函数的概念PPT2015(1)修正

合集下载

函数的概念ppt课件

函数的概念ppt课件

已学函数的定义域和值域
反比例函数 一次函数
y
k x
(k 0)
y ax b (a 0)
二次函数
y ax2 bx c (a 0)
a> 0
a< 0
图像
y ox
y ox
y ox
y ox
定义域 {x| x 0} R 值域 {y| y 0} R
R
R
{y
|
y
4ac 4a
b2}
{y
|
y
4ac 4a
(2) y (x 1)0 2 x 1
(1)
x 1 4 x
0 ,1
0
x
4,定义域是x
1
x
4
(2)
x
2 1
0
,
解得x
1且x
1, 定义域为
x
x 1且x 1
x 1 0
x2 x 12
解析:由题意得x2-x-12≥0,解得x≤-3或x≥4. 定义域为{x|x≤-3或x≥4}
2x2 x 3 0, 2x2 x 3 0, (2x 3)(x 1) 0, 1 x 3
2 y 2x2 x 3 2(x 1)2 25 5 2
484
[0, 5 2 ] 4
2
o12 5 x
4.求下列函数的值域 (1).y 2x x 1
设t x 1,则t 0且x t2 1, 所以y 2(t2 1) t 2(t 1)2 15 ,[15 , )
它对应,就称f: A→B 为从集合A到集合B的一个函数,记作:
a
e
b
f
c
g

h …
A
B
f: A→B
y=f(x) , x∈A

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.

函数的概念课件

函数的概念课件

函数的概念课件在数学中,函数是一个核心的概念。

它描述了变量之间的依赖关系,用函数的观点去看待问题,是数学学习中一个极为重要的思想方法。

因此,大家要认真理解函数的概念,掌握函数的基本性质,为后续学习做好准备。

函数是数学中的一种关系,它把一个数集中的元素与另一个数集中的元素对应起来,其中对应的规则称为对应关系。

我们可以用解析式、图象、表格等多种形式来表示函数。

例如,如果y是x的函数,那么可以用y=x^2表示一个二次函数。

(1)函数的单调性:在区间(a,b)上,如果对于任意x1<x2,都有f(x1)<f(x2),则称f(x)在(a,b)上单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则称f(x)在(a,b)上单调递减。

(2)函数的奇偶性:如果对于函数f(x)的定义域内的任意x,都有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x)的定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数。

(3)函数的值域:函数值的取值范围称为函数的值域。

(2)定义域为[0,∞),值域为[1,∞)解:(1)在区间(-∞,0)上单调递减,在区间(0,∞)上单调递增。

本节课我们学习了函数的概念和基本性质,掌握了函数的表示方法,了解了函数的单调性、奇偶性和值域等概念。

希望大家能够认真领会函数的思想方法,为后续学习做好准备。

函数是高中数学的核心概念,是数学学习中不可或缺的一部分。

函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。

本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。

通过本课件的学习,学生应能理解函数的基本概念,掌握函数的定义和性质,能够判断一个映射是否为函数,并能够根据函数的定义和性质解决一些基本问题。

函数的定义:我们将介绍函数的定义,包括自变量、因变量和对应关系。

通过举例和反例,帮助学生理解函数的定义。

函数的概念(优秀课)ppt课件

函数的概念(优秀课)ppt课件
函数的表示方法
解析法、列表法和图象法。
函数的定义域、值域与对应关系
01
函数的定义域
使函数有意义的自变量$x$的 取值范围。
02
函数的值域
函数值的集合,即${ y|y=f(x),x in D}$。
03
函数的对应关系
自变量$x$与因变量$y$之间的 对应法则。
函数的性质:奇偶性、周期性、单调性
奇偶性
01
角度计算
反三角函数可以用于计算角度,如已知三角形的两边长,可以利用反正
弦或反余弦函数计算出夹角。
02
工程应用
在工程中,反三角函数常用于解决与角度、长度等相关的实际问题,如
建筑设计、机械制造等领域。
03
复合函数
反三角函数可以与其他函数组合形成复合函数,用于解决更复杂的数学
问题。例如,可以将反三角函数与多项式、指数函数等进行复合,得到
0,+∞)上是减函数。
指数函数与对数函数的应用举例
增长率问题
通过指数函数可以描述某些量的增长速 度,如人口增长、细菌繁殖等。
利息计算
通过指数函数可以计算复利问题中的本 金和利息。
对数运算
通过对数函数可以简化某些复杂的运算 ,如计算幂、开方等。
数据分析
通过对数函数可以对某些数据进行归一 化处理,以便更好地进行数据分析和可 视化。
对数函数的图像与性质
对数函数的定义
形如y=log_a x(a>0且a≠1) 的函数称为对数函数。
对数函数的图像
当a>1时,图像在x轴上方,且 随着x的增大,y值也增大;当 0<a<1时,图像在x轴下方,且
随着x的增大,y值减小。
对数函数的性质

函数概念及性质课件

函数概念及性质课件

03
函数的运算
函数的四则运算
01
02
03
04
加法运算
函数加法是指将两个函数的值 分别对应相加,得到一个新的
函数。
减法运算
函数减法是指将一个函数的值 对应相减,得到一个新的函数

