《二次根式》复习
二次根式知识点总结复习整理
二次根式知识点总结1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式; ②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
第十六章二次根式复习
一般地,我们把形如 a (a≥0)的式子叫做 二次根式
注意:使二次根式有意义的条件是 被开方数大于等于零
1.使式子 x 2 有意义的x的取值范围是 x 2
1
2.使式子 2x 3 有意义的x的取值范围是
x 3 2
3.使式子 1 有意义的x的取值范围是 x3
x3
4.使式子 3 x
(3).二次根式的除法法则
[来源:Z。xx。]
(4).商的算术平方根的性质
a a (a 0,b 0) bb a a (a 0,b 0) bb
四.最简二次根式应满足两个条件
①被开方数不含 分母
.ห้องสมุดไป่ตู้
②被开方数中不含 能开得尽方的因数或因式
.
练习:下列二次根式是最简二次根式的是( C )
x2
有意义的x的取值范围是 x 3 且x 2
二.二次根式的性质
( a )2 __a____ (a≥0)
三. 二次根式的乘除
a2
a
{a,a0 a,a0
(1).二次根式的乘法法则
a b ab(a 0,b 0)
(2).积的算术平方根的性质 ab a b (a 0, b 0)
A. 20
B. 9
C. 7
D. 1 3
五.二次根式加减法则
二次根式加减时,可以先将二次根式化 为 最简二次根式 ,再把 被开方数相同 的二次根式 进行合并.
作业:
完成试卷上的作业
二次根式复习课(29张PPT)
特殊二次根式
总结词
特殊二次根式是指具有特殊形式或意义的二次根式,如算术平方根、完全平方 根等。
详细描述
算术平方根是指非负数的平方根,即$sqrt{a}$($a geq 0$);完全平方根是 指一个数的平方等于给定值的平方根,即$sqrt{x^2}$。此外,还有一些特殊的 二次根式,如勾股定理中的勾股数、几何图形中的边长等。
二次根式的加减法
总结词
掌握二次根式的加减法规则
示例
$sqrt{2} + sqrt{3}$ 不能合并;$sqrt{2} + sqrt{2} = 2sqrt{2}$。
04
二次根式的应用
实际问题中的二次根式
计算物体的高度和长度
通过已知的长度和角度,利用二次根式计算物体的 高度或长度。
速度和加速度的计算
03
二次根式的化简与运算
二次根式的化简
总结词
掌握化简二次根式的方法
示例
$sqrt{25x^{2}}$ 可以化简为 $5x$;$sqrt{9a^{2} + 6ab + b^{2}}$ 可以化简为 $3a + b$。
二次根式的乘除法
总结词
掌握二次根式的乘除法规则
示例
$sqrt{2} times sqrt{3} = sqrt{6}$;$frac{sqrt{2}}{sqrt{3}} = frac{sqrt{2} times sqrt{3}}{sqrt{3} times sqrt{3}} = frac{sqrt{6}}{3}$。
与平面几何的结合
03
在解决平面几何问题时,有时需要用到二次根式的性质和运算
法则。
05
习题与解答
习题
二次根式知识点总复习含答案
二次根式知识点总复习含答案一、选择题1.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在 【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.3. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C 【解析】 由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.5.若m 与18是同类二次根式,则m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 将m 与18化简,根据同类二次根式的定义进行判断. 【详解】解:18=32A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意; B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.7.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B8.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.9.已知n 是一个正整数,135n 是整数,则n 的最小值是( ). A .3 B .5 C .15 D .25 【答案】C 【解析】【分析】 【详解】解:135315n n =,若135n 是整数,则15n 也是整数,∴n 的最小正整数值是15,故选C .10.50·a 的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a ,再根据条件确定正整数a 的最小值即可.【详解】∵50·a =50a =52a 是一个整数,∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.实数,a b ||a b + )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】 解:0,,a b a b <<>0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.下列运算正确的是( )A 532=B 822=C 114293=D ()22525-=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】 A .532≠A 错误; B .8222-2=2=,故B 正确;C .137374=993=,故C 错误; D .()225255-2-=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。
二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
二次根式知识点总复习附答案
