2014高考数学一轮复习限时集训(五十二)直线与圆、圆与圆的位置关系理新人教A版

合集下载

2014届高考一轮复习教学案直线与圆、圆与圆的位置关系

2014届高考一轮复习教学案直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为()A.7 B.2 2C.3 D. 2解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x2+y2-6x+8=0可化为(x-3)2+y2=1,则圆心(3,0)到直线y=x+1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3. 答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1. 故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2= 2×100-68=8.[答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3. 3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为 2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题设知,圆C 的方程为 (x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0); 当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.②又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ=(6,-2),所以OA +OB 与PQ共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x+2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0, 显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:433.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0.因为圆心O 1(0,-1)到直线AB 的距离为|r 22-12|42= 4-⎝⎛⎭⎫2222=2,解得r22=4或r22=20.故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。

2014届高三数学一轮复习精讲精练:8.4直线与圆的位置关系

2014届高三数学一轮复习精讲精练:8.4直线与圆的位置关系

第4课 直线与圆的位置关系【考点导读】能利用代数方法和几何方法判定直线与圆的位置关系;熟练运用圆的有关性质解决直线与圆、圆与圆的综合问题,运用空间直角坐标系刻画点的位置,了解空间中两点间的距离公式及其简单应用.【基础练习】1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是-6<a <42.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于223.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为 x =2或3x -4y -2=0 . 【范例导析】 例1.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.分析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.(2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0. 点拨:直线与圆相交截得弦长的最小值时,可以从垂径定理角度考虑,充分利用圆的几何性质. 例2.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|.求实数a 、b 间满足的等量关系.解:连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a 化简得实数a 、b 间满足的等量关系为: 052=-+b a .例3.已知圆C 与两坐标轴都相切,圆心C 到直线y x =-2. 求圆C 的方程.例2解:设圆C 半径为r,由已知得:a b r a ⎧⎪=⎪⎪=⎨ ∴11a b r ==⎧⎨=⎩,或11a b r ==-⎧⎨=⎩∴圆C 方程为2222(1)(1)1,(1)(1)1x y x y -+-=+=或++.例4.如图,在平面直角坐标系x O y 中,平行于x 轴且过点A(33,2)的入射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切. (1)求l 2所在直线的方程和圆C 的方程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.解:(1)直线1:2,l y =设12l l D D 交于点,则(). l Q 的倾斜角为30o,260l ∴o的倾斜角为,2k ∴=∴反射光线2l 所在的直线方程为2y x -=-.40y --=.已知圆C 与1l A 切于点,设C (a,b),Q 圆心C 在过点D 且与l垂直的直线上,8b ∴=+ ,又圆心C 在过点A 且与1l 垂直的直线上,a ∴=81b ∴=+=-,圆C 的半径r=3, 故所求圆C的方程为22((1)9x y -++=.(2)设点()0,4B -关于l 的对称点00(,)B x y ',则00004224y x y x ⎧-=⎪⎪⎨+⎪=⎪⎩,得(2)B '-,固定点Q 可发现,当B P Q '、、共线时,PB PQ +最小,故PB PQ +的最小值为33B C '-=-.此时由121y y x ⎧+=⎪+⎪⎨⎪=⎪⎩得1)2P .【反馈练习】1.圆x 2+y 2-4x=0在点P(1,3)处的切线方程为20x -+=2.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k的取值范围是-( 3.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为相切或相离解析:圆心到直线的距离为d=21m+,圆半径为m . ∵d-r=21m +-m =21(m-2m +1)=21(m -1)2≥0,∴直线与圆的位置关系是相切或相离.4.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为35.点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为)23,21(- 6.若圆04122=-++mx y x 与直线1-=y 相切,且其圆心在y 轴的左侧,则m 的值为347.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 1 .8.已知平面区域00240x y x y ≥⎧⎪≥⎨⎪+-≤⎩恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的方程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程.解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),所以圆C 的方程是22(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+.因为CA CB ⊥u u u r u u u r ,所以圆心C 到直线l,解得:1b =-±.所以直线l 的方程是:1y x =-±.。

高考一轮复习直线与圆、圆与圆的位置关系

高考一轮复习直线与圆、圆与圆的位置关系
(2)若圆O2与圆O1交于A、B两点,且|AB|=2 ,求 2
圆O2的方程.
2 例4 已知以点C(t, )(t∈R,t≠0)为圆心的圆与x轴 t
交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON| 求圆C的方程; (3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆 C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
直线与圆、圆与圆 的位置关系
一、直线与圆的位置关系
1.常用研究方法 ①判别式法;
②考查圆心到直线的距离与半径的大小关系.
2.直线Ax+By+C=0与圆(x-a) +(y-b) =r 的位置关系有 | Aa Bb C | 三种: 若d 2 2 A B
2 2 2
则d____r⇔相切⇔Δ____0; = =
d____r⇔相交⇔Δ____0; < < < d____r⇔相离⇔Δ____0; >
3.直线和圆相切
(1)过圆上一点的圆的切线方程:圆(x-a) +(y-b) =r 的以P( x0,y0)为切点的切线方程是______________________. (x0-a)(x-a)+(y0-b)(y-b)=r (2)一般地,圆x +y +Dx+Ey+F=0的以点P(x0,y0)为切点的
例2 已知点P(0,5)及圆C:x +y 3 +4x-12y+24=0. (1)若直线l过点P且被圆C截得的线段长为4 ,
求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.

2014高考数学一轮复习课件:8.4直线与圆、圆与圆的位置关系(精)

2014高考数学一轮复习课件:8.4直线与圆、圆与圆的位置关系(精)

2×32+2×3+1=5=2+3, ∴两圆相离.
答案:D
• (2)解析:AB的中垂线即为圆C1、圆C2的连心线 C1C2, • 又C1(3,0),C2(0,3),∴C1C2的方程为x+y-3=0. • 答案:x+y-3=0
(3)解:设所求圆的圆心为C(a,b),半径长为r, 则圆C的标准方程为(x-a)2+(y-b)2=r2, ∵C(a,b)在过点P且与l垂直的直线上, b+ 3 ∴ = 3. a-3 又∵圆C与l相切于点P, |a+ 3b| ∴r= . 2 ② ①
答案:B
• 3.(文)⊙O1:x2+y2-2x=0与⊙O2:x2+y2 -4y=0的位置关系是( ) 解析:⊙O1:(x-1)2+y2=1,⊙O2:x2+(y-2)2=4, • A.相离 B.相交 2 2 圆心距 d = 1 - 0 + 0 - 2 = 5 ,故|r1-r2|<d<r1+ • C.外切 D.内切
考纲要求
• 一、直线与圆的位置关系 • 设直线l:Ax+By+C=0(A2+B2≠0), • 圆:(x-a)2+(y-b)2=r2(r>0),设d为圆心(a, b)到直线l的距离,联立直线和圆的方程,消元 后得到的一元二次方程的判别式为Δ.
位置 关 系 图形
相交
< >
相切
= =
相离
> <
几何 法 代数 法
d<
• 2.两圆相交时,公共弦所在直线的方程与两圆 的方程有何关系? • 提示:两圆的方程中,若x2、y2项的系数相同时, 将两方程相减,所得方程即为公共弦所在直线 的方程.
• 1.(2012·陕西高考)已知圆C:x2+y2-4x=0,l 是过点P(3,0)的直线,则( ) • A.l与C相交 B.l与C相切 • C.l与C相离 D.以上三个选项均有 可能

