高一数学指数函数经典例题

合集下载

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.(本小题12分)不用计算器求下列各式的值⑴⑵【答案】(1)(2)【解析】(1)……6分(2)……12分【考点】本小题主要考查指数和对数的运算,考查学生的运算求解能力.点评:指数和对数的运算性质的灵活应用是解决此类问题的关键,另外也经常用到. 2.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga+lgb,试确定p和q应满足的关系.【答案】p+q = 0且q>0【解析】由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.3.计算:=【答案】【解析】原式4.当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,当时,,则,解得,故选A。

点睛:利用分离参数法得到,因为对任意的,不等式恒成立,则只需,解得,最后求得的取值范围。

函数恒成立问题,分离参数法是最常用的方法,属于含参函数题型的通法之一。

5.已知:,则__________.【答案】2【解析】由题意得.6.设,,,则的大小关系是()A.B.C.D.【答案】A【解析】∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A。

7.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.8.化简计算下列各式:(1);(2).【答案】(1);(2).【解析】(1)根据指数幂的运算法则即可求出;(2)根据对数的运算法则及特殊值的对数即可求解.试题解析:(1)原式.(2)原式.9.函数y=a x(-2≤x≤3)的最大值为2,则a=________.【答案】或【解析】当0<a<1时,y=a x在[-2,3]上是减函数,=a-2=2,得a=;所以ymax当a>1时,y=a x在[-2,3]上是增函数,=a3=2,解得a=.综上知a=或.所以ymax10.要得到函数y=21-2x的图像,只需将指数函数y=的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】,所以可以由图象右移个单位,故选D。

