化为关于*1(或*2)的函数,求出最小值.[规解答] (1)由题意得F (*)=*-1*-a ln *,其定义域为(0,+∞),则F ′(*)=*2-a*+1*2,令m (*)=*2-a*+1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(*)≥0,∴F (*)的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(*)=0的两根为*1=a -a 2-42,*2=a +a 2-42,∴F (*)的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (*)的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (*)的单调递增区间为(0,+∞); 当a >2时,F (*)的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (*)的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (*)=*-1*+a ln *,*∈(0,+∞)求导得,h ′(*)=1+1*2+a *=*2+a*+1*2,设h ′(*)=0的两根分别为*1,*2,则有*1·*2=1,*1+*2=-a , ∴*2=1*1,从而有a =-*1-1*1.令H (*)=h (*)-h ⎝ ⎛⎭⎪⎫1*=*-1*+⎝ ⎛⎭⎪⎫-*-1*ln *-⎣⎢⎡⎦⎥⎤1*-*+⎝ ⎛⎭⎪⎫-*-1*·l n 1*=2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-*-1*ln *+*-1*,H ′(*)=2⎝ ⎛⎭⎪⎫1*2-1ln *=21-*1+*ln **2.当*∈⎝ ⎛⎦⎥⎤0,12时,H ′(*)<0,∴H (*)在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (*1)=h (*1)-h ⎝ ⎛⎭⎪⎫1*1=h (*1)-h (*2),∴[h (*1)-h (*2)]min =H ⎝ ⎛⎭⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (*)的单调区间,需先求出F (*)的定义域,同时在解不等式F ′(*)>0时需根据方程*2-a*+1=0的根的情况求出不等式的解集,故以判别式"Δ〞的取值作为分类讨论的依据.在(2)中求出h (*1)-h (*2)的最小值,需先求出其解析式.由题可知*1,*2是h ′(*)=0的两根,可得到*1*2=1,*1+*2=-a ,从而将h (*1)-h (*2)只用一个变量*1导出.从而得到H (*1)=h (*1)-h ⎝ ⎛⎭⎪⎫1*1,这样将所求问题转化为研究新函数H (*)=h (*)-h ⎝ ⎛⎭⎪⎫1*在⎝ ⎛⎭⎪⎫0,12上的最值问题,表达转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (*)=(1+*)2-2ln(1+*). (1)求f (*)的单调区间;(2)当0<a <2时,求函数g (*)=f (*)-*2-a*-1在区间[0,3]上的最小值. [解] (1)f (*)的定义域为(-1,+∞). ∵f (*)=(1+*)2-2ln(1+*),*∈(-1,+∞),∴f ′(*)=2(1+*)-21+*=2**+2*+1.由f ′(*)>0,得*>0;由f ′(*)<0,得-1<*<0.∴函数f (*)的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (*)=(2-a )*-2ln(1+*)(*>-1), 则g ′(*)=2-a -21+*=2-a *-a1+*.∵0<a <2,∴2-a >0, 令g ′(*)=0,得*=a2-a, ∴函数g (*)在⎝ ⎛⎭⎪⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎪⎫a 2-a ,+∞上为增函数. ①当0<a2-a <3,即0<a <32时,在区间[0,3]上,g (*)在⎝ ⎛⎭⎪⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎪⎫a 2-a ,3上为增函数, ∴g (*)min =g ⎝ ⎛⎭⎪⎪⎫a 2-a =a -2ln 22-a . ②当a2-a ≥3,即32≤a <2时,g (*)在区间[0,3]上为减函数,∴g (*)min =g (3)=6-3a -2ln4.