高考数学一轮复习 限时集训(五十二)直线与圆、圆与圆的位置关系 理 新人教A版

高考数学一轮复习 限时集训(五十二)直线与圆、圆与圆的位置关系 理 新人教A版

限时集训(五十二) 直线与圆、圆与圆的位置关系(限时:45分钟 满分:81分)一、选择题(本大题共6小题,每小题5分,共30分) 1.圆(x -1)2+(y +3)2=1的切线方程中有一个是( ) A .x -y =0 B .x +y =0 C .x =0D .y =02.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2C.2π3D.56π 3.(2012·陕西高考)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能4.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为( )A .2 3B .4C .2 5D .55.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=06.直线ax +by +c =0与圆x 2+y 2=9相交于两点M ,N ,若c 2=a 2+b 2,则OM u u u r ·ON u u u r(O 为坐标原点)等于( )A .-7B .-14C .7D .14二、填空题(本大题共3小题,每小题5分,共15分)7.设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则实数m 的值是________.8.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.9.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.三、解答题(本大题共3小题,每小题12分,共36分)10.求过点P (4,-1)且与圆C :x 2+y 2+2x -6y +5=0切于点M (1,2)的圆的方程. 11.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA u u r +OB u u u r 与PQ u u u r共线?如果存在,求k 值;如果不存在,请说明理由.12.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.答 案限时集训(五十二) 直线与圆、圆与圆的位置关系1.C 2.D 3.A 4.B 5.A 6.A 7.±338.(2,2) 9.3 10.解:设所求圆的圆心为A (m ,n ),半径为r ,则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2+2x -6y +5=0的圆心为C (-1,3),则⎩⎪⎨⎪⎧n -2m -1=2-31+1,m -12+n -22=m -42+n +12=r ,解得m =3,n =1,r =5,所以所求圆的方程为(x -3)2+(y -1)2=5.11.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A (x 1,y 1),B (x 2,y 2)则OA u u r +OB u u u r=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4k -31+k2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ u u u r=(6,-2),所以OA u u r +OB u u u r 与PQ u u u r共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k . 12.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =ba=-1,故b =-a ,则|OC |=22,即a 2+b 2=22,可解得⎩⎪⎨⎪⎧a =-2,b =2,或⎩⎪⎨⎪⎧a =2,b =-2,结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2.故圆C 的方程为 (x +2)2+(y -2)2=8.(2)假设存在Q (m ,n )符合题意,则⎩⎪⎨⎪⎧m -42+n 2=42,m 2+n 2≠0,m +22+n -22=8,解得⎩⎪⎨⎪⎧m =45,n =125.故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意.。

高考数学一轮总复习 9.4 直线与圆、圆与圆的位置关系精品课件 理 新人教版

高考数学一轮总复习 9.4 直线与圆、圆与圆的位置关系精品课件 理 新人教版
5
3,所以直线与圆
相交,由数形结合知,圆上到直线的距离为 1的点有 3个.
关闭
C
解析
考点(kǎo diǎn)一
考点(kǎo diǎn)二
考点(kǎo diǎn)三
第十八页,共30页。
答案
答案
(dá àn)
考点(kǎo diǎn)四
探究(tànjiū)
突破
考点二 圆与圆的位置关系及其应用
【例 2】 圆(x+2)2+y2=4 与圆(x-2)2+(y-1)2=9 的位置关系为(
相切
,
< 0⇔
相离
.
②几何法:利用圆心到直线的距离 d 和圆的半径 r 的大小关系:
相交 ,
d=r⇔ 相切 ,
d>r⇔ 相离 .
d<r⇔
第三页,共30页。
梳理(shūlǐ)
自测
(2)圆的切线方程
若圆的方程为 x2+y2=r2,点 P(x0,y0)在圆上,则过 P 点且与圆 x2+y2=r2 相
2
切的切线方程为 x0x+y0y=r .
则切线只有一条;若点在圆外,切线应有两条;若点在圆内,无切线.
(2)若求出的切线条数与判断不一致,则可能漏掉了切线斜率不
存在的情况.
第五页,共30页。
梳理(shūlǐ)
自测
(3)直线与圆相交:
2
2
直线与圆相交时,若 l 为弦长,d 为弦心距,r 为半径,则有 r =d +
l=2 2 - 2 ,求弦长或已知弦长求其他量的值,一般用此公式.
解析
答案
答案
(jiě xī) (dá àn)
解析

高考数学一轮复习 专题 直线与圆、圆与圆的位置关系学案 新人教版

高考数学一轮复习 专题 直线与圆、圆与圆的位置关系学案 新人教版

直线与圆、圆与圆的位置关系一、考纲要求直线与圆、圆与圆的位置关系B二、复习目标1.掌握直线与圆的关系,即相交、相切、相离,并能够利用直线和直线垂直的充要条件和点到直线的距离公式解决圆的切线和弦长等有关问题.2.能根据给定的两个圆的方程判定两圆的位置关系,并能根据两圆的位置关系解决有关问题,初步了解用代数方法处理几何问题的思想.三、重点难点直线与圆相交的弦长问题,直线与圆相切问题. 根据两个圆的方程判定两圆的位置关系.四、要点梳理(一) 直线与圆的位置关系1.位置关系有: 、 、 .2.判断方法:(1)代数法:方程组2220()()Ax By C x a y b r ++=⎧⎨-+-=⎩有两组不同的实数解⇔直线与圆 ;有两组相同的实数解⇔直线与圆 ;无实数解⇔直线与圆 .(一般不用此法) (2)几何法:圆心到直线的距离为d ,圆的半径为r ,满足:_______⇔直线与圆相离;_______⇔直线与圆相切;_______⇔直线与圆相交。

