2015高考数学试卷汇编--坐标系与参数方程

合集下载

高考文科数学真题汇编:坐标系和参数方程学生版

高考文科数学真题汇编:坐标系和参数方程学生版

-年高考文科数学真题汇编:坐标系和参数方程学生版————————————————————————————————作者:————————————————————————————————日期:学科教师辅导教案 学员姓名年 级高三 辅导科目 数 学授课老师课时数2h第 次课授课日期及时段 2018年 月 日 : — :1.(2015年广东文)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .2.(2015年新课标2文)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标; (II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.3.(2015年陕西文)在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐标方程为23sin ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.历年高考试题集锦——坐标系和参数方程4、(2015新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.5、(2016年全国I )在直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .6、(2016年全国II )在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.7、(2016年全国III )在直角坐标系xOy 中,曲线1C 的参数方程为3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+= .(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.8、(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为11232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩ (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.9.(2013江苏理)在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标。

坐标系与参数方程联系题(真题)(含答案)教程文件

坐标系与参数方程联系题(真题)(含答案)教程文件

4 因为 p 2— 2 2 p os( 9— 4) 2,n ncos 0cos4 +sin O sin^)所以圆O 2的直角坐标方程为x 2 + y 2— 2x — 2y —2= 0.(2)将两圆的直角坐标方程相减, 所以p 2— 2 2 p2,化为极坐标方程为pcos 9+p sin 9= 1, 即 p in( 9+扌)=二3、(2017全国卷H )在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C ’的极坐标方程为p os 0= 4.(1)M 为曲线G 上的动点,点P 在线段OM 上,且满足|OM| |OP|= 16,求点P 的轨迹C 2的直角坐标方程; ⑵设点A 的极坐标为(2, 3) 解:(1)设P 的极坐标为(p, 9)(p>0), M 的极坐标为(p, 0( p>0). ,点B 在曲线C 2上,求△ OAB 面积的最大值.由题设知 |OP|= p, |OM|= pi —eg 9由 |OM| |OP|= 16, 得 C 2 的极坐标方程 p= 4cos 0p>0). 因此C 2的直角坐标方程为(x — 2)2+ y 2= 4(X M 0). ⑵设点B 的极坐标为(PB , a ( PB >0),由题设知|OA|= 2, pB = 4cos a 于是△ OAB 的面积将(0,1)转化为极坐标为(1, ^) 即为所求.(1) 把圆O i 和圆O 2的极坐标方程化为直角坐标方程; ⑵求经过两圆交点的直线的极坐标方程. 解:(1)由 p= 2 知 p= 4,所以圆O ’的直角坐标方程为x 2 + y 2= 4. 1、在极坐标系下,已知圆 O : p= cos 9+ sin 9和直线I : psin ( 0— 4)= ¥( P‘ 0,0 三 9 2n)(1)求圆O 和直线l 的直角坐标方程;psi n(2)当9€ (0 , n 时,求直线l 与圆O 的公共点的极坐标. 解:(1)圆 O : p= cos 9+ sin 9,即 p 2= pcos 9+ psin 9,故圆O 的直角坐标方程为 x 2 + y 2 — x — y = 0,直线 l : psin( 9-n )则直线l 的直角坐标方程为x — y +1= 0. ,即 psin 0— pcos 0= 1,⑵由⑴知圆O 与直线I 的直角坐标方程,x 2+y 2 — x — y =0,将两方程联立得解得 x — y + 1 = 0,x = 0,y = 1,即圆O 与直线I 在直角坐标系下的公共点为(0,1),2、已知圆O i 和圆。

2015年高考数学试题——坐标系与参数方程

2015年高考数学试题——坐标系与参数方程

2015年高考数学试题——坐标系与参数方程1.(15北京理科)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ+=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.考点:1.极坐标与直角坐标的互化;2.点到直线距离.2.(15年广东理科)已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为【答案】2. 【解析】依题已知直线l:2sin 4πρθ⎛⎫-= ⎪⎝⎭74A π⎛⎫⎪⎝⎭可化为l :10x y -+=和()2,2A -,所以点A 与直线l 的距离为d ==,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.3.(15年广东文科)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.4.(15年福建理科)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为sin()m,(m R).4pq -= (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值.【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()()22129x y -++= ,利用cos x ρθ=,sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解.试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=. (Ⅱ)依题意,圆心C 到直线l 的距离等于2,即|12m |2,--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.5.(15年新课标2理科)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。