乘法运算
函数乘法是指将两个函数的值 分别对应相乘,得到一个新的
函数。
除法运算
函数除法是指将一个函数的值 对应相除,得到一个新的函数
幂函数的定义
幂函数是指形式为$y=x^n$的函数,其中$n$为实数。
幂函数的性质
幂函数具有指数为实数、幂次为整数、幂次为负数等性质,其性质与 指数和幂次有关。
幂函数的图象
幂函数的图象根据指数的不同而变化,当指数为正整数时,幂函数的 图象为凸函数;当指数为负整数时,幂函数的图象为凹函数。
对数函数
对数函数
利用函数的单调性
通过函数的单调性判断函 数的增减性,进而解决不 等式问题。
利用函数的奇偶性
利用函数的奇偶性判断函 数的对称性,简化函数图 像的绘制。
利用函数的周期性
利用函数的周期性,可以 快速求解一些周期性问题 。
利用函数解决物理问题
描述运动规律
利用函数描述物体的运动规律, 如匀速运动、匀加速运动等。
分析电路特性
利用函数分析电路的电压、电流 等特性,理解电路的工作原理。
解决波动问题
利用函数描述波动现象,如声波 、光波等,分析波的传播规律。
05
函数的扩展Байду номын сангаас识
分段函数
分段函数
分段函数是指函数在其定义域的不同 区间上由不同的表达式所表示的函数 。分段函数广泛应用于实际生活中, 如气温变化、人口增长等。

函数的概念ppt课件

函数的概念ppt课件

函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。

《函数的概念》函数的概念与性质PPT

《函数的概念》函数的概念与性质PPT
可以用任意的字母表示,如f(x)=2x,f(t)=2t,g(a)=2a等,那么,不同的字
母表示对两个函数是否为同一个函数有影响吗?
提示:自变量、因变量和对应关系用什么字母表示与函数无关,
不影响两个函数的关系.
如f(x)=2x,f(t)=2t,g(a)=2a,只要自变量取值范围相同,它们就是同
一个函数.

||- ≠ 0,
≠ -2,
解得 x<0,且 x≠-2.
|| ≠ ,
故原函数的定义域为(-∞,-2)∪(-2,0).
4- ≥ 0,
≤ 4,
(2)要使函数有意义,自变量 x 的取值必须满足

≠ 1.
-1 ≠ 0,
故原函数的定义域为(-∞,1)∪(1,4].
课堂篇
探究学习
探究一

4
3
2
3
x→y= ,x∈[0,4]⇒y∈ 0, ,包含于{y|0≤y≤2},故成立;
8
x→y= ,x∈[0,4]⇒y∈ 0, ,包含{y|0≤y≤2},故不成立;
3
3
x→y= ,x∈[0,4]⇒y∈[0,2],故成立.故选 C.
答案:C
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
区间
分析:判断两个函数f(x)和g(x)是否是同一个函数的方法是:先求
函数f(x)和g(x)的定义域,如果定义域不同,那么它们不是同一个函
数;如果定义域相同,再化简函数的表达式,如果化简后的函数表达
式相同,那么它们是同一个函数,否则它们不是.
课堂篇
探究学习
探究一
探究二
探究三

函数的概念ppt课件

函数的概念ppt课件
在经济学、社会学等领域中, 函数图像被用来描述和分析各 种数据之间的关系和变化趋势

THANKS
感谢观看
插值法
利用已知的离散数据点,通过数学计算得到更多的数据点,从而绘制出 更精确的函数图像。
03
பைடு நூலகம்计算几何法
利用几何知识,将函数表达式转换为几何图形,从而得到函数的图像。
函数图像的性质
01
02
03
04
连续性
函数图像在定义域内连续不断 ,没有间断点。
单调性
函数在某个区间内单调增加或 单调减少。
奇偶性
函数图像关于原点对称或关于 y轴对称。
周期性
函数图像呈现周期性变化。
函数图像的应用
数学分析
通过函数图像分析函数的性质 和变化规律,解决数学问题。
自然科学
在物理学、化学、生物学等自 然科学领域中,函数图像被广 泛应用于实验数据的分析和解 释。
工程学
在工程学中,函数图像可以用 来描述各种实际问题的变化规 律,如机械运动、电路电流等 。
经济和社会科学
函数的乘法
总结词
函数乘法是指将两个函数的输出值相乘,得到一个新的函数。
详细描述
函数乘法是一种数学运算,其操作是将两个函数的输出值逐一对应相乘。假设有 两个函数f(x)和g(x),函数乘法就是将f(x)和g(x)的输出值相乘,得到一个新的函 数h(x)=f(x)*g(x)。
函数的除法
总结词
函数除法是指将一个函数的输出值除以另一个函数的输出值,得到一个新的函数。
函数的实际应用
生活中的函数
总结词:无处不在
详细描述:函数的概念在日常生活中随处可见,如物品价格与数量的关系、时间 与路程的关系等。这些关系都可以通过函数来描述和预测。