二次根式知识点总复习附答案一、选择题1. 有意义,那么x 的取值范围是()【分析】先根据二次根式有意义的条件列出关于 【详解】x+5 解得 x>5.故答案选:C. 【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的 条件.——在实数范围内有意义,则 x 的取值范围是()V 6x 7A. x>5【答案】C【解析】 B . x>-5 C. x >5 D . x <5x 的不等式,求出x 的取值范围即可.2.已知 A . 4【答案】B . 6 2xJ 5 X 2的结果是(C. 4D . 2x 6c x2可得{5 25 x =x-1+5-x=4,故选A.A .3时,二次根 m—5x 7式的值为,贝y m B. 晅2等于()【答案】【解解:把x=-3代入二次根式得,原式 =m /io ,依题意得:mjio = J 5,故 =75 m=J io弓.故选B .4.若式子则化简•/ 6x 7是被开方数,••• 6x 70,又•••分母不能为零,7x > —;6故答案为:B. 【点睛】本题考查的知识点为:分式有意义,分母不为 0; 二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件 .5.下列计算结果正确的是( )A. J 3 2= 3 B. 736 = ±6 C. 巧 +72 =5/5 D. 3 + 2 罷=5^3【答案】A 【解析】 【分析】原式各项计算得到结果,即可做出判断. 【详解】故选A . 【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.6 •把a j —1中根号外的因式移到根号内的结果是 ()A .7B . x > 一6 7A. x A6【答案】B 【解析】 【分析】根据被开方数大于等于 0,分母不等于0列式计算即可得解.C. x67D . XV —6•- 6x 7 0,解得, A 、 B 、 C 、D 、原式=卜3|=3,正确; 原式=6,错误; 原式不能合并,错误;原式不能合并,错误.B . T a D. v a【答案】A 【解析】 【分析】 由二次根式 a j —1知a 是负数,根据平方根的定义将 a 移到根号内是a 2,再化简根号内的因式即可. 【详解】1 ••• — 0,且 a 0,a••• a<0,a/I >,故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于a 的取值范围是解题的关键 7.下列运算正确的是( A . 2 込-73=1B .(- 逅)2=2C. 7(-11)2= ± 11 D .(32-22=432-422=3 - 2=1【答案】B 【解析】 【分析】根据二次根式的性质和加减运算法则判断即可【详解】根据二次根式的性质 (ja )2=a (a>0 ,可知(-42)2=2,所以B 选项正确;a(a>0)a|= 0(a=0),可知(-11)2 =| - 11|=11,所以 C 选项错 a(a<0)误;D 、根据二次根式的性质,可知 厶廿 =49~4=4^,所以D 选项错误.故选B . 【点睛】根据二次根式的加减,可知 2 J 3 - J 3= J 3,所以A 选项错误; (a)20得到根据二次根式的性质 77性质和运算法则计算是解题关键5 J 5 2x 3,则2xy 的值为()【答案】A 【解析】 试题解析:2x 5 {5 2xx 解得{ya ,故③正确;故选:B . 【点睛】此题主要考查了的二次根式的性质 (苗)=a (a>0 ,a(a>0)0(a=0),正确利用 a(a< 0)A .15B . 15C.15 15D.—22.52xy=2 X 2.5 &3) 故选A .=-15,9.如果 ab 0, a b 0,那么给出下列各式①>/ah£ a ;正确的是()A .①②【答案】B .②③C.①③D .①②③【分析】 由题意得 0 ,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】 解:••• ab••• a 0, b a b1,故②正确;- = 1;②a••• j a 和j b 无意义,故①错误;b a b a1本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键. 10.下列各式中,不能化简的二次根式是( 【答案】C B . 5/0.3 D . 718 【解析】 【分析】 A 、B 选项的被开方数中含有分母或小数; 9 ;因此这三个选项都不是最简二次根式•所以只有 【详解】 D 选项的被开方数中含有能开得尽方的因数 C 选项符合最简二次根式的要求. 解: 卩返,被开方数含有分母,不是最简二次根式; N 2 2J 03 笑,被开方数含有小数,不是最简二次根式; 10 J 18 ,被开方数含有能开得尽方的因数,不是最简二次根式; 所以,这三个选项都不是最简二次根式. 故选:C . 【点睛】 在判断最简二次根式的过程中要注意: (1) 在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式; (2) 在二次根式的被开方数中的每一个因式(或因数),不是最简二次根式. 如果幕的指数大于或等于2,也11.已知a 1 J 2,则a,b 的关系是 A . a b ab 1 C. D . a b【答案】 D【解析】【分析】根据a 和 b 的值去计算各式是否正确即可. 【详解】A. a b 1 1 721逅1 1丘占1 V 211,错误;B. abB . 22,错误;1 V 212. 下列计算正确的是( A . 718 x/3 6 C. 2 罷 732【答案】B 【解析】 【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得. 【详解】A. 尿 43 J 18 3 J 6,此选项计算错误;B. 廳 J 22^2 42 72,此选项计算正确;C. 2 J 3 43 逅,此选项计算错误;D.J ( 5)25,此选项计算错误;故选:B . 【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运 算法则.13. J 50 •a 的值是一个整数,则正整数 a 的最小值是(根据二次根式的乘法法则计算得到 5殛,再根据条件确定正整数 a 的最小值即可.【详解】••• J 50 •a ==5^2^ 是一个整数,•••正整数a 是最小值是2. 故选B. 【点睛】C. ab 1 迈1 1,错误;D. a b1 1 D . 1 1血严20,正确;1 72故答案为: 【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.B.丽>/2 >/2D . J ( 5)25A . 1【答案】B 【解析】【分析】B . 2C. 3D . 