综上所述,当0<a <32时,g (*)min =a -2ln 22-a ;当32≤a <2时,g (*)min =6-3a -2ln4. 卷〔19〕〔本小题13分〕函数f 〔*〕=e *cos *−*.〔Ⅰ〕求曲线y = f 〔*〕在点〔0,f 〔0〕〕处的切线方程; 〔Ⅱ〕求函数f 〔*〕在区间[0,π2]上的最大值和最小值. 〔19〕〔共13分〕解:〔Ⅰ〕因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.〔Ⅱ〕设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 21.〔12分〕函数3()ln ,f x ax ax x x =--且()0f x ≥. 〔1〕求a ;〔2〕证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:〔1〕()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x假设a =1,则()11-g'x =x.当0<*<1时,()()<0,g'x g x 单调递减;当*>1时,()g'x >0,()g x 单调递增.所以*=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1〔2〕由〔1〕知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点*0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以*=*0是f(*)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为*=*0是f(*)在〔0,1〕的最大值点,由()()110,1,'0e f e --∈≠得 所以()2-20<<2e f x -题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.函数f (*)=(*+a )e *,其中e 是自然对数的底数,a ∈R .(1)求函数f (*)的单调区间;(2)当a <1时,试确定函数g (*)=f (*-a )-*2的零点个数,并说明理由. [审题程序]第一步:利用导数求函数的单调区间; 第二步:简化g (*)=0,构造新函数; 第三步:求新函数的单调性及最值; 第四步:确定结果.[规解答] (1)因为f (*)=(*+a )e *,*∈R , 所以f ′(*)=(*+a +1)e *. 令f ′(*)=0,得*=-a -1.当*变化时,f(*)和f′(*)的变化情况如下:故f((2)结论:函数g(*)有且仅有一个零点.理由如下:由g(*)=f(*-a)-*2=0,得方程*e*-a=*2,显然*=0为此方程的一个实数解,所以*=0是函数g(*)的一个零点.当*≠0时,方程可化简为e*-a=*.设函数F(*)=e*-a-*,则F′(*)=e*-a-1,令F′(*)=0,得*=a.当*变化时,F(*)和F′(*)的变化情况如下:即F(*)所以F(*)的最小值F(*)min=F(a)=1-a.因为a<1,所以F(*)min=F(a)=1-a>0,所以对于任意*∈R,F(*)>0,因此方程e*-a=*无实数解.所以当*≠0时,函数g(*)不存在零点.综上,函数g(*)有且仅有一个零点.典例321.〔12分〕函数3()ln ,f x ax ax x x =--且()0f x ≥. 〔1〕求a ;〔2〕证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:〔1〕()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x假设a =1,则()11-g'x =x.当0<*<1时,()()<0,g'x g x 单调递减;当*>1时,()g'x >0,()g x 单调递增.所以*=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1〔2〕由〔1〕知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点*0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以*=*0是f(*)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为*=*0是f(*)在〔0,1〕的最大值点,由()()110,1,'0e f e --∈≠得 所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (*)的单调区间的关键是准确求出f ′(*),注意到e *>0即可.