高一指数函数练习题

高一指数函数练习题

高一指数函数练习题高一指数函数练习题指数函数是高中数学中的一个重要知识点,它在数学、物理、经济等领域有着广泛的应用。

掌握指数函数的性质和解题方法对于高中生来说是非常重要的。

本文将通过一些典型的练习题来帮助同学们巩固和提高对指数函数的理解和应用能力。

1. 已知指数函数f(x)的图象经过点A(1, 2)和点B(2, 4),求函数f(x)的解析式。

解析:由题意可知,点A(1, 2)在函数f(x)的图象上,即f(1) = 2;点B(2, 4)在函数f(x)的图象上,即f(2) = 4。

根据指数函数的性质,可以设函数f(x)的解析式为f(x) = a^x,其中a为常数。

代入点A和点B的坐标得到方程组:a^1 = 2a^2 = 4解方程组得到a = 2。

因此,函数f(x)的解析式为f(x) = 2^x。

2. 求解方程2^(x+1) = 8。

解析:首先将8表示为2的幂,即8 = 2^3。

将方程2^(x+1) = 2^3转化为指数相等的形式,即x + 1 = 3。

解得x = 2。

因此,方程2^(x+1) = 8的解为x = 2。

3. 已知指数函数g(x)满足条件g(0) = 3,g(1) = 6,求函数g(x)的解析式。

解析:由题意可知,点A(0, 3)在函数g(x)的图象上,即g(0) = 3;点B(1, 6)在函数g(x)的图象上,即g(1) = 6。

设函数g(x)的解析式为g(x) = b*a^x,其中a和b为常数。

代入点A和点B的坐标得到方程组:b*a^0 = 3b*a^1 = 6解方程组得到a = 2,b = 3。

因此,函数g(x)的解析式为g(x) = 3*2^x。

4. 求解方程3^(2x-1) = 1/9。

解析:首先将1/9表示为3的幂,即1/9 = 3^(-2)。

将方程3^(2x-1) = 3^(-2)转化为指数相等的形式,即2x - 1 = -2。

解得x = -1/2。

因此,方程3^(2x-1)= 1/9的解为x = -1/2。

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

高一数学必修 指数函数试题及答案

高一数学必修 指数函数试题及答案

高一数学必修1指数函数试题及答案1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}C.{0} D.{-1,0}【解析】因为N={x|2-1<2x+1<22,x∈Z},又函数y=2x在R上为增函数,∴N={x|-1<x+1<2,x∈Z}={x|-2<x<1,x∈Z}={-1,0}.∴M∩N={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<14b<14a<1,那么( )A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa【解析】由已知及函数y=14x是R上的减函数,得0<a<b<1.由y=ax(0<a<1)的单调性及a<b,得ab<aa.由0<a<b<1知0<ab<1.∵aba<ab0=1.∴aa<ba.故选C.也可采用特殊值法,如取a=13,b=12.【答案】 C3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,∴f(0)=0,即a-120+1=0.∴a=12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=12x+1-a,解得a=12.【答案】124.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.∴a的取值范围是a≥6.一、选择题(每小题5分,共20分)1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2【解析】y1=40.9=21.8,y2=80.48=21.44,y3=(12)-1.5=21.5,∵y=2x在定义域内为增函数,且1.8>1.5>1.44,∴y1>y3>y2.【答案】 D2.若142a+1<143-2a,则实数a的取值范围是( )A.12,+∞B.1,+∞C.(-∞,1) D.-∞,12【解析】函数y=14x在R上为减函数,∴2a+1>3-2a,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )A.f(13)<f(32)<f(23)B.f(23)<f(32)<f(13)C.f(23)<f(13)<f(32)D.f(32)<f(23)<f(13)【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)C.(-∞,12) D.(-12,12)【解析】根据指数函数的概念及性质求解.由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,即a∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分)5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.【解析】依题意,对一切x∈R,都有f(x)=f(-x),∴exa+aex=1aex+aex,∴(a-1a)(ex-1ex)=0.∴a-1a=0,即a2=1.又a>0,∴a=1.【答案】 16.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】(1)考察指数函数y=1.5x.因为1.5>1,所以y=1.5x在R上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x.因为0<0.5<1,所以y=0.5x在R上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】<,<三、解答题(每小题10分,共20分)7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,所以当a>1时,由2x-1>12,解得x>34;当0<a<1时,由2x-1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.【解析】设u=-x2+3x+2=-x-322+174,则当x≥32时,u是减函数,当x≤32时,u是增函数.又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.9.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,∴函数f(x)=3x+3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2=(3x2-3x1)?1-3x1+x23x1+x2.∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数在[0,+∞)上单调递增,即函数的单调增区间为[0,+∞).。

高一数学上学期指数函数(习题)(原卷版)

高一数学上学期指数函数(习题)(原卷版)