5本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应 用二次根式的乘法法则化简.【解析】 【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件 不含分母 ②被开方数不含能开的尽方的因数或因式,据此可解答 .【详解】(1) A 被开方数含分母,错误. (2) B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式(4) D 被开方数含能开的尽方的因数或因式 所以答案选B. 【点睛】14.如果 J (X 1)2x!,那么x 的取值范围是()A. x>1【答案】AB . x>1C. x wiD . x<16【解析】 【分析】根据等式的左边为算术平方根,结果为非负数,即 【详解】x-1>0求解即可.由于二次根式的结果为非负数可知: x-1 >0解得,x>1 故选A. 【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.15.使代数式j a 岛有意义的a 的取值范围为 nn A . a 0【答案】C【解析】B . a 0C. D .不存在试题解析:根据二次根式的性质,被开方数大于等于 所以a=0.故选C. 0,可知:16.下列各式中,是最简二次根式的是【答案】B B. J 5C. V T8①被开方数 ,错误.本题考查最简二次根式的定义,掌握相关知识是解题关键7X 的被开方数XV 0,无意义; 故选:C. 【点睛】17.计算 2412 —3J 2的结果是( 4A .渥 2 【答案】A 【解析】2 C.- 33 D . 4【分析】 根据二次根式的运算法则,按照运算顺序进行计算即可. 【详解】 旦3424 (2 - 3)J 12 3 2 4 -3/2 6 區 2 . 故选:A . 【点睛】 此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键. 18.下列各式中是二次根式的是( A .乘B .厂 D. T X (XV 0)【答案】C 【解析】 【分析】 根据二次根式的定义逐一判断即可. 【详解】 V s 的根指数为3, /〒的被开方数-72 的根指数为2, A 、B 、C 、 不是二次根式; 1V 0,无意义;且被开方数2> 0,是二次根式; D 、【解析】【分析】 先利用积的乘方得到原式=[(J 3 2)(乘 2)]2017(J 3 2)2,然后根据平方差公式和完全平方公式计算. 【详解】 解:原式=[(732) (73 2)]2017(品 2)2=(3 4)2017(3 4^3 4)1 (7 4^3)443 7故选:C. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的 乘除运算,再合并即可•在二次根式的混合运算中,如能结合题目特点,灵活运用二次根 式的性质,选择恰当的解题途径,往往能事半功倍.D 、符合二次根式的除法法则,正确.故选D .本题考查了二次根式的定义: 形如j a (a>0叫二次根式.19.计算点2)2017(丽 2)2019的结果是()A . 2+运【答案】C B .C. 4/3 7 D . 7 4/320.下列各式中,运算正确的是( )A 、 a 6a 3a 2C. 2佢 3込 5^5【答案】D 【解析】 【分析】利用同底数幕的除法、幕的乘方、二次根式的加法和二次根式的除法法则计算. 【详解】解:A 、a 6+3=a 3,故不对;B 、 ( a 3) 2=a 6,故不对; C 、 2运和3 73B . D ./ 3、2(a )76 73 72。
初中数学二次根式基础知识点(共6篇)
初中数学二次根式根底知识点〔共6篇〕篇1:初中数学二次根式根底知识点 1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足以下条件:3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的_质:a(a0)22(1)(a)=a(a≥0);(2)aa0(a=0);5.二次根式的运算:a(a0)(1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一局部,一起挪动初中数学一元二次方程常见考法1.考察一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵敏,所以一直很吸引命题者。
数学二次根式复习题及解析
一、选择题1.若a 是最简二次根式,则a 的值可能是( ) A .2-B .2C .32D .82.下列计算正确的是( ) A .325+= B .1233-=C .326D .1234÷= 3.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x <B .0xC .2xD .2x4.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是5.如果关于x 的不等式组0,2223x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >,且式子3m -的值是整数,则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .26.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,那么化简代数式2b -|a +b |+|a -c |-222c bc b -+的结果为( )A .2c -bB .2c -2aC .-bD .b7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --9.下列运算中正确的是( ) A .27?3767=B ()24423233333=== C 3313939===D 155315151==10.下列各组二次根式中,能合并的一组是( )A B 和C D 二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.13.把根号外的因式移入根号内,得________14.,则x+y=_______.15.,3,,,则第100个数是_______.16_____.17.已知x ,y ,则x 2+xy +y 2的值为______.18.化简(3+-的结果为_________.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20. (a ≥0)的结果是_________.