说明:解决直线与圆的关系问题时,一般用几何法不用代数法,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等).(二) 圆与圆的位置关系1.圆与圆的位置关系有: 、 、 、 、 .2.根据圆的方程,判断两圆位置关系的方法有:(1)代数法:方程组⎩⎨⎧=++++=++++0022********F y E x D y x F y E x D y x 有两组不同的实数解⇔两圆 ; 有两组相同的实数解⇔两圆 ;无实数解⇔两圆 .(一般不用此法)(2)几何法:设两圆圆心分别为1O ,2O 半径分别为12,r r ,12O O d =,则⇔+>21r r d 两圆 ⇔__条公切线;⇔+=21r r d 两圆 ⇔___条公切线;2121r r d r r +<<-⇔两圆______⇔____条公切线;⇔≠-=)(2121r r r r d 两圆 ⇔____条公切线;⇔≠-<≤)(02121r r r r d 两圆 ⇔无公切线(0=d 时为同心圆). 五、基础自测1.已知圆22:4O x y +=,则过点(2,4)P 与圆O 相切的切线方程为 .2.若过点(4,0)A 的直线l 与圆22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为________________.3.圆222430x y x y +++-=上到直线10x y ++=的距离为2的点共有____个.4.直线3y kx =+与圆()()22324x y -+-=相交于,M N 两点,若MN ≥k 的取值范围是___________.5.若圆222(3)(5)x y r -++=上有且仅有两个点到直线432x y -=的距离等于1,则半径r 的取值范围为____________________ .6.设集合{}{}2222(,)()(1)1,(,)(1)()9A x y x a y B x y x y a =-++==-+-=,若A B =∅ ,则实数a 的取值范围为___________________.六、典例精讲例1.在平面直角坐标系xoy 中,直线:(4)1l y k x =-+与圆 22:(1)25C x y ++=的位置关系为 .变式1:若直线l 被圆 C 所截的弦长为6,则k = .变式2:过点(4,1)的直线被圆 C 所截的弦长为6,则直线的方程为 .变式3:直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?为什么?变式4:若直线l 被圆C 所截的弦长为整数,这样的直线有 条;变式5:直线l 与圆C 交于,E G 两点,直线1l :(1)40x k y +--=与圆C 交于,F H 两点则四边形EFGH 的面积最大值为 .例2.如图,在平面直角坐标系xOy 中,点(0,3)A ,直线42:-=x y l ,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.变式1:在平面直角坐标系xOy 中,(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上,过A 点向动圆C 引切线,AP AQ ,,P Q 为切点,求AP AQ ⋅ 的最小值.变式2:在平面直角坐标系xOy 中, (0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在一点M ,使得223MA MO -=,求圆心C 的横坐标的取值范围.变式3:在平面直角坐标系xOy 中, (0,3)A ,直线:24l y x =-,若过A 任作两条互相垂直的直线12,l l ,使其总与半径为1,圆心在直线l 上的两个定圆1C 与2C 相交,且12,l l 分别被圆12,C C 截得的弦长相等,求圆1C 与2C 的方程.例3.在平面直角坐标系xOy 中,已知圆1C :22(3)(1)4x y ++-=和圆2C :2(4)x -+2(5)y -4=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为32,求直线l 的方程:(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.变式1:已知圆C 1:22(3)(1)4x y ++-=和圆C 2:2(4)x -+2(5)y -1=.设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们 分别与圆C 1和圆C 2相交,且直线1l 被圆C 1截得的弦长与直线2l 被圆C 2截得的弦长之比为2:1,试求所有满足条件的点P 的坐标.变式2:在平面直角坐标系xoy 中,已知圆C 1:22(3)(1)4x y ++-=和圆C 2:2(4)x -+2(5)y -4=.过两圆外一点(,)P a b 引两圆的切线,切点分别为,A B ,满足PA PB =(1)求,a b 满足的关系式;(2)求PA 的最小值.变式3:在平面直角坐标系xoy 中,已知圆1C :22(3)(1)4x y ++-=和圆2C :2(4)x -+2(5)y -1=.过两圆外一点(,)P a b 引两圆的切线,切点分别为,A B ,满足2PA PB =,求12PC C ∆的面积的最大值.直线与圆、圆与圆的位置关系课后练习1.已知点),(b a P 在圆222r y x =+的外部,则直线2r by ax =+与圆222r y x =+的位置关系是___________.2.已知圆01010:221=--+y x y x C 和04026:222=-+++y x y x C 相交于A B 、两点,则公共弦AB 的长度为___________.3.过原点且与直线1=x 及圆1)2()1(22=-+-y x 相切的圆的方程为_____________.4.已知点(,)P a b 关于直线l 的对称点为(1,1)'+-P b a ,则圆22:+C x y 620--=x y 关于直线l 对称的圆'C 的方程为_______________________.5.若圆2221:240()C x y ax a a R +++-=∈与2222:210()C x y by b b R +--+=∈圆恰有三条切线,则a b +的最大值为_____________.6.过点1(,1)2P 的直线l 与圆22:(1)4C x y -+=交于,A B 两点,当ACB ∠最小时,直线l 的方程为___________________.7.已知圆M :22(cos )(sin )1x y θθ++-=,直线l :y =kx ,下面四个命题:①对任意实数k 与θ,直线l 和圆M 相切;②对任意实数k 与θ,直线l 和圆M 有公共点;③对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切;④对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切.其中真命题的代号是______________.(写出所有真命题的代号)8. (1)已知)4,3(A ,求圆422=+y x 上的点与点A 的最大距离和最小距离;(2)已知圆1)4()3(:22=-+-y x C ,点)1,0(-A ,)1,0(B ,设P 是圆C 上的动点,令22PB PA d +=,求d 的最大值与最小值;(3)已知点),(y x P 是圆4)3()3(22=-+-y x 上任意一点,求点P 到直线062=++y x 的最大距离与最小距离.9.如图,已知圆心坐标为的圆M 与x轴及直线y 分别切于A 、B 两点,另一圆N 与圆M 外切、且与x轴及直线y =分别切于C 、D 两点.(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.10.已知⊙22:1O x y +=和点(4,2)M .(1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQ PR 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.。