专题12 指数函数1.若函数f (x )=(2a -5)·a x 是指数函数,则f (x )在定义域内( ) A .为增函数 B .为减函数 C .先增后减 D .先减后增2.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =⎝⎛⎭⎫1a 0.1的大小关系是( ) A .M =N B .M ≤N C .M <ND .M >N3.(多选)已知函数f (x )=a x -1+1(a >0,a ≠1)的图象恒过点A ,下列函数图象经过点A 的是( ) A .y =1-x +2 B .y =|x -2|+1 C .y =log 2(2x )+1D .y =2x -14.(创新型)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( ) A .K 的最大值为0 B .K 的最小值为0 C .K 的最大值为1D .K 的最小值为15.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <21.(2021·四川省广元中学模拟)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <22.(2021·山东菏泽联考)函数y =⎝⎛⎭⎫122x -x 2的值域为( ) A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎦⎤-∞,12C.⎝⎛⎦⎤0,12 D .(0,2]3.(2021·陕西省铜川模拟)已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对4.(2021·湖南株洲模拟)如图,四边形OABC 是面积为8的平行四边形,AC ∈CO ,AC 与BO 交于点E ,某指数函数y =a x (a >0且a ≠1)的图象经过点E ,B ,则a =( ) A. 2 B. 3 C .2D .35.(2021·安徽省淮南五中模拟)已知函数f (x )=e |x |,将函数f (x )的图象向右平移3个单位后,再向上平移2个单位,得到函数g (x )的图象,函数h (x )=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x >5,若对于任意的x ∈[3,λ](λ>3),都有h (x )≥g (x ),则实数λ的最大值为________.6.(2021·福建省厦门模拟)已知函数f (x )=2a ·4x -2x -1. (1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.7.(2021·山东省栖霞模拟)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,求实数a 的取值范围.8.(2021·浙江金华市·高三其他模拟)已知函数2,0(),0x x f x kx b x ⎧=⎨+<⎩,若对于任意一个正数a ,不等式1|()(0)3f x f ->∣在(,)a a -上都有解,则,k b 的取值范围是( )A .24,,,33k b ⎛⎫⎛⎫∈∈-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭R B .240,,33k b ⎛⎫<∈⎪⎝⎭C .2,,3k b ⎛⎫∈∈+∞⎪⎝⎭R D .40,,3k b ⎛⎫<∈-∞ ⎪⎝⎭9.(2021·安徽芜湖市·高三二模(理))函数()f x 是定义在R 上的偶函数,且当0x ≥时,()()1xf x a a =>.若对任意的[]0,21x t ∈+,均有()[]3()f x t f x +≥,则实数t 的最大值是( )A .49-B .13-C .0D .1610.(2021·辽宁沈阳市·高三三模)已知()()2221,2,2,2,2xx xx a b c ∈===,则,,a b c 的大小关系为( ) A .a b c >> B .b c a >> C .b a c >>D .c a b >>11.(2021·江苏苏州市·高三其他模拟)生物体死亡后,它机体内原有的碳14含量P 会按确定的比率衰减(称为衰减率),P 与死亡年数t 之间的函数关系式为1()2ta P =(其中a 为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的79%,则可推断该文物属于( )参考数据:2log 0.790.34≈-. 参考时间轴:A .战国B .汉C .唐D .宋12.(2021·河南高三月考(理))设实数a ,b 满足51118a b a +=,7915a b b +=,则a ,b 的大小关系为( ) A .a b <B .a b =C .a b >D .无法比较13.【多选题】(2021·全国高三专题练习)若函数1()x x f x e e -=-,则下述正确的有( )A . ()f x 在R 上单调递增B .()f x 的值域为(0,)+∞C . ()y f x =的图象关于点1(,0)2对称D . ()y f x =的图象关于直线12x =对称 14.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <215.(2020·辽宁大连第一次(3月)双基测试)函数y =2x2x +1(x ∈R )的值域为________.16.已知函数f (x )=a x (a >0,a ≠1)在区间[-1,2]上的最大值为8,最小值为m .若函数g (x )=(3-10m )x 是单调递增函数,则a =________.17.(2020·福建养正中学模拟)已知函数f (x )=2x ,g (x )=x 2+2ax (-3≤x ≤3). (1)若g (x )在[-3,3]上是单调函数,求a 的取值范围;(2)当a =-1时,求函数y =f (g (x ))的值域.18.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.19.【多选题】(2020·山东省青岛第十六中学高三月考)已知函数()()()()11211xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则下列正确的是( ) A .()102f f =⎡⎤⎣⎦ B .()21f f =⎡⎤⎣⎦C .()22log 32f f =⎡⎤⎣⎦D .()f x 的值域为10,2⎛⎤ ⎥⎝⎦。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.函数的单调递减区间【答案】【解析】因为,根据复合函数的单调性可知该函数的单调递减区间为.【考点】本小题主要考查复合函数的单调区间的求法.点评:考查复合函数的单调性时,要注意“同增异减”,还要注意函数的定义域.2.设a,b,c∈R,且3= 4= 6,则( ).A.=+B.=+C.=+D.=+【答案】B【解析】设3= 4= 6= k,则a = log k,b= log k,c = log k,从而= log 6 = log3+log 4 =+,故=+,所以选(B).3.设指数函数,则下列等式中不正确的是()A.f(x+y)=f(x)·f(y)B.C.D.【答案】D【解析】根据指数幂的运算律知:A,B,C正确;。