三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x ==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)-=312÷33==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.26.计算(1-(2)(()21;(2)24+【答案】(1)2【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=+2=(-+2=-(2)(()21---=22(181)=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.27.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.B解析:B【解析】解:A;B==;C=;D2===.故选项错误.故选B.3.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x -≥ , 解得:2x , 故选:D ; 【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.4.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.5.C解析:C 【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2. 【详解】 解:解不等式02x m->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2, ∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2, 由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个. 故选:C .【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.6.D解析:D 【解析】 解:∵|a |+a =0,∴|a |=﹣a ,∴﹣a ≥0,∴a ≤0,∵|ab |=ab ,∴ab ≥0,∴b ≤0,∵|c |﹣c =0,∴|c |=c ,∴c ≥0,∴原式=﹣b +(a +b )﹣(a ﹣c )﹣(c ﹣b )=b .故选D .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x 、y 的取值.9.B解析:B 【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可. 【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.10.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可. 【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.13.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质解析:a【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键. 14.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知+=+-)2x+y=2222整体代入可得原式=2-2)故答案为:15.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.16.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可. 【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键. 17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 18.1【分析】根据平方差公式进行计算即可.【详解】原式=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.解析:1【分析】根据平方差公式进行计算即可.【详解】原式=(223981-=-=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键. 19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6. 故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)
考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
二次根式全章总复习
二次根式全章总复习三个概念概念1 二次根式1.下列各式一定是二次根式的是( ) 2.下列式子中为二次根式的是( ) a B .x +1 C .1-x D .x +1 A .8 B .-1 C . 2 D .x(x <0)3.在代数式:①;②;③;④;⑤;⑥中,一定是二次根式的有( )A.5个 B.4个 C.3个 D.2个 4.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 5.已知a 为实数,下列式子一定有意义的是( )A. B. C. D.6.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 016-y 2 017的值是多少?概念2 代数式1.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3. A .7个 B .6个 C .5个 D .4个2.农民张大伯因病住院,手术费为a 元,其他费用为b 元,由于参加农村合作医疗,手术费报销85%,其他费用报销60%,则张大伯此次住院共报销_________________元(用代数式表示). 概念3 最简二次根式1.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有_________个。
