14.Characterization of T-ray binary lenses
锂离子电池基础科学问题(Ⅷ)——负极材料
万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据锂离子电池基础科学问题(Ⅷ)——负极材料作者:罗飞, 褚赓, 黄杰, 孙洋, 李泓, LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong作者单位:中国科学院物理研究所,北京,100190刊名:储能科学与技术英文刊名:Energy Storage Science and Technology年,卷(期):2014,3(2)1.Armand M;Murphy D;Broadhead J Materials for Advanced Batteries 19802.Garreau M;Thevenin J;Fekir M On the processes responsible for the degradation of the aluminum lithium electrode used as anode material in lithium aprotic electrolyte batteries 1983(3-4)3.Yazami R;Touzain P A reversible graphite-lithium negative electrode for electrochemical generators 1983(3)4.Tarascon J MorSe6:A new solid-state electrode for secondary lithium batteries 1985(9)5.Scrosati B Non aqueous lithium cells 1981(11)6.Abraham K Ambient temperature secondary lithium batteries using LiA1 lithium insertion anodes 19877.Hrold A Recherches sur les composes d'insertion du graphite 1955(7-8)8.Dey A;Sullivan B The electrochemical decomposition of propylene carbonate on graphite 1970(2)9.SONY Non-aqueous electrolyte secondary cell 198910.Nagaura T;Tozawa K Lithium ion rechargeable battery 199011.Endo M;Kim C;Nishimura K Recent development of carbon materials for Li ion batteries 2000(2)12.Mabuchi A A survey on the carbon anode materials for rechargeable lithiumbatteries 199413.Yamaura J;Ozaki Y;Morita A High voltage,rechargeable lithium batteries using newly-developed carbon for negative electrode material 1993(1)14.Tarascon J M;Armand M Issues and challenges facing rechargeable lithium battefies 2001(6861)15.Van S W;gcrosati B Advances in Lithium-Ion Batteries 200216.Kang B;Ceder G Battery materials for ultrafast charging and diseharging 2009(7235)17.Armand M;Tarascon J M Building better batteries 2008(7179)18.Jansen A;Kahaian A;Kepler K Development of a high-power lithium-ion battery 199919.Smith K;Wang C Y Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles 2006(1)20.Zhang X;Ross P;Kostecki R Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles 2001(5)21.Zhou H H;Ci L C;Liu C Y Progress in studies of the electrode materials for Li ion batteries 1998(1)22.Hao R R;Fang X Y;Niu S C Chemistry of the Elements (Ⅲ) 199823.Ohzuku T;Ueda A;Yamamoto N Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells 1995(5)24.Woo K C;Mertwoy H;Fischer J Experimental phase diagram of lithium-intercalated graphite 1983(12)25.Dahn J Phase diagram of LixC6 1991(17)26.Nalamova V;Guerard D;Lelaurain M X-ray investigation of highly saturated Li-graphite intercalation compound 1995(2)27.Feng Z Z;Song S Q Preparation and application of mesophase pitch 201328.Honda H;Yamada Y Meso-carbon microbeads 197329.Xu B;Chen E Intermediate development phase carbon microbeads (MCMB),properties and applications 1996(3)30.Niu Y J;Zhang H G;ZhouA M Non-Ferrous Progress:1996-2005 200731.Choi W C;Byun D;Lee J K Electrochemical characteristics of silver-and nickel-coated synthetic graphite preparedby a gas suspension spray coating method for the anode of lithium secondary batteries 2004(2)32.Lee H Y;Baek J K;Lee S M Effect of earbon coating on elevated temperature performance of graphite as lithium-ion battery anode material 2004(1)33.Tanaka H;Osawa T;Moriyoshi Y Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma 2004(1)34.Guoping W;Bolan Z;Min Y A modified graphite anode with high initial efficiency and excellent cycle life expectation 2005(9)35.Lee J H;Lee S;Paik U Aqueous processing of natural graphite particulates for lithium-ion battery anodes andtheir electrochemical performance 2005(1)36.Yamauchi Y;Hino T;Ohzeki K Gas desorption behavior of graphite anodes used for lithium ion secondary batteries 2005(6)37.Zhao X;Hayner C M;Kung M C In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries 2011(6)38.王广驹世界石墨生产,消费及国际贸易 2006(1)39.Jonker G H Magnetic compounds with perovskite structure Ⅳ conducting and non-conducting compounds 195640.Murphy D;Cava R;Zahurak S Ternary LixTiO2 phases from insertion reactions 198341.Ferg E;Gummow R;De K A Spinel anodes for lithium-ion batteries 1994(11)42.Robertson A;Trevino L;Tukamoto H New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries 199943.Peramunage D;Abraham K Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells 1998(8)44.Julien C;Massot M;Zaghib K Structural studies of Li4/3Me5/3O4 (Me=Ti,Mn) electrode materials:Local structure and electrochemical aspects 2004(1)45.Scharner S;Weppner W;Schmid B E Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel 1999(3)46.Zaghib K;Simoneau M;Armand M Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries 199947.Pecharroman C;Amarilla J Thermal evolution of infrared vibrational properties of Li4/3Ti5/3O4 measured by specular reflectance 2000(18)48.Guerfi A;Charest P;Kinoshita K Nano electronically conductive titanium-spinel as lithium ion storage negative electrode 2004(1)49.Gao L;Qiu W;Zhao H L Lithiated titanium complex oxide as negative electrode 2005(1)50.Bach S;Pereira R J;Baffier N Electrochemical properties of sol-gel Li4/3Ti5/3O4 199951.Kavan L;Grtzel M Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion 2002(2)52.Hao Y;Lai Q Y;Liu D Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery 2005(2-3)53.王虹微波法制备钛酸锂的方法 200854.白莹一种用于锂二次电池负极材料尖晶石钛酸锂的制各方法 200655.Li J;Tang Z;Zhang Z Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 2005(9)56.杨立一种应用于锂离子电池的钛酸锂负极材料的制备方法中国 200857.Huang S;Wen Z;Zhu X Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries 2007(1)58.Tian B;Xiang H;Zhang L Niobium doped lithium titanate as a high rate anode material for Li-ion batteries2010(19)59.Huang Y;Qi Y;Jia D Synthesis and electrochemical properties of spinel Li4Ti5Ol2-xClx anode materials forlithium-ion batteries 2012(5)60.Venkateswarlu M;Chen C;Do J Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy 2005(1)61.Cai R;Yu X;Liu X Li4Ti5O12/Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance 2010(24)62.Yuan T;Yu X;Cai R Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance 2010(15)63.Hu X;Lin Z;Yang K Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction 2011(14)64.Martha S K;Haik O;Borgel V Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application 2011(7)65.Huang K L;Wang Z X;Liu S Q Lithium-Ion Battery Technology and Key Principles 200866.Xu K;Wang X Y;Xiao L X Lithium Ion Battery 200267.Wang Q;Li H;Chen L Novel spherical microporous carbon as anode material for Li-ion batteries 200268.Li H;Wang Q;Shi L Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for aLi ion battery 2002(1)69.Hu J;Li H;Huang X Influence of micropore structure on Li-storage capacity in hard carbon spherules 2005(11)70.Fey G T K;Chen C L High-capacity carbons for lithium-ion batteries prepared from rice husk 200171.Yin G P;Zhou D R;Xia B J Preparation of phosphorus-doped carbon and its performance Lithium intercalation2000(4)72.Schnfelder H H;Kitoh K;Nemoto H Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons 1997(2)73.Buiel E;Dahn J Li-insertion in hard carbon anode materials for Li-ionbatteries 1999(1)74.Rosamaria F;Ulrich V S;Dahn J R Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells 1990(7)75.Stevens D;Dahn J The mechanisms of lithium and sodium insertion in carbon materials 2001(8)76.Bonino F;Brutti S;Piana M Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries 2006(17)77.Guo M;Wang J C;Wu L B Study of carbon nanofibers as negative materials for Li-ion batteries 2004(5)78.Sato Y;Kikuchi Y;Kawai T Characteristics of coke carbon modified with mesophase-pitch as a negative electrodefor lithium ion batteries 199979.Yoshio M;Tsumura T;Dimov N Electrochemical behaviors of silicon based anode material 2005(1)i S C Solid lithium-silicon electrode 197681.Sharma R A;Seefurth R N Thermodynamic properties of the lithium-silicon system 1976(12)82.Seefurth R N;Sharma R A Investigation of lithium utilization from a lithium-silicon electrode 1977(8)83.Seefurth R N;Sharma R A Dependence of lithium-silicon electrode potential and lithium utilization on reference electrode location 1980(5)84.Wen C J;Huggins R A Chemical diffusion in intermediate phases in the lithium-silicon system 1981(3)85.Boukamp B A;Lesh G C;Huggins R A All-solid lithium electrodes with mixed-conductor matrix 1981(4)86.Weydanz W J;Wohlfahrt M M;Huggins R A A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries 199987.Gao B;Sinha S;Fleming L Alloy formation in nanostructured silicon 2001(11)88.Li H;Huang X J;Chen L Q A high capacity nano-Si composite anode material for lithium rechargeable batteries 1999(11)89.Li H;Huang X J;Chen L Q The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature 2000(1-4)90.Limthongkul P;Jang Y I;Dudney N J Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage 2003(4)91.Hatchard T D;Dahn J R In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon 2004(6)92.Key B;Bhattacharyya R;Grey C P Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries 2009(26)93.Key B;Morcrette M;Grey C P Pair distribution function analysis and solid State NMR studies of silicon electrodes for lithium ion batteries:Understanding the (De) lithiation mechanisms 2011(3)94.Beaulieu L Y;Hatchard T D;Bonakdarpour A Reaction of Li with alloy thin films studied by in situ AFM 2003(11)95.Baggetto L;Danilov D;Notten P H L Honeycomb-structured silicon:Remarkable morphological changes induced by electrochemical (De)lithiation 2011(13)96.Lee S W;Mcdowell M T;Choi J W Anomalous shape changes of silicon nanopillars by electrochemical lithiation2011(7)97.Lee S W;Mcdowell M T;Berla L A Fracture of crystalline silicon nanopillars during electrochemical lithium insertion 2012(11)98.He Y;Yu X Q;Wang Y H Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic effficiency 2011(42)99.He Y;Wang Y H;Yu X Q Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries2012(12)100.He Y;Yu X Q;Li G Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction 2012101.Wang Y;He Y;Xiao R Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries 2012102.Notten P H L;Roozeboom F;Niessen R A H3-D integrated all-solid-state rechargeable batteries 2007(24)103.Baggetto L;Oudenhoven J F M;Van D T On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries 2009(1)104.Chan C K;Ruffo R;Hong S S Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes 2009(2)105.Zheng J Y;Zheng H;Wang R An investigation on the sold electrolyte interphase of silicon anode for Li-ion batteries through force curve method 2013(6)106.Zhang X W;Patil P K;Wang C S Electrochemical performance of lithium ion battery,nano-silicon-based,disordered carbon composite anodes with different microstructures 2004(2)107.Chan C K;Ruffo R;Hong S S Structural and electrochemical study of the reaction of lithium with silicon nanowires 2009(1)108.Cui L F;Ruffo R;Chan C K Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes 2009(1)109.Mcdowell M T;Lee S W;Ryu I Novel size and surface oxide effects in silicon nanowires as lithium battery anodes 2011(9)110.Ryu I;Choi J W;Cui Y Size-dependent fracture of Si nanowire battery anodes 2011(9)111.Xu W L;Vegunta S S S;Flake J C Surface-modified silicon nanowire anodes for lithium-ion batteries 2011(20) 112.Yue L;Wang S Q;Zhao X Y Nano-silicon composites using poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode 2012(3)113.Zang J L;Zhao Y P Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery 2012(1)114.Yoshio M;Wang H Y;Fukuda K Carbon-coated Si as a lithium-ion battery anode material 2002(12)115.Qu J;Li H Q;henry J J Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries 2012116.Jia H P;Gao P F;Yang J Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material 2011(6)117.Yao Y;Mcdowell M T;Ryu I Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life 2011(7)118.Fu K;Yildiz O;Bhanushali H Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexiblelithium ion battery electrodes 2013(36)119.Min J H;Bae Y S;Kim J Y Self-organized artificial SEI for improving the cycling ability of silicon-basedbattery anode materials 2013(4)120.Choi N S;Yew K H;Lww K Y Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode 2006(2)121.Chakrapani V;Rusli F;Filler M A Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery 2011(44)122.Etacheri V;Haik O;Goffer Y Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes 2011(1)123.Buddie M C High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries 2012(58)124.Profatilova I A;Stock C;Schmitz A Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate 2013125.Leung K;Rempe S B;Foster M E Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries 2014(3)126.Kovalenko I;Zdyrko B;Magasinski A A major constituent of brown algae for use in high-capacity Li-ion batteries 2011(6052)127.Ryou M H;Kim J;Lee I Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries 2012(11)128.Li J;Lewis R;Dahn J Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries 2007(2)129.Bridel J S;Azais T;Morcrette M Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries 2009(3)130.Mazouzi D;Lestriez B;Roue L Silicon composite electrode with high capacity and long cycle life 2009(11)131.Guo J C;Wang C S A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery 2010(9)132.Liu W R;Yang M H;Wu H C Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder 2005(2)133.Park H K;Kong B S;Oh E S Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ionbatteries 2011(10)134.Magasinski A;Zdyrko B;Kovalenko I Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid 2010(11)135.Yun J B;Soo K J;Tae L K Aphoto-cross-linkable polymeric binder for silicon anodes in lithium ion batteries 2013(31)136.Han Z J;Yabuuchi N;Hashimoto S Cross-linked poly (acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries 2013(2)137.Koo B;Kim H;Cho Y A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries 2012(35)138.Bae J;Cha S H;Park J A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery 2013(7)139.Yim C H;Abu L Y;Courtel F M High capacity silicon/graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders 2013(28)140.Erk C;Brezesinski T;Sommer H Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders 2013(15)141.Kim J S;Choi W;Cho K Y Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries 2013142.Li J;Christensen L;Obrovac M Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder 2008(3)143.Kim Y L;Sun Y K;Lee S M Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology 2008(13)144.Guo J C;Sun A;Wang C S A porous silicon-carbon anode with high overall capacity on carbon fiber current collector 2010(7)145.Choi J Y;Lee D J;Lee Y M Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes 2013(17)146.Hang T;Nara H;Yokoshima T Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries 2013147.Luais E;Sakai J;Desploban S Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector 2013148.Tang X X;Liu W;Ye B Y Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode 2013(6)149.Kim H;Han B;Choo J Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries 2008(52)150.Bang B M;Kim H;Song H K Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching 2011(12)151.Kasavajjula U;Wang C;Appleby A J Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells 2007(2)152.Magasinski A;Dixon P;Hertzberg B High-performance lithium-ion anodes using a hierarchical bottom-up approach 2010(4)153.Liu G;Xun S;Vukmirovic N Polymers with tailored electronic structure for high capacity lithium battery electrodes 2011(40)154.Chan C K;Peng H;Liu G High-performance lithium battery anodes using silicon nanowires 2007(1)155.Idota Y;Kubota T;Matsufiti A Tin-based amorphous oxide:A high-capacity lithium-ion-storage material 1997(5317)156.Courtney I A;Dahn J Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass 1997(9)157.Li H;Huang X J;Chen L Q Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries 1998(6)158.Liu W;Huang X J;Wang Z Studies of stannic oxide as an anode material for lithium-ion batteries 1998(1)159.Li H;Wang Z;Chen L Research on advanced materials for Li-ion batteries 2009(45)160.David M New materials extend Li-ion performance 2006(5)161.Ogisu K R&D activities & results for sony batteries 2005162.索尼公司索尼成功开发3.5 A·h高容量锂离子电池"Nexelion" 2011163.Dahn J;Mar R;Abouzeid A Combinatorial study of Sn1-xCox (0《x《 0.6) and (Sn0 55Co0 45)1-yCy (0《 y《 0 5)alloy negative electrode materials for Li-ion battaries 2006(2)164.Todd A;Mar R;Dahn J Tin-transition metal-carbon systems for lithium-ion battery negative electrodes 2007(6) 165.Ferguson P;Martine M;Dunlap R Structural and electrochemical studies of (SnxCo1-x)60C40 alloys prepared by mechanical attriting 2009(19)166.Ferguson P;Rajora M;Dunlap R(Sn0.5Co0 5)1-yCy alloy negative electrode materials prepared by mechanical attriting 2009(3)167.Ferguson P;ToddA;Dahn J Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries 2008(1)168.Hassoun J;Mulas G;Panero S Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling 2007(8)vela P;Nacimiento F;Ortiz G F Sn-Co-C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries 2010(1)170.Liu B;Abouimrane A;Ren Y New anode material based on SiO-SnxCoyCz for lithium batteries 2012(24)171.Zhong X C;Jiang F Q;Xin P A Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries 2009(1)172.Yang S;Li Q;Shen D Influence of Fe on electrochemical performance of SnxCoy/C anode materials 2011(2)173.Shaobin Y;Ding S;Qiang L Synthesis and electrochemical properties of Sno.35-0 5xCoo 35-0 5xZnxCo 3o composite 2010(1)174.YangSB;ShenD;WuXG Effects of Cu on structures and electrochemical properties of Sn-Co/C composite 2012(4)175.Cui W;Wang F;Wang J Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries 2011(13)176.Li M Y;Liu C L;Shi M R Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance 2011(8)177.Xin L;Jing Y X;Hai L Z Synthesis and properties of Sn30Co30C40 ternary alloy anode material for lithium ion battery 2013(7)178.Lee S I;Yoon S;Park C M Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anodefor Li-ion batteries 2008(2)179.Fauteux D;Koksbang R Rechargeable lithium battery anodes:Alternatives to metallic lithium 1993(1)180.Rahner D;Machill S;Schlorb H Intercalation materials for lithium rechargeable batteries 1996181.Besenhard J;Hess M;Komenda P Dimensionally stable Li-alloy electrodes for secondary batteries 1990182.Maxfield M;Jow T;Gould S Composite electrodes containing conducting polymers and Li alloys 1988(2)183.Winter M;Besenhard J O Electrochemical lithiation of tin and tin-based intermetallics and composites 1999(1) 184.Du C W;Chen Y B;Wu M S Advances in lithium-ion battery anode materials for non-carbon 2000185.Wu Y P;Wan C R Study on materials for lithium-ion batteries tin-based negative 1999(3)186.Kepler K D;Vaughey J T;Thackeray M M LixCu6Sn5(0《x《13):An intermetallic insertion electrode for rechargeable lithium batteries 1999(7)187.Mao O;Dunlap R;Dahn J Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries:Ⅰ.TheSn2Fe-C system 1999(2)rcher D;Beaulieu L;Macneil D In situ X-ray study of the electrochemical reaction of Li with η'-Cu6Sn52000(5)189.Li H;Zhu G;Huang X Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloyprepared by co-precipitation in alcohol solution at low temperature 2000(3)190.Kim H;Kim Y J;Kim D Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries 2001(1)191.Wang L;Kitamura S;Sonoda T Electroplated Sn-Zn alloy electrode for Li secondary batteries 2003(10)192.Yin J;Wada M;Yoshida S New Ag-Sn alloy anode materials for lithium-ion batteries 2003(8)193.Tamura N;Fujimoto M;Kamino M Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries2004(12)194.Wang L;Kitamura S;Obata K Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries 2005(2)195.Beauleiu L;Hewitt K;Turner R The electrochemical reaction of Li with amorphous Si-Sn alloys 2003(2)196.Besenhard J;Yang J;Winter M Will advanced lithium-alloy anodes have a chance in lithium-ion batteries 1997(1) 197.Yang J;Winter M;Besenhard J Small particle size multiphase Li-alloy anodes for lithium-ionbatteries 1996(1) 198.Mukaibo H;Sumi T;Yokoshima T Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries 2003(10)199.Photo F Nonaqueous secondary battery 1995200.Photo F Nonaqueous secondary battery 1995201.Goodenough J;Manthiram A;James A Lithium insertion compounds 1988202.Aydinol M;Kohan A;Ceder G Abinitio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries 1997(2)203.三星SDI株式会社用于非水电解液电池的负极活性材料,其制备方法和非水电解液电池 2005204.Song J H;Park H J;Kim K J Electrochemical characteristics of lithium vanadate,Li1+xVO2,new anode materials for lithium ion batteries 2010(18)205.Chang J J Synthesis and electrochemical:Properties of lithium-ion battery anode material Li1+xVO2 2012206.Armstrong A R;Lyness C;Panchmatia P M The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 2011(3)207.Chen H;Xiang K X;Hu Z L Synthesis and electrochemical performance of new anode materials Li1.1V0 9O2 forlithium ion batteries 2012(5)208.Choi N S;Kim J S;Yin R Z Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery 2009(2)zzari M;Scrosati B A cyclable lithium organic electrolyte cell based on two intercalation electrodes 1980(3) 210.Dipietro B;Patriarco M;Scrosati B On the use of rocking chair configurations for cyelabte lithium organic electrolyte batteries 1982(2)211.Ktakata H O;Meri T;Koshita N Procedures of the symposium onprimary and secondary lithium batteries 1988212.Poizot P;Laurelle S;Grugeon S Nano-sized ttansition-metal oxides as negative-electrode materials for lithium-ion batteries 2000(6803)213.Debart A;Dupont L;Poizot P A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium 2001(11)214.Dedryvere R;Laruelle S;Grugeon S Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium 2004(6)215.Xin C;Naiqing Z;Kening S3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries 2011(10)216.Li H;Richter G;Maier J Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries 2003(9)217.Badway F;Mansour A;Pereira N Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices 2007(17)218.Dbart A;Dupont L;Patrice R Reactivity of transition metal (Co,Ni,Cu) sulphides versus lithium:The intriguing case of the copper sulphide 2006(6)219.Gillot F;Boyanov S;Dupont L Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries 2005(25)220.Pereira N;Dupont L;Tarascon J Electrochemistry of Cu3N with lithium a complex system with parallel processes 2003(9)221.Zhang W M;Wu X L;Hu J S Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries 2008(24)222.Rahman M;Chou S L;Zhong C Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention 2010(40)223.Wang Y;Zhang H J;Lu L Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites 2010(8)224.Zhou G;Wang D W;Li F Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclicstability for lithium ion batteries 2010(18)225.Wang Y;Zhang L Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance 2012226.Zhang P;Guo Z;Kang S Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure forlithium-ion batteries 2009(1)227.Zhu X J;Guo Z P;Zhang P Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries 2009(44)228.Wang C;Wang D;Wang Q Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery 2010(21)229.Xia Y;Zhang W;Xiao Z Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries 2012(18)230.Yu Y;Chen C H;Shi Y A tin-based amorphous oxide composite with a porous,spherical,multideck-cage morphology as a highly reversible anode material for lithium-ion batteries 2007(7)231.Li F;Zou Q Q;Xia Y Y Co-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery 2008(2)232.Wu Z S;Ren W;Wen L Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance 2010(6)引用本文格式:罗飞.褚赓.黄杰.孙洋.李泓.LUO Fei.CHU Geng.HUANG Jie.SUN Yang.LI Hong锂离子电池基础科学问题(Ⅷ)——负。
药学专业词汇英文