故选D4.若函数是定义在R上的奇函数,则函数的图象关于()A.轴对称B.轴对称C.原点对称D.以上均不对【答案】B【解析】因为函数是定义在R上的奇函数,所以则所以是偶函数。

故选B5.三个数,,之间的大小关系为()A.B.C.D.【答案】B【解析】因为,,,所以,故应选.【考点】1、指数与指数函数;2、对数与对数函数;6.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.7.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A8.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.9.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.【答案】(1)或;(2).【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,在上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.10.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.11.若3<a<4,化简的结果是()A.7-2a B.2a-7C.1D.-1【答案】C【解析】∵,∴,。

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。

(完整版)指数函数经典习题大全

(完整版)指数函数经典习题大全

指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。

高一数学指数函数练习题

高一数学指数函数练习题

高一数学 指数函数练习题考点1:指数函数的图象1. 已知f (x )=2x ,利用图象变换作出下列函数的图象:① f (x −1); ②f (x +1)+1; ③−f (|x |); ④f (−x ); ⑤−f (x ).【练习1】(2013北京理5)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x+1B .e x−1C .e −x+1D .e −x−1【练习2】要得到函数y =21−2x 的图象,只要将函数y =(14)x的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位2.在下图中,二次函数y =ax 2+bx 与指数函数y =(b a )x的图象只能是( )【练习3】函数f(x)=a x −1a(a >0,a ≠1)的图象可能是( )3. ((2019·金版创新)已知实数a ,b 满足等式2018a =2019b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个4. 若曲线|y|=2x +1与直线y =b 没有公共点,则b 的取值范围是________【练习4】若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.5. (2019·广东佛山模拟)已知函数f(x)=|2x -1|,a <b <c ,且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A . a <0,b <0,c <0B .a <0,b ≥0,c >0C .2−a <2cD .2a +2c <2考点2:指数函数的单调性 ⚫ 比大小1.试比较下列各数的大小:(23)−13,(35)12,323,(25)12,(32)23,(56)0,(53)−25.【练习1】设 1.8112y −⎛⎫= ⎪⎝⎭,0.62y =,332y −⎛⎫= ⎪ ⎪⎝⎭,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2【练习2】比较下列各组数的大小.① a 1.2,a 1.1(a >0且a ≠1);② 4222,3333; ③ 0.8−2,(43)−13.④(12)13,(13)12⚫ 单调区间2.函数f (x )={(13)x ,x ≤0(2a −1)x +1−a,x >0在(−∞,+∞)上是减函数,则a 的取值范围是( )A .(0,12)B .[0,12)C .(−∞ ,12]D .(12,+∞)【练习】(2019·西安)若函数f(x)=a |2x−4|(a >0,且a ≠1),满足f(1)=19,则f(x)的单调递减区间是( )A .(−∞,−2)B .[2,+∞)C .[−2,+∞)D .(−∞,−2]3. 已知函数y =9x +m ·3x −3在区间[-2,2]上单调递减,则m 的取值范围为________.⚫ 解函数不等式4. 设函数f(x)是偶函数,当x ≥0时,f(x)=3x -9,则f(x -3)>0的解集是( )A .{x|x <−2或x >2}B .{x|x <-2或x >4}C .{x|x <0或x >6}D .{x|x <1或x >5} 【练习3】(a 2-a +2018)−x−1<(a 2-a +2018)2x+5的解集为( )A .(−∞,−4)B .(−4,+∞)C .(−∞,−2)D .(−2,+∞)【练习4】(2019·宜昌调研)设函数f (x )={(12)x −7,x <0√x,x ≥0,若f(a)<1,则实数a 的取值范围是( )A .(−∞,−3)B .(1,+∞)C .(−3,1)D .(−∞,−3)∪(1,+∞)5. ((2018·湖北咸宁11月联考)设函数f (x )=(2k −1)a x −a −x (a >0且a ≠1)是定义域为R 的奇函数 (1)求k 的值;(2)若f(1)=-56,不等式f(3x -t)+f(-2x +1)≥0对x ∈[-1,1]恒成立,求实数t 的最小值.考点3:与指数函数相关的基本性质1.求下列函数的定义域和值域:①y=31x−2;②y=5−√x−1; ③y=2 2x−12.已知函数f(x)={−(12)x,a≤x<0−x2+2x,0≤x≤4的值域是[−8,1],则实数a的取值范围是( )A.(−∞,−3]B.[−3,0)C.[−3,−1]D.{−3}3.函数y=a2x−4+3(0a 且a≠1)必过定点___________.4.(目标班专用)已知函数f(x)=(12)x−1(12)x+2.⑴ 求f(x)的定义域,值域;⑵ 讨论f(x)的奇偶性;⑶ 讨论f(x)的单调性.5.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(−1)=()A.3 B.1 C.−1D.−36.已知函数f(x)=9x9x+3,则f(0)+f(1)=,若g(k)=f(1k)+f(2k)+f(3k)+⋯+f(k−1k)(k≥2 , k∈Z),则g(k)=(用含有k的代数式表示).【练习】(2018·湖南益阳4月调研)已知函数f(x)=2x1+a·2x 的图象关于点(0,12)对称,则a=________.7.已知函数f(x)满足对一切x∈R,f(x+2)=-1f(x)都成立,且当x∈(1,3]时,f(x)=2−x,则f(7)=( )A.14B. 18C.116D132考点4:指数函数与二次函数的复合1.已知函数f(x)=(13)ax2−4x+3.(1)若a=−1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值;(3)若f(x)的值域是(0,+∞),求a的值.【练习1】(2018·桂林模拟)已知函数y=2−x2+ax+1在区间(-∞,3)内单调递增,则a的取值范围为________.2.(目标班专用)求函数f(x)=(14)x−(12)x+1(x∈[−3,2])的单调区间及其值域.【练习2】如果函数y=a2x+2a x−1(a>0,a≠1)在区间[−1,1]上的最大值是14,求a的值.3.定义:若对定义域内任意x,都有f(x+a)>f(x)(a为正常数),则称函数f(x)为“a距”增函数.(1)若f(x)=2x−x,x∈(0,+∞),试判断f(x)是否为“1距”增函数,并说明理由;(2)若f(x)=x3−14x+4,x∈R是“a距”增函数,求a的取值范围;(3)若f(x)=2x2+k|x|,x∈(−1,+∞),其中k∈R,且为“2距”增函数,求f(x)的最小值.。