函数的概念 课件

 函数的概念  课件

4.求下列函数的值域: (1)y=x+1,x∈{1,2,3,4,5}; (2)y=x2-2x+3,x∈[0,3); (3)y=2xx-+31; (4)y=2x- x-1.
解析:(1)(观察法)因为 x∈{1,2,3,4,5},分别代入求值,可得函 数的值域为{2,3,4,5,6}. (2)(配方法)y=x2-2x+3=(x-1)2+2,由 x∈[0,3),再结合函 数的图象(如图(1)),可得函数的值域为[2,6). (3)(分离常数法)y=2xx-+31=2xx--33+7=2+x-7 3,显然x-7 3 ≠0,所以 y≠2.故函数的值域为(-∞,2)∪(2,+∞).
[错解] 因为 f(3x+1)的定义域为[1,7], 即 1≤3x+1≤7,解得 0≤x≤2. 所以 f(x)的定义域为[0,2]. [正解] 令 3x+1=t,则 4≤t≤22, 即 f(t)中,t∈[4,22], 故 f(x)的定义域为[4,22].
[易错警示] 错误原因
纠错心得
(1)已知 f(x)的定义域为 A,求 f[φ(x)]的定义域,其
(4)(换元法)设 t= x-1,则 t≥0 且 x=t2+1,所以 y=2(t2+1)-t=2(t-14)2+185,由 t≥0,再结合函数的 图象(如图(2)),可得函数的值域为[185,+∞).
不能正确理解抽象函数的定义域而致误 [典例] 已知函数 f(3x+1)的定义域为[1,7],求函数 f(x)的定义域.
判断所给对应是否为函数的方法: (1)首先观察两个数集 A,B 是否非空; (2)其次验证对应关系下,集合 A 中 x 的任意性,集合 B 中 y 的唯一性,即不能没 有数 y 对应数 x,也不能有多于一个的数 y 对应 x.
2.下列各题的对应关系是否给出了实数集 R 上的一个函数?为什么? ①f:把 x 对应到 3x+1;②g:把 x 对应到|x|+1;③h:把 x 对应到1x;④r:把 x 对应到 x.

初中函数的概念ppt课件

初中函数的概念ppt课件

二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.回忆旧知,引出困惑
问题一:请举出初中学过的一些函数. 问题二:请同学们回忆初中函数的定义是什么?
2、创设情境,形成概念

数集A
对应关系
数集B
实例二:小明某天以5km/h的速度匀速上学,1h后到达学 校,求小明行走时间t与行走速度v的变化关系。
数集A
对应关生12岁到18岁每年一分钟跳绳次数如下表:
教学重点、难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数,会 判断关系式是否是函数。 难点:符号“y=f(x)”的含义,函数概念的应用。

教学方法

1.通过实例及问题的方式让学生体会了解函数的概念.

2.通过比喻的方式人学生理解函数的概念,符号“y=f(x)”的含 义.
教学过程
第一章
集合与函数的概念
1.2.1函数的概念
人教A版数学必修1
教材分析

1.函数是中学数学中最重要的基本概念之一.在中学,函数 的学习大致可分为三个阶段.第一阶段是在义务教育阶段, 学习了函数的描述性概念,接触了正比例函数、反比例函 数、一次函数、二次函数等最简单的函数,了解了它们的 图象、性质等.本节学习的函数概念与后续将要学习的函 数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是 学习函数的第二阶段,这是对函数概念的再认识阶段.第三 阶段是在选修系列的导数及其应用的学习,这是函数学习 的进一步深化和提高. 2.通过学生的回顾,再现初中变量观点描述函数的概念, 为后面用集合和对应的观点来定义函数奠定基础。通过 对实例的探究,让学生感受、体验对应关系在刻画函数 概念中的作用 ,使学生对数学的高度抽象性、严密的逻 辑性和广泛的应用性有进一步认识,提高抽象概括、分 析总结、数学表达交流等基本数学思维能力;培养学生 分析问题、解决问题的能力。

1.2.1 函数的概念
人教A版数学必修1
三维目标
1﹑知识与技能: 理解函数的概念,了解构成函数的要素以及函数的表示形式,会判 断关系式是否是函数。 2、过程与方法: 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学 模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系 在刻画函数概念中的作用; 3、情态与价值: 通过身边实例让学生感受到学习函数的必要性和重要性,激发学习 的积极性.
年龄 一分钟跳绳次数 12 120 13 126 14 15 16 132 17 18 127 135 140 134

请你描述年龄与一分钟跳绳次数的关系。
数集A
对应关系
数集B
以上三个实例有什么共同的特征?
函数的概念
3.质疑解惑,剖析概念

请同学们勾画出概念中的关键词:


①A、B都是非空的数集;
②任意性与唯一性; ③确定的对应关系 f 。对应关系 f 可以是解析式、图象、表格. 点评对函数概念的理解,得出函数三要素。
怎样理解符号 f x ?
4.巩固概念,加深理解。

练习1 给出图象(如下图),学生根据图象编实际问题。
5.课堂小结

谈谈对本节课所学知识的收获
相关文档
最新文档