abbreviated or abridged applicat i on简略申请abnormal karyology异常核型absorbed moisture 吸附水acceptable daily intake可接受的日摄入量acceptable test加速试验acceptance criteria认可标准accuracy准确性accelerated/stress stability studies加速/强力破坏稳定性研究acetylation乙酰化作用achiral assay非手性测定achlorhydric elderly老年性胃酸缺乏症action limits内控限值active components/compound/moiety活性成分active ingredient活性组分adaption to specific culture conditions特定培养条件的适应additives添加剂adjuvant佐剂adventitious agents外源性因子adventitious contaminants 外来污染物adventitious viral or mycoplasma contamination外源性病毒或支原体污染adventitious viruses外源病毒adverse reaction不良反应aerobic microorganisms需氧微生物affinity 亲和力affinity chromatography亲和层析affinity column亲和柱agar and broth琼脂和肉汤aggregates聚合体aggregation聚集allergenic/allergic extracts过敏源抽提物altered conjugated forms改变的结合物形式ambient condition自然条件amino acid composition氨基酸组成amino acid sequence氨基酸序列amino acids氨基酸amino sugars氨基糖amino-terminal amino acids 氨基端氨基酸ammonia production Rates产氨率analyte被测物analytical procedure分析方法animal cell lines动物细胞系animal tissues or organs动物组织或器官anternnary profile触角形状antibiotic resistance genes抗生素耐药基因antibiotics抗生素antibody抗体antibody production tests抗体产生实验antisera抗血清applicant申报者ascites腹水assay含量测定assay procedure定量方法avian鸟类avidity亲和性background背景bacteria细菌batches批次batch-to-batch逐批between-assay variation试验间变异binary fission双数分裂binding assays结合试验bioburden生长量/生物负荷biochemical methods生化方法bioequivalency生物等效性biohazard information生物有害信息biological ativity生物活性biological products生物制品bioreactor生物反应器biotechnological/biological products生物技术/生物产品biotechnological products生物技术产品biphasic curve双相曲线blood plasma fators血浆因子body fluids体液bovine牛bovine spongiform encephalopathy(BSE)疯牛病bracketing括号法breeding conditions饲养条件by-prducts副产物calibrate标化canine犬cap liner瓶帽内垫capillary electrophoresis毛细管电泳carbohydrate碳水化合物carboxy-terminal amino acids碳基端氨基酸carrier载体/担体catalysts催化剂cell bank细胞库cell bank system细胞库系统cell banking procedures细胞建库过程cell banking system细胞库系统cell culture-derived impurities来源于细胞培养基的杂质cell cultures细胞培养物cell expansion细胞扩增cell lines细胞系cell metabolites细胞代谢物cell pooling细胞混合cell substrate-derived impurities来源于细胞培养基质的杂质cell substrates细胞基质cell viability细胞活力cell–derived biological products细胞来源的生物制品cell fusion细胞融合cellular blood components血细胞成分cemadsorbing viruses红细胞吸附病毒characterization and testing of cell banks细胞库鉴定及检测charcoal活性炭charge电荷chemical actinometric system化学光化线强度系统chemical reactivity化学反应性chemical syntheses化学合成chemically inert化学惰性chewable tablets咀嚼片chiral impurities手性杂质chromatograms色谱图chromatographic behavior色谱行为chromatographic procedures色谱方法chromatography columns色谱柱circular dichroism圆二色性clearance studies清除研究climatic zones气候带clinical research临床研究clinical trial application临床实验申请cloning克隆closure闭塞物code number编号coding sequence编码序列coefficient of variance变异系数collaborative studies协作实验研究colony isolation菌落分离colony-stimulating factors集落刺激因子combination product复方制剂components成分confidence interval置信区间confidence limits 可信限confirmatory studies确认研究conformance to specifications符合规范conformation构型conjugat ed product连接产物consistency一致性container容器container/closure容器/闭塞物container/closure integrity testing 容器/密封完整性实验contaminants污染物content uniformity含量均匀性control methodology控制方法学controlled released product控制制剂conventional vaccines传统疫苗conventional live virus vaccines传统的活病毒疫苗cool white fluorescent冷白荧光灯correction factor校正因子correlation coefficient相关系数covalent or noncovalent共价或非共价creams霜剂cross-contamination交叉污染cross-reactivity交叉反应cryopreservation冷冻保存cryoprotectants防冻剂crystals晶体culture components培养基成分culture media/medium培养基cyanogens bromide溴化氰cytogenetic细胞遗传学的cytokines细胞因子cytopathic细胞病的cytoplasmic A-and R-type particles细胞浆a型和r型颗粒dark control暗度对照deamidation 去氨基deaminated去酰胺化的decision flow chart/tree判断图definable and measurable biological activity明确和可测定的生物学活性degradant降解产物degradation降解degradation pathway降解途径degradation product降解产物degradation profile降解概况degree of aggregation 凝集程度degree of scatter离散程度delayed –release延迟释放deleterious有害的delivery systems给药体系derivatives衍生物description性状detection limit检测限度dilivery systems释放系统dilution ratio稀释倍数dimmers二聚体diode array二极管阵列diploid cells二倍体细胞dissociation解离dissolution testing 溶出实验dissolution time溶出时间dosage form剂型downstream purification下游纯化drug product制剂drug product components制剂组方drug substances原料药ectromelia virus脱脚病病毒elastomeric closures橡皮塞electron microscopy (EM)电镜electrophoresis电泳electrophoretic pattern电泳图谱elution profile洗脱方案embryonated eggs鸡胚enantiomer对映体enantiomeric对映异构体enantioselective对映体选择性encephalomyocarditis virus(EMC)脑心肌炎病毒endogenous agents内源性因子endogenous retrovirus内源性逆转录病毒endotoxins内毒素end-product sterility testing 最终产品的无菌试验enhancers增强子enveloped RNA viruses包膜RNA病毒environmental factors环境因素enzymatic reaction rates酶反应速率enzyme酶epitope表位Epstein-Barr virus(EBV)EB病毒equine马Erythropoietins促红细胞生成素ethnic origin种族起源eukaryotic cell真核细胞ex vivo体外excipient赋形剂excipient specifications赋形剂规范expiration date/dating 失效日期exposure level暴露程度exposure period光照时间expression constract表达构建体expression system表达系统expression vector表达载体extended-release延时释放extent of the virus test病毒测试程度extinction coefficient消光系数extrachromosomal染色体外extraneous contaminants 外源性污染物exprapolation外推法fermentation发酵fermantation products发酵产物fill volume装量filter aids过滤介质final manufacturing最终生产finished product成品flanking region侧翼区forced degradation testing 强制降解物质foreign matter异质性物质formal labeling 正式标签formal stability studies正式的稳定性研究formulation处方/配方fragmentation片段化freeze-dried product冻干产品friability脆硬度fungi真菌fusion partnters融合伴侣fusion protein融合蛋白gel filtration凝胶过滤gene amplification基因扩增gene therapy基因疗法generation of the cell substance细胞基质的产生genetic manipulation基因操作genomic dinucleotide repeats基因组双核苷酸重复数genomic DNA基因组DNAgenomic polymorphism pattern基因组形态类型glucose consumption rates耗糖率glycoforms糖化形式glycosylation糖基化goegrapgical origin地理起源growth factors生长因子growth hormones生长激素guanidine胍hamster antibody production (HAP) test仓鼠抗体产生实验Hantaan virus汗坦病毒Hardness硬度heavy metals重金属heparins肝素herbal products 草药herpes virus疱疹病毒heterogeneities异质性heterohybrid cell lines异种杂交细胞系high-resolution chromatography高分辨色谱homogeneity均一性host cell宿主细胞host cell banks宿主细胞库host cell DNA宿主细胞DNAhost cell proteins宿主细胞蛋白质hot-stage microscopy热阶显微镜human diploid fibroblasts人二倍体呈纤维细胞human polio virus人脊髓灰质炎病毒human tropism人向性humidity湿度humidity-protecting containers防湿容器hybridization techniques杂交技术hybridoma cell杂交瘤hybridomas水解物hydrolysates水解物hydrolytic enzymes水解酶hydrophobicity疏水性hygroscopic吸湿性idetification/identity鉴别immediate container/closure直接接触的容器/密闭物immediate pack内包装immediate release立即释放immortalization激活immune spleen cells免疫脾细胞immumoassay免疫检测immunochemical methods免疫化学方法immunochemical properties免疫化学性质immunoelectrophoresis免疫电泳immunogenicity免疫原性immunological interations免疫相互作用immunoreactivity免疫反应性impurity profile杂质概况in vitro and in vivo inoculation tests体内和体外接种试验in vitro assay体外检测in vitro cell age体外细胞传代期in vitro lifespan体外生命周期in vitro tests体外试验in vivo 体内in vivo assays体内检测inactivated vaccine灭活疫苗indentification test鉴别试验indicator cell指示细胞indicator organisms指示菌indoor indirect daylight室内间接日光inducers诱导剂infectious agents感染性因子influenza virus流感病毒inhalation dosage forms吸入剂型in-house内部的in-house criteria内控标准in-house primary reference material内部一级参比物质in-house working reference material内部参比物质initial filing原始文件initial submission最初申报initial text最初文件inoculation接种inorganic impurities无机杂质inorganic mineral无机矿物质inorganic salts无机盐in-process acceptance criteia生产过程认可标准in-process controls生产过程中控制in-process testing生产过程中检测insect昆虫insulins胰岛素intake摄入intended effect预期效果intended storage period预期的储藏期intentional degradation人为降解interactions相互作用interferon干扰素interleukins白细胞介素intermediate中间体intermediate precision中间精密度intermediates半成品international reference standards国际参比标准品intra-assay precision间隙含量精密度intracytoplasmic细胞浆内introduction of virus病毒介入inverted or horizontal position倒立或水平位置ion-exchange离子交换ionic content离子含量isoelectric focusing/isoelectrofocusing等电聚焦isoenzyme analysis同工酶分析isoform pattern异构体类型isomerized异构化的Jp /Ph.Eur./Usp.日本药局方/欧洲药典/美国药典K virus K病毒Karyology胞核学laboratory scale实验室规模lactate production rates乳糖产生速率litric deheydrogenase virus(LDM)乳酸脱氢酶病毒leachables沥出物ligand配位体/配体light光照light resistant packaging避光包装limit for in vitro cell age细胞体外传代限度limit of acceptance可接受的限度limit of in vitro cell age体外细胞代次limit test限度试验limulus amoebocyte lysate鲎试剂linear relation ship线性关系linearity线性liquid nitrogen液氮liquid oral dosage forms液体口服制剂live vaccine活疫苗living cells活细胞logarithmic scale对数级long term test长期试验long-time and accelerated stability长期和加速稳定性试验losses of activity活性丧失lot release批签发low molecular weight substances低分子量物质lower-observed effect level(LOEL)能观察到反应的最低量lymphocytic choriomeningitis virus(LCM)淋巴细胞性脉络丛脑膜炎病毒lyophilised cakes冻干粉饼lysate of cells细胞溶解物mammalian哺乳类manufacturing scale生产规模marker chromosome标志染色体marketing pack上市包装mass重量mass balance质量平衡mass spectrometry质谱master cell bank (MCB)主细胞库material balance物质平衡matrix基质、矩阵matrix system矩阵法matrixing 矩阵化设计maximum daily dose每日最大剂量mean kinetic temperature平均动力学温度metazoan cell culture后生动物细胞培养microbial cell culture微生物细胞培养microbial cells微生物细胞microbial contamination微生物污染microbial expression system微生物表达系统microbial limits微生物限度microbial metabolites微生物代谢物microbial proteases微生物蛋白酶microbial vaccine antigens微生物疫苗抗原microbiological testing微生物学试验minimum exposure time最低作用时间minimum of pilot plant试验规模minute virus of mice小鼠小病毒mirror image镜像mismatched S-S linked错连的S-S键mork run空白对照试验modified-/modifying release修饰释放modifying factor修正因子moisture level水分molar asorptivity克分子吸收molecular characteristics分子特性molecular confirmation分子构型molecular entities/entity分子实体molecular size分子大小monoclonal antibody单克隆抗体morphological analysis形态学分析mouse antibody production (MAP) test小鼠抗体产生试验mouse cytomegalovirus(MCMV)小鼠巨细胞病毒mouse encephalomyelitis virus(GDVⅡ)小鼠脑脊髓炎病毒mouse hepatitis virus(MHV)小鼠肝炎病毒mouse rotavirus(EDIM)小鼠小轮状病毒MuLV murine leukemia virus鼠白血病病毒murine hybridoma cell lines鼠杂交瘤细胞系mutations突变mycoplasma支原体myeloma cell line骨髓瘤细胞系national or international reference material国家或国际参比物质near ultraviolet lamp近紫外灯neural sugars中性糖new chemical entry 新化学体new dosage form新剂型new drug products/produce新药制剂new drug substance新原料药new molecular entities新分子体no effect level不产生反应的量noncovalent/convalent force非共价/共价键non-enveloped viruses非包膜病毒non-mammalian animal cell lines非哺乳动物细胞系non-recombinant cell-culture expression systems非重组细胞培养表达系统non-recombinant products/vaccines非重组制品/疫苗non-specific model virus 非特异模型病毒no-observed effect level不能观察到反应的量N-terminal sequencing N-端测序nuclear magnetic resonance核磁共振official procedure正式方法ointments软膏oligosaccharide pattern低聚核苷酸opacity浊度origins of replication复制起点osmolality摩尔渗透压浓度outdoor daylight室外阳光oxidation氧化oxygen consumption rates耗氧率package包装parainfluenza virus副流感病毒parallel control assays平行对照分析parent stability Guideline稳定性试验总指导原则patrental cell line母细胞系parenterals非肠道制剂particle size粒度particulate matter微粒parvoviruses细小病毒passage history of the cell line细胞系的传代史pathogenic agents致病因子pathogenicity致病性patterns of degradation降解方式peptide肽peptide map肽图percent recovery回收率periodic/skip testing定期检验/抽验permitted daily exposure允许的日接触量phage typing 噬菌体分型pharcodynamic studies药效学研究pharmacopoeial药典pharmacopoeial specifications药典规范pharmacopoeial standards药典标准phenotypic表型phosphorylation磷酸化作用photostability testing光稳定性试验physicochemical changes理化改变physicochemical methods物理化学方法physico-chemical properties物理化学特性pilot-plant scale试生产规模/中试规模piston release force活塞释放力piston travel force活塞移动力pivotal stability studies关键的稳定性研究plaque assays菌斑测定plasmid质粒plasmid banks质粒库plasminogen activators纤溶酶原激活素pneumonia virus of mice小鼠肺炎病毒Poisson distibution泊松分布polymorphic form多克隆抗体polymorphse chain reaction(PCR)聚合酶链式反应polymorphic form多晶性型polymorphs多晶型polyoma virus多瘤病毒pooled harvest集中回收population doubling细胞鼠倍增/群体倍增porcine猪post-approval批准后post-translational modification翻译后修饰post-translationally modified forms翻译后修饰形式potency效价potent功效potential adverse consequences潜在的不良后果potential excipients准赋形剂potential impurity潜在杂质potential new drug products准新药制剂potential new drug substances准新原料药potentiometric titrimetry电位滴定powders粉剂power outages and human error断电和人为错误preamble引言pre-approval or pre-liscense stage批准前或发证前阶段precision精密度preclinical and clinical studies临床前和临床研究precursors前体preliminary assessment初步评估preliminary cell bank初级细胞库preparation制剂preservative防腐剂primary cells原代细胞primary stability data主要稳定性数据primary stability study/formal study/formal stability study主要稳定性研究/正式研究/正式稳定性研究primary structure一级结构primer引物priming regimen(s)接种方式probability概率process characterization studies工艺鉴定研究process controls工艺控制process optimization工艺优化process parameters工艺参数process validation工艺确证process –related impurities工艺相关杂质product-related impurities产品相关杂质progenitor祖细胞prokaryotic cell原核细胞promoters启动子proposed commercial process模拟上市protected samples避光样品proteins蛋白质分析技术proteolysis蛋白水解protocol方案pseudopolymorphs伪多晶体pseudorabies virus假狂犬病毒purification纯化purified antigens纯化抗原purity纯度purity test纯度试验pyrogens热原试验qualification界定qualified 合格的quality standards质量标准quantal methods质反应测定法quantitation limit定量限度quantitative characteristics定量参数quantitative detection定量检测quantitative infectivity assays感染性定量测定quantitative method定量方法quantitative test定量试验quantitative virus病毒定量分析quantity含量racemate消旋体radiometers/lux meters测光仪/照度仪radiopharmaceutical放射性药物range范围rat antibody production (RAP) test大鼠抗体产生试验rationale基本原理raw material原材料raw material testing原材料测试rDNA technology重组DNA技术rDNA-modified cell substrates重组DNA修饰的细胞基质reagent试剂、反应物real condition真实条件real time 真实时间rebank 再建库receptor受体reclone再克隆recombinant cell-culture expression systems 重组细胞培养表达系统recombinant DNA protein products重组DNA蛋白质产品recomibinant-DNA-derived product重组DNA制品recombinant protein重组蛋白质reconstitution重新溶解redispersibility再分散性reduction factors下降因子reference material参比物质reference standard参比标准品regimen方案registration application注册申请regression analysis回归分析regulator/regulatory agencies管理机构related substances有关物质release limit出厂限度“relevant” viruses and “model” viruses“相关”病毒和“模型”病毒reovirus type3(Reo 3)呼吸肠病毒repeatability重复性reproducibility 重现性residual solvents残留溶剂residual sum of squares溶剂残留量resolution test分离度试验response factor响应因子restriction endonuclease mapping限制性内切酶图谱restriction fragment length polymorphism限制性片段长度多态性resuspension再悬浮retention time保留时间retest date再试验日期reverse transcriptase(RT)反转录酶reversed-phase chromatography反相色谱reverse-phase liquid chromatography反相液相色谱revived cells复苏的细胞rheological properties流体学特性risk-benefit analysis利弊分析robustness耐用性rodent retrovirus啮齿类动物逆转录病毒sampling采样scale-up放大scaling down缩小规模scope范围scrapie瘙痒病screening tests筛选试验SDS-PAGE/SDS-polyacrylamide gel electrophoresis十二烷基硫酸钠-聚丙烯酰胺凝胶电泳sealed ampoules密封安瓿secondary structure二级结构self-replicating agents自我复制因子semi-synthetic products半合成产品Sendai virus仙台病毒Sensitivity灵敏度Senescence老化Separation分离Serum血清Shear切变shelf life货价寿命shipment运输sialic acids唾液酸signal-to-noise信噪比Sindbis virus新德比病毒single-dose and multiple-dose packages单剂量和多剂量包装single-point measurements单点测定single-tiered banking system单级细胞库系统size exclusion chromatography分子排阻色谱skip lot testing随机试验slope of the regression line回归线的斜率solid oral doseage固体口服制剂solvates溶剂化物solvation溶剂化作用solvent溶剂species物种specific gravity比重specific objectionable bacteria控制菌specification规范specification limit规范限度specification –check质控规范specification-release出厂规范specifications规范specificity专属性specified impurities特定杂质specified light exposure特定的光照spectroscopic profiles光谱图spiked samples加料样品spiking experiments叠加试验splicing sequences剪接序列stabilizers稳定剂stability data稳定性资料stability evaluation稳定性评价stability proticol稳定性方案stability study duration稳定性试验期限stability testing稳定性试验stability-indicating profile反应稳定性指标standard deviation标准差standard stock solution标准储备液starting materials起始物statement/labeling说明/标签statistical analysis统计学分析sterility无菌storage condition放置条件strains品系stress condition强力破坏试验条件stress testing强力破坏试验storage conditions储存条件structural heterogeneity结构异质性subcultivations传代培养sulfhydryl groups and disulfide bridges巯基和二硫键sulfoxidation硫酰化support information辅助性资料surrogate test替代试验surrogates替代物suspensions混悬剂swine猪synthesis合成synthetic peptides合成肽syringeability灌注功能systemic exposure全身接触tablet cores片芯tandem repeats串联重复target molecule靶分子temperature changes温度变化terminology术语tertiary structure三级结构test criteria试验标准test intervals试验间隔test parameters试验参数testing frequency试验次数texture质地the method of least squares最小二乘法threshold limits阈值thymic virus胸腺病毒tip cap removal force滴帽移动力tissue-culture-infectious-dose(TCID)组织培养感染剂量titration滴定法tolerable daily intake可耐受的日摄入量toolan virus(Hi)图兰病毒topical formulations局部用药处方toxic impurity毒性杂质toxin毒素tranfection of matazoan cells后生动物细胞的转染transcrption转录transdermal systems透皮吸收系统transfection转染transfomation转化translational fidelity翻译的忠实性transmission electron microscopy电透镜transparent cover透明盖子truncated forms截短形式tumor necrosis factor肿瘤坏死因子tumorigenicity致瘤性two-tiered cell bank两级细胞库uncloned cell population未克隆的细胞群unicellular life forms单细胞生命形式unidentified impurities未确定杂质uniformity of content 含量均匀度uniformity of dosage units剂量单位的均匀度uniformity of fill装填均匀度uniformity of mass质量均匀度unitage单位universal tests/criteria常规试验/标准untransfected recipient cell line未转染的受体细胞系UV/visible wavelength紫外可见光波长Vacinnes疫苗Validation论证variant sequences变异序列variants 变异体vector载体vehicle载体/溶酶vesicular stomatitis virus小囊状口腔炎病毒viral clearance病毒清除viral clearance studies病毒清除研究viral contamination病毒污染viral geneme病毒基因组viral infectivity病毒感染性viral safety evaluation病毒安全评估viral vicinnes病毒性疫苗virucidal buffers杀病毒缓冲液virus load 病毒浓度virus titer病毒滴度viscosity粘度visible particulates可见颗粒visual appearance外观visual evaluation直观评价vitamins 维生素water of hydration结晶水well-defined testing program确定的试验项目western blot免疫印迹whole blood全血within-assay variation试验内变异working cell bank工作细胞库yeast酵母y-intercept y轴上的截距。
对照手法在莎士比亚的代表作《哈姆雷特》中的运用_英文_
[作者简介]田忠山,男,内蒙古工业大学外国语学院助教,在读硕士研究生。
The Approach of Contra st i n Character i zati on of H a m let○Tian Zhongshan(Foreign L anguage Institu te,InnerM ongolia Polytechn ic U niversity,Hohhot,InnerM ongolia,Ch ina 010010) [Abstract] This paper is a study of the app r oach of contrast,which is e mbodied in Shakes peare’s master p iece,Ham let .By the comparis on bet w een Ha m let’s p r of ound thought and Laertes’s rashness and Claudius’s wickedness and oldHa m let’s l oftiness,we can see that contrast is one of the maj or app r oaches adop ted by Shakes peare in this work .This is an effective way t o make the characters’distinguishing pers onalities become more distinguishable .W hile Shakes peare’s great 2ness doesn’t lie in the adop ti on of this common way of writing,it lies in his flexibleness and masteries in his writing in the p r ocess of e mp l oying the app r oach of contrast . [Key words] contrast;characterizati on;Ham let [中图分类号]I 10614 [文献标识码]A [文章编号]167228610(2007)1220072203 Shakes peare,the most outstanding dra matist all o 2ver the world,is very skilled in creating full bl ooded,rep resentative and vivid characters .The characters un 2der his pen see m t o be gifted with lives in his p lays .Among his 37dra mas,Ham let is one of the most re 2markable,in which Shakes peare shows his great talent of characterizati on .The characters in this p lay are all very i m p ressive .Each of the m has their distinctive in 2dividuality,f or exa mp le,the melancholy of Ha m let,the weakness and innocence of Ophelia,the wicked 2ness of Claudius,the pedantry of Pol onius,and s o on .Even Rosencrantz and Guildenstern become world 2wide household na mes,which stand for disl oyalty and treachery .T o achieve this vividness in dep icting characters,Shakes peare adop ts diversified skills,a mong which contrast is a very cons p icuous one .I n literary works,the e mp l oying of this app r oach can leave a very shar p and vivid i m p ressi on by menti oning t w o co mp letely dif 2ferent pers onages in one work .This paper is just goingt o discuss the app r oach of contrast in characterizati on e mp l oyed by Shakes peare in Ham let .Among the gallery of characters portrayed by Shakes peare in Ham let ,the most notable one is Ha m let unquesti onably .Shakes peare shows with great enthusi 2as m his p r of ound thought,his res olute deter m inati on and his l ofty s oul .Those distinguishing features be 2come more distinguishable in contrast against other characters’pers onalities .I n this p lay,several p l ots are woven t ogether .Both Ha m let and Laertes undertake t o avenge their fa m ilies on killing,whereas,they convey comp letely different pers onalities in their acti ons .I n the p r ocess of Ha m let’s revenge,his delay in acti on just shows his outstanding intelligence .A t the beginning of the st ory,he dis p lays his s orr ow f or his father ’s death and his mother’s hasty marriage .A t the sa me ti m e,in his deep s oul,he sus pects the real cause of his father’s death .Because he is s o intelligent he can see thr ough things .That’s why when the ghost tells hi m :27L I TERAT URE Tian Zhongshan /The App r oach of Contrast in Characterizati on of Ham letThe ser pent that sting they father’s lifeNow wears his cr own.(Shakes peare.V.38239) his res ponse is:“Oh,my p r ophetic s oul.”(V.60).I n s p ite of this str ong intuitive sus p ici on,he doesn’t ex2 hibit it.He doesn’t rush int o the cha mber of the as2 sumed murderer’s with a cr owd of mobs and questi ons the king directly:“Give me my father!”(,5),just as what Laertes does.Considerable grief at his father’s death and gr oundless g ossi p make Laertes l ose all his reas ons and s oberness,and he is driven nearly mad by the str ong desire of revenge:T o this point I stand,That both worlds give t o negligence,Let come what comes,only I’ll be revengedMost thor oughly f or my father.(..1332136)These words are the best portrayal of Laertes’s rashness;everything he does is urged by passi on and i m pulsiveness.W hile under the sa me circumHa m let’s perf or mance is sur p risingly composed.W hen the ghost comes and reveals hi m the murder of his fa2 ther,he is over whel m ed by shock and indignati on,but he is not conquered by these e moti ons.H is p rudent nature drives hi m t o questi on what others take f or gran2 ted,he says:The s p irit that I have seenMay be the devil,and the devil hath powerT’assu me a p leasing shape;(..5852587)So he has a p lay acted which rese mbles the death of old Ha m let,in order t o justify the king’s f oul deeds and find convincing evidence for the unnatural murder. W hen the guilty Claudius stands up and leaves the hall in fear bef ore the p lay ends up,everything becomes clear as clear can be.However,Ha m let doesn’t take i m mediate acti on when a good opportunity comes. Claudius,who is stricken by guilty consci ous is knee2 ling and atte mp ting t o p ray,al one.He could have kill2 ed hi m on the s pot,but when he dra ws his s word,he hesitates:Now m ight I do it pat,now he is a2p raying;And now I’ll do it,and s o he goes t o heaven,And s o I a m revenged.That would be scanned.(..71274)He gives up this extre mely favorable opportunity, because he wants t o destr oy his ene my’s s oul as well as body.He al w ays thinks the consequence of his deeds over and over again,that leads t o his delay in acti on, which just reflects his p r ofound pared with Ha m let,Laertes appears s o si m p le2m inded and reck2 less,and these weaknesses are taken advantages of by the crafty,sha meless king.Consequently,Laertes be2 comes the access ory t o the murder of p rince Ha m let.Fr om above,it is easy t o conclude that Ha m let’s intelligence and p rudence stand more vivid in contrast against Laertes’s rashness and naivety.The comparis on bet w een the t w o’s pers onalities creates a shar p contrast. Not only that,exa m ining the dra ma on the whole,it can be f ound that the app r oach of contrast p lays really an i m portant r ole in the portrayal of the i m age of Ha m2 paring with the weakness and purity of Ophel2 ia his res oluti on and strength appear more striking;in comparis on with the wicked Claudius,Ha m let’s i m age see m s even l oftier and nobler.T o s peak of Claudius,the e mp l oying of contrast is more obvi ous in the p r ocess of the creating of this i m2 age.It is known t o all,in this p lay Claudius pers oni2 fies all the f orces of evil.He pois ons his own br other t o death,and then marries his sister2in2la w unscrupul ous2 ly.H is ugliness see m s more p r ojecting in contrast with old Ha m let’s l oftiness.This f oll owing sentence appears in an i m passi oned s olil oquy of Ha m let:So excellent a king that was t o this,Hy peri on t o a Satyr.(..1392140)I n this s olil oquy he exhibits his extreme disgusting t o his mother’s marriage and shows his str ong distain t o his uncle.No more sentences in this seg ment can be found t o describe how ugly and repulsive Claudius is. The wonderfulness of e mp l oying contrast is it leaves a s pace f or the readers t o i m agine:how different old Ha m let is fr om Claudius is just as how different Hype2 ri on is fr om Satyr.A s the st ory g oes on,Ha m let’s a2 bom inati on t oward his uncle gr ows even str onger,when his cri m e has been justified.I n the queen’s cha mber,37语文学刊(高教・外文版) 2007年第12期Ha m let reveals Claudius’s baseness t o her which ren2 ders the queen’s heart br oken:Look here,upon this p icture,and on thisA combinati on and a f or m indeedW here every god did see m t o set his seal t o give the world assurance of a manHere is your husband,like m ild ear(..53256)By this shar p contrast any more descri p ti on is su2 perfluous,and the i m age of a des p icable king vividly appears in fr ont of the readers.By the analysis of the t w o i m ages—Ha m let and Claudius,the clear conclusi on is that the app r oach of contrast is one of the maj or app r oaches e mp l oyed by Shakes peare in the p r ocess of characterizati on in Ham2 let.Nevertheless,contrast is just a very common ap2 p r oach of characterizati on,which can be found in nu2 mer ous literary works in any era,but in Shakes peare’s hand,it becomes a most flexible and effective method. W hile what we shouldn’t ignore is that contrast is just one of the app r oaches of characterizati on adop ted byShakes peare,there are still other ways such as p sycho2 l ogical analysis.So it is not inapp r op riate t o say that Shakes peare is a great master of characterizati on.Under Shakes peare’s hands,even the most insignificant fig2 ures are fa m iliar t o the readers,and he hi m self is con2 sidered as the greatest dra matist in the world.【References】[1]Guo Qunying.B ritish L iterature[M].Foreign LanguageTeaching Research Press,2001.[2]L iu B ingshan.A Short H istory of English L iterature[M].He Nan Peop le’s Publishing House,1973.[3]Luo J ingguo.A N e w A nthology of English L iterature[M].Bei J ing University’s Publishing House,1996.[4]Shakes peare,W illia m.Ham let[M].Eds Cedric W alts,Crib street,W are,Hertfordshire:Words worth Editi onsL i m ited Cu mberland House,1992.[5]W u W eiren.H istory A nd A nthology of English L iterature[M].Foreign Language Teaching and Research Press,2000(revised ed.)对照手法在莎士比亚的代表作《哈姆雷特》中的运用田忠山(内蒙古工业大学外国语学院,内蒙古呼和浩特010010)[摘 要] 通过对哈姆雷特思想的深邃与雷欧提斯的鲁莽、哈姆雷特的高贵与克罗狄斯的卑鄙的对比,可以得出这样的结论:对照手法是莎士比亚在这部作品中采用的主要手法。