高一数学指数函数经典例题

高一数学指数函数经典例题

2(2)【例3】比较大小:高一数学指数函数平移问题x 1 x 2 x 1 x 2 ⑴y=2 与 y=2 . ⑵y =2 与 y =2 f(x)的图象 向左平移a 个单位得到f(x + a)的图象;向右平移a 个单位得到f(x — a)的图象; 向上平移a 个单位得到f(x) + a 的图象;向下平移a 个单位得到f(x) — a 的图象. 指数函数•经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: 1 (1)y = 3厂 (2)y = ..2x 2 1 (3)y = .3 3x 1 解 (1)定义域为x € R 且x 丰2 .值域y > 0且沪1 . ⑵由2x+2 — 1 >0,得定义域{x|x >— 2},值域为y 》0. ⑶由 3— 3x-1 > 0,得定义域是{x|x < 2},: 0<3 — 3x — 1 v 3,二值域是 0 < y V 3 .及时演练 求下列函数的定义域与值域 (1) y(2) y (|)|x|;【例2】指数函数y = ax , y = b x , y = c x , y = d x 的图像如图2. 6 — 2所示, 则a 、b 、c 、d 、1之间的大小关系是 [ ] A . a v b v 1 v c v d C . b v a v 1 v d v c B . a v b v 1 v d v c D . c v d v 1 v a v b 选(c),在x 轴上任取一点(x , 0),则得 b v a v 1 v d v c . Jyy=c Er匪.6-2及时演练 指数函数①' ②「J —」 满足不等式1’ 一」;「-,则它们的图象是().(1) 2、3 2、5 4、8 8、916的大小关系是:(2)0.63•••0.6 5 > (3) 2图像如图 2. 6-3,取 x = 3.6,得 4.53・6>3.73.6二 4.54*1 >3.73・6. 说明 如何比较两个幕的大小:若不同底先化为同底的幕,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幕比较大小时,有两个技巧,其一借助 1作桥梁,如例2中的(2).其二构造一个新的幕作桥梁,这个新的幕具有与 4.54」同底与3.73.6同指数的特点,即为4.53.6(或 3.74.1),如例 2 中的(3).1 【例5】 已知函数f(x) = a - 2*+ 1,若f(x)为奇函数,则a=.1 1 【解析】 解法1: T f(x)的定义域为R ,又T f(x)为奇函数,• f(0) = 0,即a - 2+1 = 0.「. a = q 1 1 1 1 解法 2:Tf(x)为奇函数,.•• f( 一 x) = 一 f(x),即 a — 2-x + 1 = 2%+ 1 一a ,解得 a = ^.【答案】23 2【例6】求函数y = (3)x — 5x + 6的单调区间及值域.43解 令u = x 2 — 5x + 6,贝Uy =(2)u 是关于u 的减函数,而u = x 2 — 5x55+ 6在x € ( x,—]上是减函数,在x € [ — , 3 )上是增函数..•.函数y =(3)"一5x + 6的单调增区间是(x, 5],单调减区间是 谆, x ).(3)4.5 4" _______ 3.73・6 1解(1) T . 2 2 2 , 3 22 > 1,该函数在 2 4 v — v5 9 4 函数y = 21 3 又一 v - v 3 8 916 v ..2 •解(2) T 0.6 5 > 1,3 (2)23,5 4 2 ® , 1 8 2 8 ,916)上是增函数,解(3)借助数4.53・6打桥,利用指数函数的单调性,4.54.1 >4.53・6,作函数 y 〔 = 4.5x , y 2= 3.7x 的及时演练(1)1.72.5 与 1.73( 2 ) 0.8 0.1 与 0.8 0.2( 3 ) 1.703 与 0.93.1(4)3.52.1 和2.02.7【例4】比较大小n1a n 与n a n 1 (a >0且a ^1, n >1).1• aE v 1,n(n 1)当a > 1 时,T n > 1,1 n(n 1)> 0,当 0<a V 1,T n >1, ・ n(n 1)…a > 1,5 1 i又■「u = x 2 — 5x + 6 = (x )2 》 ,2 4 43 1函数y = (—)u ,在u € [ — , *)上是减函数,4 4 所以函数y =(?)x2— 5x + 6的值域是(0, 也•4 —— —【例7】求函数y = (-)x (2)x + 1(x > 0)的单调区间及它的最大值.— — — — — —解 y=£)x ]2 (-)x — [(2)x 2]2 4,令尸(2)x ,v x >o ,— —••• 0V U < —,又T U = g )x 是乂€ [0 ,+* )上的减函数,函数 y = (u)2— — — — — —在u € (0,-]上为减函数,在 纭,—)上是增函数•但由0V (-)x < -— — — —得X 》—,由—w (—)x w —,得0= x W —,-函数y =(—广 (一)x + —单调增2 2 34 2区间是[—,+* ),单调减区间[0,—]a x 2 — _ 2(a x| a x 2)a x 2 — _ (a x| —)®2 —) (a x2+ —) > 0,• f(x —) V f(x 2),故f(x)在R 上为增函数.当x = 0时, 函数y 有最大值为—•【例8】已知f(x)= xa xa—(a >—)(—)判断f(x)的奇偶性; 解(—)定义域是R .⑵求f(x)的值域;⑶证明f(x)在区间(— 8,+^ )上是增函数.a x—f(—x) =x a xa—-=—f(x),••f(x)为奇函数.x(2)函数尸Oh ,山 >0 — —V y V —,即 f(x)的值域为(——,—).—y(—)设任意取两个值x —x?€ (— m ,+m )且 x —V x 2. f(x —) — f(x 2)x l—a | =x | —a 1T a > —,x — V x 2,a x — V a x 2, (a x —+ —)。