(2)中由g (*)=0得*e *-a =*2,解此方程易将*约去,从而产生丢解情况.研究e *-a =*的解转化为研究函数F (*)=e *-a -*的最值,从而确定F (*)零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2021·期中)函数f (*)=a*3+b*2+(c -3a -2b )*+d 的图象如下图. (1)求c ,d 的值;(2)假设函数f (*)在*=2处的切线方程为3*+y -11=0,求函数f (*)的解析式;(3)在(2)的条件下,函数y =f (*)与y =13f ′(*)+5*+m 的图象有三个不同的交点,求m 的取值围.[解] 函数f (*)的导函数为f ′(*)=3a*2+2b*+c -3a -2b . (1)由图可知函数f (*)的图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0.(2)由(1)得,f (*)=a*3+b*2-(3a +2b )*+3, 所以f ′(*)=3a*2+2b*-(3a +2b ).由函数f (*)在*=2处的切线方程为3*+y -11=0,得⎩⎨⎧f 2=5,f ′2=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (*)=*3-6*2+9*+3.(3)由(2)知f (*)=*3-6*2+9*+3,所以f ′(*)=3*2-12*+9. 函数y =f (*)与y =13f ′(*)+5*+m 的图象有三个不同的交点,等价于*3-6*2+9*+3=(*2-4*+3)+5*+m 有三个不等实根, 等价于g (*)=*3-7*2+8*-m 的图象与*轴有三个交点. 因为g ′(*)=3*2-14*+8=(3*-2)(*-4),* ⎝⎛⎭⎪⎫-∞,2323 ⎝ ⎛⎭⎪⎫23,4 4 (4,+∞)g ′(*) +0 -0 +g (*)极大值极小值g ⎝ ⎛⎭⎪⎫23=6827-m ,g (4)=-16-m , 当且仅当⎩⎨⎧g ⎝ ⎛⎭⎪⎫23=6827-m >0,g 4=-16-m <0时,g (*)图象与*轴有三个交点,解得-16<m <6827.所以m 的取值围为⎝⎛⎭⎪⎫-16,6827.21.〔12分〕函数)f x =(a e 2*+(a ﹣2) e *﹣*.〔1〕讨论()f x 的单调性;〔2〕假设()f x 有两个零点,求a 的取值围. 21.解:〔1〕()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(十字相乘法)〔ⅰ〕假设0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. 〔ⅱ〕假设0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. 〔2〕〔ⅰ〕假设0a ≤,由〔1〕知,()f x 至多有一个零点.〔ⅱ〕假设0a >,由〔1〕知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.〔观察特殊值1〕 ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值围为(0,1).题型三 利用导数证明不等式题型概览:证明f (*)<g (*),*∈(a ,b ),可以直接构造函数F (*)=f (*)-g (*),如果F ′(*)<0,则F (*)在(a ,b )上是减函数,同时假设F (a )≤0,由减函数的定义可知,*∈(a ,b )时,有F (*)<0,即证明了f (*)<g (*).有时需对不等式等价变形后间接构造.假设上述方法通过导数不便于讨论F ′(*)的符号,可考虑分别研究f (*)、g (*)的单调性与最值情况,有时需对不等式进展等价转化.(2021·三模)函数f (*)=e **.(1)求曲线y =f (*)在点P ⎝ ⎛⎭⎪⎪⎫2,e 22处的切线方程; (2)证明:f (*)>2(*-ln *). [审题程序]第一步:求f ′(*),写出在点P 处的切线方程;第二步:直接构造g (*)=f (*)-2(*-ln *),利用导数证明g (*)min >0.[规解答] (1)因为f (*)=e **,所以f ′(*)=e *·*-e **2=e **-1*2,f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎪⎫2,e 22,所以切线方程为y -e 22=e 24(*-2),即e 2*-4y =0.