2014届高考数学一轮复习 13.2 直线与圆的位置关系考点及自测 理 新人教A版

2014届高考数学一轮复习 13.2 直线与圆的位置关系考点及自测 理 新人教A版

第2讲直线与圆的位置关系考点梳理1.圆周角定理(1)圆周角定理及其推论①定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.②推论(i)推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(ii)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.(2)圆心角定理:圆心角的度数等于它所对弧的度数.2.圆内接四边形的性质与判定定理(1)圆内接四边形的性质定理①定理1:圆内接四边形的对角互补.②定理2:圆内接四边形的外角等于它的内角的对角.(2)圆内接四边形的判定定理及推论①判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.②推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.3.圆的切线的性质及判定定理切线的性质定理及推论(1)定理:圆的切线垂直于经过切点的半径.(2)推论:①推论1:经过圆心且垂直于切线的直线必经过切点.②推论2:经过切点且垂直于切线的直线必经过圆心.4.弦切角的性质弦切角定理:弦切角等于它所夹的弧所对的圆周角.5.与圆有关的比例线段圆中的比例线段1.如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的点,已知∠BAC =80°, 那么∠BDC =________.解析 连接OB 、OC ,则OB ⊥AB ,OC ⊥AC ,∴∠BOC =180°-∠BAC =100°, ∴∠BDC =12∠BOC =50°.答案 50°2.(2012·湖北)如图,点D 在⊙O 的弦AB 上移动,AB =4,连接OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为________.解析 当OD 的值最小时,DC 最大,易知D 为AB 的中点时,DB =DC =2最大. 答案 23.(2012·北京)如图,∠ACB =90°,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点E ,则( ). A .CE ·CB =AD ·DB B .CE ·CB =AD ·AB C .AD ·AB =CD 2D .CE ·EB =CD 2解析 在直角三角形ABC 中,根据直角三角形射影定理可得CD 2=AD ·DB ,再根据切割线定理可得CD 2=CE ·CB ,所以CE ·CB =AD ·DB . 答案 A4. (2012·湖南)如图所示,过点P 的直线与⊙O 相交于A ,B 两点.若PA =1,AB =2,PO =3,则⊙O 的半径等于________.解析 设圆的半径为r ,则(3-r )(3+r )=1×3,即r 2=6,解得r = 6. 答案 65. (2012·天津)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.解析 因为AF ·BF =EF ·CF ,解得CF =2,所以34=2BD ,即BD =83.设CD =x ,AD =4x ,所以4x 2=649,所以x =43.答案 43对应学生207考向一 圆的切线的性质与判定【例1】►如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平分∠DAB ,AD ⊥CD .(1)求证:OC ∥AD ;(2)若AD =2,AC =5,求AB 的长. (1)证明 ∵直线CD 与⊙O 相切于点C , ∴∠DCO =∠DCA +∠ACO =90°, ∵AO =CO ,∴∠OAC =∠ACO , ∵AC 平分∠DAB ,∴∠DAC =∠OAC , ∴∠DAC =∠ACO ,∴OC ∥AD .(2)解 连接BC ,∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠ADC =∠ACB ,又∵∠DAC =∠BAC ,∴△ADC ∽△ACB ,∴AD AC =AC AB, ∵AD =2,AC =5,∴AB =52.利用圆的切线的性质来证明或进行有关的计算,有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解,或利用勾股定理求解,或利用三角形相似求解等.【训练1】如图,⊙O 是△ABC 的外接圆,AB =AC ,过点A 作AP ∥BC ,交BO 的延长线于点P .(1)求证:AP 是⊙O 的切线;(2)若⊙O 的半径R =5,BC =8,求线段AP 的长.(1)证明 过点A 作AE ⊥BC ,交BC 于点E , ∵AB =AC ,∴AE 平分BC , ∴点O 在AE 上. 又∵AP ∥BC ,∴AE ⊥AP , ∴AP 为圆O 的切线.(2)解 BE =12BC =4,∴OE =OB 2-BE 2=3,又∵∠AOP =∠BOE ,∴△OBE ∽△OPA , ∴BE AP =OE OA ,即4AP =35,∴AP =203. 考向二 弦切角定理及推论的应用【例2】►如图,梯形ABCD 内接于⊙O ,AD ∥BC ,过B 引⊙O 的切线分别交DA 、CA 的延长线于E 、F .已知BC =8,CD =5,AF =6,则EF 的长为________. 解析 ∵BE 切⊙O 于B , ∴∠ABE =∠ACB .又∵AD ∥BC ,∴∠EAB =∠ABC , ∴△EAB ∽△ABC ,∴BE AC =AB BC. 又∵AE ∥BC ,∴EF AF =BE AC ,∴AB BC =EFAF.又∵AD ∥BC ,∴AB =CD , ∴AB =CD ,∴CD BC =EF AF ,∴58=EF6,∴EF =308=154.答案154(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ·CD .证明 (1)因为AC =BD , 所以∠BCD =∠ABC .又因为EC 与圆相切于点C ,故∠ACE =∠ABC , 所以∠ACE =∠BCD .(2)因为∠ECB =∠BDC ,∠EBC =∠BCD , 所以△BDC ∽△ECB ,故BC BE =CDBC,即BC 2=BE ·CD .考向三 圆内接四边形性质的应用【例3】► (2013·辽宁三校联考)已知四边形PQRS 是圆内接四边形,∠PSR =90°,过点Q 作PR 、PS 的垂线,垂足分别为点H 、K .(1)求证:Q 、H 、K 、P 四点共圆; (2)求证:QT =TS .证明 (1)∵∠PHQ =∠PKQ =90°,∴Q 、H 、K 、P 四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∵∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.(1)四边形ABCD的对角线交于点P,若PA·PC=PB·PD,则它的四个顶点共圆.(2)四边形ABCD的一组对边AB、DC的延长线交于点P,若PA·PB=PC·PD,则它的四个顶点共圆.以上两个命题的逆命题也成立.该组性质用于处理四边形与圆的关系问题时比较有效.【训练3】如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G 作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH2=GE·GF.证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∵∠EAG=∠BAC,∴∠ABC=∠AEG.又∵∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE =∠AFE ,∠GEC =∠GDF . ∴△GCE ∽△GFD .∴GC GF =GE GD, 即GC ·GD =GE ·GF .∴GH 2=GE ·GF .对应学生356(时间:30分钟 满分:60分)一、填空题(每小题5分,共40分)1. 如图,AB 是⊙O 的直径,MN 与⊙O 切于点C ,AC =12BC ,则sin ∠MCA =________.解析 由弦切角定理得,∠MCA =∠ABC , sin ∠ABC =AC AB=AC AC 2+BC2=AC 5AC =55. 答案552. 如图,AB 为⊙O 的直径,C 为⊙O 上一点.AD 和过C 点的切线互相垂直,垂足为D ,∠DAB =80°,则∠ACO =________. 解析 ∵CD 是⊙O 的切线,∴OC ⊥CD , 又∵AD ⊥CD ,∴OC ∥AD . 由此得,∠ACO =∠CAD , ∵OC =OA ,∴∠CAO =∠ACO ,∴∠CAD =∠CAO ,故AC 平分∠DAB .∴∠CAO =40°, 又∵∠ACO =∠CAO ,∴∠ACO =40°. 答案 40°3. 如图,在△ABC 中,AB =AC ,∠C =72°,⊙O 过A 、B 两点且与BC 相切于点B ,与AC 交于点D ,连接BD ,若BC =5-1,则AC =________.解析 由题易知,∠C =∠ABC =72°,∠A =∠DBC =36°,所以△BCD ∽△ACB ,又易知BD =AD =BC ,所以BC 2=CD ·AC =(AC -BC )·AC ,解得AC =2. 答案 24. 如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm ,4 cm ,以AC 为直径的圆与AB 交于D ,则BD DA=________. 解析 ∵∠C =90°,AC 为圆的直径, ∴BC 为圆的切线,AB 为圆的割线,∴BC 2=BD ·AB ,即16=BD ·5,解得BD =165,∴DA =BA -BD =5-165=95,∴BD DA =169.答案1695. 如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若PB PA =12,PC PD =13,则BCAD的值为________.解析 ∵∠P =∠P ,∠PCB =∠PAD , ∴△PCB ∽△PAD , ∴PB PD =PC PA =BC DA, ∵PB PA =12,PC PD =13,∴BC AD =66. 答案 666. (2012·陕西)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.解析 由题意知,AB =6,AE =1,∴BE =5.∴CE ·DE =DE 2=AE ·BE =5.在Rt △DEB 中,∵EF ⊥DB ,∴由射影定理得DF ·DB =DE 2=5. 答案 57.(2012·广东)如图,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =________.解析 如图,连接OA .由∠ABC =30°,得∠AOC =60°,在直角三角形AOP 中,OA =1,于是PA =OA tan 60°=3. 答案38. 如图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析 ∵AC 、AD 分别是两圆的切线, ∴∠C =∠2,∠1=∠D ,∴△ACB ∽△DAB . ∴BC AB =AB BD, ∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案 2 2 二、解答题(共20分)9.(10分)(2012·新课标全国)如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .证明 (1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD .而CF ∥AD ,连结AF ,所以四边形ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC . (2)因为FG ∥BC ,故GB =CF .由(1)可知BD =CF ,所以GB =BD .所以∠BGD =∠BDG . 由BC =CD 知∠CBD =∠CDB . 而∠DGB =∠EFC =∠DBC , 故△BCD ∽△GBD .10.(10分)(2012·辽宁)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ;- 11 -。