指数函数习题大全

指数函数习题大全

指数函数习题大全指数函数1.对于函数f(x)=a(a>0,且a≠1),下列哪个等式成立。

A。

f(xy)=f(x)f(y) B。

f(xy)=f(x)+f(y) C。

f(x+y)=f(x)f(y) D。

f(x+y)=f(x)+f(y)2.下列哪个等式成立。

①- a = (-a) ②a^(1/2) × a^(-1/3) =a^(-1/6) ③a^2 = -a (a<0) ④(b/a)^4 = (3b/4a)^4 (a,b≠0)3.当x∈[-1,1]时,函数f(x)=3^(-2)的值域是()A。

(5/3,1] B。

[-1,1] C。

[1,5/3) D。

[0,1]4.函数y=a在[0,1]上的最大值与最小值的和为3,则a=()A。

11 B。

2 C。

4 D。

225.已知a>b。

ab≠0,下列不等式中恒成立的有()(1) a>b;(2) 2a>2b;(3) (a-b)/abb^3;(5) (a/b)^(1/3)<1/3 A。

1个 B。

2个C。

3个 D。

4个6.函数y=(2x-1)/(x-2)的值域是() A。

(-∞,1) B。

(-∞,0)∪(0,+∞) C。

(-1,+∞) D。

(-∞,-1)7.函数y=2^x-1的图象是()8.函数y=3^x和y=1/3^x的图象大致是()9.下列函数式中,满足f(x+1)=f(x)的是(1) (x+1)/2;(2)x+1;(3) 2x;(4) 2-x A。

(x+1)/2 B。

x+1 C。

2x D。

2-x10.若函数y=f(x)的图象经过点(0,1),则函数y=f(x+1)的图象一定在() A。

第一、二、三象限 B。

第一、三、四象限 C。

第二、三、四象限 D。

第一、二、四象限11.已知f(x)=sin(x)+cos(x),g(x)=sin(x)-cos(x),则f(x)g(x)是() A。

奇函数 B。

偶函数 C。

非奇非偶函数 D。

指数函数经典例题(答案)

指数函数经典例题(答案)

指数函数1.指数函数的定义:函数叫做指数函数,其中x是自变量,函数定义域是R2.指数函数的图象和性质:在同一坐标系中分别作出函数y=,y=,y=,y=的图象.我们观察y=,y=,y=,y=图象特征,就可以得到的图象和性质。

指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小 例1 已知函数满足,且,则与的大小关系是_____. 分析:先求的值再比较大小,要注意的取值是否在同一单调区间内. 解:∵, ∴函数的对称轴是. 故,又,∴. ∴函数在上递减,在上递增. 若,则,∴; 若,则,∴. 综上可得,即. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知,则x的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵, ∴函数在上是增函数, ∴,解得.∴x的取值范围是. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题 例3 求函数的定义域和值域. 解:由题意可得,即, ∴,故.∴函数的定义域是. 令,则, 又∵,∴.∴,即. ∴,即. ∴函数的值域是. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数在区间上有最大值14,则a的值是_______. 分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围. 解:令,则,函数可化为,其对称轴为. ∴当时,∵, ∴,即. ∴当时,. 解得或(舍去); 当时,∵, ∴,即, ∴时,, 解得或(舍去),∴a的值是3或. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程. 解:原方程可化为,令,上述方程可化为,解得或(舍去),∴,∴,经检验原方程的解是. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数的图象,可以把函数的图象( ). A.向左平移9个单位长度,再向上平移5个单位长度 B.向右平移9个单位长度,再向下平移5个单位长度 C.向左平移2个单位长度,再向上平移5个单位长度 D.向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象的平移规律进行判断. 解:∵,∴把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C). 评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小: (1)若,比较与; (2)若,比较与; (3)若,比较与; (4)若,且,比较a与b; (5)若,且,比较a与b. 解:(1)由,故,此时函数为减函数.由,故. (2)由,故,故.从而. (3)由,因,故.又,故.从而. (4)应有.因若,则.又,故,这样,故.从而,这与已知矛盾. (5)应有.因若,则.又,故,这样有.又因,且,故.从而,这与已知矛盾. 小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数,和的图象,则与1的大小关系是 ( ). ( 分析:首先可以根据指数函数单调性,确定,在轴右侧令,对应的函数值由小到大依次为,故应选. 小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3,求下列函数的定义域与值域.(1)y=2; (2)y=4x+2x+1+1.解:(1)∵x-3≠0,∴y=2的定义域为{x|x∈R且x≠3}.又∵≠0,∴2≠1,∴y=2的值域为{y|y>0且y≠1}.(2)y=4x+2x+1+1的定义域为R.∵2x>0,∴y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2>1.∴y=4x+2x+1+1的值域为{y|y>1}.4,已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值解:设t=3x,因为-1≤x≤2,所以,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