2015届高考数学总复习(基础过关+能力训练):坐标系与参数方程 坐 标 系(含答案)

2015届高考数学总复习(基础过关+能力训练):坐标系与参数方程 坐 标 系(含答案)

选修4-4 坐标系与参数方程第1课时坐 标 系(理科专用)1. 在极坐标系中、圆ρ=4被直线θ=π4分成两部分的面积之比是多少? 解:∵ 直线θ=π4过圆ρ=4的圆心、∴ 直线把圆分成两部分的面积之比是1∶1. 2. 在极坐标系中、直线ρsin ⎝⎛⎭⎫θ+π4=3被圆ρ=5截得的弦长是多少? 解:直线和圆转化为直角坐标方程分别为直线x +y =32、圆x 2+y 2=25、圆心到直线的距离为3、得弦长为8.3. 在极坐标系中、求圆ρ=1上的点到直线ρcos ⎝⎛⎭⎫θ-π3=3的距离的最大值。

解:将直线和圆都化为直角坐标方程、直线x +3y -6=0、圆x 2+y 2=1、圆心(0、0)到直线的距离为3、∴ 直线与圆上的点最大距离为4.4. 在极坐标系下、求圆ρ=5cos θ-53sin θ的圆心的坐标。

解:圆心的直角坐标为⎝⎛⎭⎫52,-532、故圆心的极坐标为⎝⎛⎭⎫5,53π.(答案不唯一) 5. 曲线的极坐标方程为ρ=tan θ·1cos θ、求曲线的直角坐标方程。

解:ρ=tan θ·1cos θ=sin θcos 2θ、ρcos 2θ=sin θ、ρ2cos 2θ=ρsin θ、即曲线的直角坐标方程为x 2=y.6. 极坐标方程ρcos2θ=0表示的曲线是什么?解:ρcos2θ=0、cos2θ=0、θ=k π±π4、为两条相交直线。

7. 极坐标系中、曲线ρ=-4sin θ与ρcos θ=1相交于点A 、B 、求AB 的长。

解:在平面直角坐标系中、曲线ρ=-4sin θ和ρcos θ=1分别表示圆x 2+()y +22=4和直线x =1、作图易知||AB =2 3.8. 在极坐标系中、已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3、半径R =5、求圆C 的极坐标方程。

解:(解法1)设P(ρ、θ)是圆上的任意一点、则PC = R = 5. 由余弦定理、得ρ2+22-2×2×ρcos ⎝⎛⎭⎫θ-π3=5.化简、得ρ2-4ρcos ⎝⎛⎭⎫θ-π3+1=0、此即为所求的圆C 的方程. (解法2)将圆心C ⎝⎛⎭⎫2,π3化成直角坐标为(1、3)、半径R =5、故圆C 的方程为(x -1)2+(y -3)2=5.再将C 化成极坐标方程、得(ρcos θ-1)2+(ρcos θ-3)2=5. 化简、得ρ2-4ρcos(θ-π3)+1=0 、此即为所求的圆C 的方程. 9. 设点P 在曲线ρsin θ=2上、点Q 在曲线ρ=-2cos θ上、求|PQ|的最小值。