计算机专业术语中英文对照
计算机专业术语中英⽂对照计算机专业术语对照Aabstraction layer,抽象层access,获取,存取acoustic coupler,声⾳耦合器Active Directory,活动⽬录Acyclic Dependencies Principle,⾮循环依赖原则(ADP)acyclic digraph,有向⽆环图Adaptive Code,⾃适应代码Add Parameter,添加参数ADSL,Asymmetrical Dingital Subscriber Loop,⾮对称数字⽤户环线affinity,绑定affinity group,地缘组agent,代理agent-based interface,代理⼈界⾯Agile,敏捷⽅法论agile practice,敏捷实践agile peocess,敏捷流程agility,敏捷性AI,Artificial Intelligence,⼈⼯智能air waves,⽆线电波algorithm,算法analog,模拟的animation,动画annotation,注解,注释answering machine,电话应答机antenna,天线anti-pattern,反模式APM,异步编程模型(Asynchronous Programming Model)Apocalyptic defect,灾难缺陷application,应⽤,应⽤程序,应⽤软件application life cycle,应⽤程序⽣命周期application pool,应⽤程序池Application Programming Interface,应⽤程序编程接⼝(API)architecture,体系机构,结构architecture decay,架构腐坏Architecture Style,架构风格ARPA,Advanced Research Projects Agency,(美国国防部)⾼级研究计划署ARPAnet,ARPA⽹Arrange-Act-Assert,准备-执⾏-断⾔(AAA)artifact,构建物4ASF,Apache Software Foundation 的简写Aspect-Oriented Programming,⾯向切⾯编程(AOP)aspect ratio,屏幕⾼宽⽐assembly,程序集Asynchronous Programming Model,异步编程模型(APM)ATM,asynchronous transfer mode,异步传输模式atomic opreation,原⼦操作atomic transaction,原⼦事务atomicity,原⼦性attribute,特性augmented reality,增强实现authentication,⾝份验证authorization,授权automated unit testing,⾃动化单元测试automation,⾃动化autonomous,独⽴性availability,可⽤性availability set,可⽤性集AZs,可⽤性区域(Availability Zones,亚马逊 AWS 中数据中⼼的叫法)4BBackend as a Service,后端即服务(BaaS)backpane,底板backward compatibility,向后兼容性bandwidth,带宽bar code,条形码Base Class Library,基类库(BCL)baseline,准线baud,波特BCL,基类库(Base Class Library)bear,熊behavior,⾏为behavior preserving program transformations,⾏为保留式程序转换1 Behavioral error,⾏为错误BFF,为前端服务的后端(Backends For Frontends)4Big Ball of Mud,⼤泥球(BBM)big data,⼤数据Big Design Up Front,⼤优先设计(BDUF)binary,⼆进制的binochlar,双⽬并⽤的bit,⽐特Bit-field,位域bitnik,⽐特族blob,BLOBblock,阻断block blob,块 BLOBBlockchain as a Service,区块链即服务(BaaS)bottleneck,瓶颈bounded context,边界上下⽂、界限上下⽂4box,装箱bps,bits per second,⽐特/秒breakpoint,断点broadcast,(⽆线电或电视)⼴播Broken Hierarchy,⽀离破碎的层次结构2Broken Modularization,拆散的模块化2brownfield project,⾏进中项⽬Browser Object Model,浏览器对象模型(BOM)browser-server,浏览器-服务器bug,缺陷built-in,内置的,内建的;嵌⼊的;内置bulkhead,舱壁4business intelligence,商业智能business layer,业务层business logic layer,业务逻辑层busy (status),忙(状态);繁忙(状态)byte,字节Ccable,电缆Cache/Caching,缓存call stack,调⽤堆栈callout box,标注框camelCase,camel ⼤⼩写canary releasing,⾦丝雀发布4carbon copy,复写本,副本;抄送(CC)carriage return,回车Cascading Style Sheets,层叠样式表(CSS)catastrophic failover,灾难性故障转移4CD,持续交付(Continuous Delivery)4CDC,消费者驱动的契约(Customer-Driven Contract)4CDN,内容分发⽹络(Content Delivery Network)cell,单元cellular telephone,移动电话Central Processing Unit,中央处理器(CPU)certificate,(数字)证书Certificate Authority,证书认证机构Change Bidirectional Association to Unidirectional,将双向关联改为单向关联1Change Point,修改点:需要往代码中引⼊修改的点Change Reference to Value,将引⽤对象改为值对象1Change Unidirectional Association to Bidirectional,将单向关联改为双向关联1Change Value to Reference,将值对象改为引⽤对象1channel,信道,频道character,字符Characterization test,特征测试:描述软件某部分的当前⾏为的测试,当你修改代码时能够⽤来保持⾏为check in,签⼊check out,签出chip,芯⽚choreography,协同CI,持续集成(Continuous Integration)4cipher,密码claim,声明class definition,类定义CLI,公共语⾔基础结构(Common Language Infrastructure)client-server,客户端-服务器clone,克隆,复制cloud computing,云计算cloud service,云服务CLR,公共语⾔运⾏时(Common Language Runtime)CLS,公共语⾔规范(Common Language Specification)cluster,集群clustered index,聚集索引CMS,内容管理系统(Content Management System)co-occurring smells,同时出现的坏味2coaxial cable,同轴电缆COBIT,信息和相关技术的控制⽬标,Control Objectives for Information and Related Technology4 CoC,更改开销(Cost of Change)code smell,代码味道Collapse Hierarchy,折叠继承关系1comcurrency,并发command,命令command prompt,命令⾏提⽰Command/Query Responsibility Segregation,命令/查询职责分离(CQRS)Command/Query Separation,命令/查询分离(CQS)commingled bits,混合的⽐特communication,通信community,社区committed,已提交(的)Common Intermediate Language,公共中间语⾔Common Language Infrastructure,公共语⾔基础结构(CLI)Common Language Runtime,公共语⾔运⾏时(CLR)Common Language Specification,公共语⾔规范(CLS)Common Type System,公共类型系统(CTS)common name,通⽤名称compatibility,兼容性Competing Consumer pattern,消费者竞争模式4Component Object Model,组件对象模型(COM)composite formatting,复合格式化Composite Pattern,复合模式concurrency conflicts,并发冲突concurrency mode,并发模式conditional compilation,条件编译conditional compilation statement,条件编译语句configuration,配置,设置connection string,连接字符串Consolidate Conditional Expression,合并条件表达式1Consolidate Duplicate Conditional Fragments,合并重复的条件⽚段1consistenct,⼀致性constructor,构造函数container,容器Container As A Service,容器即服务(CaaS)4content,内容context,上下⽂contextual keyword,上下⽂关键字continuous integration,持续集成contribute,贡献Contributor License Agreement,贡献者许可协议convention,约定covariance,协变contravariance,逆变convert,转换Convert Procedural Design to Objects,将过程化设计转化为对象设计1cookie,Cookiecore,内核;.NET Core 的简写(能且仅能与 .NET Framework 的简写nfx同时出现,作如nfx/core,单独使⽤时应为全称.NET Core)corruption,损毁Cosmetic issue,外观上问题Cost of Change,更改开销(CoC)COTS,现成的商业软件(Commercial Off-The Shelf)4counterpoint,对位4Coupling count,耦合数:当⼀个⽅法被调⽤时传给它以及从它传出来的值的数⽬。
Ni-SiC
Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalystsYue Yu a ,b ,Guo-Qiang Jin a ,Ying-Yong Wang a ,Xiang-Yun Guo a ,⁎a State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Taiyuan 030001,PR China bGraduate University of the Chinese Academy of Sciences,Beijing 100039,PR Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 19March 2011Received in revised form 23July 2011Accepted 1August 2011Available online xxxx Keywords:CO methanation Ni/SiC catalyst Ni/TiO 2catalyst StabilitySilicon carbide supported nickel catalysts for CO methanation were prepared by impregnation method.The activity of the catalysts was tested in a fixed-bed reactor with a stream of H 2/CO =3without diluent gas.The results show that 15wt.%Ni/SiC catalyst calcined at 550°C exhibits excellent catalytic activity.As compared with 15wt.%Ni/TiO 2catalyst,the Ni/SiC catalyst shows higher activity and stability in the methanation reaction.The characterization results from X-ray diffraction and transmission electron microscopy suggest that no obvious catalyst sintering has occurred in the Ni/SiC catalyst due to the excellent thermal stability and high heat conductivity of SiC.©2011Elsevier B.V.All rights reserved.1.IntroductionNature gas is a clean fuel in fossil fuels and it has a higher calori fic value comparing with petroleum and coal.In recent years,the production of synthetic natural gas from coal and solid dry biomass has been a concern due to the rising price and exhaustion of natural gas [1,2].As one of the most essential steps in the production of SNG [1],the methane synthesis from carbon monoxide and hydrogen has been paid more attention.Different types of methanation catalysts have been developed and widely investigated since the reaction was first reported by Sabatier and Senderens in 1902[3].Although noble metal catalysts show higher activity [4,5],Ni-based catalysts are widely applied due to the low-cost and good availability [1].Many materials such as TiO 2,Al 2O 3,CeO 2,SiO 2,ZrO 2,MgO,YSZ and MgAl 2O 4have been investigated as the support of nickel catalysts [6–10].It is found that the support materials can strongly in fluence the activity of nickel catalysts.Several groups have reported that the nickel catalyst using TiO 2as the support is effective for CO methanation reaction [8,11,12],and the aim of the above studies is to remove carbon monoxide in hydrogen-rich gas for the use in polymer electrolyte fuel cells or ammonia synthesis.There are also some studies on methanation reaction using higher CO concentrations [13,14].However,it is well known that the reaction of CO methanation is a strongly exothermic reaction (3H 2+CO →CH 4+H 2O,ΔH°=−206kJ·mol −1)[6].When the nickel catalysts using conventional supports are used in the methanation reaction with a stream flow of H 2/CO=3,the reaction heat can rapidly accumulate onthe catalysts and make the catalysts sintered.Eisenlohr et al.reported that commercial methanation catalysts always showed a fast deactivation due to the temperature raise of catalyst bed [15].One way to solve the problem is to connect methanation reactors in series with intermediate gas cooling [1].In addition,the problem can also be solved by employing highly thermo-conductive and thermo-stable materials as the support of CO methanation catalysts.Silicon carbide (SiC)exhibits many superior properties,i.e.excellent thermostability,high mechanical strength,high chemical inertness,low coef ficient of thermal expansion and high thermal conductivity.Due to these properties,SiC could be employed as catalyst support in rigorous conditions,i.e.high endothermic or exothermic reactions,strong acidic or basic solution [16].Nguyen et al.[17]reported that SiC with medium surface area could function as catalyst support in the CO 2reforming of methane.Our group investigated the performance of Ni/SiC catalysts for the partial oxidation of methane and methane combustion,and found that the Ni/SiC catalysts showed high catalytic activity and stability [18,19].However,to our knowledge,nickel catalysts using SiC as the support are less investigated for CO methanation reaction.In this work,the catalytic behavior of Ni/SiC catalysts for CO methanation reaction with a stream flow of H 2/CO=3was investigated.The results showed that the silicon carbide supported nickel catalyst exhibited high catalytic activity and stability in CO methanation.2.Experimental 2.1.Catalyst preparationSiC support was prepared by a sol –gel and carbothermal reduction route [20],and TiO 2support was commercial product,P25.TheFuel Processing Technology 92(2011)2293–2298⁎Corresponding author.Tel.:+863514065282;fax:+863514050320.E-mail address:xyguo@ (X.-Y.Guo).0378-3820/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.fuproc.2011.08.002Contents lists available at ScienceDirectFuel Processing Technologyj o u r n a l h o me p a g e :w w w.e l s ev i e r.c om /l o c a t e /f u p ro ccatalysts were prepared by conventional impregnation method[18]. To prepare15wt.%Ni/SiC catalyst,1g of above SiC was added into 25.5mL Ni(NO3)2aqueous solution(0.1mol/L)with stirring for12h. Then the slurry was heated at80°C until nearly all the water evaporated and the mixture was dried at100°C for6h.Afterward the dried sample was calcined in air at different temperatures for4h. The similar processes can be used to prepare Ni/SiC catalysts with different nickel loadings.15wt.%Ni/TiO2catalyst was prepared by the similar route to15wt.%Ni/SiC catalyst.1g of TiO2was added into 25.5mL Ni(NO3)2aqueous solution and stirred for12h.After being heated and dried,the catalyst was calcined at550°C for4h in air.2.2.Catalyst testThe performance of the catalysts was tested in afixed-bed reactor (a40cm long stainless steel tube with an inner diameter of6mm). The reactor was heated up by a PID regulated oven and the reaction temperature was measured in the middle of the catalyst bed using a K-type thermocouple.Reaction gases,which consisted of H2and CO (molar ratio of H2/CO=3,without diluent gas),were supplied from high-pressure gas cylinders and theflow rate was controlled by mass-flow controller(MFC)to ensure a space velocity(GSV)of4500h−1.0.8mL of catalyst(sieve fraction40–60mesh)was placed in thecenter of the tubular reactor.All experiments were performed at a pressure of2.0MPa.Before each catalyst test,the catalyst was reduced at500°C in the CO/H2mixture gases for2h,then decreased to reaction temperature and kept for1h.The outlet gases were analyzed by GC-14B gas chromatograph with TDX-01column and a GDX-104 column using thermal conductivity detector andflame ionization detector.The selectivity of a certain product is calculated by the formula,S i=n i C i/∑n i C i,where n i and C i are the number of carbon atoms and the concentration of product“i”,respectively.2.3.Catalyst characterizationThe crystalline phases of the catalysts were analyzed by a Rigaku D-Max/RB X-ray diffractometer(XRD)with Cu Kαradiation with a scanning rate of6°/min.The catalyst morphology and structure were analyzed by a JEOL-2010transmission electron microscopy(TEM).The surface areas of catalysts were calculated from the BET method,which was performed at nitrogen temperature at77K on a Micromeritics Tristar3000analyzer.The nickel amount of catalysts was measured by ICP spectrometer.TG–DSC studies of the catalysts after reaction were performed on NETZSCHSTA409PC thermoanalyzer within a temper-ature range from room temperature to850°C at a heating rate of 10°C/min in airflow.3.Results and discussion3.1.CO methanation over Ni/SiC catalyst3.1.1.Influence of nickel loadingThe effect of metal loading on the activity of Ni/SiC catalysts was investigated,and the results are shown in Fig.1and Table1.It can be seen from Fig.1that the methanation activity of SiC supported catalysts increases with the nickel loading from5wt.%to15wt.%. Reaction rate of CO conversion which is defined as moles of CO converted per gram of Ni per second at250°C is shown in Table1.It can be seen that increasing the nickel loading from10wt.%to15wt.% results in an increase of the rate of CO conversion from1.28to 5.10μmol s−1g−1.However,when the nickel loading further in-creases to20wt.%,the rate of CO conversion at250°C decreases to 1.34μmol s−1g−1.As compared with15wt.%Ni/SiC catalyst,there is no significant increase in methanation activity for20wt.%Ni/SiC catalyst(Fig.1).The metal crystallite sizes calculated by Scherrer's equation[21]are shown in Table2.From the table,the metal crystallite size increases with increasing the nickel loading.The influences of the metal particle size on methanation activity have been studied by several authors.Panagiotopoulou et al.[8]reported that the rate of CO conversion increased by a factor of166with increasing the loading of Ru on TiO2from0.5wt.%to5wt.%.Takenaka et al.[11]reported that the Ni crystallites with relatively large sizes were more effective for CO methanation.Zhou et al.[22]demon-strated that the activity of CO hydrogenation increased with increasing the rhodium particle size in the range of 3.0–5.0nm. Therefore,CO methanation is a structure sensitive reaction and the larger particle size facilitates CO hydrogenation.20wt.%Ni/SiC catalyst has larger metallic particles but lower methanation activity than15wt.%Ni/SiC catalyst.The reason may be that both particle size and amount of active sites affect the methanation activity.It is well known that the larger crystallite size results in the decrease of metal dispersion on the surface of catalyst[8]and the latter one can affect the amount of active sites.Therefore,the lower rate of CO conversion may be due to the less active sites over20wt.%Ni/SiC compared with 15wt.%Ni/SiC catalyst.This is in accordance with the results reported by Aksoylu et al.[23],who found that the methane production per square meter of nickel surface area was enhanced with lower Ni loading over Ni/Al2O3catalysts.On the other hand,the large particle size on20wt.%Ni/SiC catalyst may block the external surface of support and this can also decrease the activity of CO methanation. Therefore,15wt.%is an optimal loading of Ni/SiC catalyst for methanation reaction.It should be noted that the products of CO hydrogenation under present reaction condition include methane,higher hydrocarbons (C2H6,C2H4,C3H8and C3H6),carbon dioxide and water.The forma-tion of CO2may be due to the water-gas-shift reaction,CO+Temperature (o C)EquilibriumCOConversion(%)T emperature (o C)COconversion(%)Fig.1.Influence of nickel loading on the activity of Ni/SiC catalysts and the calculated equilibrium CO conversions under P=2.0MPa,H2/CO=3and GSV=4500h−1.Table1Catalytic performance of Ni/SiC and Ni/TiO2catalysts.Catalyst Ni loading(wt.%)Rate of CO conversionat250°C(μmol s−1g−1)aCH4selectivityat320°C(%)Ni/SiC5–70.8910 1.2890.3115 5.1092.0420 1.3493.60Ni/TiO215 3.5282.21Reaction condition:H2/CO=3,GSV=4500h−1,and P=2.0MPa.a Converted CO per second per gram catalyst.2294Y.Yu et al./Fuel Processing Technology92(2011)2293–2298H2O=CO2+H2.The methane selectivity over the Ni/SiC catalysts at 320°C is shown in Table1.It can be seen that the methane selectivity increases with increasing the Ni loading.For CO methanation reaction, CO is adsorbed and dissociated on the surface of metal particles[24]and the dissociation of C\O bond in adsorbed CO species is the rate-determining step[25].It has been reported that there are three forms of adsorbed CO:linear CO,bridged CO and twin CO[26].The activity of adsorbed CO breaking into surface carbon and surface oxygen on the catalyst surface follows the sequence,bridged CO N linear CO N twin CO[10].According to the methanation mechanism,adsorbed CO is dissociated and converted into CH x as intermediate species by assistance of H on the surface of catalysts,and the concentration of the intermediate species determines the distribution of reaction products [25].For the methanation reaction,there are more active bridged CO on larger metallic particles[27],and then the rate of the dissociation and hydrogenation of intermediate species becomes faster[22,28]. Therefore,the methane selectivity is higher on high loading Ni/SiC catalysts.3.1.2.Thermodynamics and equilibrium conversionFrom Fig.1,the conversion of CO over Ni/SiC catalysts can increase up to100%with increasing the reaction temperature.When the reaction temperature is higher than440°C,however the CO con-version begins to decrease.It is most likely due to thermodynamic limitation.According to the thermodynamic equilibrium,theΔG can become positive when the temperature is higher than530°C[29]. Therefore,high temperature is favorable to the stream reforming of methane—the reverse of methanation.Supposing that the only product of CO hydrocarbon is methane, thermodynamic equilibrium data at the temperature range from100 to500°C are calculated.The calculation is performed under the same operating conditions as our experiments,i.e.H2/CO=3,P=2MPa. From Fig.1,the complete conversion of CO can be obtained below 250°C,and then the conversion slightly decreases with increasing the reaction temperature.The CO conversion decreases to87%when the reaction temperature rises to500°C.These are in agreement with the experimental results.3.1.3.Effect of calcination temperatureThe sizes of metallic particles in15wt.%Ni/SiC catalysts under different calcination temperatures are shown in Table2.It can be seen that the particle size increases with increasing the calcination temperature.It has been established that the methanation reaction is structure sensitive and larger particle size facilitates the cleavage of C\O bond[8,22,27,30].Therefore,the catalysts calcined at higher temperatures have higher catalytic activity for CO methanation.Fig.2 shows the influences of the calcination temperature on the activity of 15wt.%Ni/SiC catalyst for CO methanation.It can be seen that the CO conversion increases with increasing the calcination temperature from450°C to550°C.However,there is a little decrease in the CO methanation activity over the Ni/SiC catalyst calcined at600°C.This is likely due to that oversize particles formed at the high temperature could result in a decrease of active sites.Therefore,550°C is an optimal calcination temperature for15wt.%Ni/SiC catalyst.3.2.Performance of Ni/SiC and Ni/TiO2catalystsAccording to literature,TiO2supported nickel catalysts are effective for the CO methanation[8,11,12].Therefore,15wt.%Ni/SiC and15wt.%Ni/TiO2catalysts were tested under the same conditions for comparison.It can be seen from Table1that15wt.%Ni/SiC catalyst is more active than15wt.%Ni/TiO2catalyst.Fig.3shows the evolution of CO conversion over Ni/SiC and Ni/TiO2catalysts at340°C.For the Ni/SiC catalyst,there is an activity rise in the initial stage of the methanation reaction and CO is nearly converted completely.When the reaction time is longer than40h the activity of Ni/SiC catalyst exhibits a slow drop and the CO conversion decreases from initial97% to91%after100h.The decrease of activity is due to the losing of nickel by the formation of nickel carbonyl.According to ICP analysis,the nickel amount of the Ni/SiC catalyst has decreased by16%after reaction for100h.For Ni/TiO2catalyst,the activity decreases rapidly and the CO conversion decreases from initial98%to below50%afterTable2Particle sizes of different Ni/SiC and Ni/TiO2catalysts.Catalyst Ni loading(wt.%)Calculationtemperature(°C)Metal crystallitesize(nm)aNi/SiC55508.61055015.31545017.450018.155019.060020.92055023.5 Ni/TiO215550–Used Ni/SiC1555021.6b Used Ni/TiO21555023.5ba Calculated from NiO(021)plane by Scherrer's equation.b Calculated from Ni(111)plane by Scherrer's equation.COconversion(%)Temperature(o C)Fig.2.Influence of calcination temperature on the activity of Ni/SiC catalysts under P=2.0MPa,H2/CO=3and GSV=4500h−1.COconversion(%)Time (h)parison of the catalytic performance between15wt.%Ni/SiC and15wt.% Ni/TiO2catalysts under T=340°C,P=2.0MPa,H2/CO=3and GSV=4500h−1.2295Y.Yu et al./Fuel Processing Technology92(2011)2293–2298100h reaction.These results indicate that the Ni/SiC catalyst exhibits an obviously better stability than the Ni/TiO 2catalyst.3.3.TG –DSC analysis of used Ni/SiC and Ni/TiO 2catalystsTG –DSC analysis was performed for the used Ni/SiC and Ni/TiO 2catalysts and the results are shown in Fig.4.From the TG pro file shown in Fig.4A,no weight loss but a viewable increase of weight can be observed,indicating that there are no carbon depositions over both catalysts.The weight increase over both catalysts is likely due to the oxidation of metallic Ni to NiO.As seen in Fig.4B,no remarkable exothermic peaks can be observed for the used Ni/SiC and Ni/TiO 2catalysts,indicating that the oxidation of deposited carbon on the used catalysts does not occur.This is in agreement with the results reported by Zhu et al.[31].Therefore,the decrease in the activity of the Ni/SiC catalyst for methanation reaction is not due to the carbon deposition.3.4.XRD resultsFig.5shows the XRD results of 15wt.%Ni/SiC and 15wt.%Ni/TiO 2catalysts before and after reaction at 340°C for 100h.In the XRD patterns of fresh Ni/SiC catalyst shown in Fig.5A,the diffraction peak at 2θ=43.3°is attributed to NiO (012)plane [18].According to Scherrer's equation [21],the average NiO crystallite size calculated from the peak is about 19.0nm.In the XRD patterns of fresh Ni/TiO 2catalyst,diffraction peaks attributed to NiTiO 3phase can be detected (Fig.5A).Rao et al.