(2)证明:设函数g (*)=f (*)-2(*-ln *)=e **-2*+2ln *,*∈(0,+∞),则g ′(*)=e **-1*2-2+2*=e *-2**-1*2,*∈(0,+∞).设h (*)=e *-2*,*∈(0,+∞),则h ′(*)=e *-2,令h ′(*)=0,则*=ln2.当*∈(0,ln2)时,h ′(*)<0;当*∈(ln2,+∞)时,h ′(*)>0. 所以h (*)min =h (ln2)=2-2ln2>0,故h (*)=e *-2*>0. 令g ′(*)=e *-2**-1*2=0,则*=1.当*∈(0,1)时,g ′(*)<0;当*∈(1,+∞)时,g ′(*)>0.所以g (*)min =g (1)=e -2>0,故g (*)=f (*)-2(*-ln *)>0,从而有f (*)>2(*-ln *).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (*).求g (*)的最值来完成.在求g (*)的最值过程中,需要探讨g ′(*)的正负,而此时g ′(*)的式子中有一项e *-2*的符号不易确定,这时可以单独拿出e *-2*这一项,再重新构造新函数h (*)=e *-2*(*>0),考虑h (*)的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易无视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2021·质检)函数f (*)=a e *-b ln *,曲线y =f (*)在点(1,f (1))处的切线方程为y =⎝⎛⎭⎪⎪⎫1e -1*+1. (1)求a ,b ; (2)证明:f (*)>0.[解] (1)函数f (*)的定义域为(0,+∞).f ′(*)=a e *-b *,由题意得f (1)=1e ,f ′(1)=1e-1,所以⎩⎪⎨⎪⎧a e =1e,a e -b =1e -1,解得⎩⎪⎨⎪⎧a =1e 2,b =1.(2)由(1)知f (*)=1e 2·e *-ln *.因为f ′(*)=e*-2-1*在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(*)=0在(0,+∞)上有唯一实根*0,且*0∈(1,2).当*∈(0,*0)时,f ′(*)<0,当*∈(*0,+∞)时,f ′(*)>0, 从而当*=*0时,f (*)取极小值,也是最小值. 由f ′(*0)=0,得e*0-2=1*0,则*0-2=-ln *0.故f (*)≥f (*0)=e*0-2-ln *0=1*0+*0-2>21*0·*0-2=0,所以f (*)>0.4、【2021高考三卷】21.〔12分〕函数()f x =*﹣1﹣a ln *. 〔1〕假设()0f x ≥ ,求a 的值;〔2〕设m 为整数,且对于任意正整数n ,21111++1+)222n()(1)(﹤m ,求m 的最小值. 21.解:〔1〕()f x 的定义域为()0,+∞.①假设0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②假设>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故*=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1〔2〕由〔1〕知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2n x 得111+<22nn ln ⎛⎫ ⎪⎝⎭,从而 故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 21.〔12分〕函数()f x =ln *+a*2+(2a +1)*.〔1〕讨论()f x 的单调性; 〔2〕当a ﹤0时,证明3()24f x a≤--. 【答案】〔1〕当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;〔2〕详见解析 题型四 利用导数研究恒成立问题题型概览:不等式恒成立求参数取值围,构造函数,直接把问题转化为函数的最值问题;假设参数不便于别离,或别离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值围.函数f (*)=12ln *-m*,g (*)=*-a*(a >0).(1)求函数f (*)的单调区间;(2)假设m =12e 2,对∀*1,*2∈[2,2e 2]都有g (*1)≥f (*2)成立,数a 的取值围.