2015高考真题数学考点49-坐标系和参数方程

2015高考真题数学考点49-坐标系和参数方程

考点49 坐标系与参数方程填空题1. (2015·广东高考理科·T14)(坐标系与参数方程选做题)已知直线l的极坐标方程为2ρsin =,点A的极坐标为A,则点A到直线l的距离为.【解题指南】先将直线的极坐标方程转化为直角坐标方程,点A的极坐标转化为直角坐标,再利用点到直线的距离公式求出结果.【解析】依题已知直线l:2sin4πρθ⎛⎫-=⎪⎝⎭和点7,4Aπ⎛⎫⎪⎝⎭可化为l:10x y-+=和()2,2A-,所以点A与直线l的距离为2 d==,故应填入2答案:22. (2015·广东高考文科·T14)(坐标系与参数方程选做题)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.【解题指南】先将曲线C1的极坐标方程转化为直角坐标方程,曲线C2的参数方程转化为普通方程,再联立方程组求解.【解析】曲线1C的直角坐标方程为2x y+=-,曲线2C的普通方程为28y x=,由228x yy x+=-⎧⎨=⎩得:24xy=⎧⎨=-⎩,所以1C与2C交点的直角坐标为()2,4-,答案:(2,-4)3. (2015·北京高考理科·T11)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.【解题指南】把点和直线转化到直角坐标系中,再利用点到直线距离公式求解.【解析】点(2,3π)可化为(2cos 3π,2sin 3π),即(1, ).直线ρ(cos θ+sin θ)=6可化为x+由点到直线距离公式可得1=.答案:14.(2015·湖北高考理科·T16)(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),l 与C 相交于A,B 两点,则|AB|= . 【解题指南】先将极坐标方程ρ(sin θ-3cos θ)=0和曲线C 的参数方程1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数)化成普通方程,再求解.【解析】由ρ(sin θ-3cos θ)=0知,直线的方程是y=3x,由曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数得,y 2-x 2=4,解方程组2234=⎧⎨-=⎩y x y x,得A (B==AB答案:5.(2015·重庆高考理科·T15)已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为235cos 24(0,)44ππρθρθ=><<,则直线l 与曲线C 的交点的极坐标为_________.【解题指南】首先将直线与曲线C 的方程化为直角坐标系下的方程,然后求出交点坐标再化为极坐标即可.【解析】因为直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩所以直线l 的方程为2y x =+因为曲线C 的极坐标方程为235cos 24(0,)44ππρθρθ=><<,可得曲线C 的方程为224(0)x y x -=<联立224(0)2x y x y x ⎧-=<⎨=+⎩解得交点坐标为(2,0)-,所以交点的极坐标为(2,)π答案:(2,)π6. (2015·安徽高考理科·T12)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是【解题指南】将极坐标化为普通方程,求出圆心到直线的最大距离,再加上半径。