[32]reported that NiTiO 3was formed whenNi/TiO 2catalyst was calcined above 500°C.Therefore the NiTiO 3phase in the present XRD patterns may be formed during the calcination.In our experiments,the color of Ni/TiO 2catalyst can become light yellow,which is the color of NiTiO 3[33].From both XRD patterns shown in Fig.5B,no diffraction peak of carbon can be found,indicating that the carbon deposition on the two methanation catalysts can be ignored.This is in accordance with the results of TG –DSC analysis.The diffraction peak at 2θ=44.56°is attributed to metallic Ni (111)[18].Metallic nickel exists in both catalysts,indicating that the active phase for CO methanation is metallic nickel.For the used Ni/SiC catalyst,the mean nickel particle size calculated from Ni (111)plane by Scherrer's equation [21]is about 21.6nm.The nickel particle size only has a slight increment during the reaction,suggesting that no serious sintering has occurred on the Ni/SiC pared with the fresh Ni/TiO 2catalyst,the crystallite size of used Ni/TiO 2increased signi ficantly (particle size from 24.2to 30.3nm and from 26.6to 35.9nm for rutile and anatase,respectively).The increase of particle size may be due to the production of hot spots during the CO methanation,which possibly make TiO 2crystallites sintered.In addition,the speci fic surface areas of Ni/TiO 2catalyst decreased from 32.1to 16.7m 2/g after reaction at 340°C for 100h.Ruckenstein et al.[34]reported that TiO x could1002003004005006007008009092949698100102104Ab aS a m p l e w e i g h t (%)temperature(o C)temperature(o C)a---15 wt.% Ni/SiC b---15 wt.% Ni/TiO 2BD S C /(m W /m g )Fig.4.TG –DSC pro files of used 15wt%Ni/SiC and 15wt.%Ni/TiO 2catalysts.AI n t e n s i t y (c p s )2 Theta (o )2 Theta (o )BI n t e n s i t y (c p s )Fig.5.XRD patterns of 15wt.%Ni/SiC and 15wt.%Ni/TiO 2catalysts before (A)and after (B)methanation reaction at 340°C for 100h.(●)NiTiO 3;(■)anatase;(▲)rutile;(★)SiC;(♦)NiO;(○)Ni.2296Y.Yu et al./Fuel Processing Technology 92(2011)2293–2298migrate onto the surface of metal nickel particles due to the strong interaction of support –metal.During the methanation reaction,the TiO 2may amalgamate with the reduced Ni due to the strong metal –support interaction.This is not favorable for CO absorption and decomposition on metal Ni.Therefore,the Ni/TiO 2catalyst shows a declining activity and stability in the methanation reaction.3.5.TEM characterization of Ni/SiC catalystsTEM images of fresh and used 15wt.%Ni/SiC catalyst are shown in Fig.6.From the two TEM images,it can be seen that the metal particles are well distributed on the support surface.From the image of fresh Ni/SiC catalyst (Fig.6A),the size of NiO particles ranges from 10to 25nm.In Fig.6B,the size of nickel particles in the used catalyst is about 10–30nm.These results are in accordance with those derived from XRD analysis.From both XRD and TEM results,15wt.%Ni/SiC catalyst shows better stability in the methanation reaction due to the excellent thermal conductivity and thermostability of the SiC support.4.ConclusionThe synthesis of methane from syngas was investigated over Ni/SiC catalysts which were prepared by impregnation method.From the present work,15wt.%Ni/SiC catalyst calcined at 550°C exhibits excel-lent catalytic activity for CO pared with Ni/TiO 2catalyst,the Ni/SiC catalyst exhibits higher activity and better stability in the CO methanation due to the excellent thermostability and high heat conductivity of the SiC support,which can ef ficiently avoid the sintering of nickel particles.AcknowledgmentsThe work was financially supported by NSFC (Ref.20973190),the in-house research project of SKLCC (Ref.SKLCC-2008BWZ010),and the National Basic Research Program (Ref.2011CB201405).References[1]J.Kopyscinski,T.J.Schildhauer,S.M.A.Biollaz,Production of synthetic natural gas(SNG)from coal and dry biomass —a technology review from 1950to 2009,Fuel 89(2010)1763–1783.[2]N.R.Udengaard,A.Olsen,C.Wix-Nielsen,Pittsburgh Coal Conf.,2006.[3]P.Sabatier,J.B.Senderens,New synthesis of methane,Académie des Sciences 134(1902)514–516.[4]M.A.Vannlce,R.L.Garten,Supported palladium catalysts for methanation,Industrial and Engineering Chemistry Product Research and Development 18(1979)186–191.[5]O.G őrke,P.Pfeifer,K.Schubert,Highly selective methanation by the use of amicrochannel reactor,Catalysis Today 110(2005)132–139.[6]P.Panagiotopoulou,D.I.Kondarides,X.E.Verykios,Selective methanation of COover supported noble metal catalysts:effects of the nature of the metallic phase on catalytic performance,Applied Catalysis A 344(2008)45–54.[7] A.L.Kustov,A.M.Frey,rsen,T.Johannessen,J.K.Nørskov,C.H.Christensen,CO methanation over supported bimetallic Ni –Fe catalysts:from computational studies towards catalyst optimization,Applied Catalysis A 320(2007)98–104.[8]P.Panagiotopoulou,D.I.Kondarides,X.E.Verykios,Selective methanation of COover supported Ru catalysts,Applied Catalysis B 88(2009)470–478.[9]R.A.Dagle,Y.Wang,G.G.Xia,J.J.Strohma,J.Holladay,D.R.Palo,Selective COmethanation catalysts for fuel processing applications,Applied Catalysis A 326(2007)213–218.[10]R.F.Wu,Y.Zhang,Y.Z.Wang,C.G.Gao,Y.X.Zhao,Effect of ZrO 2promoter on thecatalytic activity for CO methanation and adsorption performance of the Ni/SiO 2catalyst,Journal of Fuel Chemistry and Technology 37(2009)578–582.[11]S.Takenaka,T.Shimizu,K.Otsuka,Complete removal of carbon monoxide inhydrogen-rich gas stream through methanation over supported metal catalysts,International Journal of Hydrogen Energy 29(2004)1065–1073.[12]W.J.Shen,M.Okumura,Y.Matsumura1,M.Haruta,The in fluence of the supporton the activity and selectivity of Pd in CO hydrogenation,Applied Catalysis A 213(2001)225–232.[13]M.A.Vannice, C.C.Twu,S.H.Moon,SMSI effects on CO adsorption andhydrogenation on Pt catalysts,Journal of Catalysis 79(1983)70–80.[14]R.L.Chin,A.Elattar,W.E.Wallance,D.M.Hercules,ESCA studies of methanationcatalysts derived from intermetallic compounds,Journal of Physical Chemistry 84(1980)2895–2898.[15]K.H.Eisenlohr,F.W.Moeller,M.Dry,In fluence of certain reaction parameters onmethanation of coal gas to SNG,ACS Division of Fuel Chemistry 19(1974)1–9.[16]M.J.Ledoux,S.Hantzer,C.P.Huu,J.Guille,M.P.Desaneaux,New synthesis and usesof high-speci fic-surface SiC as a catalytic support that is chemically inert and has high thermal-resistance,Journal of Catalysis 114(1988)176–185.[17] D.L.Nguyen,P.Leroi,M.J.Ledoux,P.C.Huu,In fluence of the oxygen pretreatmenton the CO 2reforming of methane on Ni/β-SiC catalyst,Catalysis Today 141(2009)393–396.[18]W.Z.Sun,G.Q.Jin,X.Y.Guo,Partial oxidation of methane to syngas over Ni/SiCcatalysts,Catalysis Communications 6(2005)135–139.[19]Q.Wang,W.Z.Sun,G.Q.Jin,Y.Y.Wang,X.Y.Guo,Biomorphic SiC pellets as catalystsupport for partial oxidation of methane to syngas,Applied Catalysis B 79(2008)307–312.[20]G.Q.Jin,X.Y.Guo,Synthesis and characterization of mesoporous silicon carbide,Microporous and Mesoporous Materials 60(2003)207–212.[21]Y.H.Ni,F.Wang,H.J.Liu,Y.Y.Liang,G.Yin,J.M.Hong,X.Ma,Z.Xu,Fabrication andcharacterization of hollow cuprous sul fide (Cu 2−x S)microspheres by a simple template-free route,Inorganic Chemistry Communications 6(2003)1406–1408.[22]S.T.Zhou,X.L.Pan,X.H.Bao,Effect of rhodium particle size in Rh/SiO 2catalystprepared by microemulsion method on reaction performance of CO hydrogena-tion,Chinese Journal of Catalysis 27(2006)474–478.[23] A.E.Aksovlu,A.N.Akin,Z.I.Őnsan,D.L.Trimm,Structure/activity relationships incoprecipitated nickel –alumina catalysts using CO 2adsorption and methanation,Applied Catalysis A 145(1996)185–193.[24]R.E.Hayes,W.J.Thomas,K.E.Hayes,A study of the nickel-catalyzed methanationreaction,Journal of Catalysis 92(1985)312–326.[25]T.Morl,H.Masuda,H.Imal,Kinetics,isotope effects,and mechanism for thehydrogenation of carbon monoxide on supported nickel catalysts,Journal of Physical Chemistry 86(1982)2753–2760.[26] C.W.Hu,Y.Q.Chen,P.Li,H.Min,Y.Chen,A.M.Tian,On the interaction of CO andH 2with Ni-based catalyst,Journal of Molecular Catalysis (China)9(1995)435–444.[27]H.Arakawa,T.Fukushima,M.Ichikawa,K.Takeuchi,T.Matsuzaki,Y.Sugi,Highpressure in situ FT-IR study of CO hydrogenation over Rh/SiO 2catalyst,Chemistry Letters 1(1985)23–26.[28]R.P.Underwood, A.T.Bell,In fluence of particle size on carbon monoxidehydrogenation over silica-and lanthana-supported rhodium,Applied Catalysis 34(1987)289–310.100nm A 100nmBFig.6.TEM images of 15wt.%Ni/SiC catalysts before (A)and after (B)reaction at 340°C for 100h.2297Y.Yu et al./Fuel Processing Technology 92(2011)2293–2298[29] F.Haga,T.Nakajima,H.Miya,S.Mishima,Catalytic properties of supported cobaltcatalysts for steam reforming of ethanol,Catalysis Letters48(1997)223–227. [30]M.P.Andersson,F.Abild-Pedersen,I.N.Remediakis,T.Bligaard,G.Jones,J.Engbæk,O.Lytken,S.Horch,J.H.Nielsen,J.Sehested,J.R.R.Nielsen,J.K.Nørskov,I.Chorkendorff,Structure sensitivity of the methanation reaction:H2-induced CO dissociation on nickel surfaces,Journal of Catalysis255(2008)6–19.[31]J.Q.Zhu,X.X.Peng,L.Yao,J.Shen,D.M.Tong,C.W.Hu,The promoting effect of La,Mg,Co and Zn on the activity and stability of Ni/SiO2catalyst for CO2reforming of methane,International Journal of Hydrogen Energy36(2011)7094–7104.[32]G.Sankar, C.N.R.Rao,T.Rayment,Promotion of the metal–oxide supportinteraction in the Ni/TiO2catalyst—crucial role of the method of preparation, the structure of TiO2and the NiTiO3intermediate,Journal of Materials Chemistry 1(1991)299–300.[33]T.H.Wu,Q.G.Yan,H.L.Wan,Partial oxidation of methane to hydrogen and carbonmonoxide over a Ni/TiO2catalyst,Journal of Molecular Catalysis A:Chemical226 (2005)41–48.[34] E.Ruckenstein,Y.H.Hu,Role of support in CO2reforming of CH4to syngas over Nicatalysts,Journal of Catalysis162(1996)230–238.2298Y.Yu et al./Fuel Processing Technology92(2011)2293–2298。
应用荧光实时定量PCR方法检测重组慢病毒滴度及其感染效率(精品)
生命科学研究2009年慢病毒载体是目前应用最广泛的基因运载工具之一,在基因治疗研究和转基因动物的制备中已显示出其广阔的应用前景.慢病毒载体是一种反转录病毒载体,其中以人类免疫缺陷性病毒(HIV -1)载体研究最为深入.与传统的小鼠白血病病毒载体(MuLV )偏爱整合入基因5′端相比,慢病毒载体均匀分布于基因组内,从而降低了其激活原癌基因的几率[1~3].重组慢病毒载体既能感染分裂期细胞,也能感染非分裂期细胞[4].它可携带较大的外源基因(约8kb 左右)并稳定整合和表达[5],加之其诱发的宿主免疫反应相对较小[6],使得重组慢病毒载体具有较为广阔的应用应用荧光实时定量PCR 方法检测重组慢病毒滴度及其感染效率马海燕,方彧聃,张敬之*(上海交通大学医学院,上海市儿童医院上海市医学遗传研究所,中国上海200040)摘要:慢病毒载体已经广泛应用于动物模型中基因治疗的研究和转基因动物的制备,而准确地测定重组慢病毒的滴度和感染效率是其关键步骤.通过荧光实时定量PCR 的方法定量分析重组慢病毒的颗粒数以及病毒的活性滴度,并以GFP 报告基因的方法作为对照来验证定量PCR 方法的准确性.研究结果显示,应用荧光实时定量PCR 法与GFP 报告基因法测定得到的病毒活性滴度成正相关,而且前者可以更加准确地测定病毒滴度和病毒感染效率.关键词:慢病毒载体;荧光实时定量PCR ;病毒滴度;整合拷贝数;感染效率中图分类号:Q331文献标识码:A文章编号:1007-7847(2009)05-0394-05A Novel Method for the Determination of Recombinant LentiviralTiter and Infectivity by qRT -PCRMA Hai -yan ,FANG Yu -dan ,ZHANG Jing -zhi *(School of Medicine ,Shanghai Jiaotong University ,Shanghai Children ’s Hospital ,Shanghai Institute of Medical Genetics ,Shanghai 200040,China )收稿日期:2009-03-18;修回日期:2009-05-16基金项目:国家高技术研究发展计划项目(2007AA021206);国家自然科学基金资助项目(30870943);上海市自然科学基金资助项目(08ZR1412100)作者简介:马海燕(1983-),女,山东淄博人,硕士研究生,主要从事病毒载体在转基因动物制备中的应用研究;*通讯作者:张敬之(1959-),男,上海人,上海交通大学医学遗传研究所副教授,博士,主要从事分子病毒学研究,Tel :021-********,E -mail :********************.Abstract :Lentiviral vector is being widely used in the study of gene therapy in animal models and in generating transgenic animals.However ,determination of lentiviral particles and their infectivity is essential before their being used.Such a requirement can be accurately achieved by qRT -PCR.Refered by infectious units got from GFP reporter assay ,it showed a positive correlation between the two approaches.A reliable ,accurate and rapid method is therefore established for the determination of the recombinant lentiviral titer and the infectivity.Key words :lentiviral vector ;qRT -PCR ;viral titer ;integration copy number ;infectivity(Life Science Research ,2009,13(5):394~398)第13卷第5期生命科学研究Vol.13No.52009年10月Life Science Research Oct.2009第5期前景.无论何种目的使用重组慢病毒,都有必要准确地检测病毒滴度.目前,重组慢病毒滴度的检测方法有:依赖于报告基因的GFP荧光检测法、检测慢病毒外壳蛋白p24的抗原-抗体法(ELISA 法)和检测其逆转录酶活性的酶学法等.这些方法多存在耗时、费力、检测成本较高、病毒用量多、不适于非报告基因载体等缺点.所以,建立一种快速、简便、准确的慢病毒滴度检测方法,是非常有必要的.在此,我们介绍一种利用实时定量PCR测定重组慢病毒滴度的方法.该方法通过在载体的长末端重复序列区(LTR)设计定量引物,利用荧光实时定量PCR测定重组慢病毒中LTR拷贝数来测定病毒颗粒数和有效感染的病毒颗粒数.通过与GFP报告基因测定法的比较验证,证明该测定方法准确可靠.并且,通过慢病毒颗粒数与实际有活力病毒滴度的比较,可以计算得到重组慢病毒感染效率.多次重复实验证明,该方法具有快速、准确的优点,非常适用于非报告基因载体的病毒滴度及其感染效率的测定.1材料与方法1.1材料组成慢病毒载体的3个质粒FUGW(即含eGFP基因的转基因质粒),△8.9(编码结构和非结构蛋白基因质粒)和VSVG(外壳蛋白质粒)由美国Marine Medical Center Research Institute王征宇博士惠赠;293T细胞(人胚肾细胞)购自美国ATCC(American Type Culture Collection)细胞库;ProFection购自Promega公司;胎牛血清(FBS)、培养液和Hanks液及Salmon Sperm DNA 购自Gibco BRL;STE配方为10mmol/L Tris pH 7.6,1mmol/L EDTA pH8.0,0.1mol/L NaCl.1.2FUGW病毒的制备当293T细胞长至70%饱和度时,用磷酸钙法转染,按照Promega公司的ProFection Kit说明书操作,其中FUGW15μg,△8.910μg,VSVG7.5μg,转染6h后换完全培养液(含10% FBS的DMEM),并在37℃,5%CO2培养约60h.上述病毒培养上清液经离心、过滤后,50000g 超速离心1.5h后弃上清,在病毒沉淀上加少量Hanks液,获得病毒浓缩液,-80℃保存待用.1.3病毒RNA的提取取2μL病毒浓缩液进行DNase处理,体系中加入5μL10×DNase I Buffer、2μL DNase I (5U/uL,Takara Bio Inc,Shiga,Japan)、2μL RNase inhabitor(Takara Bio Inc.,Shiga,Japan),用DEPC水定容至50μL反应体系,37℃45 min.DNase处理后的混合液,加入350μL STE、20μL10%SDS和5μL蛋白酶K(20g/L,AMRESCO,Solon,OH),56℃15min水解.最后等体积酚、氯仿抽提,两倍体积无水乙醇沉淀,冻干后,20μL DEPC水溶解.1.4反转录反应病毒RNA在酚/氯仿抽提、无水乙醇沉淀前,需经过DNase I处理,以避免DNA污染.根据产品说明书,取1μg RNA、20pmol RT-PCR 下游引物(5′-GAGAGCTCCCAGGCTCAGATC-3′)、2μL5×RT Buffer、1μL MLV酶(Takara Bio Inc,Shiga,Japan)、水补足至10μL体系,37℃1h.1.5实时定量PCR分析病毒颗粒数为了测定制备的慢病毒的病毒颗粒数,应用实时定量PCR测定病毒LTR拷贝数.其中,引物和探针序列见表1.在反应体系中,引物900 nmol/L,探针250nmol/L,2.5μL10×Ex-Buffer,15μmol Mg2+,2.5μmol dNTP,1U ExTaqE,5μL样本,总反应体系为25μL体积.实时定量PCR仪(Corbett Life Science RG-3000,Sidney,Australia)上反应:95℃5min变性,95℃30s,59℃30s,40个循环,59℃520nm处检测荧光值.软件分析荧光检测数据.1.6不同剂量FUGW病毒感染293T细胞取病毒浓缩液,按10倍稀释法,取0.1、0.01、0.001μL病毒浓缩液(即用实时定量PCR 检测法,定量慢病毒颗粒数为:6.32×107、6.32×106、6.32×105),用含有8mg/L Polybrene促感染(Sigma-Aldrich,Inc,St.Louis,MO)且不含血清的培养液逐级稀释后,感染293T细胞(1.5×106/孔),37℃2h.然后,加入完全培养液培养细胞2d,表1实时定量PCR引物及探针序列Table1The sequences of primer and probe of Real-time PCRLTR-FLTR-PLTR-ProbePrimer Sequences5′-ACAGCCGCCTAGCATTTCAT-3′5′-GAGAGCTCCCAGGCTCAGATC-3′5′-ACATGGCCCGAGAGCTGCATCC-3′马海燕等:应用荧光实时定量PCR方法检测重组慢病毒滴度及其感染效率395生命科学研究2009年图1定量PCR 反应荧光强度曲线Fig.1Fluorescence intensity curve of Real -time PCR图2定量PCR 标准曲线Fig.2Standard curve of Real -time PCR至荧光显微镜下观测绿色荧光蛋白表达情况.1.7病毒感染细胞内DNA 的提取细胞经2d 培养后,用胰酶将细胞消化,收集入1.5mL EP tube 中,200g ,5min ,将细胞沉淀下来.加入200μL STE 、20μL 10%SDS 、10μL 蛋白酶K ,混匀后,37℃4h.加入等体积酚,振荡混匀,15000g ,离心12min ;吸取上清,加入等体积的氯仿,振荡混匀,15000g 离心6min ;吸取上清,加入1/10体积3mol/mL NaAc ,两倍体积的无水乙醇,-20℃沉淀1h 以上;混合液15000g ,4℃离心20min ;弃上清,沉淀风干,100μL TE 溶解.1.8实时定量PCR 测定重组载体整合拷贝数为了测定被感染的293T 细胞内重组载体的整合,用实时定量PCR 检测上述被抽提的基因组DNA 中LTR 的拷贝数.具体方法同1.5.2结果2.1实时定量PCR 检测病毒颗粒数本实验中,定量PCR 引物设计在LTR 区,由于一个慢病毒含有两个病毒基因拷贝,因此,在计算病毒颗粒数时,LTR 拷贝数除以2即为病毒颗粒数.应用实时定量PCR 检测到病毒LTR 拷贝数为1.26×1012/mL ,定量PCR 反应荧光强度曲线及标准曲线见图1、图2.通过计算,得到病毒颗粒数为6.32×1011/mL .此时计算得到的病毒颗粒数为所有收集到的病毒颗粒总数,既包括有感染效力的病毒,也包括无感染效力的病毒.为了测定制备得到的病毒实际滴度(即单位体积内有感染效力的病毒颗粒数),我们将不同剂量病毒感染细胞,分别用GFP 报告基因法和定量PCR 法测定病毒滴度.2.2实时定量PCR 检测病毒载体整合拷贝数,计算病毒滴度取病毒浓缩液,按照10倍稀释,分别取0.1、0.01、0.001μL 病毒浓缩液感染1.5×106293T 细胞,感染2d 后,应用实时定量PCR 检测不同病毒量感染的细胞DNA 中LTR 整合拷贝数,结果显示,0.1、0.01、0.001μL 病毒感染的细胞中外源基因整合的拷贝数分别为5.32×106、9.28×105、4.48×104.定量PCR 的系统参数为:R =0.99,R ∧2=0.99,Efficiency =1.01,各参数值表明实验检测的准确性和可信性.当一个病毒感染细胞并将外源基因整合入基因组后,由于其末端发生跳跃过程,使得每条DNA 单链上含有两个完整的LTR ,因此,在被整合的细胞基因组,一个慢病毒颗粒=LTR 拷贝数/4.通过计算,得到病毒滴度为(1.59±0.64)×1010IU /mL .2.3GFP 报告基因检测法测定病毒滴度同时将0.1、0.01、0.001μL 病毒浓缩液感染2d 后的细胞,置于荧光显微镜下观测.镜检结果显示,GFP 阳性细胞数逐级递减,0.1、0.01、0.001μL 病毒量感染的细胞中,GFP 阳性率分别为52%、6%、0.5%,呈现较好的倍比关系(图3).通过公式:病毒滴度=感染细胞数×GFP 阳性率×病毒稀释倍数÷病毒量,得出病毒滴度为(8.10±0.79)×109IU/mL .2.4GFP 报告基因检测法与定量PCR 检测法所得病毒滴度比较,验证定量PCR 检测法准确性通过比较GFP 报告基因检测法和实时定量510152025303510^-110^-210^-3N o r m f l u o r eCycle numberThreshold·····10^410^510^610^710^810^940302010R =0.99980R ^2=0.99960Efficiency=0.96M =0.293B =13.087Concentration (Copy number )T h r e s h o l d c y c l e396第5期注:病毒感染293T 细胞数为1.5×106.Notes :293T cells in each well are:1.5×106.图3逐级稀释的慢病毒感染293T 细胞后GFP 的表达情况(A )0.1μL 病毒感染细胞;(B )0.01μL 病毒感染细胞;(C )0.001μL 病毒感染细胞.Fig.3GFP expression in infected 293T cells after 10fold dilution (A )293T cells infected by 0.1μL virus ;(B )293T cells infected by 0.01μL virus ;(C )293T cells infected by 0.001μL virus.PCR 检测法(表2),可以看出,与我们预期结果一致,实时定量PCR 法检测结果与GFP 报告基因检测法检测结果成正相关.多次重复实验结果均表明,两者的检测结果成稳定的正相关性.而且,实时定量PCR 检测法不依赖GFP 蛋白正常表达,对整合入宿主基因组但不能正常表达的病毒仍然能够在其检测范围之内,因此,实时定量PCR 的检测结果更接近实际值,能够更加准确的检测病毒滴度.(A )(B )(C)表2GFP 报告基因检测法与定量PCR 检测法测得病毒滴度比较Table 2Comparison of lentivirus titer determined by GFP reporter assay and qRT -PCR approachDose of viral particles6.3×107 6.3×106 6.3×105GFP reporter assay Percentage of GFP +cells Infectious units qRT -PCR assayInfectious units52.0%7.8×1051.3×1066.0%9.0×1042.3×1050.5%7.5×1031.1×1042.5荧光实时定量PCR 法测定病毒实际感染效率通过计算公式:感染效率=有效感染病毒数/感染细胞总病毒颗粒数×100%,得到该实验中慢病毒的感染效率为:2.65±1.07%.3讨论慢病毒载体的研究,目前以HIV -1最为深入.慢病毒载体构建的基本原理是将HIV -1基因组中的基本骨架与编码其功能蛋白相分离,分别改建成载体质粒和表达包装蛋白的质粒,并将两种成分共转染入细胞,从中获得只有一次感染能力而没有复制能力的HIV -1载体假病毒[7],从而提高了其应用的安全性.近年来,越来越多的研究者利用慢病毒载体系统作为在动物模型研究基因治疗的导入系统,并取得良好的效果[8~10].与此同时,利用慢病毒载体介导制备转基因动物的研究也得到发展,慢病毒载体介导成功制备了转基因小鼠[11,12]、转基因猪[13]、转基因牛[14]等动物,为基因工程领域的研究奠定基础.由于慢病毒载体的基因转导效率主要取决于病毒滴度,这就使得慢病毒滴度及其感染效率的检测变得很重要.目前,通行的慢病毒滴度检测方法有:1)p24等抗原酶联检测法(p24ELISA 方法).其缺点是:商业化的ELISA 试剂盒往往太贵,约6000元人民币一盒.而且蛋白含量检测结果不能直接反映其拷贝数;2)使用报告基因系统,无法检测其真实颗粒数及不携带报告基因的假病毒滴度;3)检测逆转录酶活性,用量马海燕等:应用荧光实时定量PCR 方法检测重组慢病毒滴度及其感染效率397生命科学研究2009年大,操作复杂及准确性差.本文所阐述的通过实时定量PCR法测定LTR拷贝数来检测病毒滴度的方法,能在提高慢病毒滴度检测准确性的同时,缩短检测时间、减少检测成本.相比传统检测方法,实时定量PCR 检测法有以下特点:1)由于本检测方法中,实时定量PCR的检测引物设计在慢病毒载体的LTR区,因此检测不依赖于所携带的外源基因;2)传统的GFP报告基因检测方法依赖绿色荧光蛋白的表达,对于外源基因整合入宿主基因组中但由于基因沉默而未能表达GFP蛋白的细胞无法检测,致使滴度测定不能准确地反应病毒的感染效率;而实时定量PCR检测法不依赖GFP报告基因的功能表达,因此其准确程度更高;3)报告基因检测法,因其感染和表达效率随宿主细胞而异,而利用实时定量PCR方法,直接检测病毒的颗粒数和整合入宿主基因组内的外源基因的拷贝数,从而大大提高了其检测的准确性.目前,临床上及实验室所应用的定量PCR方法,通常是检测整合入宿主细胞的基因拷贝数,因此,是对有活力病毒滴度的测定.而本文所介绍的方法,是通过直接裂解病毒,利用荧光实时定量PCR检测总的病毒颗粒数,并结合传统的慢病毒活力滴度的检测方法,对病毒颗粒的感染效率进行检测.所以本方法更适于被应用于研究病毒制备、感染过程中各因素对病毒感染效率的影响.病毒浓缩和感染过程中,由于受超离的压力、反复冻融、受体细胞易感性、病毒自身半衰期等诸多因素影响,使得有效的病毒数要低于其总颗粒数.为了确定实验中病毒的用量,需要预测病毒的实际感染效率.利用本文所介绍的实时定量PCR方法,检测慢病毒颗粒数及有活性的病毒滴度,通过计算有活力的病毒颗粒和总病毒颗粒的比值,我们可以得到每次制备的病毒的感染效率.在我们的实验中,所得到的病毒在293T细胞的实际感染效率为4%左右.而且多次实验表明,反复冻融对病毒感染效率具有很大影响.病毒实际感染效率的测定,为我们在进行具体实验中确定病毒用量具有实际指导意义.经本实验室多次重复试验,结果均表明荧光实时定量PCR法是一种高效、准确、快速的检测重组慢病毒滴度及其感染效率的方法,为重组慢病毒载体的应用奠定了基础.致谢:感谢任兆瑞教授对本文的悉心指导.参考文献(References):[1]WU X,LI Y,CRISE B,et al.Transcription start regions inthe human genome are favored targets for MLV integration[J].Science,2003,300:1749-1751.[2]DEPALMA M,MONTINI E,SANTONIDESIO F R,et al.Promoter trapping reveals significant differences in integrationsite selection between MLV and HIV vectors in primaryhematopoietic cells[J].Blood,2005,105(6):2307-2315. [3]SCHRODER A R,SHINN P,CHEN H,et al.HIV-1integration in the human genome favors active genes and localhotspots[J].Cell,2002,110:521-529.[4]JAKOBSSON J,ERICSON C,JANSSON M,et al.Targetedtransgene expression in rat brain using lentiviral vectors[J].Neurosci Res,2003,73(6):876.[5]张敬之,郭歆冰,谢书阳,等.用慢病毒载体介导产生绿色荧光蛋白(GFP)转基因小鼠[J].自然科学进展(ZHANGJing-zhi,GUO Xin-bin,XIE Shu-yang,et al.Production oftransgenic mice carrying green fluorescence protein gene by alentiviral vector-mediated approach[J].Progress in NatureScience),2006,16(8):827-832.[6]STEWART S A,OYLOCHOOM D M,PALLISER D,et al.Lentivims-delivered stable gene silencing by RNAi in primarycells[J].RNA,2003,9(4):493-501.[7]刘茵.慢病毒载体在转基因动物研制中的应用[J].国际遗传学杂志(LIU Yin.Application of lentiviral vectors intransgenic animal development[J].Int J Genet),2007,30(5):374-377.[8]MAY C,RIVELLA S,CALLEGARI J,et al.Therapeutichaemoglobin synthesis in beta-thalassaemic mice expressinglentivirus-encoded human beta-globin[J].Nature,2000,406(6791):82-86.[9]HAN X D,LIN C,CHANG J,et al.Fetal gene therapy ofα-thalassemia in a mouse model[J].PNAS,2007,104(21):9007-9011.[10]LI W,XIE S Y,GUO X B,et al.A novel transgenic mousemodel produced from lentiviral germline integration for thestudy ofβ-thalassemia gene therapy[J].Haematologica,2008,93(3):357-362.[11]LOIS C,HONG E J,PEASE S,et al.Germline transmissionand tissuespecific expression of transgenes delivered bylentiviral vectors[J].Science,2002,295:868-872.[12]PFEIFER A,IKAWA M,DAYN Y,et al.Transgenesis bylentiviral vectors:lack of gene silencing in mammnlianembryonic stem cells and preimpalntation embryos[J].ProcNatl Acad Sci U S A,2002,99:2140-2145.[13]HOFMANN A,KESSLER B,EWERLING S,et al.Efficienttransgenesis in farm animals by lentiviral emtovora vectors[J].EMBO Reports,2003,4:1054-1060.[14]HOFMANN A,ZAKHARTCHENKO V,WEPPERT M,et al.Generation of transgenic cattle by lentiviral gene transfer intooocytes[J].Biol Reprod,2004,71:405-409.398。
关于中国天眼的英文作文
关于中国天眼的英文作文英文回答:The Five-hundred-meter Aperture Spherical Telescope (FAST), also known as China's "Eye of the Sky," is a colossal astronomical marvel that has revolutionized the study of the cosmos. Situated in a remote karst depression in Pingtang County, Guizhou Province, FAST is the world's largest and most sensitive radio telescope, surpassing the Arecibo Observatory in Puerto Rico.With a massive dish measuring an impressive 500 meters in diameter, FAST boasts an enormous collecting area that gives it unparalleled sensitivity and resolving power. Its design is based on a novel concept known as the "active surface," where the entire dish surface is adjustable, enabling it to focus on specific regions of the sky with high precision.FAST's construction, spanning over a decade, was atestament to China's technological prowess and scientific ambitions. The telescope began scientific operations in September 2016 and has since made numerous groundbreaking discoveries. Among its most notable contributions are the detection of pulsars, the study of interstellar gas, and the investigation of extragalactic objects.One of FAST's most significant achievements is its discovery of an enormous number of millisecond pulsars, rapidly rotating neutron stars that emit precise pulses of radio waves. These pulsars serve as invaluable probes for studying the evolution of binary systems, testing theories of gravity, and exploring the enigmatic nature of dark matter.FAST has also played a crucial role in mapping the distribution of interstellar gas, the raw material from which stars form. By observing the faint hydrogen radiation emitted by these gas clouds, astronomers have gained insights into the formation and evolution of galaxies, including our own Milky Way.Moreover, FAST has extended our astronomical reach beyond our galaxy, enabling the detection and characterization of extragalactic objects. Its sharp resolution has allowed astronomers to probe the structure and dynamics of distant galaxies, unveil the nature ofblack holes, and search for signs of extraterrestrial life.The scientific community worldwide has embraced FAST as a valuable asset, providing access to this cutting-edge instrument through open calls for observing proposals. Researchers from various countries have utilized FAST's capabilities to pursue transformative research projects, leading to advancements in our understanding of the universe.中文回答:中国天眼又称“天眼”,坐落在贵州平塘县的一个喀斯特洼地,是世界上最大、最灵敏的射电望远镜,超过了波多黎各的阿雷西博天文台。
计算机网络(第四版)课后习题(英文)+习题答案(中英文)
ANDREW S. TANENBAUM 秒,约533 msec.----- COMPUTER NETWORKS FOURTH EDITION PROBLEM SOLUTIONS 8. A collection of five routers is to be conn ected in a poi nt-to-poi nt sub net.Collected and Modified By Yan Zhe nXing, Mail To: Betwee n each pair of routers, the desig ners may put a high-speed line, aClassify: E aEasy, M ^Middle, H Hard , DaDeleteGree n: Importa nt Red: Master Blue: VI Others:Know Grey:—Unnecessary ----------------------------------------------------------------------------------------------ML V Chapter 1 In troductio nProblems2. An alter native to a LAN is simply a big timeshari ng system with termi nals forall users. Give two adva ntages of a clie nt-server system using a LAN.(M)使用局域网模型可以容易地增加节点。
如果局域网只是一条长的电缆,且不会因个别的失效而崩溃(例如采用镜像服务-------------------------------------------器)的情况下,使用局域网模型会更便宜。
序列密码发展报告(X年中国密码学学术会议)
代数攻击不仅适用于序列密码,早在 1995 年,代数攻击就 成功用于分析多变元的公钥密码体制。
代数攻击的出现使得求解超定方程组的算法成为密码分析 者关注的焦点问题之一,促进了有限域上解多变元方程组理论 的发展。
(2)带进位反馈移位寄存器序列
研究了 FCSR 的记忆序列。证明了 l-序列的记忆序列的周期 达到 l-序列自身的周期, 并且其元素分布具有半周期互补性质
T. Tian and W.F. Qi, Period and complementarity properties of FCSR memory sequences, IEEE Trans. Inform. Theory, 2007, 53(8): 2966-2970.