高考数学一轮复习直线与圆、圆与圆的位置关系

高考数学一轮复习直线与圆、圆与圆的位置关系
以两圆相交,故选C.
4.(易错)过点P(2,4)作圆(x-1)2+(y-1)2=1的切线,则切线方程
为(
)
A.3x+4y-4=0
B.4x-3y+4=0
C.x=2或4x-3y+4=0
D.y=4或3x+4y-4=0
答案:C
解析:当斜率不存在时,x=2与圆相切;当斜率存在时,设切线方程为y-4=
k−1+4−2k
所以满足条件的点P的个数为3.
故选C.
题后师说
判断直线与圆的位置关系的两种方法
巩固训练1
(1)[2023·江西赣州模拟]直线y=kx-k与圆(x-2)2+y2=3的位置关系
是(
)
A.相离
B.相交
C.相切
D.与k取值有关
答案:C
解析:∵直线y=kx-k恒过定点(1,0),且该点在圆内,
∴直线与圆相交,
故选B.
(2)[2023·河南郑州二中模拟]若曲线y= 1 − x 2 与直线y=x+b恒有一
b= 2 或b∈[-1,1)
个公共点,则b的取值范围是_________________.
解析:如图:
y= 1 − x 2 是圆心在原点,半径为1的圆的x轴的上半部分,与x,y轴交于B,C,
A三点,
A(0,1),B(-1,0),C(1,0),当直线y=x+b 与圆相切于D点时,满足题意,
a)(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直
线方程为x0x+y0y=r2.
2.直线被圆截得的弦长的求法
(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,
计算弦长|AB|=2 r 2 − d2 .

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

高考数学导航一轮复习 直线与圆、圆与圆的位置关系课件 新人教A版

高考数学导航一轮复习 直线与圆、圆与圆的位置关系课件 新人教A版

位置关系 外离
外切
公共点个数 0
1
几何特征
(圆心距d, 两圆交 2
内切 1
内含 0
R-r<d <R+r
d=R-r
d<R-r
代数特征(两 个圆的方程 组成的方程 组)
无实数 解
一组实数解
两组实 数解
一组实 数解
无实数 解
第四页,共49页。
三基能力 (nénglì)强化
第四十一页,共49页。
课堂(kètáng) 互动讲练
第四十二页,共49页。
课堂(kètáng) 互动讲练
第四十三页,共49页。
规律(guīlǜ) 方法总结
1.圆的切线方程的求法 (1)求过圆上的一点(x0,y0)的切线方程. 先求切点与圆心(yuánxīn)连线的斜率k,由 垂直
若切线斜率不存在,则由图形写出切线方程 x=x0.
有两组不同 实数解
第二页,共49页。
基础知识梳理 (shūlǐ)
在求过一定点的圆的切线方程时, 应注意什么?
【思考·提示】 应首先判断这点与 圆的位置关系,若点在圆上,则该点为 切点,切线只有一条(yī tiáo);若点在圆 外,切线应有两条.
第三页,共49页。
基础知识梳理 (shūlǐ)
2.圆与圆的位置(wèi zhi)关系
课堂(kètáng) 互动讲练
(2)若点M(x0,y0)在圆x2+y2=r2 上,则过M点的圆的切线(qiēxiàn)方程为 x0x+y0y=r2.
第二十页,共49页。
课堂(kètáng) 互动讲练
第二十一页,共49页。
课堂(kètáng) 互动讲练
例2 已知点M(3,1),直线ax-y+4=0及
第四十七页,共49页。

高考数学一轮复习 第4节 直线与圆、圆与圆的位置关系课件

高考数学一轮复习 第4节 直线与圆、圆与圆的位置关系课件

怎 么 考
从高考内容上来看直线与圆、圆与圆的位置关系
是命题热点,题型多为选择、填空题,着重考查圆的切 线与弦长的问题,难度中低档,注重数形结合思想的考 查应用.
一、直线与圆的位置关系(圆心到直线的距离为d,圆的半 径为r) 相离 图形 相切 相交
方程
量化 观点 几何 观点
< 0
= 0
> 0
d
> r
d = r
d

r
二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=
|O1O2|)
相离 图形 量的 |r1-r2|< d= |r 1 d<r1+r2 -r2| 外切 相交r2 d=r1+r2
d<|r1- r2 |
1.(教材习题改编)直线l:y-1=k(x-1)和圆x2+y2- 2y=0的位置关系是 A.相离 B.相交 ( )
3π π ∴ AMB = , ANB ANB = .
2
2
∴ AMB - ANB=π.
答案: C
[冲关锦囊]
解析:由题意知圆心为(-2,2),r=4. 则圆心到直线的距离d= 2. 又∵r=4,∴|AB|=2 14.
答案:2 14
5.已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2- 4x+2y-11=0,则两圆的公共弦所在的直线方程为
________,公共弦长为________.
解析:设两圆的交点为A(x1,y1)、B(x2,y2),则A、B两
3 3 C.[- , ] 3 3
3 3 D.(-∞,- )∪( ,+∞) 3 3
[自主解答]
整理曲线C1方程得,(x-1)2+y2=1,知曲线C1
为以点C1(1,0)为圆心,以1为半径的圆;曲线C2则表示两条直 线,即x轴与直线l:y=m(x+1),显然x轴与圆C1有两个交 点,知直线l与x轴相交,故有圆心C1到直线l的距离d= |m1+1-0| 3 3 <r=1,解得m∈(- 3 , 3 ),又当m=0时,直 2 m +1 线l与x轴重合,此时只有两个交点,应舍去.