(完整版)经典高一数学_函数_指数和对数函数练习题

(完整版)经典高一数学_函数_指数和对数函数练习题

指数函数与对数函数求以下函数的定义域、值域:11x2x x2x ( 1)2x1y2y 1 ( ) 3 y 341 28)=(2()()1log21x( 6)y log3 (6 x 3x22)定义域( 5)f (x)1,x x7.函数y a x在 [ 0,1] 上的最大值与最小值这和为3,则a=()8.假如函数f ( x) lg[ x( x 3) 1], x[1,3] ,那么 f (x) 的最大值是( A )22A . 0B .11C.D. 1 429.函数 y=- e x的图象()( A )与 y=e x的图象对于 y 轴对称(B) 与 y= e x的图象对于坐标原点对称--x 的图象对于坐标原点对称( C)与 y= e x的图象对于 y 轴对称(D) 与 y= e10.函数y log 21的图像大概是xy y y yo x o x o x oxA B C D11.将函数y2x1的图象按向量 a 平移获得函数 y2x 1的图象,则()A .a(1, 1)B.a (1,1)C.a (11),D.a ( 11),12.方程4x2x20 的解是__________.13.设f (x) lg(2f ( x)0 的 x 的取值范围是()a) 是奇函数,则使1xA.( 1,0)B.(0,1)C.(,0)D.( ,0) U(1, )1a2 x( a0 且a1).14.函数ya2x1A是奇函数B C既是奇函数又是偶函数D 是偶函数是非奇非偶函数15.函数y log 1 ( x25x 6) 的单一增区间为()2A .5,B.(3,) C.5D.(,2) 2,216.函数f ( x)定义在实数集R 上, f (x y) f ( x) f ( y) ,且当x0 时, f (x)0,则 f (x)A 是奇数且在 R 上是单一增函数B是奇数且在R 上是单一减函数C 是偶函数且在R 上是单一减函数D是偶函数且在R 上不是单一函数17.已知函数 f ( x) 知足: x4 ,则 f (x) = ( 1 ) x ;当 x 4 时 f ( x) = f ( x 1) ,则2f (2 log 2 3) =1 B1C1 D3 A128824(),18.已知函数 f ( x )log 2 x x 0则 f [ f ( 1)]的值是( B )3x(x0),411A . 9B . 9C .- 9D .9提示: f ( 1) log 2 12 , f [ f ( 1)] f ( 2) 321444 9f ( x 3)( x 6) 1) 的值为19.若 f (x)(x,则 f ( ()log 2 x 6)A 1B 2C 3D 4比较大小1 1. 51.设 y 140.9 , y 2 80.48 , y 3,则 ()2A. y 3 y 1 y 2 B y 2y 1 y 3 C y 1 y 2 y 3 D y 1 y 3 y 2 】2.下边不等式建立的是 ()A . log 3 2 log 2 3 log 2 5B . log 3 2 log 2 5 log 2 3C . log 2 3 log 3 2 log 2 5D . log 2 3log 2 5 log 3 23.若 0 xy 1 ,则()A . 3y3xB . log x 3 log y 3C . log 4 x log 4 yD . ( 1)x( 1) y441 0.214.设 alog 1 3 , b, c23,则()32A . a b cB . c b aC . c a bD . b a c5.以下四个数中的最大者是()(A) (ln2)2(C) ln2(D) ln2(B) ln(ln2)6.若 alog 3 π, b log 7 6, c log 2 0.8 ,则()(A )a>b >c ( B ) b>a >c ( C ) c>a >b( D ) b>c>a7.已知 log 1 blog 1 a log 1 c ,则 ()222A . 2b2 a 2c B . 2a 2b 2c C . 2c 2b 2a D . 2c 2a 2b8.设 3x1,则()7A .- 2<x< - 1B .- 3<x< - 2C .- 1<x<0D . 0<x<19.已知函数y log 1 x 与 y kx 的图象有公共点 A ,且点 A 的横坐标为 2,则 k ()41 1 1 1 A .B .C .D .44224x,x ≤ ,10.函数 f ( x)24 x ,的图象和函数 g(x) log 2 x 的图象的交点个数是 ( )x3 x 1A .4B .3C . 2D . 1。