X.Y. Zhu and W.F. Qi, On the distinctness of modular reductions of maximal length sequences modulo odd prime powers, Mathematics of Computation, 2008, 77: 1623-1637.
X.Y. Zhu and W.F. Qi, Further result of compressing maps on primitive sequences modulo odd prime powers, IEEE Trans. Inform. Theory, August, 2007, 53(8): 2985-2990.
(2)序列密码分析态势
• 相关攻击
相关攻击源于 1985 年瑞士学者 T. Siegenthaler 针对组合生 成器提出的“分别征服”攻击。
人脸识别技术论文
人脸识别技术论文人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术。
下面是店铺为大家整理的人脸识别技术论文,希望你们喜欢。
人脸识别技术论文篇一人脸识别技术综述摘要:文章首先对人脸识别技术进行了介绍,其次回顾了人脸识别研究的发展历程及识别方法的基本分类,然后对当前主流的人脸识别方法展开了详细的论述,最后提出了人脸识别技术面临的问题及研究方向。
关键词:人脸识别;特征脸;线形判别分析;局部二值模式中图分类号:TP391Survey of face recognition technologyHe Chun(Education and Information Technology Center, China West Normal University, Nanchong Sichuan 637002, China) Abstract:This paper introduces technology of face recognition firstly, and reviews the development process and the basic classification method of face recognition. After that,the paper discusses the current methods of face recognition in detail, therefore proposes the existing problems in the research of recognition faces and future’s research direction.Key words:face recognition; Eigenface; linear discrimination analysis; LBP1 人脸识别技术简介人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术[1]。
国家公派出国留学人员学习研修情况总结常祖领个人基本情况常祖领
国家公派出国留学人员学习/研修情况总结常祖领个人基本情况:常祖领,男,1976年12月21日出生,郑州大学数学与统计学院副教授,经国家留学基金委员会批准,被录取为2014年青年骨干教师出国研修项目第一批出国留学人员,录取文号为:留金发[2014]3033号,学号为:201407045021。
国家留学基金资助本人到新加坡南洋理工大学(Nanyang Technological University, Singapore),以访问学者身份留学,留学期限12个月。
我于2015年3月15日来到新加坡。
在新加坡南洋理工大学物理与数学科学学院数学系(Division of Mathematical Sciences, School of Physical and Mathematical Sciences)进行访问,合作导师为王华雄副教授。
主要研究专业是应用数学,方向是密码学。
报到后,我很快就适应了本地的环境并开始了研究工作。
现把一年中进行的工作以及得到的结果总结汇报如下。
1、积极参加各种学术活动。
先后听过新加坡南洋理工大学本科生和研究生的多门课程,了解这所学校的教学方法和特色,与国内学校的授课情况进行比对,发现在教学方面有很多可改进的地方。
回国后将对以后的教学进行改进。
还参加合作导师团队每周一次的“Group meeting”,了解本专业的研究方向和进展。
积极参加院系组织的各种学术活动,例如2015年的ASKWorkshop(5th Asian Workshop on Symmetric Key Cryptography),还有NTU组织的诺贝尔奖获得者们的报告,以及各种学术讲座和报告,开阔自己的学术视野,开拓新的研究方向。
利用NTU 图书馆丰富的本专业的图书资料,下载和阅读了大量专业书籍和论文,为自己的科研工作打好基础。
2、与新加坡南洋理工大学的老师以及博士进行合作,增加自己的学术水平和科研能力。
在此期间阅读了很多最新的关于密码学方面的参考文献,特别是关于非线性反馈移位寄存器序列的文献,了解了一类特殊的非线性序列:de Bruijn序列,并对其进行了深入研究。
国外期刊英文论文
Influence of Deformation
Li CL, Chen Mater. Sci. & 2002, 325: SCI a
14 Temperature on Shape Memory
DJ, Jin ZH Eng. A
375-379
EI
Effect of Fe-Mn-Si-Cr-Ni Alloy
Wang TJ
Comparison between fatigue
Qiao GJ,
Int. J. Fatigue 2002, 24(5): SCI a
17
behavior of some ceramics: a new concept of intrinsic stress-corrosion
Wang HJ, Jin ZH
Ding HF, Jin
258-264
EI
ZH
The interfacial stability of the
Tang WM,
Mater. Chem. 2002, 77:
SCI a
21 coated-SiC/Fe couple
Zheng ZX,
Phys.
Ding HF, Jin
236-241
EI
ZH
31
Unlubricated wear of Si/SiC and its composite with nickel Si/SiC-Ni
Sang KZ, Jin ZH
Tribology Int.
2001, 34(5): SCI a
315 -319
EI
Effects of crystalline morphology Xu T, Yu J, Jin Mater.
HI-TAIL-PCR
the primary TAIL-PCR
• Primer: AC1
RB-1a:ACGATGGACTCCAGTCCGGCCTGTTGCCGGTCTTGCGATGATTATCA
Table 1 Cycle settings used for TAIL-PCR
1. TAIL-PCR
1.2 Advantage & disadvantage
➢Advantage:
✓Simple, time-saving ✓Low cost ✓High specificity and high sensitivity
3.1 hiTAIL-PCR for amplification of unknown flanking sequences
Figure 2. Amplification of T-DNA flanking sequences from transgenic rice plants by high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). (A) Pre-amplification of a transgenic line (I-1) using RB-0a combined with LAD1-1 (lane 1), LAD1-2 (lane 2) and LAD1-4 (lane 3), respectively. (B) Primary TAIL-PCRs of I-1 with RB-1a (1a) or RB-1ac (1ac), showing the effect of using RB-1a on suppressing the amplification of smaller target products. The LAD primers for the pre-amplification are indicated. (C) Analysis of the primary and secondary TAIL-PCR products obtained from the transgenic lines using RB-1b (1b) and RB-2b (2b) for the reactions, respectively. The corresponding primary and secondary products show the expected differential shift (74 bp). (D) hiTAIL-PCRs using pooled LAD primers in the pre-amplification reactions.
特定辐射源的识别
A nonlinear dynamics method for signal identificationT. L. CarrollCitation: Chaos 17, 023109 (2007); doi: 10.1063/1.2722870View online: /10.1063/1.2722870View Table of Contents: /resource/1/CHAOEH/v17/i2Published by the American Institute of Physics.Related ArticlesExperimental verification of photon angular momentum and vorticity with radio techniquesAppl. Phys. Lett. 99, 204102 (2011)A new low-cost 10 ns pulsed Ka-band radarRev. Sci. Instrum. 82, 074706 (2011)A new technique for the characterization of chaff elementsRev. Sci. Instrum. 82, 074702 (2011)Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermographyAppl. Phys. Lett. 98, 163706 (2011)Microcontroller-based binary integrator for millimeter-wave radar experimentsRev. Sci. Instrum. 81, 054704 (2010)Additional information on ChaosJournal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsA nonlinear dynamics method for signal identificationT.L.Carroll a͒U.S.Naval Research Lab,Washington,D.C.20375͑Received22February2007;accepted15March2007;published online9May2007͒When a radio frequency signal is radiated by a transmitter,the properties of the transmitter itself affect the properties of the signal.These transmitter-induced changes are known as unintentional modulation,to differentiate them from intentional modulation used to add information to the signal.The unintentional modulation can be used to identify which transmitter produced a signal.This paper shows how phase space analysis based on nonlinear dynamics ideas can be used to determine which of several amplifiers produced a signal.©2007American Institute of Physics.͓DOI:10.1063/1.2722870͔Often in the military,it is useful to know how many re-sources,such as radars,that an adversary has.Each ra-dar may be tagged based on a signature derived from its signal.In order to extract these signatures,there is afield known as specific emitter identification.Traditionally, specific emitter identification has depended on using lin-ear signal processing to extract signatures from the tran-sient parts of pulsed radar signals.I take a different ap-proach in this paper;I consider the power amplifier in the radar transmitter to be a driven nonlinear system, and then apply methods from nonlinear dynamics to ex-tract a signature based on the different nonlinearities in the different amplifiers.Because traditional analysis has considered the transient parts of signals,I consider non-transient signals in this work so that the techniques stud-ied here will be complementary to traditional analysis.I.INTRODUCTIONThefield of nonlinear dynamics has led to new tech-niques for analyzing signals,and has seen existing tech-niques͑singular value decomposition,for example͒applied in new ways.1The study of chaos has led to signal analysis methods that do not depend on linear techniques such as Fourier transforms.Some of these new approaches to analyz-ing signals that were developed with chaos in mind might also be useful for existing signal analysis problems where linear analysis provides only limited information.In this pa-per,phase space analysis methods are applied to the problem of specific emitter identification,in which a radar transmitter is uniquely identified based on the signal that it transmits. II.PHASE SPACE ANALYSISMany common analysis methods in nonlinear dynamics begin by reconstructing the phase space trajectory of an ex-perimental system by embedding a scalar time series signal from the system in a phase space.2,3Given a signal s͑t͒,a vector w͑t͒=͑s͑t͒,s͑t+͒,s͑t+2͒,...͒is constructed.There are several methods for determining the values of the time delaysand the phase space dimension D required so that the series of vectors w͑t͒forms an accurate representation,or an embedding,of the phase space trajectory of the system that generated the signal s͑t͒.4This delay embedding method is very general,and does not depend on the system that gen-erated s͑t͒being linear or nonlinear.III.SPECIFIC EMITTER IDENTIFICATIONThe problem of specific emitter identification͑SEI͒was chosen because it may be an easy application for nonlinear dynamics methods.The particular SEI application consid-ered in this paper is that an airplane is being illuminated by a radar signal,and the pilot wants to identify the particular radar transmitter that is sending the signal.Because of the nature of radar,the signal to noise ratio for the radar signal that the pilot sees will be large.A radar signal has to travel a distance R from the transmitter to the target,be scattered by the target,and return to the transmitter.The power of the scattered radar signal measured at the receiver is decreased by a factor of1/R4from the transmitted signal,so the am-plitude of the radar signal at the target͑the airplane͒must be large compared to the background noise to insure that a large enough signal is scattered back to the transmitter to allow for detection.The radar transmitter uses a power amplifier to create this large signal,and the power amplifier is normally run at as high a power as practical,so the amplifier is usually operated in a range where its nonlinear properties will affect the signal.Radar signals are usually sent as pulses,so radar ampli-fiers are normally pulsed on and mon SEI tech-niques use linear signal analysis to identify unique transients generated by pulsing the amplifier.5–7I would like to concen-trate on applications where linear methods are not sufficient, so in this paper,I will analyze continuous signals that are not pulsed.For a pulsed signal,this would involve analyzing the middle part of the pulse,where no transients are present. Linear signal analysis is not currently used to analyze the nontransient part of the pulse.a͒Electronic mail:Thomas.L.Carroll@CHAOS17,023109͑2007͒1054-1500/2007/17͑2͒/023109/7/$23.00©2007American Institute of Physics17,023109-1IV.ANALYSIS METHODAmplifiers which depend on semiconductors are inher-ently nonlinear,so all such amplifiers contain unavoidable nonlinearities.The algorithm developed here depends on treating the amplifier as a driven nonlinear dynamical sys-tem.Two identical dynamical systems,driven by the same signal and sampled at the same point in phase space,should have the same derivatives.The idea that derivatives mea-sured at the same point in phase space should be identical for a deterministic dynamical system was previously used to de-tect determinism in a single dynamical system.8In the present paper,it is assumed that the two signals come from deterministic dynamical systems.The algorithm in this pa-per,called the phase space difference algorithm,involvesembedding two signals in phase space,measuring the deriva-tives of signals at the same point in the phase space,and taking the difference.The concept of comparing derivatives at the same point in phase space is essentially the same as the idea of cross-prediction,which was used to determine if a time series was stationary,9but the execution of the idea in this paper is different.A similar method for comparing time series from the same dynamical system compared the prob-ability distributions in a D-dimensional phase space to deter-mine if a dynamical system was stationary.10The algorithm in this paper does depend on the two sig-nals staying close enough to each other in the phase space so that the derivative difference estimates are accurate,so in this paper,the algorithm will only be applied to systems driven with the same type of driving signal,i.e.,both ampli-fiers are driven with a pure sine wave,or both are driven with a frequency modulated signal.Thefirst step in the algorithm is to obtain output signals from a known set of amplifiers,to be used as reference sig-nals r␣͑t͒,where the subscript␣indicates the particular am-plifier.Each of the digitized r␣͑t͒signals is embedded in aphase space.An embedded point from the reference signal r␣͑t͒is designated v i=r␣͑i+1,i+2,...,i+d͒,where the subscript␣has been dropped from v i to avoid overly clut-tered notation.In this paper,it will be understood that v i comes from one of the r␣͑t͒time series.The next step is to measure a signal u͑t͒from an un-known amplifier.The unknown signal u͑t͒is embedded with the same embedding parameters as the reference signals.In the simplest form of the phase space difference algorithm,a search would be made for embedded points v i from the ref-erence signal that were near u j from the unknown signal.The time derivative u j+1−u j could then be compared to the time derivative of the reference signal at the same point in phase space,v i+1−v i,to get a phase space difference.In some situ-ations,however,this approach can lead to large errors.In one example,used in this paper,a frequency modulated sine wave was randomly switched between two different frequen-cies at the zero phase of the sine.Sometimes the sine wave switched from one frequency to the other,but sometimes the frequencies before and after switching were the same.This switching leads to two different values for the derivative of the sine wave at its0phase.If the point v i is at the point where the frequency switches,then nearby neighboring points may have two different values for the derivative v i+1−v i,and the derivative of the unknown signal u j+1−u j may also take on two different values.The possibility of different derivatives leads to large errors in the phase space difference statistic at these switching points.Figure1shows a sche-matic plot of a point in phase space where such an error can occur.To avoid errors at switching points,the point͑u j,u j+1͒from the unknown signal is used as an index point.The reference signal is then searched for a single point of the form͑v i,v i+1͒on the reference signal that is the closest such point to the index point.This amounts to searching the ref-erence signal for the derivative that is closest to a derivative on the unknown signal.The absolute value of the difference between derivatives͑v i+1−v i͒−͑u j+1−u j͒is calculated and averaged over the unknown signal to get the average phase space difference͗␦͘.All the example signals in this paper are based on sine waves,so only one-dimensional embeddings are used.While a sine wave requires two dimensions for an embedding,if only a small region of phase space is considered at any one time,the sine wave appears to be close to one dimension for a small enough region.The algorithm as applied in this paper may be summarized as follows:first,obtain reference signals from known amplifiers.Several signals obtained at different times from the same amplifier may be combined to create more reference points.Next,record a signal from an un-known amplifier.Pick an index point͑u j,u j+1͒on the un-known signal,and search for the closest pair of points ͑v i,v i+1͒on the reference signal.This procedure is essen-tially the same as searching for the closest strand.11Calculate the difference in derivatives␦=͉͑v i+1−v i͒−͑u j+1−u j͉͒and average over the attractor to get͗␦͘.plications caused by real dataReal data adds an additional complication to the calcu-lation of the phase space statistic͗␦͘.When different signals are digitized at different times,they may not be phase coher-ent with each other;that is,the digitized points may come at different phases of the waveform.As a result,when the sig-nals are embedded,the nearest reference neighbor͑v i,v i+1͒to a point͑u j,u j+1͒from the unknown signal may not be close,so the resulting derivative estimates will be takenat FIG.1.Ambiguous point in phase space.Points v i or v k may be the nearest neighbor of u j,but the derivative differences͑v i+1−v i͒−͑u j+1−u j͒or͑v k+1−v k͒−͑u j+1−u j͒will be very different.023109-2Thomas Carroll Chaos17,023109͑2007͒points that are not close in phase space,resulting in an error.A schematic of this situation is shown in Fig.2.In order to get a better estimate of the derivative,a line is drawn between v i and v i +1.The point at which this line comes closest to the unknown point u j is designated z j ,and is used to replace v i .In some cases,z j may be between v i −1and v i .The next point,z j +1,is found by searching for the nearest neighbor of ͑u j +1,u j +2͒and repeating the procedure.It was observed from the data that the difference be-tween derivatives was roughly proportional to the distance between ͑u j ,u j +1͒and ͑z j ,z j +1͒,meaning that the derivative difference had two parts;one part caused by the actual dif-ference between derivatives at the same location in phase space,and one part which caused the measured difference to become larger when the two points were separated by some distance in the phase space.In order to correct for the second part,the derivative difference is divided by the distance be-tween the phase space points at which the derivatives are measured,yielding the normalized phase space difference statistic⌬=͚k =1d͉͑z j +1k −z j k ͒−͑u j +1k −u j k͉͒ͱ͚k =1d͓͑z j +1k −u j +1k ͒2+͑z j k −u j k ͒2͔͑1͒where the superscript k indicates the k th component.The statistic ⌬is averaged over the entire unknown signal to produce the average phase space difference ͗⌬͘.The numera-tor of Eq.͑1͒is a difference between two derivatives,each of which has a sign,so the linear difference was used and ab-solute value was taken before averaging.The difference could also be squared before averaging;a similar result would be expected.As a final correction,the absolute amplitude of the un-known signal u ͑t ͒is not known,so both the unknown signal and the reference signal v ͑t ͒are normalized to have rms values of 1.The object of the normalization is to make sure that the unknown signal and the reference signal are close together in phase space when they are embedded.It is pos-sible that the amplifier that produced u ͑t ͒was driven with avery different amplitude signal than the amplifier that pro-duced v ͑t ͒,so it may be that u ͑t ͒and v ͑t ͒should not actually be close in phase space,and the statistic ͗⌬͘will be in error.The size of this error will depend on the particular amplifier nonlinearity.For now,only signals that are truly close in phase space will be considered.B.The algorithmSummarizing the entire algorithm:͑1͒Accumulate signals from several amplifiers known to be different to serve as reference signals.Normalize the sig-nals to have a rms amplitude of 1.͑2͒Record an unknown signal u ͑t ͒and normalize so that u ͑t ͒has a rms amplitude of 1.For each reference signal v ͑t ͒.͑3͒Embed both the unknown signal u ͑t ͒and the refer-ence signal v ͑t ͒in phase spaces with identical dimensions and delays.The proper dimension and delay may be deter-mined by known methods.1,4͑4͒From the embedded unknown vector u j ,create pairs of points ͑u j ,u j +1͒and search the reference signal for the closest pair ͑v i ,v i +1͒.In this work,a “slice”search was used,12but other search algorithms could also work.͑5͒Correct for phase errors in sampling:Calculate the equations for the line from ͑v i −1,v i ͒to ͑v i ,v i +1͒,and the line from ͑v i ,v i +1͒to ͑v i +1,v i +2͒.For an embedding dimension D ,there will be D lines,of the form y l k =m l k v k +b l k,where the subscript l =1refers to the line from ͑v i −1,v i ͒to ͑v i ,v i +1͒,and l =2refers to the line from ͑v i ,v i +1͒to ͑v i +1,v i +2͒.The superscript k refers to the particular dimension.͑6͒Find the closest point on the lines y 1k or y 2kto thepoint ͑u j ,u j +1͒from the relation d l k =͉͑m l k u j k −u j +1k +b l k͉͒/ͱ͑m l ͒2+1,where d l k is the distance.For a phase space ofdimension D Ͼ1,the distances for the different dimensions are added together for a total distance d l .͑7͒For whichever line ͑l =1or l =2͒gives the smaller distance d l ,find the line through ͑u j ,u j +1͒that is perpendicu-lar to the line l =1or l =2.The slope of this line is m p k =−1/m lk .Knowing this line,find the point z j where the per-pendicular intercepts the l =1or l =2line.Store this point z j ,increment the index j ,and return to step ͑5͒.͑8͒Calculate the phase space difference statistic ⌬from Eq.͑1͒,and average over the unknown signal to get ͗⌬͘.V.NUMERICAL EXAMPLEA simple numerical example is first used to illustrate the phase space difference method.The amplifier model is de-scribed by͑t ͒=sin ͑t ͒,dx ␣dt=␥␣͑g ͑͒−x ␣͒,͑2͒dy␣dt =␥␣ͩdx i dt −y ␣ͪ,g ͑x ͒=x +␣x 3.FIG.2.For real data,the unknown signal u ͑t ͒may not be sampled at the same phase as the reference signal v ͑t ͒,so that the distance between nearest neighbors u j and v i may be large.To improve on the derivative estimate,the interpolated point z j is used instead of u j .023109-3NLD for signal ID Chaos 17,023109͑2007͒Equation ͑2͒is a model for a bandpass filter driven by a nonlinear function ͓g ͑x ͔͒of a sinusoidal signal.The param-eter ␣controls the size of the nonlinearity,while ␥␣sets the time constant for the bandpass filter.In order to model two different amplifiers,there are two different versions of Eq.