2.把下列各式化成最简二次根式.(1) 1.25; (2)4a 3b +8a 2b(a ≥0,b ≥0); (3)-n m 2(mn >0); (4)x -y x +y(x ≠y).3.下列二次根式中,哪些是最简二次根式?哪些不是?不是最简二次根式的请说明理由.412-402,8-x 2,22,x 2-4x +4(x>2),-x 12x ,0.75ab ,ab 2(b>0,a>0),9x 2+16y 2,(a +b )2(a -b )(a>b>0),x 3,x 3.二次根式的性质性质1 (a)2=a(a ≥0)1,下列计算正确的是( )A .-(7)2=-7 B .(5)2=25 C .(9)2=±9 D .-⎝⎛⎭⎪⎫-9162=916 2.在实数范围内分解因式:x 4-9=________.3.要使等式(8-x)2=x -8成立,则x =________. 性质2 a 2=a(a ≥0)1.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( ) A .7 B .-7C .2a -15 D .无法确定 2.若成立,则m 的取值范围是__________3.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.4.先化简再求值:当a =5时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a)=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=9. 请问谁的解答正确?请说明理由.性质3 积的算术平方根1.化简24的结果是( )A .4 6 B .2 6 C .6 2 D .8 32.能使得(3-a )(a +1)=3-a ·a +1成立的所有整数a 的和是________. 3.若3)3(-⋅=-m m m m ,则m 的取值范围是4.将根号外的移到根号内; .性质4 商的算术平方根1.化简下列二次根式:(1)449; (2)121b516a2(a <0,b >0).性质5。
八年级数学二次根式
3、商的算术平方根的性质
a a (a 0,b 0) bb
4、二次根式的除法法则
a a (a 0,b 0) bb
例3、计算
(1) 40 45
(2)3 m6n5 5 m4n2
5、最简二次根式的两个条件:
(1)被开方数不含分母; (2)被开方数中不含能开得尽方的因 数或因式;
(2)四边形ABCD的面积。 C
D
A
B
; https:///gushiyaowen/ 今日股市 ;
乎の.还好,林师兄安排了一辆车接她们,车里冷气充足,不一会儿身上便舒爽了.“外边好热.”“昨天更厉害,有人在路边煎鸡蛋和虾子全熟了!”司机笑着说.搭乘两位,而且脾气不错の样子,心境超好.“不会吧?”陆羽吓了一跳,她好久没这种感受了,果然还是山里好,房子必须往山里找.“哎, 没关系,以后你们出入提前跟我说,车里有冷气不算太热.林先生叮嘱过我了,公交车不到金梧国际让我随时等你们电筒.”意思是包车了.第176部分金梧国际是一个度假别墅区,都是独栋の,仅两层,林辰溪偶尔过来住几天.这里环境优雅美观,而且居住の人群文化素质高,够稳定.就是交通不大便 利,得自己有车才行.林师兄家の车库有车,奈何她俩没驾照只能望车兴叹.外边の车进不去,那司机仅到大门口便停下了.幸亏两人行李不多,各拉一个箱子而已.陆羽带着婷玉来到小区门口报出门号,其中一个门卫拿着门卡核对两人の胡集,一个在录指模和脸.林辰溪估计给门卫传了她们の胡集照 片,门卡一早制好就等刷脸录指模了.一切办妥之后,她们进去坐门卫の巡逻车抵达林师兄の度假屋前.看得陆羽目瞪口呆,亏他还说是一栋度假屋,她一直以为度假屋是国外那种精致木屋之类.原来是一栋别墅,奢华程度不必细说,建有铁栏围墙,院里林木浓密.小区里每栋别墅相距稍远,周围环境 清幽,空气怡人.门
中考数学专题特训第六讲:二次根式(含详细参考答案)
中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
2023年春季学期 二次根式专题复习
专题01二次根式专题复习【8个考点知识梳理+题型解题方法+专题训练】考点一:二次根式的定义二次根式的定义:一般地,我们把形如a (a ≥0)的式子叫做二次根式.其中:①“”称为二次根号;②a 是被开方数,a ≥0,是一个非负数;【考试题型1】根据二次根式的形式准确判断二次根式【解题方法】判断形式,确定被开方数大于等于0。
例题讲解:1.下列式子一定是二次根式的是()A .2--x B .xC .22+x D .22-x 【考试题型2】根据被开方数大于等于0求未知数的值或范围。
【解题方法】利用被开方数大于等于0建立不等式,解不等式。
例题讲解:2.若x 31-是二次根式,则x 的值不可能是()A .﹣2B .﹣1C .0D .1考点二:二次根式有意义的条件二次根式有意义的条件:被开方数大于等于0。
即a 中,a ≥0。
【考试题型1】根据二次根式有意义的条件求取值范围【解题方法】利用式子中所有二次根式的被开方数都大于等于0建立不等式(组)求解集,同时若式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零。
例题讲解:3.若二次根式2-x 在实数范围内有意义,则x 的取值范围是()A .x >2B .x ≥2C .x ≤2D .x <2【考试题型2】利用二次根式有意义求式子【解题方法】利用二次根式有意义的条件求出相应字母的值,再带入需要求的式子。
例题讲解:4.已知y =322+-+-x x ,则x y 的值是()A .5B .6C .8D .﹣8考点三:二次根式的性质二次根式的基本性质:①二次根式的双重非负性。
即a ≥0;a ≥0.②(a )2=a (a ≥0)(一个数的算术平方根的平方等于它本身).③()()⎩⎨⎧≤-≥==002a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)。
【考试题型1】二次根式的非负性:几个非负数的和等于0,这个几个非负数分别等于0。
【解题方法】结合绝对值,偶次方,让被开方数,绝对值符号内的式子以及底数分别为0建立方程解方程即可。
人教版八年级数学下册-第十六章复习2
《二次根式》复习一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3 4.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .ba D .44+a5.如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 6.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a aa a a =•=112; ④a a a =-23。