高考数学一轮总复习 9.4 直线与圆、圆与圆的位置关系

高考数学一轮总复习 9.4 直线与圆、圆与圆的位置关系

【训练1】 (1)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2= 8相切”的________条件.
(2)(2014·郑州模拟)直线 y=- 33x+m 与圆 x2+y2=1 在第一 象限内有两个不同的交点,则 m 取值范围是________. 解析 (1)若直线 y=x+4 与圆(x-a)2+(y-3)2=8 相切,则 有|a-32+4|=2 2,即|a+1|=4,所以 a=3 或-5.但当 a=3 时,直线 y=x+4 与圆(x-a)2+(y-3)2=8 一定相切,故“a =3”是“直线 y=x+4 与圆(x-a)2+(y-3)2=8 相切”的充 分不必要条件.
①内含时:0条;②内切:1条;③相交:2条;④外切:3条; ⑤外离:4条.
二是当两圆相交时,把两圆方程(x2,y2项系数相同)相减便可 得两圆公共弦所在直线的方程.
考点一 直线与圆的位置关系 【例1】 (1)(2013·陕西卷改编)已知点M(a,b)在圆O:x2+y2=
1外,则直线ax+by=1与圆O的位置关系是________.
代数法
Δ >0 Δ =0 Δ <0
2.圆与圆的位置关系
设圆 O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆 O2:(x-a2)2+(y-b2)2=r22(r2>0).
方法 几何法:圆心距d与r1 代数法:两圆方程联立
位置关系 ,r2的关系
组成方程组的解的情况
相离 外切 相交 内切 内含
【例2】 已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m =0. (1)m取何值时两圆外切? (2)m取何值时两圆内切? (3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
解 两圆的标准方程为:(x-1)2+(y-3)2=11,(x-5)2+(y-6)2 =61-m, 圆心分别为 M(1,3),N(5,6),半径分别为 11和 61-m. (1)当两圆外切时,