͑2͒,with different parameters ␥␣and ␣.The frequency is fixed to produce 20points/cycle of the sine wave.First,two different linear amplifiers are modeled,so 1and 2=0.Figure 3shows plots of the averaged phase space difference ͗␦͘for ␥1=1and different values of ␥2͑solid line ͒.The signal from amplifier 1was used as the reference signal,with the amplifier 2signal as the unknown.There is some variation in the phase space statistic ͗␦͘when both amplifiers are linear,but the variation is small,indicating that the statistic is not very sensitive to differences in linear amplifiers.The statistic ͗␦͘is much more sensitive to differences in nonlinear amplifiers.Figure 3also shows the value of the statistic when the nonlinearity parameters 1=2=0.1,so that both simulated amplifiers are nonlinear ͑dashed line ͒.The statistic ͗␦͘now varies by an amount that is roughly propor-tional to the difference between the two simulated amplifiers.For the next test,the two time constants ␥1and ␥2were set equal to 1.0,and the nonlinear parameter 1=0,and 2was varied.Figure 4shows that the statistic ͗␦͘is sensitive to am-plifiers that have the same time constants but different non-linearities.VI.EXPERIMENTSFor an experimental test of the phase space statistic,3OP-07operational amplifiers were driven with a common signal.The three amplifiers were nominally identical,butbecause of unavoidable variations in the semiconductors,in practice they were well matched but not identical.Figure 5is a schematic of the experiment.The amplifiers were all set to have a gain of −1,although there was some variation due to the 1%tolerance of the resistors.For experimental tests involving an unmodulated sine wave signal,the three amplifiers were driven with a sine wave with a 1V amplitude and a frequency of 25kHz.The bandwidth of these amplifiers for unity gain is 1MHz,so the amplifiers were not being driven out of their normal range of operation.Figure 6shows that only weak nonlinearity was present for these driving parameters.Figure 6shows that the sine wave signal amplified by amplifier A does contain some small harmonics at 50,75,and 100kHz,indicating weak nonlinearity.The power spec-trum does show other sources of interference that are larger in amplitude than the harmonics,so the nonlinear effects from this amplifier are not large.It will be shown below that this nonlinearity is still large enough to allow identification of the amplifiers.Figure 7shows the results of measurements of the aver-age of the phase space difference ͗⌬͘for digitizedsineFIG.3.͑Solid line ͒Phase space statistic ͗␦͘as a function of time constant ␥2when both simulated amplifiers are linear.͑Dashed line ͒Phase space statistic ͗␦͘as a function of time constant ␥2when both simulated amplifiers contain a cubicnonlinearity.FIG.4.Phase space statistic ͗␦͘as a function of nonlinear parameter 2when 1=0.1and ␥1=␥2=1.0for the simulatedamplifiers.FIG.5.Schematic of the experiment.The amplifiers were all nominally identical OP-07operational amplifiers,driven by a common signal.The resistors R were all 1k ⍀±1%.FIG.6.Power spectrum of a 25kHz sine wave signal with an amplitude of 1V amplified by amplifier A.The harmonics at 50,75,and 100kHz indi-cate the presence of weak nonlinearity in the amplifier,while the other peaks in the power spectrum are caused by other interference sources.023109-4Thomas Carroll Chaos 17,023109͑2007͒waves amplified by amplifiers A,B,or C.The reference signal used to produce Fig.7was a 400000point signal from amplifier A.The unknown signal was a different signal from amplifier A,or a signal from amplifier B or C.In order to get good statistics on how well the phase space difference statistic ͗⌬͘differentiated between different amplifiers,a time series of 100000points from the unknown amplifier was used.The phase space difference statistic was computed for each point in this time series,and ͗⌬͘was computed as a running average of the previous 500points.All calculated values for ͗⌬͘were accumulated into a histogram.The his-togram shows the probability of measuring a particular value of ͗⌬͘for a 500point signal from the unknown amplifier.500points was about 25cycles of the sine wave.Figure 7shows that the unknown signal gives smaller values of ͗⌬͘when compared to a reference signal from amplifier A ͑solid line ͒,then when compared to reference signals from amplifiers B or C ͑dashed and dotted lines ͒,the unknown is correctly identified as coming from A.The over-lap between the histogram for A and the other histograms is very small,indicating that there is a very low probability of misidentifying the amplifier based on these signals.VII.FM SIGNALSBecause all the signals in the previous section were simple sine waves,one could probably distinguish which amplifier each signal came from by taking a simple linear difference between the unknown signal and each reference signal.In this section,sine waves with a random frequency modulation are considered.Each signal has a different modu-lation,so a simple linear difference will not reveal the origin of the signal.To generate the FM ͑frequency modulated ͒signals,a sine wave was randomly switched between frequencies of 22.5and 27.5kHz with equal probabilities.The average switching time was 2cycles.As before,amplifiers A,B,or C were driven with FM signals with an amplitude of 1V,and a 400000point time series from each amplifier was stored to be used as a reference signal.A different FM signal from amplifier A was used as the unknown signal.Figure 8shows histograms of the statistic ͗⌬͘from the unknown signal when compared to each of the reference signals.In Fig.8,there is some overlap between the histogram when the reference comes from A ͑solid line ͒and when the reference comes from B ͑dashed line ͒,so there is some prob-ability of falsely identifying which amplifier generated the unknown signal.The histogram when the reference signal comes from C does not overlap with the histogram for A,so there is very little probability of misidentifying the unknown signal as coming from amplifier rger amplitude signalsWhen the amplifiers are driven with larger signals,the effects of their inherent nonlinearities should be more pro-nounced,which may make it easier to identify which ampli-fier an unknown signal came from.Figure 9is the power spectrum of a 25kHz sine wave with an amplitude of 2V amplified by amplifier A.The harmonics of the 2.0V sine wave in Fig.9are larger than the harmonics of the 1.0V sine wave in Fig.6by 20–30dB,indicating that the amplifier nonlinearities have a larger effect on the larger signal.Figure 10shows histograms of the phase space statistic ͗⌬͘for unmodulated sine waves with an amplitude of 2.0V.The statistic worked well for sine waves of 1.0V amplitude ͑Fig.7͒,so it is not surprising that amplifier A is easily identified as the source of the unknown signal for these larger sine waves.The phase space statistic ͗⌬͘could misidentify which amplifier had generated a 1.0V random FM signal,as seen in Fig.8,but this possibility is less likely when theamplitudeFIG.7.Experimental histograms of the phase space difference ͗⌬͘for am-plifiers driven by unmodulated sine waves with an amplitude of 1.0V.p ͑͗⌬͒͘is the probability of measuring a particular value of ͗⌬͘for a 500point ͑25cycle ͒signal from the unknown amplifier.The unknown signal u ͑t ͒came from amplifier A.The solid line is the histogram when the refer-ence signal comes from amplifier A,the dotted line is for a reference from B,and the dashed line is for a reference fromC.FIG.8.Experimental histograms of the phase space difference ͗⌬͘for am-plifiers driven by randomly frequency modulated sine waves with an ampli-tude of 1.0V.p ͑͗⌬͒͘is the probability of measuring a particular value of ͗⌬͘for a 500point ͑25cycle ͒signal from the unknown amplifier.The unknown signal u ͑t ͒came from amplifier A.The solid line is the histogram when the reference signal comes from amplifier A,the dotted line is for a reference from B,and the dashed line is for a reference fromC.FIG.9.Power spectrum of a 25kHz sine wave with an amplitude of 2.0V amplified by amplifier A.Note the larger harmonics at 50,75,and 100kHz compared to Fig.6.023109-5NLD for signal ID Chaos 17,023109͑2007͒of the FM signal is 2.0V.Figure 11shows histograms of ͗⌬͘for random FM signals with an amplitude of 2.0V.Compared to Fig.8,Fig.11shows a much larger sepa-ration between histograms when signals from the different amplifiers are used as reference signals.Unlike Fig.8,when the signal amplitude was 1.0V,there is no overlap between the histogram when the reference signal comes from ampli-fier A and the histograms when amplifiers B or C are used as references.Figure 11correctly identifies the unknown ran-dom FM signal as coming from amplifier A,with a very small probability of error.When the nonlinear properties of the amplifier have a larger effect,signal identification using the phase space statistic ͗⌬͘becomes easier.B.Higher dimensional embeddingThe calculation of ͗⌬͘by searching for points of the form ͑v i ,v i +1͒may be extended to higher dimensions.The disadvantage of calculating ͗⌬͘in higher dimensions is that the actual dimension of the phase space to be searched in-creases by 2on adding a dimension,greatly increasing the computational time;the advantage is that fewer reference points are required.Figure 12shows the result of calculating ͗⌬͘using only 40000reference points ͑in the preceding examples,400000reference points were used ͒.Figure 12͑a ͒shows the result of calculating ͗⌬͘for a 1D embedding of the unknown signal using 40000reference points from amplifier A,amplifier B,or amplifier C.As be-fore,the histogram when a signal from amplifier A is used s a reference is shown by a solid line,the histogram for a reference from B is a dotted line,and C is a dashed line.Figure 12͑a ͒shows the same calculation as in Fig.8,but with one tenth the number of points in the reference signal.Figure 12͑a ͒shows that it is not possible to distinguish which amplifier produced the 1V random FM signal using a 1D embedding with only 40000reference points.When fewer reference points are used,then on the average,the nearest reference point ͑v i ,v i +1͒to the unknown point ͑u j ,u j +1͒is farther away,and the interpolated reference point ͑z j ,z j +1͒is also farther from the true reference point ͑v i ,v i +1͒.When 400000reference points are used,the aver-age of the distance between ͑u j ,u j +1͒and ͑z j ,z j +1͒is 3.6ϫ10−4,but when only 40000reference points are used,this average distance increases to 8.1ϫ10−2.All signals were normalized before the calculation,so the distances are unit-less.The greater distance means that derivatives for the un-known and reference signals are being measured at points that are farther apart in the phase space,so the measurement of the difference of derivatives is less accurate.Figure 12͑b ͒shows the same result with a 2D embed-ding ͑because the algorithm is searching for derivatives,this is effectively a 4D embedding ͒.While Fig.12͑b ͒shows con-siderable overlap between the histograms of ͗⌬͘when the reference signal comes from amplifier A or B,the 2D em-bedding still distinguishes the different signals better than when a 1D embedding was used.Figure 12shows that even for simple signals,there is some advantage to using higher dimensional embeddings;the higher dimensionalembeddingFIG.10.Experimental histograms of the phase space difference ͗⌬͘for amplifiers driven by unmodulated sine waves with an amplitude of 2.0V.p ͑͗⌬͒͘is the probability of measuring a particular value of ͗⌬͘for a 500point ͑25cycle ͒signal from the unknown amplifier.The unknown signal u ͑t ͒came from amplifier A.The solid line is the histogram when the refer-ence signal comes from amplifier A,the dotted line is for a reference from B,and the dashed line is for a reference fromC.FIG.11.Experimental histograms of the phase space difference ͗⌬͘for amplifiers driven by randomly frequency modulated sine waves with an amplitude of 2.0V.p ͑͗⌬͒͘is the probability of measuring a particular value of ͗⌬͘for a 500point ͑25cycle ͒signal from the unknown amplifier.The unknown signal u ͑t ͒came from amplifier A.The solid line is the histogram when the reference signal comes from amplifier A,the dotted line is for a reference from B,and the dashed line is for a reference fromC.FIG.12.Experimental histograms of the phase space difference ͗⌬͘for amplifiers driven by randomly frequency modulated sine waves with an amplitude of 1.0V,when the reference signal contains only 40000points,one tenth the number used in Fig.8.͑a ͒Shows the histograms when all signals were embedded in a 1D phase space,and ͑b ͒shows the same results when all signals were embedded in a 2D phase space.p ͑͗⌬͒͘is the prob-ability of measuring a particular value of ͗⌬͘for a 500point ͑25cycle ͒signal from the unknown amplifier.The unknown signal u ͑t ͒came from amplifier A.The solid line is the histogram when the reference signal comes from amplifier A,the dotted line is for a reference from B,and the dashed line is for a reference from C.023109-6Thomas Carroll Chaos 17,023109͑2007͒。
MAGNETIZING OF NECK MAGNET FOR COLOR CATHODE-RAY T
专利名称:MAGNETIZING OF NECK MAGNET FOR COLOR CATHODE-RAY TUBE
发明人:FUJIMURA TAKEO 申请号:JP16538283 申请日:19830906 公开号:JPH0370335B2 公开日:19911107
摘要:PURPOSE:To enable a neck magnet to be correctly magnetized as prescribed by making the gap central face crossing the main magnetic flux generated in the gap at a right angle to cross the central axis of the neck part at a right angle while the gap is made to be adjacent to a neck magnet and a magnetizing head is made to move in parallel to the central axis. CONSTITUTION:A magnetizing head 30 is so composed that a coil 27 wound round by a core 26 is provided with a gap 25. The gap 25 of the magnetizing head 30 is so arranged that its central face T crosses the central axis of the neck part 4 at a right angle while being adjacent thereto. Said magnetizing head 30 is made to move ranging larger than the width W of the neck magnet 10 in the longitudinal direction of the neck part 4, for instance, from A to B while letting the appropriate current to flow through the coil 27. That is to say that the movement of the magnetizing head 30 is so performed that the gap 25 advances starting from the rear of the neck magnet 10 to the front in the arrow direction. Thereby, the desired magnetizing can be correctly performed.
钛硅分子筛催化剂的研究进展
Research progress of titanium silicalite catalys tZhangxiaoming Zhangzhaorong Soujiquan Lishuben(Lanzhou Institute of Chemical Physics fine petrochemical intermediates National Engineering Research Center, Lanzhou 730000)The role of titanium catalyst in the oxidation reaction of organic compounds is well known [1, 2]. Introduced in the molecular sieve framework due to the molecular sieve having a regular pore structure and large specific surface area characteristics, hetero atom, having an oxidation-reduction ability to preparenovel catalytic oxidation catalyst, has been more interesting subject in 1983 ENI [3] the T ar amasso its collaborators first successful synthesis of the titanium-containing zeolite catalyst of TS-1, a subsequent study found, Tammonia oxidation [7] S-1 with H2O2 aqueous solution as oxidant and the oxidation reaction of a series of organic compounds, such as olefin epoxidation [4], the aromatic hydrocarbon ring hydroxylation [5, 6], ketone, alkane oxidation[8, 9] and the alcohol oxidation [10] and so the process has a unique shape-selective catalytic function as compared with other types of catalytic systems, the system (1) the mild reaction conditions (atmospheric pressure, 0 - 100 ° C); (2) the unique function of the shape-selective catalytic oxidation; (3) environmental friendliness.TS-1 has been very limited because the aperture is only about 0. 55 nm, and its range of applications where the aerodynamic diameter is greater than 0.60 nm substrate molecules can not enter within its pores without reactivity. Orderovercome this limitation, the type of catalyst to get a wider range of applications, the majority of scientists have successfully synthesized T S-2 [11], Ti-Beta [12] and a series of large aperture zeolite catalysts.In recent years, with the development of the petroleum refining and fine petrochemical technology requires the use of some reorganization of the oil to be effective. M41S [13, 14], HMS [15] and MSU [16] series of mesoporous molecular sieves Tiheteroatom derivatives T i-MCM-41 [17], Ti-MCM-48 [18], Ti-HMS [19, 20] and of Ti-the MSU [16] emerged, the latter in the selective oxidation of organic compoundsshowed higher catalytic activity.This paper reviews the recent years, the progress made in terms of microporous and mesoporous titanium silicalite catalyst preparation, characterization, and catalytic reaction.T S-1 is first synthesized, and also so far been studied most, and more thoroughly of a class of titanium silicalite catalyst. T S-1 is a Silicalite-1 isomorphously substituted derivatives thereof, having the MFI structure. TS- work and the results achieved many comments have been reported [10, 21 - 24] here only a brief overview of the TS-1 preparation, characterization, and their corresponding catalytic reaction.The classical method of preparing a zeolite catalyst is a hydrothermal synthesis method in the the earliest patent literature, Tar amasso [3] reported two preparation T S-1 The method of one is tetraethyl orthosilicate (T EOS) and tetraethylammonium n-titanate (TEOT) as silica source and a titanium source, and tetrapropyl ammonium hydroxide (TPA OH) as templating agent;other is a silica sol as a silicon source, and to dissolve in H2O2 the titanate as titanium source TPAOH templating agent in addition to the hydrothermal synthesis method, the TS -1 can also be obtained by the method of secondary synthesis TiCl4 and dealumination of ZSM-5 for vapor phase reaction, to give with hydrothermal synthesis method is similar to the structure [25], but this method is easy to cause anatase. Huanxin et al [26] for the titanium source, TEOS as a silicon source, and succeeded in synthesizing a T S-1 to T iCl3 The same catalytic activity, with the same reported in the literature, and the process can be effectively prevented from generation of anatase In addition, Tuel and T aarit, continuous coverage positive ions with phosphorus [27], 1, 6 - hexamethylene diammonium ion (Di -TPA) [28], tetraethyl ammonium hydroxide (TEAOH) / T PAOH and T EAOH / tetrabutyl ammonium hydroxide (T BA OH) [29] as a template to prepare T S-1 process. described using different Preparation of Template T S-1 is likely the. Preparation of Titanium Silicalite reagent over Na +, K + and other alkali metal ions of the concentration should be sufficiently low, because the alkali metal ions will hinder the titanium atom in the molecular sieve framework embedded; another the one hand, to prevent the preparation process difficult to dissolve the anatase anatase formation will lead to subsequent reaction of H2O2 decomposition and reduce the catalytic activity in order to prevent the generation of anatase, the preparation process should be vigorously stirred, so that titanium source in the silicon source is highly fragmented., Thangaraj, [7] the slower rate of hydrolysis the of tetrabutylammonium positive titanate (TBOT) Alternate TEOT, with anhydrous isopropyl alcohol as a co-solvent, and achieved good effect.TS-1 zeolite catalyst unique shape-selective catalytic oxidation function, undoubtedly has a direct relationship with the skeleton of T i (Ⅳ) Therefore, the focus of such zeolite characterization is to determine the existence of T i (Ⅳ) in the molecular sieveits ligand environment. characterization of TS-1, except for routine characterization of X-ray diffraction (XRD), N2 adsorption / desorption method, Fourier transform infrared spectroscopy (FT-IR) 29Si magic anglespinning nuclear magnetic resonance spectroscopy(29Si-MAS-NMR), diffuse reflectance UV - visible spectrum (DR UVVis), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure analysis (XANES) and other technologies exist in the form of tetrahedral coordination T i (Ⅳ) provided the basis forAccording to the naming of IUPAC [40], the aperture between 2 - 50 nm molecular sieves for mesoporous molecular sieves. 1990s, class zeolite inorganic materials separation, ion exchange and catalytic disciplines one of the hot to longchain surfactants as templating agent, have been successfully synthesized M41S [13, 14], HMS [15] and MSU [16] and a series of mesoporous molecular sieves. formation mechanism of the pore structure of mesoporous molecular sieve research has been reported[41 - 46] At the sametime, Ti [17 - 20], V [47], Zr [48], Mn [49] and Cr [50] with the redox ability of transition metal atoms into mesoporous molecular sieveskeleton structure, get a lot of new catalysts for the preparation of fine chemicals which T i atom isomorphous substitution in the hole titanium silicalite has important significance of theoretical research and industrial application value.The Gont ier and T uel [20] also Press T anev to method prepared Ti-HMS, and preparation process of various factors such as the proportion of T iO2 / SiO2, isopropanol, surface active agent chain length, characteristic of the titanium source and of Surf / SiO2 system. found that in the preparation process, when the two reagents is mixed for 15 min, the resulting product had with Hex ago nal various characteristics of most of Surf / SiO2 the best ratio of 0.3 increase this proportion of the aperture increases, but the specific surface area and adsorption capacity is greatly reduced.Reviewed above on the synthesis, characterization and catalytic oxidation properties of titanium silicalite and mesoporous molecular sieves prepared its heteroatom derivatives can be seen, the titanium silicalite as a new type of selective oxidation catalyst demandis very important to the increasing volume of the preparation of fine chemicals. especially in recent years, the success of a series of mesoporous molecular sieves synthesis and application, making the range of applications greatly broaden the field has attracted more and more attention of researchersbut we should also see that there are still many problems in the field, such as the titanium silicalite catalytic reaction mechanism, the formation mechanism of mesoporous molecular sieves and skeleton in the presence of T i (Ⅳ) way for further exploration of these issuesand research will become a research focus in the coming period.钛硅分子筛催化剂的研究进展张小明张兆荣索继栓李树本( 中国科学院兰州化学物理研究所精细石油化工中间体国家工程研究中心兰州730000) 含钛催化剂在有机化合物氧化反应中的作用是众所周知的[ 1, 2] . 由于分子筛具有规整的孔道结构和较大的比表面积等特点, 在分子筛骨架中引入具有氧化还原能力的杂原子, 以制备新型的催化氧化催化剂, 一直是人们比较感兴趣的课题. 1983 年ENI[ 3] 的T ar amasso 及其合作者首次成功地合成了含钛的分子筛催化剂TS-1. 随后的研究发现, T S-1 在以H2O2 水溶液为氧化剂的一系列有机化合物的氧化反应, 如烯烃的环氧化[ 4]、芳烃环的羟基化[ 5, 6] 、酮的氨氧化[ 7] 、烷烃的氧化[ 8, 9] 及醇的氧化[ 10] 等过程中有独特的择形催化功能. 同其他类型的催化体系相比较,该体系有( 1)反应条件温和( 常压, 0- 100℃);( 2) 独特的择形催化氧化功能;( 3)环境友好等优点。
ICH词汇表