做错的题是( ) A .① B .② C .③ D .④7.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 8.化简)22(28+-得( )A .—2B .22-C .2D . 224-二、填空题9.①=-2)3.0( ;②=-2)52( 。
10.若m<0,则332||m m m ++= 。
11.1112-=-•+x x x 成立的条件是 。
12.比较大小:13.=•y xy 82 ,=•2712 。
14.若35-=x ,则562++x x 的值为 。
三、解答题15.求使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x 1-16.化简:(1))169()144(-⨯- (2)22531-(3)5102421⨯- (4)n m 21817.计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫⎝⎛-- (3))459(43332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5)2484554+-+ (6)2332326--四、综合题 18.若代数式||112x x -+有意义,则x 的取值范围是什么?19.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
二次根式全章复习
①都是形如 a 的式子,
②a都是非负数.
一般地,形如 a(a≥0)的式子叫做二次根式.
其中a为整式或分式,a叫做被开方式.
1.判断下列各式是否是二次根式.
5 ( × ) a (a 0)( × ) 3 8 ( × ) a (a 0)( √ )
2. 下列各式一定是二次根式的是( C ).
A. x +1 B. x2 1
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
B
①则AD=__2__ BC=__1__
DP C
拓展2
已知△ABP的一边AB= 10,
(1)在如图所示的4×4的方格中画出格点△ABP,使
三角形的三边为 5, 5, 10,
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
1
a +1
2 1
1 2a
3 a 32
解:(1)由题意得:
a +1 0 a 1
即当 a 1 时, a +1 有意义.
(2)a 1 2
a (3) 为任意实数
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
B
② 设DP=a,请用含a的代数式表
示AP,BP。则AP=___a_2_+_4____,
D
PC
B③P=当__a_(=_31__a时)_2_+,_1_则。PA+PB=__2__5__,当a=3,则PA+PB=_1_+__1_3_
二次根式提高复习
二次根式(提高)1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.分母有理化6.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式)A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy=a(a>0)a-(a<0)0 (a=0);例5、已知数a,b=b-a,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算1.化简:(1__ ;(2=___ (3___ _;(40,0)x y≥≥=___ _;(5)_______420=-。
(6=_________。
例1. 将根号外的a移到根号内,得 ( )A. ;B. -;C. -;D.例2.把(a-b)-1a-b化成最简二次根式例3、计算:例4、先化简,再求值:,其中例5、如图,实数a、b在数轴上的位置,化简:11()ba b b a a b++++4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >,>②如果a b <,<例1、比较与的大小。
二次根式复习要点
二次根式复习知识点一、二次根式的概念a ≥0)的式子叫做二次根式。
a 叫做“被开方数”,为二次根号.判断二次根式的方法:①看它是否有根号;②看根指数是否是2;③看被开方数是否是非负数。
同时满足这三个条件的式子才是二次根式。
二、二次根式有意义的条件:被开方数大于等于0。
▲(若二次根式在分母中,要保证分母不能0)★解题技巧:二次根式有意义的条件是被开方数为非负数,如果两个二次根式都有意义,则被开方数都大于等于零。
通常情况下,通过解不等式组求字母的取值范围。
例:⑴当时,有意义。
⑵函数1y x=+的自变量x 的取值范围是 。
⑶已知,求得xy的值( ). 三、二次根式的性质≥0) ★二次根式具有双重非负性2.=2)(a (a ≥0) 3. ⎪⎩⎪⎨⎧<=>==)0___()0___()0___(____2a a a a例:⑴当5<a等于 。
⑵已知x<y,化简的结果是________。
2x =-,则x 的取值范围是________________________。
四、二次根式的乘除乘法运算法则a ≥0,b ≥0)(a ≥0,b ≥0)★积的算术平方根等于各因式算术平方根的积。
利用这个性质可以进行二次根式的化简。
(a≥0,b>0)(a≥0,b>0)★商的算术平方根等于算术平方根的商。
利用这个性质可以进行二次根式的化简五、最简二次根式:必须同时满足下列条件:★⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
六、二次根式的加减:㈠同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
▲判断同类二次根式方法:先化简二次根式,再看被开方数是否相同。
㈡合并同类二次根式:将同类二次根式的系数相加减,根指数和被开方数不变。
▲注意:合并同类二次根式时,要先将二次根式化简。
㈢二次根式的加减:①实质:合并同类二次根式。
②运算步骤:先化简每个二次根式,再识别同类二次根式,最后合并同类二次根式(不是同类二次根式的不能合并)。
二次根式复习题及解析
周长为:
∴长方形的周长大于正方形的周长.