[审题程序]第一步:利用导数判断f (*)的单调性,对m 分类讨论;第二步:对不等式进展等价转化,将g (*1)≥f (*2)转化为g (*)min ≥f (*)ma*; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规解答] (1)f (*)=12ln *-m*,*>0,所以f ′(*)=12*-m ,当m ≤0时,f ′(*)>0,f (*)在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得*=12m ;由⎩⎪⎨⎪⎧f ′*>0,*>0得0<*<12m ;由⎩⎪⎨⎪⎧f ′*<0,*>0得*>12m.综上所述,当m ≤0时,f ′(*)的单调递增区间为(0,+∞);当m >0时,f (*)的单调递增区间为⎝ ⎛⎭⎪⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎪⎫12m ,+∞.(2)假设m =12e 2,则f (*)=12ln *-12e 2*.对∀*1,*2∈[2,2e 2]都有g (*1)≥f (*2)成立, 等价于对∀*∈[2,2e 2]都有g (*)min ≥f (*)ma*, 由(1)知在[2,2e 2]上f (*)的最大值为f (e 2)=12,g ′(*)=1+a *2>0(a >0),*∈[2,2e 2],函数g (*)在[2,2e 2]上是增函数,g (*)min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值围为(0,3].[解题反思] 本例(1)的解答中要注意f (*)的定义域,(2)中问题的关键在于准确转化为两个函数f (*)、g (*)的最值问题.此题中,∀*1,*2有g (*1)≥f (*2)⇔g (*)min ≥f (*)ma*.假设改为:∃*1,∀*2都有g (*1)≥f (*2),则有g (*)ma*≥f (*)ma*.假设改为:∀*1,∃*2都有g (*1)≥g (*2),则有g (*)min ≥f (*)min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.f (*)=*ln *,g (*)=-*2+a*-3.(1)对一切*∈(0,+∞),2f (*)≥g (*)恒成立,数a 的取值围; (2)证明:对一切*∈(0,+∞),ln *>1e *-2e *恒成立.[解] (1)由题意知2*ln *≥-*2+a*-3对一切*∈(0,+∞)恒成立, 则a ≤2ln *+*+3*,设h (*)=2ln *+*+3*(*>0),则h ′(*)=*+3*-1*2,①当*∈(0,1)时,h ′(*)<0,h (*)单调递减,②当*∈(1,+∞)时,h ′(*)>0,h (*)单调递增,所以h (*)min =h (1)=4,对一切*∈(0,+∞),2f (*)≥g (*)恒成立, 所以a ≤h (*)min =4.即实数a 的取值围是(-∞,4].(2)证明:问题等价于证明*ln *>*e *-2e (*∈(0,+∞)).又f (*)=*ln *,f ′(*)=ln *+1,当*∈⎝⎛⎭⎪⎫0,1e 时,f ′(*)<0,f (*)单调递减;当*∈⎝ ⎛⎭⎪⎪⎫1e ,+∞时,f ′(*)>0,f (*)单调递增,所以f (*)min =f ⎝ ⎛⎭⎪⎪⎫1e =-1e .设m (*)=*e *-2e (*∈(0,+∞)),则m ′(*)=1-*e *,易知m (*)ma*=m (1)=-1e,从而对一切*∈(0,+∞),ln *>1e *-2e *恒成立.②当*∈(1,+∞)时,h ′(*)>0,h (*)单调递增,所以h (*)min =h (1)=4,对一切*∈(0,+∞),2f (*)≥g (*)恒成立, 所以a ≤h (*)min =4.即实数a 的取值围是(-∞,4].题型五:二阶导主要用于求函数的取值围23.(12分)函数f〔*〕=〔*+1〕ln*﹣a〔*﹣1〕.〔I〕当a=4时,求曲线y=f〔*〕在〔1,f〔1〕〕处的切线方程;〔II〕假设当*∈〔1,+∞〕时,f〔*〕>0,求a的取值围.【解答】解:〔I〕当a=4时,f〔*〕=〔*+1〕ln*﹣4〔*﹣1〕.f〔1〕=0,即点为〔1,0〕,函数的导数f′〔*〕=ln*+〔*+1〕•﹣4,则f′〔1〕=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′〔1〕=﹣2,则曲线y=f〔*〕在〔1,0〕处的切线方程为y=﹣2〔*﹣1〕=﹣2*+2;〔II〕∵f〔*〕=〔*+1〕ln*﹣a〔*﹣1〕,∴f′〔*〕=1++ln*﹣a,∴f″〔*〕=,∵*>1,∴f″〔*〕>0,∴f′〔*〕在〔1,+∞〕上单调递增,∴f′〔*〕>f′〔1〕=2﹣a.