English Chinese "relevant" viruses and "model" viruses “相关”病毒和“模型”病毒25-fold AUC radio 25倍的AUC比值a single 2 generation study 单项包括两代(生殖毒性)的研究abbreviated or abridged application 简略申请abnormal karyology 异常核形abortions 流产absorbed moisture 吸附水absorption 吸收acceptable daily intake 可接受的日摄入量acceptable test 加速试验acceptance criteia 认可标准accuracy 准确性accuracy 准确度acelerated/stress stability studies 加速/强力破坏稳定性研究acentric fragment 无着丝点片段acetylation 乙酰化作用achiral assay 非手性测定achlorhydric eldderly 老年性胃酸缺乏症acridine orange 吖啶橙action limits 内控限值active components/compound/moiety 活性成分active ingredient 活性组分active metabolite 活性代谢产物adaption to specific culture conditions 特定培养条件的适应additional test 附加实验additions 添加剂adduct 加合物adequate exposure 充分暴露adjuvant 佐剂ADME 吸收、分布、代谢、排泄administration period 给药期adventitious agents 外源性因子adventitious contaminants 外来污染物adventitious viral or mycoplasma contamination 外源性病毒或支原体污染adventitious viruses 外源病毒advers effect 不良反应adverse reaction 不良反应aerobic microorganisms 需氧微生物affinity 亲和力affinity chromatography 亲和层析affinity column 亲和柱against humanised proteins serum antibodies 抗人源蛋白血清抗体agar and broth 琼脂和肉汤aggregates 聚合体aggregation 聚集aginal smear 阴道涂片air ighting reflex 空中翻正反射alkylating electrophilic center 烷化亲电子中心allele 基因突变产生的遗传因子allergenic/allergic extracts 过敏原抽提物allergic reactions 过敏性反应(变应性反应)altenative validated test 有效替代试验altered conjugated forms 改变的结合物形式altered growth 生长改变ambient condition 自然条件amino acid composition 氨基酸组成amino acid sequence 氨基酸顺序amino acids 氨基酸amino sugars 氨基糖amino-terminal amino acids 氨基端氨基酸ammonia production Rates 产氨率ammoniun sulphide staining of the uterus 子宫硫化胺染色analogue 类似物(同系物)analogue series of substances 同系物analyte 被测物analytical method 分析方法analytical procedure 分析方法anaphase 分裂后期aneuploidy 非整倍体aneuploidy inducer 非整倍体诱导剂animal cell lines 动物细胞系animal tissues or organs 动物组织或器官antennary profile 触角形状antibiotic resistance genes 抗生素耐药基因antibiotics 抗生素antibody 抗体antibody production tests 抗体产生试验antigenic specificity 抗原特异性antisera 抗血清apoptosis 凋亡applicant 申报者art and ethical standards 技术和伦理标准ascites 腹水assay 含量测定assay procedure 定量方法assessment of genotoxicity 遗传毒性评价attainment of full sexual function 达到性成熟AUC 曲线下面积auditory startle relex 惊愕反射(听觉惊跳反射)autoimmune 自身免疫autoradiographic assessment 放射自显影评价autoradiography 放射自显影avian 鸟类avidity 亲和性background 背景bacteria 细菌bacterial mutagenicity test 细菌致变突试验bacterial reverse mutation test 细菌回复突变试验bacterial strains 菌株bacterial test organisms 微生物试验菌base pairs 碱基对base set of strains 基本菌株base substitution 碱基置换batches 批次batch-to-batch 逐批between-assay variation 试验间变异binary fission 双数分裂binding assays 结合试验bioanalytical method 生物学分析方法bioavaiability 生物利用度bioburden 生长量/生物负荷biochemical methods 生化方法bioequivalency 生物等效性biohazard enformation 生物有害信息biological activity 生物活性biological products 生物制品biological relevance 生物学意义bioreactor 生物反应器biotechnological products 生物技术产品biotechnological/biological products 生物技术/生物制品biotechnology-derived pharmaceuticals 生物技术药物biphasic curve 双相曲线birth 出生blood plasma factors 血浆因子body burden 机体负担body fluids 体液bone marrow cell 骨髓细胞bouin's fixation 包氏液固定bovine 牛bovine spongiform encephalopathy(BSE) 疯牛病bracketing 括号法breakage of chromatid 染色单体断裂breakage of chromosome 染色体断裂breeding conditions 饲养条件bridging character 桥梁作用by-products 副产物C(time)一定剂量、某一时间的浓度calibrate 标化canine 犬cap liner 瓶帽内垫capillary electrophoresis 毛细管电泳carbohydrate 碳水化合物carboxy-terminal amino acids 羧基端氨基酸carcinogen 致癌物质carcinogenesis 致癌性carcinogenic hazard 致癌性危害carcinogenicity bioassay 致癌性生物检测carcinogenicity potential of chemical 化合物的潜在致癌性carcinoginicity(oncogenicity) 致癌(致瘤)cardiovascular 心血管carrier 载体/担体case-by-case 个例catalysts 催化剂cell bank 细胞库cell bank system 细胞库系统cell banking procedures 细胞建库过程cell banking system 细胞库系统cell culture-derived impurities 来源于细胞培养基的杂质cell cultures 细胞培养物cell cultures 细胞培养cell expansion 细胞扩增cell fusion 细胞融合cell line 细胞系cell lines 细胞系cell membrane lipid 细胞膜脂质层cell metabolites 细胞代谢物cell pooling 细胞混合cell proliferation 细胞增植cell replication system 细胞复制系统cell substrate-derived impurities 来源于细胞基质的杂质cell substrates 细胞基质cell suspension 细胞悬液cell viability 细胞活力cell-derived biological products 细胞来源的生物制品cell-mediated immunity 细胞介导的免疫cellular blood components 血细胞成分cellular therapy 细胞治疗cemadsorbing viruses 红细胞吸附病毒central nervous systems 中枢神经系统cerbral spinal fluid 脑脊液characterization and testing of cell banks 细胞库鉴定及检测charcoal 活性炭charge 电荷chemical actionmertric system 化学光化线强度系统chemical nature 化学性质chemical reactivity 化学反应性chemical syntheses 化学合成chemically inert 化学惰性chewable tablets 咀嚼片childbeering potential 生育可能性chinese hamster V79 cell 中国仓鼠V79细胞chiral impurities 手性杂质CHL cell 中国仓鼠肺细胞CHO cell 中国仓鼠卵巢细胞chromatide 染色单体chromatograms 色谱图chromatographic behavior 色谱行为chromatographic procedures 色谱方法chromatography columns 色谱分离柱chromosomal aberration 染色体畸变chromosomal damage 染色体损伤chromosomal integrity 染色体完整性chronic toxicity testing 慢性毒性试验circular dichroism 圆二色性classfical biotransformation studies 经典的生物转化试验clastogen 染色体断裂剂clastogenic 致染色体断裂的clearance studies 清除研究cleavage of the balanopreputial gland 龟头包皮腺裂开climatic zones 气候带clinical indication 临床适应证clinical research 临床研究clinical trial application 临床试验申请clisure 闭塞物cloning 克隆cloning efficiency 克隆形成率closure of hard palate 硬腭闭合C max峰浓度coat growth 毛发生长code number 编号coding sequence 编码序列coefficient of variance 变异系数collaborative studies 协作实验研究colony isolation 菌落分离colony sizing 集落大小colony-stimulating factors 集落刺激因子combination product 复方制剂comparative trial 对比试验complement binding 补体结合completely novel compound 全新化合物components 成分compound bearing stuctural alerts 结构可疑化合物concentration threshold 阈浓度conception 受孕concomitant toxicokinetics 相伴毒代动力学confidence interval 置信区间confidence limits 可信限confirmatory studies 确认研究conformance to specifcations 符合规范conformation 构型conjugated product 连接产物conjugation 连接consistency 一致性container 容器container/closure 容器/闭塞物container/closure integrity testing 容器/密封完整性试验contaminants 污染物contaminated cell substrate 污染的细胞基质content uniformity 含量均匀度continuous treatment 连续接触control methodology 控制方法学controlled released product 控释制剂conventional live virus vaccines 传统的活病毒疫苗conventional vaccines 传统疫苗cool white fluorescent 冷白荧光灯corpora lutea 黄体corpora lutea count 黄体数correction factor 校正因子correlation coefficient 相关系数covalent or noncovalent 共价或非共价creams 霜剂cross-contamination 交叉污染cross-linking agent 交联剂cross-reactivity 交叉反应cryopreservation 冷冻保存cryoprotectants 防冻剂crystals 晶体culture components 培养基成分culture condiction 培养条件culture confluency 培养克隆率culture confluenty 培养融合culture media/medium 培养基culture medium 培养基cyanogen bromide 溴化氰cytogenetic 细胞遗传学的cytogenetic change 细胞遗传学改变cytogenetic evaluation 细胞遗传学评价cytokines 细胞因子cytopathic 细胞病的cytoplasmic A-and R-type particles 细胞浆a型和r型颗粒cytotoxicity 细胞毒dark control 暗度控制dead offspring at birth 出生时死亡的子代deamidation 去氨基deaminated 去酰胺化的deamination 脱氨基decision flow chart/tree 判断图definable and measurable biological activity 明确和可测定的生物学活性degradant 降解产物degradation 降解degradation pathway 降解途径degradation product 降解产物degradation profile 降解概况degree of aggregation 凝集度degree of scatter 离散程度delay of parturition 分娩延迟delayed-release 延迟释放deleterious 有害的deletion 缺失delivery systems 给药体系derivatives 衍生物description 性状descriptive statistics 描述性统计detection limit 检测限度detection of bacterial mutagen 细菌诱变剂检测detection of clastogen 染色体断裂剂检测determination of metabolites 测定代谢产物development of the offspring 子代发育developmental toxicity 发育毒性dilivery systems 释放系统dilution ratio 释放倍数dimers 二聚体diminution of the background lawn 背景减少diode array 二极管阵列diploid cells 二倍体细胞direct genetic damage 直接遗传损伤dissociation 解离dissolution testing 溶出试验dissolution time 溶出时间distribution 分布DNA adduct DNA加合物DNA damage DNA损伤DNA repair DNA修复DNA strand breaks DNA链断裂dosage form 剂型dose dependence 剂量依赖关系dose escalation 剂量递增dose level 剂量水平dose -liming toxicity 剂量限制性毒性dose-ranging studies 剂量范围研究dose-related 剂量相关dose-relatived cytotoxicity 剂量相关性细胞毒性dose-relatived genotoxic activity 剂量相关性遗传毒性dose-relatived mutagenicity 剂量相关性诱变性dose-response curve 剂量-反应曲线dosing route 给药途径downstream purification 下游纯化drug product 制剂drug product components 制剂组方drug substances 原料药duration 周期duration of pregnancy 妊娠周期eaning 断奶earlier physical malformation 早期身体畸形early embryonic development 早期胚胎发育early embryonic development to implantation 着床早期的胚胎发育ectromelia virus 脱脚病病毒elastomeric closures 橡皮塞electro ejaculation 电射精electron microscopy(EM) 电镜electrophoresis 电泳electrophoretic pattern 电泳图谱elimination 消除elution profile 洗脱方案embryofetal deaths 胚胎和胎仔死亡embryo-fetal development 胚胎-胎仔发育embryo-fetal toxicity 胚胎-胎仔毒性embryonated eggs 鸡胚embryonic death 胚胎死亡embryonic development 胚胎发育embryonic period 胚胎期embryos 胚胎embryotoxicity 胚胎毒性enantiomer 对映体enantiomer 对映异构体enantiomeric 镜像异构体enantioselective 对映体选择性encephalomyocarditis virus(EMC) 脑心肌炎病毒end of pregnancy 怀孕终止endocytic 内吞噬(胞饮)endocytic activity 内吞噬活性endogenous agents 内源性因子endogenous components 内源性物质endogenous gene 内源性基因endogenous proteins 内源性蛋白endogenous retrovirus 内源性逆转录病毒endonuclease 核酸内切酶endonuclease release form lysosomes 溶酶体释放核酸内切酶endotoxins 内毒素end-point 终点end-product sterility test-ing 最终产品的无菌试验enhancers 增强子enveloped RNA viruses 包膜RNA病毒environmental factors 环境因素enzymatic reaction rates 酶反应速率enzyme 酶epididymal sperm maturation 附睾精子成熟性epitope 表位epitope 抗原决定部位Epstein-Barr virus (EBV) EB病毒equine 马error prone repair 易错性修复erythropoietins 促红细胞生成素escalation 递增escherichia coli starn 大肠杆菌菌株esscherichia coli 大肠杆菌ethnic origin 种族起源eukaryotic cell 真核细胞evaluation of test result 试验结果评价ex vivo 体外exaggerated pharmacological response 超常增强的药理作用excipient 赋形剂excipient specifications 赋形剂规范excretion 排泄(消除)expiration date/dating 失效日期exposure assessment 接触剂量评价exposure level 暴露程度exposure period 光照时间exposure period 接触期expression constract 表达构建体expression system 表达系统expression vector 表达载体extended-release 延时释放extent of the virus test 病毒测试的程度external metabolising system 体外代谢系统extinction coefficient 消光系数extrachromosomal 染色体外extraneous contaminants 外源性污染物extrapolation 外推法F1-animals 子一代动物false negative result 假阴性结果false positive result 假阳性结果fecundity 多产feed-back 反馈fermentation 发酵fermentation products 发酵产品fertilisation 受精fertility 生育力fertility studies 生育力研究fetal abnormalities 胎仔异常fetal and neonatal parameters 胎仔和仔鼠的生长发育参数fetal development and growth 胎仔发育和生长fetal period 胎仔期fetotoxicity 胎仔毒性fill volume 装量filter aids 过滤介质final manufacturing 最终生产finished product 成品first pass testing 一期试验flanking region 侧翼区fluorescence in situ hybridisation (FISH) 原位荧光分子杂文foetuses 胎仔forced degradation testing 强制降解试验foreign matter 异质性物质formal labeling 正式标签formal stability studies 正式的稳定性研究formulation 处方/配方formulation 制剂fragmentation 片段化frameshift mutation 移码突变frameshift point mutation 移码点突变free-standing 独立freeze-dried product 冻干产品fresh dissection technique 新鲜切片技术friability 脆碎度functional deficits 功能试验functional test 功能性指标funetional indices 融合蛋白fungi 真菌fusion partners 融合伴侣fusion protein 融合蛋白fusion proteins 配子gametes 动物性别gel filtration 凝胶过滤gender of animals 性别专一性药物gender-specific drug 基因剔除gene amplification 基因扩增gene knockout 基因治疗gene mutation 基因突变gene therapy 基因疗法generation of the cell substrate 细胞基质的产生genetic 遗传genetic change 遗传学改变genetic damage 遗传学损伤genetic endpoint 遗传终点genetic manipulation 基因操作genetic toxicity 遗传毒性genomic dinucleotide repeats 基因组双核苷酸重复数genomic DNA 基因组DNA genomic polymorphism pattern 基因组形态类型genotoxic activity 遗传毒性作用genotoxic carcinogen 遗传毒性致癌剂genotoxic effect 遗传毒性效应genotoxic hazard 遗传毒性危害genotoxic potential 潜在遗传毒性genotoxic rodent carcinogen 啮齿类动物遗传毒性致癌剂genotoxicity 遗传毒性genotoxicity evaluation 遗传毒性评价genotoxicity test 遗传毒性试验genotoxicity test battery 遗传毒性试验组合genotypic 基因型germ cell mutagen 生殖细胞诱变剂germ line mutation 生殖系统突变GLP 临床前研究质量管理规范glucose consumption rates 耗糖率glycoforms 糖化形式glycosylation 糖基化goegrapgical origin 地理起源gross chromosomal damage 染色体大损伤gross evaluation of placenta 胎盘的大体评价growth factors 生长因子growth hormones 生长激素guanidine 胍haematoxylin staining 苏木素染色half-life 半衰期hamster antibody production(HAP) test 仓鼠抗体产生实验Hantaan virus 汉坦病毒hardness 硬度heavy metals 重金属hematopoietic cells 造血细胞heparins 肝素heptachlor 七氯化合物herbal products 草药heritable 遗传heritable defect 遗传缺陷heritable disease 遗传性疾病heritable effect 遗传效应herpes virus 疱疹病毒heterogeneities 异质性heterohybrid cell lines 异种杂交细胞系high concentration 高浓度high-resolution chromatography 高分辨色谱histologic appearance of reproductive organ 生殖器官的组织学表现histopathological chang 组织病理学改变homogeneity 均一性homologous proteins 同系蛋白homologous series 同系host cell 宿主细胞host cell banks 宿主细胞库host cell DNA 宿主细胞DNAhost cell proteins 宿主细胞蛋白质hot-stage microscopy 热价显微镜human carcinogen 人类致癌剂human cell lines 人细胞系human diploid fibroblasts 人二倍体成纤维细胞human lymphoblastoid TK6 cell 人成淋巴TK6细胞human mutagen 人类致突变剂human polio virus 人脊髓灰质炎病毒human subjects 人体human tropism 人向性humidity 湿度humidity-protecting containers 防湿容器humoral immunity 体液免疫hybridization techniques 杂交技术hybridoma cell 杂交瘤细胞hybridomas 杂交瘤hydrolysates 水解物hydrolytic enzymes 水解酶hydrophobicity 疏水性hygroscopic 吸湿性identification/identity 鉴别immature erythrocyte 未成熟红细胞immediate and latent effect 速发和迟发效应immediate container/closure 直接接触的容器/密闭物immediate pack 内包装immediate release 立即释放immortalization 激活immune spleen cells 免疫脾细胞immunoassay 免疫检测immunochemical methods 免疫化学方法immunochemical properties 免疫化学性质immunoelectrophoresis 免疫电泳immunogenicity 免疫原性immunological interations 免疫相互作用immunopathological effects 免疫病理反应immunoreactivity 免疫反应性immunotoxicity 免疫毒性implantation 着床implantation sites 着床部位impurity profile 杂质概况in vitro 体外in vitro and in vivo inoculation tests 体内和体外接种试验in vitro assay 体外检测in vitro cell age 体外细胞传代期in vitro lifespan 体外生命周期in vitro test 体外试验in vitro tests 体外试验in vitro/in vivo correlation 体内体外相关性in vivo 体内in vivo assays 体内检测in vivo test 体内试验inactivated vaccine 灭活疫苗incidence of polyploid cell 多倍体细胞发生率incisor eruption 门齿萌出independent test 独立试验indicator cell 指示细胞indicator organisms 指示菌individual fetal body weight 单个胎仔体重indoor indirect daylight 室内间接日光induced and spontaneous models of disease 诱发或自发的疾病模型inducer of micronuclei 微核诱导剂inducers 诱导剂inedntification test 鉴别试验infectious agents 感染性因子influenza virus 流感病毒inhalation 吸入inhalation dosage forms 吸入剂型inhibitor of DNA metabolism DNA代谢抑制剂in-house 内部的in-house criterea 内控标准in-house primary reference material 内部一级参比物质in-house reference materials 内部参比物质in-house working reference material 内部工作参比物质initial filing 原始文件initial submission 最初申报initial text 最初文本inoculation 接种inorganic impurities 无机杂质inorganic mineral 无机矿物质inorganic salts 无机盐in-process acceptance criteia 生产过程认可标准in-process controls 生产过程中控制in-process testing 生产过程中检测insect 昆虫insulins 胰岛素intact animals 完整动物(整体动物)intake 摄入intended effect 预期效果intended storage period 预期的贮藏期intentional degradation 人为降解interactions 相互作用interferon 干扰素interleukins 白细胞介素intermediate 中间体intermediate precision 中间精密度intermediates 半成品internal control 内对照international reference standards 国际参比标准品interphase muclei 分裂间期细胞核intra-and inter-individual 个体与个体间intra-assay precision 间隙含量精密度intracytoplasmic 细胞浆内introduction of virus 病毒介入inverted or horizontal position 倒立或水平位置ion-exchange 离子交换ionic content 离子含量isoelectric focusing/isoelectrofocusing 等电聚焦isoenzyme analysis 同工酶分析isoform pattern 异构体类型isolated organs 离体器官isomerized 异构化的Jp/Ph.Eur./Usp. 日本药局方/欧洲药典/美国药典juvenile animal studies 未成年动物研究K virus K病毒karyology 胞核学Kinetic profile 动力学特点Kinetics 动力学laboratory scale 实验室规模lactate production rates 乳糖产生速率Lactating 授乳、哺乳lactic dehydrogenase virus (LDM) 乳酸脱氢酶病毒Large deletion event 大缺失事件Late embryo loss 后期胚胎丢失leachables 沥出物Level of safety 安全水平Libido 性欲Life threatering 危及生命ligand 配位体/配体light 光照light resistant packaging 避光包装limit for in vitro cell age 细胞体外传代限度limit of acceptance 可接受的限度limit of in vitro cell age 体外细胞代次limit test 限度试验limulus amoebocyte lysate 鲎试剂linear relation ship 线性关系linearity 线性Lipophilic compound 亲脂性化合物liquid nitrogen 液氮liquid oral dosage forms 液体口服制剂Litter size 每窝胎仔数目Live and dead conceptuese 活胎和死胎Live offspring at birth 出生时存活的子代live vaccine 活疫苗living cells 活细胞Local toxicity 局部毒性Lockl tolerance studies 局部耐受性研究Locu 位点logarithmic scale: 对数级long term test 长期试验Long-term carcinogenicity study 长期致癌性试验long-time and accelerated stability 长期和加速稳定性试验Loss of the tk gene tk 基因丢失losses of activity 活性丧失lot release 批签发low molecular weight subsances 低分子量物质lower-observed effect level (LOEL) 能观察到反应的最低量lymphocytic choriomeningitis virus (LCM) 淋巴细胞性脉络丛脑膜炎病毒lyophilised cakes 冻干粉饼lysate of cells 细胞溶解物Major organ fomeation 主要器官形成Male fertility 雄性生育力Male fertility assessment 雄性生育力评价mammalian 哺乳类Mammalian cell mutation test 哺乳动物细胞致突变试验Mammalian cells 哺乳动物细胞Mammalian species 哺乳类动物manufacturing scale 生产规模marieting pack 上市包装marker chromosome 标志染色体marketing approval 批准上市Marketing approval 上市许可mass 重量mass balance 质量平衡mass spectrometry 质谱master cell bank (MCB) 主细胞库Matemal animal 亲代动物material balance 物质平衡Mating behaviour 交配行为Mating period 交配期Mating ratio 交配比例Matrices 基质matrix 基质、矩阵matrix system 矩阵化设计matrixing 每日最大剂量maximum daily dose 平均动力学温度Maximum tolerated dese(MTD) 最大耐受剂量mean kinetic temperature 后生动物细胞培养Mechanism of genotoxicity 遗传毒性机制Mechanistic activation 代谢活化Mechanistic activation pathway 代谢活化途径Mechanistic activation system 代谢活化系统Mechanistic investigation 机制研究Metabolism 代谢Metabolites profile 代谢物的概况Metaphase 中期Metaphase analysis 分裂中期相分析Metaphase cell 分裂中期细胞metazoan cell culture 微生物细胞培养microbial cells 微生物细胞microbial contamunation 微生物污染microbial expression system 微生物表达系统microbial limits 微生物限度microbial metabolites 微生物代谢物microbial proteases 微生物蛋白酶microbial vaccine antigens 微生物疫苗抗原microbiological testing 微生物学试验Micronucleus 微核Micronucleus formation 微核形成Microtitre 微滴定Microtitre method 微滴定法Mimicking 模拟minimum exposure time 最低作用时间minimum of pilot plant 试产规模minute virus of mice 小鼠小病毒mirror image 镜像mismached S-S linked 错连的S-S键Mitotic index 有丝分裂指数modified-/modifying release 修饰释放modifying factor 修正因子moisture level 水分molar absorptivity 克分子吸收Molecular characterisation 分子特性molecular characteristics 分子特性molecular confirmation 分子构型molecular entities/entity 分子实体molecular size 分子大小Molecular technique 分子技术Monitor 监测Monoclonal antibodies 单克隆抗体monoclonal antibody 单克隆抗体mork run 空白对照试验morphological analysis 形态学分析mouse antibody production (MAP) test 小鼠抗体产生试验mouse cytomegalovirus (MCMV) 小鼠巨细胞病毒mouse encephalomyelitis virus (GDVII) 小鼠脑脊髓炎病毒mouse hepatitis virus (MHV) 小鼠肝炎病毒Mouse lymphoma tk assay 小鼠淋巴瘤tk检测Mouse lymphoma L5178Y cell 小鼠淋巴瘤L5178Y细胞mouse rotavirus (EDIM) 小鼠小轮状病毒MuLV murine leukemia virus 鼠白血病病毒murine hybridoma cell lines 鼠杂交瘤细胞系Mutagen 诱变原Mutagen carcinogen 诱变性致癌剂Mutagen potential of chemical 化合物的潜在致突变性Mutant colony 突变体集落Mutation 突变Mutation induction in transgenes 转基因诱导突变mutations 突变mycoplasma 支原体myeloma cell line 骨髓瘤细胞系Naked eye 肉眼national or international reference material 国家或国际参比物质national reference standards 国家参比标准品near ultraviolet lamp 近紫外灯Necropsy(macroscopic examination) 解剖(大体检查)Negative control 阴性对照Negative result 阴性结果Neonate adaptation to extrautenrine life 新生仔宫外生活的适应性neural sugars 中性糖new chemical entity 新化学体new dosage form 新剂型new drug products/produce 新药制剂new drug substance 新原料药new molecular entities 新分子体Newbom 新生仔Newcleated 有核no effect level 不产生反应的量Non rodent 非啮齿类Non-clinical 非临床noncovalent/convalent forces 非共价/共价键non-enveloped viruses 非包膜病毒Non-genotoxic carcinogen 非遗传毒性致癌剂Non-genotoxic mechanism 非遗传毒性机制Non-human primate 非人灵长类Non-linear 非线性non-mammalian animal cell lines 非哺乳动物细胞系non-recombinant cell-cul-ture expression systems 非重组细胞培养表达系统non-recombinant products/vaccines 非重组制品/疫苗non-specific model virus 非特异模型病毒Non-toxic compound 无毒化合物Non-toxic-effect dose level 无毒性反应剂量水平no-observed effect level 不能观察到反应的量N-terminal sequencing N端测序nuclear magnetic resonance 核磁共振Nucleated bone marrow cell 有核骨髓细胞nucleic acid 核酸Nucleoside analogue 核苷酸同系物nucleotide sequences 核苷酸序列Number of live and dead implantation 宫内活胎和死胎数Numerical chromosmal aberration 染色体数目畸变Numerical chromosome changes 染色体数目改变Oestrous cycle 动情周期official procedure 正式方法ointments 软膏oligonucleotide 低聚核苷酸Oligonucleotide grugs 寡核苷酸药物oligosaccharide pattern 寡糖类型One,two,three generation studies 一、二、三子代研究opacity 浊度Organ development 器官发育organic impurities 有机杂质origins of replication 复制起点osmolality 摩尔渗透压浓度outdoor daylight 室外日光Ovulation rate 排卵率oxidation 氧化oxygen consumption rates 耗氧量package 包装Paraffine embedding 石蜡包埋parainfluenza virus 副流感病毒parallel control assays 平行对照分析Parameter 参数Parent compound 母体化合物parent stability Guideline 稳定性试验总指导原则parental cell line 母细胞系Parenteral 非肠道parenterals 非肠道制剂particle size 粒度Particulate material 颗粒物particulate matter 微粒Parturition 分娩延迟parvoviruses 细小病毒passage history of the cell line 细胞系的传代史pathogenic agents 致病因子pathogenicity 致病性patterns of degradation 降解方式Pediatric populations 小儿人群peptide 肽peptide map 肽图percent recovery 回收率periodic/skip testing 定期检验/抽验Peripheral blood erythrocyte 外周血红细胞permitted daily exposure 允许的日接触量Perpoductive competence 生殖能力phage typing 噬菌体分型pharcodynamic studies 药效学研究Pharmacodinetic 药代动力学Pharmacodynamic effects 药效作用Pharmacodynamics 药效学(药效动力学)pharmacopoeial 药典pharmacopoeial pharmacoppeial specifications 药典规范pharmacopoeial standards 药典标准phenotypic 表型Phenylene diamine 苯二胺phosphorylation 磷酸化作用photostability testing 光稳定性试验Physical development 身体发育physicochemical changes 理化改变physicochemical methods 物理化学方法physico-chemical properties 物理化学特性Physiological stress 生理应激Pilot studies 前期研究pilot-plant scale 试生产规模/中试规模Pinna unfolding 耳廓张开piston release force 活塞释放力piston travel force 活塞移动力pivotal stability studies 关键的稳定性研究plaque assays 菌斑测定plasmid 质粒Plasmid 质粒plasmid banks 质粒库plasminogen activators 纤溶酶原激活素Plasminogen activators 纤维蛋白溶解酶原激活因子Ploidy 整倍体pneumonia virus of mice 小鼠肺炎病毒Point mutation 点突变poisson distribution 泊松分布Polychromatic erythrocyte 嗜多染红细胞polyclonal antibody 多克隆抗体Polycyclic hydrocarbon 多环芳烃Polymer 聚合物polymerase chain reaction (PCR) 聚合酶链式反应polymorphic form 多晶性型polymorphs 多晶型polyoma virus 多瘤病毒polypeptides 多肽Polyploid cell 多倍体细胞Polyploidy 多倍体Polyploidy induction 多倍体诱导pooled havest 集中回收Poorly soluble compound 难溶化合物population doubling 细胞数倍增/群体倍增porcine 猪Positive control 阳性对照Positive result 阳性结果Post meiotic stages 减数分裂后期Post-approval 批准后Postcoital time frame 交配后日期Postimplantation deaths 着床后死亡Postnatal deaths 出生后死亡post-translational modifications 批准后post-translationally modified forms 翻译后修饰Postweaning development and growth 断奶后发育和生长potency 效价potent 功效Potential 潜在性potential adverse consequences 潜在的不良后果potential excipients 准赋形剂Potential immunogenecity 潜在免疫原性potential impurity 潜在杂质potential new drug products 准新药制剂potential new drug substances 准新药原料Potentialtarget organs for toxicity 潜在毒性靶器官potentiometric titrimetry 电位滴定powders 粉剂power outages and human error 断电和人为错误preamble 引言Pre-and post-natal development study 围产期的发育研究Pre-and postweaning survival and growth 断奶前后的存活和生长pre-approval or pre-liscense stage 批准前或发证前阶段Precipitate 沉淀物precision 精密度preclinical and clinical studies 临床前和临床研究Preclinical safety evaluation 临床前安全性评价precursors 前体Predetermined criteria 预定标准Prediction of carcinogenicity 致癌性预测Pregnant 怀孕Pregnant and lactating animals 怀孕与哺乳期动物Preimplantation development 着床前发育Preimplantation stages of the embryo 胚胎着床前期preliminary assessment 初步评估preliminary cell bank 初级细胞库Preliminary studies 预试验Premating 交配前Premating treatment 交配前给药preparation 制剂Pre-screening 预筛选preservative 防腐剂Prevalence of abnormalities 异常情况的普遍程度Preweaning 断奶前Primary active entity 主要活性实体primary cells 原代细胞primary stability data 主要稳定性数据primary stability study/formal study/formal stability study 主要稳定性研究/正式研究/正式稳定性研究primary structure 一级结构primer 引物priming regimen 接种方案Priority selection 优先选择probability 概率process characterisation studies 工艺鉴定研究process controls 工艺控制process optimisation 工艺优化process parameters 工艺参数process validation 工艺确证process-related impurities 工艺相关杂质Pro-drug 前体药物product-related imputies 产品相关杂质progenitor 祖细胞prokaryotic cell 原核细胞Prolongation of parturition 产程延长promoters 启动子proposed commercial process 模拟上市protected samples 避光样品protein analytical techniques 蛋白质分析技术Protein binding 蛋白结合率proteins 蛋白质proteolysis 蛋白水解protocol 方案Protocol modification 试验方案修改pseudopolymorphs 伪多晶体pseudorabies virus 假狂犬病毒purification 纯化purified antigens 纯化抗原purity 纯度purity test 纯度试验pyrogens 热原qualification 界定qualified 合格的quality standards 质量标准quantal methods 质反应测定法Quantification of mutant 突变体定量quantitation limit 定量限度quantitative characteristics 定量参数quantitative detection 定量检测quantitative infectivity assays 感染性定量测定quantitative method 定量方法quantitative test 定量试验quantitative virus assays 病毒定量分析quantity 含量Racemate 消旋体Radiolabeled proteins 放射性同位素标记蛋白Radiolabelled compounds 放射性同位素标记化合物radiometers/lux meters 测光仪/照度仪radiopharmaceutical 放射性药物range 范围Range-finding test 范围确定试验rat antibody production(RAP) test 大鼠抗体产生试验Rate of preimplantation deaths 着床前死亡率Rational study design 合理的试验设计rationale 基本原理raw material 原材料raw material testing 原材料测试rDNA-modified cell substrates 重组DNA修饰的细胞基质rDNAtechnology 重组DNA技术reagent 试剂、反应物real condition 真实条件real time 真实时间rebank 再建库receptor 受体Receptor properties 受体性质reclone 再克隆recombinant cell-culture expression systems 重组细胞培养表达系统recombinant DNA protein products 重组DNA蛋白质产品Recombinant DNA proteins DNA重组蛋白Recombinant DNA technology DNA重组技术recombinant protein 重组蛋白质recombinant-DNA-derived product 重组DNA制品Recombination 重组Recombnant plasma factors 重组血浆因子reconstitution 重新溶解redispersibility 再分散性reduction factors 下降因子Reduction in the nrmber of revertants 回复突变数的减少reference material 参比物质reference standard 参比标准品regimen 方案registration application 注册申请regression analysis 回归分析regulator/regulatory agencies 管理机构related substances 有关物质Relative plating efficiency 相对接种效率Relative suspension growth 相对悬浮生长率。