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

高一数学典型例题分析 指数函数、对数函数、换底公式 试题

高一数学典型例题分析 指数函数、对数函数、换底公式 试题

指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,那么m 为 [ ]解 B 由有[ ]A.b>a>1B.1>a>b>0C.a>b>1D.1>b>a>0解 A 由不等式得应选A.[ ]应选A.[ ]A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2)2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数, [ ]A.m>p>n>qB.n>p>m>qC.m>n>p>qD.m>q>p>n例1-6-43 (1)假设log a c+log b c=0(c≠0),那么ab+c-abc=____;(2)log89=a,log35=b,那么log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.例1-6-44函数y=f(x)的定义域为[0,1],那么函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45 log1227=a,求log616的值.例1-6-46比拟以下各组中两个式子的大小:例1-6-47常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)假设x=a t(t≠0),试以a,t表示y;(2)假设t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得即 log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.励志赠言经典语录精选句;挥动**,放飞梦想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 指数函数平移问题
⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .
f (x )的图象
向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象.
指数函数·经典例题解析
(重在解题方法)
【例1】求下列函数的定义域与值域:
(1)y 3
(2)y (3)y 12x
===-+---213321x x
解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0.
(3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4
12
-=x y ; (2)||
2()3
x y =; (3)12
41
++=+x x y ;
【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]
A .a <b <1<c <d
B .a <b <1<d <c
C . b <a <1<d <c
D .c <d <1<a <b
解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数①

满足不等式
,则它们的图象是 ( ).
【例3】比较大小:
(1)2(2)0.6
、、、、的大小关系是:.
2481632
358945
12--()
(3)4.54.1________3.73.6
解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,
又<<<<,∴<<<<.
22224282162133825491
2
2841621
2
3
13
5
25
8
38
9
49
3859=====
解 (2)0.6110.6
∵>,>,
∴>.
-
---45
12
45
12
32
32
()()
解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6∴ 4.54.1>3.73.6.
说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 及时演练(1)1.72.5与
1.73
( 2 )0.1
0.8
-与0.2
0.8
- ( 3 )
1.70.3 与0.93.1
(4)
5
.31
.2和
7
.20
.2
【例4】解
比较大小与>且≠,>.
当<<,∵>,>,
a a a
a
a
n n n n n n n
n n n
n n -+-+-=-111
1
111
1(a 0a 1n 1)0a 1n 10()
()
∴<,∴<当>时,∵>,>,
∴>,>a
a a n n a
a a n n n n n n n n n n n n 1111
1111
1
1()
()
()--+--+-1a 1n 101
【例5】已知函数f(x)=a -
1
2x +1,若f(x)为奇函数,则a =________.
【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数,∴f(0)=0,即a -120+1=0.∴a =1
2.
解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a -12-x +1=12x +1-a ,解得a =1
2.【答案】 12
【例6】解求函数=的单调区间及值域.
令=-+,则=是关于的减函数,而=--+y u x 5x 6y u u x 5x
x 2
5x 622()()34
3
4
u
+在∈∞,上是减函数,在∈,∞上是增函数.∴函数
=的单调增区间是∞,,单调减区间是,∞.
-+6x x y x 25x 6(][)()(][)-+-+525
2
345252
又∵=-+=≥,
函数=,在∈,∞上是减函数,
所以函数=的值域是,.
-+u x 5x 6y u y 2
x 25x 6()()[)()(]x u ----+52141
4
341
4
340108
324
【例7】解求函数=+≥的单调区间及它的最大值.
=,令=,∵≥,∴<≤,又∵=是∈,+∞上的减函数,函数=y 1(x 0) y u x 00u 1u x 0)y ()()[()]()[()]()()[()141
2
121211212341
2
121
2
222
x x x x x x x u --+=-+-
+-3401212121
2
1212141
2
在∈,上为减函数,在,上是增函数.但由<≤得≥,由≤≤,得≤≤,∴函数=+单调增区间是,+∞,单调减区间,u 1)0x 110x 1y 11)[01]
(][()()()()[x x x x
当x =0时,函数y 有最大值为1.
【例8】已知=>f(x)(a 1)a a x x -+1
1
(1)判断f(x)的奇偶性; (2)求f(x)的值域; (3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R .
f(x)f(x)-==-,a a a a x x x x ---+=--+111
1
∴函数f(x)为奇函数.
(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒11
111
10即f(x)的值域为(-1,1).
(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)
==,∵>,<,<,++>,∴<,故在上为增函数.
a a a a a a a a a a a a x l x l x x x l x x l x
x x x x -+-+--++112121*********()
()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212。

相关文档
最新文档