①a≤2,f′〔*〕>f′〔1〕≥0,∴f〔*〕在〔1,+∞〕上单调递增,∴f〔*〕>f〔1〕=0,满足题意;②a>2,存在*0∈〔1,+∞〕,f′〔*0〕=0,函数f〔*〕在〔1,*0〕上单调递减,在〔*0,+∞〕上单调递增,由f〔1〕=0,可得存在*0∈〔1,+∞〕,f〔*0〕<0,不合题意.综上所述,a≤2.23.(12分)函数f〔*〕=〔*+1〕ln*﹣a〔*﹣1〕.〔I〕当a=4时,求曲线y=f〔*〕在〔1,f〔1〕〕处的切线方程;〔II〕假设当*∈〔1,+∞〕时,f〔*〕>0,求a的取值围.【解答】解:〔I 〕当a=4时,f 〔*〕=〔*+1〕ln*﹣4〔*﹣1〕.f 〔1〕=0,即点为〔1,0〕,函数的导数f′〔*〕=ln*+〔*+1〕•﹣4, 则f′〔1〕=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′〔1〕=﹣2, 则曲线y=f 〔*〕在〔1,0〕处的切线方程为y=﹣2〔*﹣1〕=﹣2*+2; 〔II 〕∵f 〔*〕=〔*+1〕ln*﹣a 〔*﹣1〕, ∴f′〔*〕=1++ln*﹣a ,∴f″〔*〕=,∵*>1,∴f″〔*〕>0,∴f′〔*〕在〔1,+∞〕上单调递增,∴f′〔*〕>f′〔1〕=2﹣a . ①a≤2,f′〔*〕>f′〔1〕≥0,∴f 〔*〕在〔1,+∞〕上单调递增,∴f 〔*〕>f 〔1〕=0,满足题意; ②a >2,存在*0∈〔1,+∞〕,f′〔*0〕=0,函数f 〔*〕在〔1,*0〕上单调递减,在〔*0,+∞〕上单调递增, 由f 〔1〕=0,可得存在*0∈〔1,+∞〕,f 〔*0〕<0,不合题意. 综上所述,a≤2.题型六:求含参数求知围此类问题一般分为两类:一、也可别离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便别离参数并可求出函数最大值与最小值的情况,假设题中涉及多个未知参量需别离出具有明确定义域的参量函数求出取值围并进展消参,由多参数降为单参在求出参数取值围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、不等式恒成立问题或存在问题
例一、已知函数).ln()(m x e x f x +-=
(1)设)(0x f x 是=的极值点,求m 。
并讨论)(x f 的单调性。
(2)当0)(2 x f m 时,证明≤
例一、设函数R b a bx x a x f ∈-=,,ln )(2。
(1)若函数)(x f 在1=x 处与直线2
1-=y 相切。
①求实数,a b 的值; ②求函数],1[)(e e
x f 在上的最大值; (2)当0b =时,若不等式x m x f +≥)(对所有的],1(],2
3,0[2e x a ∈∈都成立,求实数m 的取值范围。
例二、已知函数2
2()ln ()a f x x a x a x
=+-∈R . (1)讨论函数()y f x =的单调区间;
(2)设2()24ln 2g x x bx =-+-,当a =1时,若对任意的x 1,x 2∈[1,e](e 是自然对
数的底数),12()()f x g x ≥,求实数b 的取值范围.
例三、已知函数()f x 是定义在[)
(],00,e e -上的奇函数,当(]0,x e ∈时, ()ln f x ax x =+(其中e 是自然对数的底数, a R ∈).
(1)求()f x 的解析式;
(2)设1-=a ,x x x g ln )(-=,求证:当(]0,x e ∈时,21)()(+<x g x f 恒成立; (3)是否存在负数a ,使得当(]0,x e ∈时,()f x 的最大值是3-?如果存在,求出实
数a 的值;如果不存在,请说明理由.
例四、已知函数()2ln .p f x px x x
=-- (1)若2p =,求曲线()(1,(1))f x f 在点处的切线;
(2)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围;
(3)设函数2(),[1,]e g x e x
=
若在上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围。
2、切线问题
例一、已知函数)
()(023≠++=a cx bx ax x f 是定义在R 上的奇函数,且1-=x 时,函数取极值1.
(1)求c b a ,,的值;
(2)若[]1121,,-∈x x ,求证:221≤-)()(x f x f ;
(3)求证:曲线)(x f y =上不存在两个不同的点B A ,,使在B A ,两点处的切线都垂直于直线AB .