大球形颗粒名词解释
大球形颗粒1. 介绍大球形颗粒是一种具有球形外观和较大尺寸的微小物质。
这些颗粒通常由固体或液体材料构成,具有广泛的应用领域。
它们的特殊形状和尺寸使其在许多工业和科学领域中具有独特的性质和功能。
2. 特点大球形颗粒的主要特点包括以下几个方面:2.1 形状大球形颗粒通常具有近似于球形的外观。
这种球形形状使得它们在堆积和流动时具有良好的性能,因为它们之间的接触面积相对较小,摩擦力也较低。
球形还使得这些颗粒在液体中悬浮更容易,并且能够提供更高的比表面积。
2.2 尺寸大球形颗粒相对于其他微粒而言尺寸较大,通常以毫米或厘米为单位。
这种较大尺寸使得它们在处理过程中更容易被分离、筛选和控制。
它们还可以提供更高的机械强度和稳定性。
2.3 材料大球形颗粒可以由多种材料制成,包括金属、塑料、陶瓷和玻璃等。
这些材料具有不同的物理和化学特性,使得大球形颗粒在不同的应用中具有各自独特的功能。
3. 应用大球形颗粒广泛应用于许多行业和科学领域。
以下是一些常见的应用示例:3.1 填充材料由于大球形颗粒具有较大的体积,因此它们常被用作填充材料。
在建筑行业中,它们可以用于增强混凝土或减轻结构负荷。
在化工工艺中,它们可以被添加到聚合物基质中以改善材料的力学性能。
3.2 催化剂载体大球形颗粒还被广泛应用于催化剂载体领域。
通过在球形表面上沉积活性组分,这些颗粒可以提供更高的比表面积,并提高反应速率和选择性。
这使得它们在石油化工、化学合成和环境保护等领域中具有重要的应用。
3.3 包覆材料由于大球形颗粒的球形形状和较大尺寸,它们常被用作包覆材料。
在农业领域,它们可以用作植物种子的包覆剂,以提高种子的存活率和生长性能。
在制药工业中,它们可以被用于制备缓释药物以延长药效。
3.4 模型粒子大球形颗粒还可以用于模拟和研究微观颗粒在不同环境下的行为。
通过调整颗粒的尺寸、形状和材料等参数,科学家可以更好地理解和预测颗粒在流体力学、物理化学和生物学等过程中的行为。
一种鲁棒的二进制图像特征点描述子
一种鲁棒的二进制图像特征点描述子王颖;王爱民【摘要】In order to improve the speed of feature point matching, a binary method is used to generate feature point description, and the descriptor' s adaptability to different scales and rotations is improved. The descriptor is computed using intensity difference tests. The descriptor similarity is evaluated by using Hamming distance, and the time performance of the algorithm is improved by binary operation. The Wall and Graffiti image sets as well as their transformed image sets are used to test the performance of the proposed algorithm for the different perspectives, rotations and scales. The matching accuracies on each image set are obtained. The comparison results of the proposed algorithm and the speeded up robust feature (SURF) algorithm show that during the feature point matching between the two images, the construction time and the matching time of the descriptors of the proposed algorithm are 1 043. 67 and 4 313.36 ms, respectively, while the corresponding data of the SURF algorithm are 3 950.34 and 9 951. 03 ms, indicating that the time characteristics of the proposed algorithm are better than those of the SURF algorithm. In addition, on most image sets, the matching accuracy of the proposed algorithm is higher than that of the SURF algorithm.%为了提高特征点匹配的速度,采用二进制方法生成特征点描述,并对描述子进行了尺度和旋转适应性改进.使用特征点邻域小块中随机点的强度对比生成描述,描述子的相似度以Hamming距离度量,以二进制运算提高算法的时间性能.为了检验算法在视角、旋转及尺度变化时的性能,采用Wall和Graffiti图像集及相应的旋转和尺度变换图像集对算法进行测试,得到该算法在各图像集上的匹配准确率,并与SURF算法得到的结果进行比较.结果表明,在2幅图像间进行特征点匹配时,该算法的特征点描述生成时间和匹配时间分别为1 043.67和4 313.36 ms,而使用SURF算法时的相应时间分别为3 950.34和9 951.03 ms,说明该算法的时间特性明显优于SURF算法.此外,在绝大多数测试集上,该算法的匹配准确率明显高于SURF算法.【期刊名称】《东南大学学报(自然科学版)》【年(卷),期】2012(042)002【总页数】5页(P265-269)【关键词】特征点;特征匹配;SURF算法【作者】王颖;王爱民【作者单位】东南大学仪器科学与工程学院,南京210096;东南大学仪器科学与工程学院,南京210096【正文语种】中文【中图分类】TP391.4随着算法精度的不断提高,特征点提取与匹配技术越来越多地应用于图像拼接、三维场景重建以及物体的检测、识别、跟踪等领域.部分应用场景(如机器人即时定位与地图构建、增强现实的配准和跟踪等)对实时处理的要求较高,因此需要在保证准确性的情况下,尽可能提高特征点提取与匹配算法的运行速度.目前,应用范围较广的此类算法包括尺度不变特征变换SIFT(scale-invariant fea-ture transform)算法[1-2]和使用近似 Hessian提取算子的 SURF(speeded up robust feature)算法[3]等.SIFT算法使用差分高斯(difference of Gauss,DoG)近似拉普拉斯高斯(Laplaceof Gauss,LoG)提取特征点,采用梯度直方图形式的特征点描述子.该算法匹配精度高、鲁棒性好,能处理2幅图像大视角变化时的匹配问题,其缺点在于特征点提取与匹配时间过长、难以实现实时处理.Mikolajczyk等[4]将SIFT算法中的特征点描述变换到极坐标下,从而提高了算法的性能.Ke等[5]对SIFT算法的特征点描述子进行主成分分析,提出了PCA-SIFT算法.Bay等[3]基于简化思想提出了SURF算法,以Haar小波近似Hessian算子,并使用积分图像(integral image)缩短了计算时间.SURF算法能较好地平衡算法速度和精度,应用较为广泛,但仍无法满足实时处理的要求.以上各种特征描述算法都需要生成高维的特征描述子,描述的生成和特征点的匹配较为费时,成为提高算法速度的瓶颈.本文提出了一种能够快速生成描述、实现匹配的二进制特征点描述子,并对算子进行改进,使其适应尺度和旋转变换.用二进制数据描述图像特征点的思想来源于Lepetit等[6-7]的相关研究.其基本思想是将特征点的匹配看作分类问题,构建随机分类树,通过学习来实现特征点的识别.图1为随机分类树及其改进结构的示意图.随机分类树由根节点及其下的各个节点组成,每个节点包含1个分类测试ti,叶节点用于存储训练得到的后验概率.Ozuysal等[8]对随机分类树的结构进行了调整,在分类树的每一层中采用相同的测试,并去掉层级结构.在此基础上,Calonder等[9]进一步去除了分类器和训练过程,仅保留测试结果作为二进制特征点描述子.二进制特征点描述子是一种二进制向量,可通过比较特征点邻域小块中随机点的强度得到,每1个二进制位记录1个比较结果.具体而言,在大小为S×S的特征点邻域小块p上定义测试函数τ,其表达式为式中,I(u)为经过平滑的图像在点u=(x,y)T处的强度.选择n组不同位置的点对(u,v),比较每一组点的像素强度I(u)和I(v),将结果保存为n位二进制数据.由此可将二进制特征点描述子定义为如下的n维二进制数据串:在式(2)中,测试点ui和vi的坐标服从二维高斯分布;n的选择取决于实际应用的要求,为了平衡精度和时间,通常取128,256或512.在二进制特征点描述中,由于仅对像素强度进行比较,得到的结果受噪声影响较为严重.需要先对图像进行平滑处理,提高特征点描述的稳定性与可重复性.二进制特征点描述子的匹配使用Hamming距离度量.具体做法如下:将2个二进制数据按位异或,根据结果中1数量的多寡判定特征点描述子是否匹配. Lindeberg[10]于1998年提出了尺度空间理论,并在多尺度中对图像进行处理,其方法类似于生物视觉中由粗到精(coarse to fine)的处理方式.尺度空间理论解决了尺度变化时图像特征点的提取问题.将若干幅经过不同程度高斯平滑的图像构成尺度空间,在尺度空间中筛选符合条件的特征点,并定义该特征点所在尺度为特征尺度.其具体过程如下:首先将图像I(x,y)与高斯函数卷积,即式中,L(x,y,t)为得到的平滑图像;G(x,y,t)为二维高斯函数,其表达式为式中,t和σ分别为高斯函数的标准差和方差.将图像与方差为σi的高斯函数卷积,并用结果图像建立尺度空间.然后,在多尺度下进行图像特征点判别,其判别法则如下:式中,F为判别函数;Th和Tl分别为响应上、下限;MW为特征点M在尺度空间上邻域W中的一点.在二进制特征点描述中引入尺度s,s与σ成正比.根据s调整测试点的分布,从而解决图像尺度变化下的特征点描述问题.向特征点赋予特征方向是实现旋转不变性的一种途径[3].本文通过在局部区域计算Haar小波响应得到特征点的特征方向(见图2).该方法的具体计算过程如下:首先,在图像中建立一个以特征点为中心,半径为6s的圆形区域,在该区域内计算边长为4s的Haar小波响应,并赋予其参数为2s的高斯权值;然后,建立一个圆心角为π/3的扇形滑动窗,并统计x,y方向上Haar小波响应的矢量和;最后,选择矢量长度最大的方向为特征方向,其表达式为式中,weight(x,y)表示权值;wh(x,y)表示方向为h时的窗函数;dx,dy分别表示 x,y方向上的Haar小波响应.得到特征方向后,对生成测试点的坐标进行插值,即可使图像发生旋转时得到的特征点描述子固定不变.为了对算法的性能做出准确评估,采用标准图像库进行测试.这里选取文献[4]中的2组视角变化的测试图像集Wall和Graffiti图像集(见图3).每组测试图像集中包含6幅图像,以第1幅为基准,其余每幅图像的视角在20°~60°之间变化.这2组测试图像集代表2种不同的场景类型.其中,Graffiti图像集为平面绘图,含有明显的线条界限;Wall图像集为粗糙砖砌墙面照片,包含了重复的纹理.已知每幅图像到基准图像的单应性矩阵,通过点的坐标换算即可验证特征点的匹配是否正确. 为了分别研究算法在旋转和尺度变换下的工作特性,对基准图像(即Wall,Graffiti 图像集中的第1幅图像)进行旋转和缩放,生成Wall和Graffiti的旋转、缩放测试图像集.在算法评价方面,主要分析算法的匹配准确率,其表达式为式中,N为返回的匹配点总数;R为正确匹配点数量.在Wall图像集和Graffiti图像集上分别对本文算法和SURF算法进行测试.特征点提取采用快速Hessian算子.特征点提取及SURF算法的特征描述部分使用了计算机视觉类库 OpenCV[11](open source computer vision)中的相关函数.实验中,快速Hessian算子的参数设置如下:Hessian阈值为200,阶数为3,每阶为4层.在尺度图像集上进行测试时,由于图像较大,将Hessian阈值设定为1 000.SURF算法的特征描述子为64维.二进制描述子为256位,采用的特征点邻域小块为48×48像素.编程语言为C++.特征点匹配采取最近邻策略:若2个特征点描述子的距离互为最短,则判定为匹配点.为检验算法运行效率,考察了2种算法在2幅图像间进行特征点匹配的处理时间.实验中,基准图像为Wall图像集中的第1幅图像,其大小为1 000×700像素,提取的特征点数量为7 366.匹配对象为Wall图像集中的第2幅图像,特征点数量为5 993.采用双核处理器 PC,CPU主频为2.20 GHz.实验结果表明:本文算法和SURF算法的描述生成时间分别为1 043.67和3 950.34 ms,特征点匹配时间分别为4 313.36和9 951.03 ms.图4为2种算法在Wall和Graffiti视角变换图像集上的匹配准确率.由图可知,在2组视角变换图像集上,采用改进二进制描述子时匹配准确率高于SURF算法.此外,利用同一算法时Wall图像集上的匹配准确率高于Graffiti图像集上的匹配准确率,说明这2种算法更适用于纹理丰富的图像集.图5和图6分别为2种算法在Wall和Graffiti尺度变换和旋转变换图像集上的匹配准确率.由图5可知,尺度不变性测试在2个图像集上的结果几乎没有差别,表明单纯尺度变化下图像的类型对实验结果没有影响,本文算法的特征点匹配准确率仍然高于SURF算法.在旋转测试的结果中,2种算法得到的结果无明显差别(见图6).综上所述,在大多数情况下本文算法的匹配准确率明显高于SURF算法.从算法的运行时间来看,本文算法的特征点描述子生成时间约为SURF算法的1/4,匹配时间约为SURF算法的1/2,说明本文算法具有明显的速度优势.本文提出了一种鲁棒的二进制图像特征点描述子.实验结果表明,在各类图像上使用该特征点描述子进行特征点匹配时的匹配准确率精度均高于SURF算法.与梯度直方图类的特征点描述子相比,二进制特征点描述子占用内存少,SURF算法的64维特征点描述子需要256 byte的存储空间,而256位的二进制描述子仅占用32 byte的存储空间.此外,二进制特征点描述子的生成与匹配速度较快.因此,本文算法适用于手机等存储空间较小、计算能力受限制的硬件平台以及增强现实等一些实时性要求较高的应用场合.与随机树等机器学习类的算法相比,本文算法不需要学习训练阶段,适于需要添加新特征点的SLAM等应用场景.下一步的工作重点在于结合快速特征点提取,进一步扩大算法的速度优势.【相关文献】[1] Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Los Alamitos,USA,1999:1150-1157.[2] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.[3] Bay Herbert,Tuytelaars Tinne,Van Gool Lue.SURF:speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision.Graz,Austria,2006:404-417.[4]Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630. [5] Ke Y,Sukthankar R.PCA-SIFT:a more distinctive representation for local image descriptors[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC,USA,2004:506-513.[6] Lepetit V,Pilet J,Fua P.Point matching as a classification problem for fast and robust object pose estimation[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC,USA,2004:244-250.[7] Lepetit V,Fua P.Keypoint recognition using randomized trees[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1465-1479.[8]Ozuysal M,Calonder M,Lepetit V,et al.Fast keypoint recognition using random ferns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3):448-461.[9] Calonder M,Lepetit V,Strecha C,et al.BRIEF:binary robust independent elementary features[C]//Proceedings of the 11th European Conference on ComputerVision.Berlin,Germany,2010:778-792.[10] Lindeberg T.Feature detection with automatic scale selection[J].International Journal of Computer Vision,1998,30(2):79-116.[11] Willow Garage.OpenCV[EB/OL].(2010-04-10)[2010-06-03]..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
July1,2002/Vol.27,No.13/OPTICS LETTERS1183 Characterization of T-ray binary lensesS.Wang and T.YuanDepartment of Physics,Rensselaer Polytechnic Institute,Troy,New York12180-3590E.D.Walsby,R.J.Blaikie,and S.M.DurbinDepartment of Electrical and Electronic Engineering,University of Canterbury,Private Bag4800,Christchurch,New ZealandD.R.S.CummingDepartment of Electronics and Electrical Engineering,University of Glasgow,Glasgow G128LT,Scotland,UKJ.Xu and X.-C.ZhangDepartment of Physics,Rensselaer Polytechnic Institute,Troy,New York12180-3590Received February13,2002Multilevel phase-shift Fresnel diffractive zone plates fabricated on silicon wafers have been used as T-rayimaging lenses.The imaging results,including spatial and temporal distribution of T-rays measured at thefocal planes in the frequency range from0.5to1.5THz,indicate that the performance of the diffractiveterahertz(THz)lens is comparable with or better than that of conventional refractive THz lenses.Theunique properties of the T-ray binary lens make it possible to fabricate excellent optics for narrow-band THzapplications.©2002Optical Society of AmericaOCIS codes:320.7080,320.7100,320.7160,320.7110,320.7150,190.7110.Lenses are basic elements in an optical imaging sys-tem.In imaging and terahertz(THz)time-domain spectroscopy technologies,T-ray focusing and colli-mating has relied mainly on parabolic mirrors,silicon lenses,and polyethylene lenses.However,for a THz beam,it is impossible to fabricate lenses with short focal lengths and large numerical apertures by using silicon or polyethylene.For two-dimensional CCD THz imaging,it is very difficult to obtain a high-quality THz image on a ZnTe sensor by using parabolic mirrors because of their aberration and the difficulty of alignment.However,fabricating a large-numerical-aperture T-ray binary lens with a short focal length is possible by using modern planar microfabrication technology,which makes such lenses attractive for THz applications.To our knowledge, binary lenses1–4have not yet been used as THz diffraction optics for maneuvering THz wave fronts. Binary lenses are much lighter and more compact than conventional THz optics and lend themselves to unique beam forming,and so they may see increasing application in the future.Furthermore,the investi-gation of T-ray binary lenses can provide a bridge to the study of microwave binary lenses.To acquire as much information as possible in THz imaging and THz time-domain spectroscopy applica-tions,researchers have used THz space and time prop-erties to extract characteristic data from objects under study.5,6Therefore,in this Letter,we investigate the performance of T-ray binary lenses by studying temporal and spatial THz distributions.We apply an electro-optic(EO)T-ray imaging technique7to acquire the two-dimensional amplitude,frequency,and phase properties of T-rays after they pass through binary lenses.Figure1shows a plot of the phase profile versus the square of the radius of a binary lens with phase level L,where L2M,M1,2,3,....The diffracted wave amplitude,u͑z͒,along the z axis with the binary lens can be written as3u͑z͒XnA nZsZexp∑i2pµnr p2112l z∂͑x21y2͒∏d x d y,(1)Fig.1.Schematic illustration of a circular multiphase-shift binary lens.L is the level number of the lens,and the origin is at the lens center point.The phase shift, F͑r2͒,is a function of r2x21y2.The phase shift for each step is2p͞L,which corresponds to an etch depth of l͓͞L͑n THz21͔͒.For an eight-level silicon lens at1THz, the etching depth step is15.5m m.N is the total number of zones.0146-9592/02/131183-03$15.00/0©2002Optical Society of America1184OPTICS LETTERS/Vol.27,No.13/July1,2002 Table1.Calculated and Measured Diffraction Eff iciency(%)of T-ray Binary LensesPhase Level Lh248Al Zone Plate Theory41819541Exp.11759038 where A nsinc͑n͞L͒,n is an integer,r p2is the Fresnel zone period with the area dimension,s is the area of the binary lens,and l is the wavelength.If n͞r p211͑͞2l z n͒0,a maximum diffraction in-tensity can be obtained at focal point z n:z n2r p22l n,n61,62, (2)The diffraction efficiency h is defined ashj A21j2sinc2͑1͞L͒.(3) The first-order focus is defined as the main focal point, with focal length fz21r p2͞2l.As can be seenfrom Eq.(3),the diffraction efficiency increases rapidly with the number of phase levels L,and the calcu-lated diffraction efficiency,h theory,verus L is shown in Table1.For a binary lens with L8,the diffraction efficiency reaches95%,in contrast with an Al zone plate or a two-level lens,which has41%efficiency. Two-,four-level,and eight-level lenses,each with a30-mm diameter consisting of a total of14zones, were fabricated on silicon wafers by means of ion etching.9Silicon has a refractive index of3.42in the far-infrared region from0.5to1.5THz,and therefore the required etch depth,l͓͞L͑n THz21͔͒,is small, and thin binary lenses can be fabricated.The lenses are designed for a1-THz T-ray with a focal length of 25mm.An Al zone plate of identical dimensions was fabricated on the same silicon substrate material for comparison.Figure2schematically illustrates an EO imaging setup with a CCD camera used to characterize the focal properties of these lenses.The laser is a1-kHz repeti-tion rate amplified Ti:sapphire laser,capable of gener-ating100-fs pulses with energy of700m J.The laser beam was split into a pump beam and a probe beam, and both beams were expanded to2.5cm͑1͞e͒and col-limated.Through a3-mm-thick͗110͘ZnTe emitter, the pump beam generated THz pulses via optical recti-fication.The two-dimensional THz image formed on the EO crystal was encoded onto the probe beam via the EO effect,8and a4-mm-thick͗110͘ZnTe with an effective aperture of2cm was used as an EO sensor. The image carried by the probe beam was focused onto a CCD camera.In this experiment we defined the lab-oratory coordinate system as follows:The axis of bi-nary lenses was selected as the z axis,the x axis was parallel to the optical table,and the y axis was per-pendicular to the optical table.By scanning the time delay between the THz and probe beam and moving the binary lenses along the z axis,we were able to obtain the spatial and temporal THz distribution for each lens.Figure3shows the binary lenses under study and their focal plane THz intensity -paring the THz distributions on the focal plane of the three binary lenses,we find that the focused THz intensity increases with the level number of T-ray binary lenses.As the level number of the binary lens increases,a smaller focal area and a more sharply focused THz peak are observed.These results cor-respond to enhanced diffraction efficiency,which increases dramatically with the level number of binary lenses.Table1lists the calculated and measured diffraction efficiencies of binary lenses at1THz.For convenience of testing,an Al T-ray Fresnel zoneplate Fig.2.Schematic of the experimental setup of the THz CCD imaging system.The probe beam reflected from the ZnTe sensor was focused to CCD via a pellicle and a polar-izer,P2.The polarization directions of polarizers P1and P2are perpendicular to eachother.Fig.3.(left)Photographs of T-ray binary lenses and (right)their THz wave intensity distribution on the x y plane at a distance of25mm(designed focal plane at1THz)between the lenses and the ZnTe sensor.The diameter of each lens is30mm.July 1,2002/Vol.27,No.13/OPTICS LETTERS1185Fig.4.V ariation of THz focal length with THz frequency for an eight-level T-ray binary lens.The line is the calcu-lated result,and the filled circles are the measured experi-mentaldata.Fig.5.Field distribution of a THz wave on the z y plane at peak amplitude.was also measured,and its efficiency was quite close to the theoretical value of 41%,which indicates the correct Fresnel zone structure for the binary lenses.In our experiment,as the level number of the binary lens increased,the measured diffraction efficiency approached the theoretical value.This result is in accordance with the rule of thumb that,as the binary level increases,the binary lens is more tolerant of fabrication errors.10We performed a Fourier transform of the mea-sured THz pulses to allow the frequency-dependent response of the binary lenses to be studied.For each frequency,we determined the focal length by finding the lens –detector separation that resulted in the maximum THz intensity.Figure 4shows the focal-length increases with the THz frequency for an eight-level T-ray binary lens;the experimental result is well fitted by a theoretical curve derived from Eq.(2).The T-ray binary lens has a focal length of25mm at 1THz as designed.We also observed less spherical aberration on the binary lens than with the polyethylene lens.The THz wave distributions in the z y plane for the eight-level binary lens are shown in Fig.5.The THz wave forms a number of rings after propagating through the T-ray binary lens,and the rings converge to a focal point.The convergence becomes tighter as the level number of the lens increases.If we consider the phase change near the focal point,as the level num-ber of the binary lens increases the phase variation also becomes more and more similar to that of a con-ventional THz lens.As Fig.5shows,a Guoy phase shift 11is clearly demonstrated for the eight-level lens.In summary,we have measured the temporal and spatial THz distribution of T-ray binary lenses.As the level number of the T-ray binary lens increases,not only does the diffraction efficiency increase from 10%to 90%,but also the THz spatial distribution is more and more similar to that of conventional refrac-tive THz lenses.Therefore,diffractive binary lenses can be used for THz applications.Because the binary lens has many unique properties,such as f lexibility in design,capacity for integration,and more freedom of choice of substrate,it is possible to fabricate excellent optics for narrow-band THz wave imaging and sens-ing applications.The potential applications of T-ray binary lenses warrant further exploration.This work was supported by the U.S.Army Research Office,the National Science Foundation,the Marsden Fund of the Royal Society of New Zealand,and the New Economy Research Fund (New Zealand).The authors are grateful to Brad Ferguson and Samuel Mickan for useful discussions.X.-C.Zhang ’s e-mail address is zhangxc@.References1.S.Noach,A.Lewis,Y.Arieli,and N.Eisenberg,Appl.Opt.35,3635(1996).2.J.W.Goodman,Introduction to Fourier Optics (McGraw-Hill,New Y ork,1996).3.G.B.Jin,Y.B.Yang,and M.X.Wu,Binary Optics ,1st ed.(China Defense Industry,Beijing,1998).4.J.Jahns and S.J.Walker,Appl.Opt.35,931(1990).5.B.Ferguson,S.H.Wang,and X.-C.Zhang,in Pro-ceedings of the 2001IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers,Picataway,N.J.,2001),postdeadline paper PD1-7.6.D.M.Mittleman,S.Hunsche,L.Bovin,and M.C.Nuss,Opt.Lett.22,904(1997).7.Z.Jiang,X.G.Xu,and X.-C.Zhang,Appl.Opt.39,2982(2000).8.Q.Wu,T.D.Hewitt,and X.-C.Zhang,Appl.Phys.Lett.69,1026(1996).9.E.D.Walsby,R.Cheung,R.J.Blaikie,and D.R.S.Cumming,Proc.SPIE 3879,79(1999).10.M.B.Stern,Microelectron.Eng.32,369(1996).11.S.Feng,H.G.Winful,and R.W.Hellwarth,Opt.Lett.23,385(1998).。