28.计算:
(1) ;
(2) .
【答案】(1) ;(2)
【分析】
(1)原式化简后,利用二次根式乘法法则计算即可求出值;
(2)原式利用平方差公式,以及完全平方公式计算即可求出值.
【详解】
解:(1)原式=
=
=
= ;
(2)原式=3﹣4+12﹣4 +1
①所有无限小数都是无理数;② 的平方根是 ;③ ;④数轴上的点都表示有理数
A. 个B. 个C. 个D. 个
5.已知m、n是正整数,若 + 是整数,则满足条件的有序数对(m,n)为( )
A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是
6.若化简|1-x|- 的结果为2x﹣5,则x的取值范围是( )
(1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
【答案】(1) ;(2)长方形的周长大.
【解析】
试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.
试题解析:
(1)
∴长方形的周长为 .
(2)长方形的面积为:
=12﹣4 .
【点睛】
此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据二次根式的性质得出5-x≥0,求出即可.
【详解】
∵ ,
∴5-x≥0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
是多少?
D
B
C
例 如图,在长方形ABCD中,CE⊥BD, E为垂足,连接AE,已知AB=8,BC=6, 试求△CED的面积. C D 充分运用勾股定理 E
A
B
1 2
1 4
b a b
b a b
【提示】先将二次根式化简,再代入求值.
b( a b) b( a b) ( a b )( a b )
(6)( 2 3) ( 3 2 )( 3 2) ;
(7 ) a b 2ab (a b);
2 2
(8) a
a (a 0).
2
二次根式化简结果的要求: (1)根号内不含有开的尽方的因式; (2)根号内不含有分母.
例5 设a、b、c为△ABC的三边,试化简:
(a b c) (a b c) (b a c) (c a b)
第17章《二次根式》复习
(一)二次根式的定义、根号内字母的 取值范围以及二次根式的值.
例1 判断下列各式哪些是二次根式?
a
x 1
2
6
x
2
3
2
7
2
a b
注意:1、二次根式的本质是数的算术平方根; 2、二次根式内字母的取值范围必须满足 被开方数是非负数.
例2 求下列二次根式中字母的取值范围: 1、
4 5x
2、
x
2
x 3、 x2
4、 x 2 2 x 2
例3 填空:
1、当x=-8时,9 2x 的值等于
2、若 y x 2 2 x 6, 则x y
2 ,则x= 3、若二次根式 x 的值等于
2
(二)二次根式的性质.
a(a 0) ( a 0 ) a 2 性质2:a = a -a (a 0) 性质1 :a
2 2 2
2
=a+b+c+c+b-a+a+c-b-(b+a-c) = a+b+c+c+b-a+a+c-b-a-b+c =4c
3x 2 3x 2 成立,则 x应满足什么条件? 例6 若 3 x 3-x
(三)二次根式的应用
例 如图,在Rt△ABC中,∠C=Rt∠, BC=a,AC=1,延长CB至点D,使 BD=AB. (1)求AC与DC的长度比;
性质3:ab a b ( a 0,b 0)
2
a
a 性质4: b
a (a 0,b 0) b
例4 化简下列各式:
(1) (6) ;
2
( 2)(
6) ;
2
(3) (12 ) (18) ; ( 4)
1 (5) 45 108 1 3
2
5 ; 8
75 ;
【解】原式=
=
ab b ab b a b
2b =a b .
1 1 当a= 2 ,b= 时,原式= 4
1 4 1 1 2 4 2
=2.