例二、已知函数)
,在点()1(1),(3)(23f R b a x bx ax x f ∈-+=处的切线方程为02=+y . (1) 求函数)(x f 解析式
(2) 若对于区间[-2,2]上任意两个自变量的值21,x x 都有c x f x f ≤-)()(21,求实数c 的最小值
(3) 若过点)2)(,2(≠m m M 可做曲线)(x f y =的三条切线,求实数m 的取值范围
3、求交点或根的问题 例一、已知函数)0()(,ln )(<=
=a x a x g x x f ,设)()()(x g x f x F +=。
(Ⅰ)求F (x )的单调区间;
(Ⅱ)若以(])3,0)((∈=x x F y 图象上任意一点),(00y x P 为切点的切线的斜率21≥
k 恒成立,求实数a 的最大值。
(Ⅲ)是否存在实数m ,使得函数1)1
2(2-++=m x a g y 的图象与)1(2x f y +=的图象恰好有四个不同的交点?若存在,求出m 的取值范围,若不存在,说明理由。
例二、已知函数.)(,)2(),2](,2[)33()(2n t f m f t t e x x x f x ==-->-⋅+-=设定义域为 (I )试确定t 的取值范围,使得函数],2[)(t x f -在上为单调函数;
(II )求证:m n >;
(III )求证:对于任意的200)1(3
2)(),,2(,20-='-∈->t e x f t x t x 满足总存在,并确定这样的0x 的个数。
4、不等式一边加和或裂项问题
例一、已知函数R a x x a x f ∈+-=,ln )1()(2
(1) 当1=a 时,判断函数)(x f 的单调性并求出单调区间;
(2)若函数)(x f 的图像与直线x y =至少有一个交点,求实数a 的取值范围
(3)证明:对任意成立,都有∑=+-+∈n i i
i n N n 121
)1ln( 。
例二、已知函数,1)(22
+-=x x x x f 对一切正整数n ,数列{}n a 定义如下:
211=a 且
)(1n n a f a =+,前n 项和为n S
(1)求函数)(x f 的单调区间,并求值域
(2)证明{}{}x x f f x x x f x ===))(()(
(3)对一切正整数n ,证明:12;11 n n n S a a 、、+
5、含参含绝对值
例一、 设0>a ,函数|1ln |)(2-+=x a x x f .
(1) 当1=a 时,求曲线)(x
f y =在1=x 处的切线方程; (2) 当),1[+∞∈
x 时,求函数)(x f 的最小值.
例二、设a 为实数,函数
2()2()||f x x x a x a =+--. (1) 若
(0)1f ≥,求a 的取值范围; (2) 求()f x 的最小值;
(3) 设函数()(),(,)h x f x x a =
∈+∞,直接写出....(不需给出演算步骤)不等式()1h x ≥的解集.
6、不等式放缩
例一、设关于x 的方程012=--mx x 有两个实根α、β,且βα<。
定义函数
.1
2)(2+-=x m x x f (I )求)(ααf 的值;
(II )判断),()(βα在区间x f 上单调性,并加以证明;
(III )若μλ,为正实数,①试比较)(),(),(βμ
λμβλααf f f ++的大小; ②证明.|||)()(
|βαμ
λλβμαμλμβλα-<++-++f f
7、新定义或概念题
例一、设M 是由满足下列条件的函数)(x f 构成的集合:“①方程)
(x f 0=-x 有实数根;②
函数)(x f 的导数)(x f '满足1)(0<'<x f .”
(I )判断函数4
sin 2)(x x x f +=是否是集合M 中的元素,并说明理由; (II )集合M 中的元素)(x f 具有下面的性质:若)(x f 的定义域为D ,则对于任意
[m ,n]⊆D ,都存在0x ∈[m ,n],使得等式)()()()(0x f m n m f n f '-=-成立”, 试用这一性质证明:方程0)(=-x x f 只有一个实数根
(III )设1x 是方程0)(=-x x f 的实数根,求证:对于)(x f 定义域中任意的2|)()(|,1||,1||,,23131232<-<-<-x f x f x x x x x x 时且当.。