高三数学大一轮复习 9.4直线与圆、圆与圆的位置关系教案 理 新人教A版

高三数学大一轮复习 9.4直线与圆、圆与圆的位置关系教案 理 新人教A版

§9.4直线与圆、圆与圆的位置关系2014高考会这样考 1.考查直线与圆的相交、相切问题,判断直线与圆、圆与圆的位置关系;2.计算弦长、面积,考查与圆有关的最值;根据条件求圆的方程.复习备考要这样做 1.会用代数法或几何法判定点、直线与圆的位置关系;2.掌握圆的几何性质,通过数形结合法解决圆的切线、直线被圆截得的弦长等直线与圆的综合问题,体会用代数法处理几何问题的思想.1.直线与圆的位置关系设直线l:Ax+By+C=0 (A2+B2≠0),圆:(x-a)2+(y-b)2=r2 (r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交d<r Δ>0相切d=r Δ=0相离d>r Δ<02. 圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22 (r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况相离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|<d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2) 一组实数解内含0≤d<|r1-r2|(r1≠r2) 无解[1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用根与系数关系及弦长公式|AB|=1+k2|x A-x B|=1+k2[x A+x B2-4x A x B].1.(2011·重庆)过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为________.答案2x-y=0解析圆的方程化为标准形式为(x-1)2+(y-2)2=1,又相交所得弦长为2,故相交弦为圆的直径,由此得直线过圆心(1,2),故所求直线方程为2x-y=0.2.若圆x2+y2=1与直线y=kx+2没有公共点,则实数k的取值范围为__________.答案(-3,3)解析由圆与直线没有公共点,可知圆的圆心到直线的距离大于半径,也就是2k2+1>1,解得-3<k<3,即k∈(-3,3).3.在平面直角坐标系xOy中,已知圆x2+y2=4上有且只有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是________.答案(-13,13)解析由题设得,若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d满足0≤d<1.∵d=|c|122+52=|c|13,∴0≤|c|<13,即c∈(-13,13).4.从圆x2-2x+y2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( )A.12B.35C.32D.0答案 B解析圆的方程整理为(x-1)2+(y-1)2=1,C(1,1),∴sin∠APC =15,则cos∠APB =cos 2∠APC =1-2×⎝⎛⎭⎪⎫152=35. 5. 圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条答案 B解析 ⊙C 1:(x +1)2+(y +1)2=4, 圆心C 1(-1,-1),半径r 1=2.⊙C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),半径r 2=2. ∴|C 1C 2|=13,∴|r 1-r 2|=0<|C 1C 2|<r 1+r 2=4, ∴两圆相交,有两条公切线.题型一 直线与圆的位置关系例1 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.思维启迪:直线与圆的交点个数即为直线方程与圆方程联立而成的方程组解的个数;最短弦长可用代数法或几何法判定.方法一 (1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -12+y +12=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(2-4k )2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长 |AB |=1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时|AB |最小为27.方法二 (1)证明 圆心C (1,-1)到直线l 的距离d =|k +2|1+k2,圆C 的半径R =23,R 2-d 2=12-k 2+4k +41+k 2=11k 2-4k +81+k 2,而在S =11k 2-4k +8中, Δ=(-4)2-4×11×8<0,故11k 2-4k +8>0对k ∈R 恒成立,所以R 2-d 2>0,即d <R ,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 由平面几何知识, 知|AB |=2R 2-d 2=28-4k +11k21+k2,下同方法一. 方法三 (1)证明 因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=R ,所以点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总经过圆C 内部的定点P . 所以不论k 为何实数,直线l 和圆C 总有两个交点.(2)解 由平面几何知识知过圆内定点P (0,1)的弦,只有和AC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点,由勾股定理,知|AB |=212-5=27, 即直线l 被圆C 截得的最短弦长为27.探究提高 (1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系; (2)勾股定理是解决有关弦问题的常用方法.(2012·安徽)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意知,圆心为(a,0),半径r = 2.若直线与圆有公共点,则圆心到直线的距离小于或等于半径,即|a-0+1|2≤2,∴|a+1|≤2.∴-3≤a≤1.题型二 圆与圆的位置关系例2 a 为何值时,圆C 1:x 2+y 2-2ax +4y +a 2-5=0和圆C 2:x 2+y 2+2x -2ay +a 2-3=0.(1)外切;(2)相交;(3)外离;(4)内切.思维启迪:(1)分别表示出两圆的圆心坐标和半径;(2)利用圆心距与两圆半径的关系求解.解 将两圆方程写成标准方程.C 1:(x -a )2+(y +2)2=9, C 2:(x +1)2+(y -a )2=4.∴两圆的圆心和半径分别为C 1(a ,-2),r 1=3,C 2(-1,a ),r 2=2,设两圆的圆心距为d ,则d 2=(a +1)2+(-2-a )2=2a 2+6a +5. (1)当d =5,即2a 2+6a +5=25时,两圆外切, 此时a =-5或a =2.(2)当1<d <5,即1<2a 2+6a +5<25时,两圆相交,此时-5<a <-2或-1<a <2. (3)当d >5,即2a 2+6a +5>25时,两圆外离,此时a >2或a <-5. (4)当d =1,即2a 2+6a +5=1时,两圆内切,此时a =-1或a =-2.探究提高 判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.已知圆C 与圆C 1:x 2+y 2-2x =0相外切,并且与直线l :x +3y =0相切于点P (3,-3),求圆C 的方程.解 设所求圆的圆心为C (a ,b ),半径长为r , 则圆C 的标准方程为(x -a )2+(y -b )2=r 2, ∵C (a ,b )在过点P 且与l 垂直的直线上, ∴b +3a -3=3.① 又∵圆C 与l 相切于点P ,∴r =|a +3b |2.②∵圆C 与圆C 1相外切,∴a -12+b 2=r +1.③由①得3a -b -43=0,从而由②③④可得4a 2-26a +49=|2a -6|+1,④解得⎩⎪⎨⎪⎧a =4b =0,或⎩⎨⎧a =0b =-43,此时,r =2或r =6.即所求的圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 题型三 直线与圆的综合问题例3 已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |、Q 点的坐标以及直线MQ 的方程;(2)求证:直线AB 恒过定点.思维启迪:第(1)问利用平面几何的知识解决;第(2)问设点Q 的坐标,从而确定点A 、B 的坐标与AB 的直线方程.(1)解 设直线MQ 交AB 于点P ,则|AP |=232,又|AM |=1,AP ⊥MQ ,AM ⊥AQ , 得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明 设点Q (q,0),由几何性质,可知A 、B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,即为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 探究提高 在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程.解 (1)如图所示,|AB |=43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16,∴圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,∴|AD |=23,|AC |=4.C 点坐标为(-2,6).在Rt△ACD 中,可得|CD |=2.设所求直线l 的斜率为k ,则直线l 的方程为:y -5=kx ,即kx -y +5=0. 由点C 到直线AB 的距离公式:|-2k -6+5|k 2+-12=2,得k =34.故直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. ∴所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 的弦的中点为D (x ,y ), 则CD ⊥PD ,即CD →·PD →=0, ∴(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.与圆有关的探索问题典例:(12分)已知圆C :x 2+y 2-2x +4y -4=0.问在圆C 上是否存在两点A 、B 关于直线y=kx -1对称,且以AB 为直径的圆经过原点?若存在,写出直线AB 的方程;若不存在,说明理由.审题视角 (1)假设存在两点A 、B 关于直线对称,则直线过圆心. (2)若以AB 为直径的圆过原点,则OA ⊥OB ,转化为OA →·OB →=0. 规范解答解 圆C 的方程可化为(x -1)2+(y +2)2=9,圆心为C (1,-2).假设在圆C 上存在两点A 、B 满足条件,则圆心C (1,-2)在直线y =kx -1上,即k =-1.[3分]于是可知,k AB =1.设l AB :y =x +b ,代入圆C 的方程, 整理得2x 2+2(b +1)x +b 2+4b -4=0,则Δ=4(b +1)2-8(b 2+4b -4)>0,即b 2+6b -9<0.解得-3-32<b <-3+3 2.[7分]设点A 、B 的坐标分别为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-b -1,x 1x 2=12b 2+2b -2.由题意知OA ⊥OB ,则有x 1x 2+y 1y 2=0, 也就是x 1x 2+(x 1+b )(x 2+b )=0. ∴2x 1x 2+b (x 1+x 2)+b 2=0.[10分]∴b 2+4b -4-b 2-b +b 2=0,化简得b 2+3b -4=0. 解得b =-4或b =1,均满足Δ>0,即直线AB 的方程为x -y -4=0,或x -y +1=0.[12分] 答题模板第一步:假设符合要求的结论存在.第二步:从条件出发(即假设)利用直线与圆的关系求解. 第三步:确定符合要求的结论存在或不存在. 第四步:给出明确结果.第五步:反思回顾,查看关键点,易错点及答题规范.温馨提醒 (1)本题是与圆有关的探索类问题,要注意充分利用圆的几何性质答题.(2)要注意解答这类题目的答题格式.使答题过程完整规范.(3)本题的易错点是转化方向不明确,思路不清晰.方法与技巧1. 过圆上一点(x 0,y 0)的圆的切线方程的求法先求切点与圆心连线的斜率k ,由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则由图形写出切线方程x =x 0. 2. 过圆外一点(x 0,y 0)的圆的切线方程的求法(1)几何方法当斜率存在时,设为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程. (2)代数方法设切线方程为y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆方程,得一个关于x 的一元二次方程,由Δ=0,求得k ,切线方程即可求出. 3. 两圆公共弦所在直线方程求法若两圆相交时,把两圆的方程作差消去x 2和y 2就得到两圆的公共弦所在的直线方程. 4. 圆的弦长的求法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2.(2)代数法:设直线与圆相交于A (x 1,y 1),B (x 2,y 2)两点,解方程组⎩⎪⎨⎪⎧y =kx +b ,x -x 02+y -y 02=r 2,消y 后得关于x 的一元二次方程,从而求得x 1+x 2,x 1x 2,则弦长为 |AB |=1+k2[x 1+x 22-4x 1x 2](k 为直线斜率).失误与防范1. 求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2. 过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. “a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.但当a =3时,直线y =x +4与圆(x -a )2+(y -3)2=8一定相切,故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件. 2. (2012·重庆)对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心答案 C解析 ∵x 2+y 2=2的圆心(0,0)到直线y =kx +1的距离d =|0-0+1|1+k 2=11+k2≤1, 又∵r =2,∴0<d <r .∴直线与圆相交但直线不过圆心.3. 过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 3答案 D解析 过原点且倾斜角为60°的直线方程为3x -y =0,圆x 2+(y -2)2=4的圆心(0,2)到直线的距离为d =|3×0-2|3+1=1,因此弦长为2R 2-d 2=24-1=2 3.4. 直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0B.⎣⎢⎡⎦⎥⎤-33,33 C.[]-3,3D.⎣⎢⎡⎦⎥⎤-23,0 答案 B解析 如图,若|MN |=23,则由圆与直线的位置关系可知圆心到 直线的距离满足d 2=22-(3)2=1. ∵直线方程为y =kx +3, ∴d =|k ·2-3+3|1+k 2=1, 解得k =±33. 若|MN |≥23,则-33≤k ≤33. 二、填空题(每小题5分,共15分)5. 设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则a =________. 答案 0 解析 d =|a +1|a 2+1,由已知条件d 2+3=4,即d =1,|a +1|a 2+1=1,解得a =0.6. 若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0 (a >0)的公共弦长为23,则a =________.答案 1解析 方程x 2+y 2+2ay -6=0与x 2+y 2=4. 相减得2ay =2,则y =1a.由已知条件22-32=1a,即a =1.7. (2012·江苏)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.三、解答题(共22分)8. (10分)求过点P (4,-1)且与圆C :x 2+y 2+2x -6y +5=0切于点M (1,2)的圆的方程.解 设所求圆的圆心为A (m ,n ),半径为r , 则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2+2x -6y +5=0的圆心为C (-1,3),则⎩⎪⎨⎪⎧n -2m -1=2-31+1m -12+n -22=m -42+n +12=r,解得m =3,n =1,r =5,所以所求圆的方程为(x -3)2+(y -1)2=5. 9. (12分)已知点A (1,a ),圆x 2+y 2=4.(1)若过点A 的圆的切线只有一条,求a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线与圆相切,求a 的值及切线方程. 解 (1)由于过点A 的圆的切线只有一条,则点A 在圆上,故12+a 2=4,∴a =± 3. 当a =3时,A (1,3),切线方程为x +3y -4=0; 当a =-3时,A (1,-3),切线方程为x -3y -4=0, ∴a =3时,切线方程为x +3y -4=0,a =-3时,切线方程为x -3y -4=0.(2)设直线方程为x +y =b ,由于直线过点A ,∴1+a =b , ∴直线方程为x +y =1+a ,即x +y -a -1=0. 又直线与圆相切,∴d =|a +1|2=2,∴a =±22-1.∴切线方程为x +y +22=0或x +y -22=0.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞) 答案 D解析 圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |m +12+n +12=1,所以m +n +1=mn ≤14(m +n )2,所以m +n ≥2+22或m +n ≤2-2 2.2. (2011·江西)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A .(-33,33)B .(-33,0)∪(0,33) C .[-33,33] D .(-∞,-33)∪(33,+∞) 答案 B解析 C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点; 当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意,则-33<m <0或0<m <33. 综上知-33<m <0或0<m <33. 3. (2011·大纲全国)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( )A .4B .4 2C .8D .8 2答案 C解析 ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=a -b2+a -b2=32×2=8.二、填空题(每小题5分,共15分)4. 若过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为______________.答案 (-∞,-3)∪⎝ ⎛⎭⎪⎫1,32解析 圆方程可化为(x -a )2+y 2=3-2a ,由已知可得⎩⎪⎨⎪⎧3-2a >0a 2>3-2a ,解得a <-3或1<a <32.5. 若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是__________. 答案 (0,5)解析 圆的标准方程为(x +2)2+y 2=9,令x =0得圆与y 轴的两个交点为(0,±5),如图,直线k AM = 5.若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是0<k < 5.6. 过点M ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为______________.答案 2x -4y +3=0解析 由题意得,当CM ⊥AB 时,∠ACB 最小,从而直线方程y -1=-1-120-1⎝ ⎛⎭⎪⎫x -12,即2x -4y +3=0.三、解答题7. (13分)已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点. (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为R ,由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2), 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时集训(五十二) 直线与圆、圆与圆的位置关系
(限时:45分钟满分:81分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.圆(x-1)2+(y+3)2=1的切线方程中有一个是( )
A.x-y=0 B.x+y=0
C.x=0 D.y=0
2.已知直线l:y=k(x-1)-3与圆x2+y2=1相切,则直线l的倾斜角为( )
A.π
6
B.
π
2
C.2π
3
D.
5
6
π
3.(2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则( )
A.l与C相交 B.l与C相切
C.l与C相离 D.以上三个选项均有可能
4.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为( ) A.2 3 B.4
C.2 5 D.5
5.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
6.直线ax+by+c=0与圆x2+y2=9相交于两点M,N,若c2=a2+b2,则· (O为坐标原点)等于( )
A.-7 B.-14
C.7 D.14
二、填空题(本大题共3小题,每小题5分,共15分)
7.设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB的长为23,则实数m的值是________.
8.(2012·江西高考)过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是________.
9.(2012·天津高考)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值
为________.
三、解答题(本大题共3小题,每小题12分,共36分)
10.求过点P (4,-1)且与圆C :x 2+y 2
+2x -6y +5=0切于点M (1,2)的圆的方程.
11.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A ,B .
(1)求k 的取值范围;
(2)是否存在常数k ,使得向量+与共线?如果存在,求k 值;如果不存在,请说明理由.
12.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .
(1)求圆C 的方程;
(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.
答 案
限时集训(五十二) 直线与圆、圆与圆的位置关系
1.C 2.D 3.A 4. B 5.A 6.A
7.±33 8.( 2,2) 9.3 10.解:设所求圆的圆心为A (m ,n ),半径为r ,则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2
+2x -6y +5=0的圆心为C (-1,3),则 ⎩⎪⎨⎪⎧
n -2m -1=2-31+1,
m -2+n -2=m -2+n +2=r , 解得m =3,n =1,r =5, 所以所求圆的方程为(x -3)2
+(y -1)2
=5. 11.解:(1)圆的方程可写成(x -6)2+y 2
=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,
整理得(1+k 2)x 2+4(k -3)x +36=0.①
直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-
6k )>0,解得-34<k <0,即k 的取值范围为⎝ ⎛⎭
⎪⎫-34,0. (2)设A (x 1,y 1),B (x 2,y 2)则+=(x 1+x 2,y 1+y 2),
由方程①得x 1+x 2=-k -
1+k 2.②
又y 1+y 2=k (x 1+x 2)+4.③
因P (0,2)、Q (6,0),=(6,-2),
所以+与共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,
解得k =-34
. 而由(1)知k ∈⎝ ⎛⎭
⎪⎫-34,0,故没有符合题意的常数k . 12.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =b a =-1,故b =-a ,
则|OC |=22,即a 2+b 2=22,
可解得⎩⎪⎨⎪
⎧ a =-2,b =2,或⎩⎪⎨⎪
⎧ a =2,b =-2,
结合点C (a ,b )位于第二象限知⎩⎪⎨
⎪⎧ a =-2,b =2.
故圆C 的方程为
(x +2)2+(y -2)2=8. (2)假设存在Q (m ,n )符合题意,
则⎩⎪⎨⎪⎧ m -2+n 2=42,m 2+n 2≠0,
m +2+n -2=8,
解得⎩⎪⎨⎪⎧ m =45,n =125.
故圆C 上存在异于原点的点
Q ⎝ ⎛⎭
⎪⎫45,125符合题意.。

相关文档
最新文档