2015届高考数学(苏教,理科)大一轮第十五章 坐标系与参数方程

2015届高考数学(苏教,理科)大一轮第十五章 坐标系与参数方程

第十五章 坐标系与参数方程第一节坐_标_系对应学生用书P1821.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:4.1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标. [试一试]1.点P 的极坐标为⎝⎛⎭⎫2,-π3,则点P 的直角坐标为________. 解析:∵ρ=2,θ=-π3.∴x =ρcos θ=2cos ⎝⎛⎭⎫-π3=1, y =ρsin θ=2sin ⎝⎛⎭⎫-π3=- 3. 答案:(1,-3)2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________. 解析:由ρ=sin θ+2 cos θ,得ρ2=ρsin θ+2ρcos θ, ∴x 2+y 2-2x -y =0. 答案:x 2+y 2-2x -y =01.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤(1)运用ρ=x 2+y 2,tan θ=yx(x ≠0)(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限.[练一练]1.在极坐标系中,圆心在(2,π)且过极点的圆的方程为________. 解析:如图,O 为极点,OB 为直径,A (ρ,θ),则∠ABO =θ-90°,OB =22=ρsin (θ-90°),化简得ρ=-22cos θ. 答案:ρ=-22cos θ2.已知直线的极坐标方程为ρsin (θ+π4)=22,则极点到该直线的距离是________.解析:极点的直角坐标为O (0,0), ρsin(θ+π4)=ρ22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 答案:22对应学生用书P183平面直角坐标系中的伸缩变换1.(2014·佛山模拟)设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为________.解析:∵⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y ,∴⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.函数y =sin(2x +π4)经伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=12y 后的解析式为________.解析:由⎩⎪⎨⎪⎧ x ′=2x ,y ′=12y ,得⎩⎪⎨⎪⎧x =12x ′,y =2y ′.①将①代入y =sin(2x +π4),得2y ′=sin(2·12x ′+π4),即y ′=12sin(x ′+π4).答案:y ′=12sin(x ′+π4)3.双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标为________.解析:设曲线C ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求. 答案:(-5,0)或(5,0)[备课札记] [类题通法]平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0)下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.极坐标与直角坐标的互化[典例] 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为3ρ2=12ρcos θ-10(ρ>0).(1)求曲线C 1的直角坐标方程;(2)曲线C 2的方程为x 216+y 24=1,设P ,Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ |的最小值.[解] (1)曲线C 1的方程可化为3(x 2+y 2)=12x -10, 即(x -2)2+y 2=23.(2)依题意可设Q (4cos θ,2sin θ),由(1)知圆C 1的圆心坐标为C 1(2,0). 故|QC 1|=(4cos θ-2)2+4sin 2θ =12cos 2θ-16cos θ+8 =23⎝⎛⎭⎫cos θ-232+23, |QC 1|min =263, 所以|PQ |min =63. [备课札记] [类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2014·合肥模拟)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.解析:直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交.答案:相交极坐标方程及应用[典例] 已知在直角坐标系xOy 中,曲线⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为ρsin(θ+π4)=2 2.(1)求曲线C 在极坐标系中的方程; (2)求直线l 被曲线C 截得的弦长.[解] (1)由已知得,曲线C 的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,化为极坐标方程是ρ=4cos θ.(2)由题意知,直线l 的直角坐标方程为x +y -4=0,由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x +y =4,得直线l 与曲线C 的交点坐标为(2,2),(4,0),所以所求弦长为2 2. [备课札记]解:由曲线C ,C 1极坐标方程联立 ∴cos 2θ=34,cos θ=±32,又ρ≥0,θ∈[0,π2).∴cos θ=32,θ=π6,ρ=23,故交点极坐标为⎝⎛⎭⎫23,π6. [类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式; (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程. [针对训练](2014·荆州模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.解析:ρ=6cos θ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于x 轴的直线方程为x =3,其在极坐标系下的方程为ρcos θ=3.答案:ρcos θ=3对应学生用书P184[课堂练通考点]1.(2014·南昌调研)在极坐标系中,圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标是________.解析:圆ρ=2cos θ可转化为x 2-2x +y 2=0,直线θ=π4可转化为y =x (x >0),两个方程联立得交点坐标是(1,1),可得其极坐标是(2,π4).答案:(2,π4)2.(2013·惠州模拟)在极坐标系中,已知两点A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB (其中O 为极点)的面积为________.解析:由题意知A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin∠AOB =12×3×4×sin π6=3.答案:33.(2013·天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:由ρ=4cos θ可得圆的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 34.在极坐标系中,圆:ρ=2上的点到直线:ρ(cos θ+3sin θ)=6的距离的最小值为________.解析:由题意可得,圆的直角坐标方程为x 2+y 2=4,圆的半径为r =2,直线的直角坐标方程为x +3y -6=0,圆心到直线的距离d =|0+3×0-6|2=3,所以圆上的点到直线的距离的最小值为d -r =3-2=1.答案:15.(2014·银川调研)已知直线l :{ x =-t ,y =1+t (t 为参数)与圆C :ρ=42cos(θ-π4).(1)试判断直线l 和圆C 的位置关系; (2)求圆上的点到直线l 的距离的最大值.解:(1)直线l 的参数方程消去参数t ,得x +y -1=0. 由圆C 的极坐标方程,得ρ2=42ρcos(θ-π4),化简得ρ2=4ρcos θ+4ρsin θ,所以圆C 的直角坐标方程为x 2+y 2=4x +4y , 即(x -2)2+(y -2)2=8,故该圆的圆心为C (2,2),半径r =2 2.从而圆心C 到直线l 的距离为d =|2+2-1|12+12=322,显然322<22,所以直线l 和圆C 相交.(2)由(1)知圆心C 到直线l 的距离为d =322,所以圆上的点到直线l 的距离的最大值为322+22=722. [课下提升考能]1.(2014·福州质检)求经过极点且圆心的极坐标为C ⎝⎛⎭⎫2,π4的圆C 的极坐标方程. 解:设圆C 上的任意一点的极坐标P (ρ,θ),过OC 的直径的另一端点为B ,连结PO ,PB ,则在直角三角形OPB 中,∠OPB =π2,∠POB =θ-π4(写∠POB =θ-π4也可).从而有ρ=4cos ⎝⎛⎭⎫θ-π4. 2.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点. (1)写出曲线C 的直角坐标方程,并求点M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎫θ-π3=1得ρ⎝⎛⎭⎫12cos θ+32sin θ=1, 从而曲线C 的直角坐标方程为12x +32y =1,即x +3y =2.θ=0时,ρ=2,所以M (2,0). θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2. (2)由(1)得点M 的直角坐标为(2,0),点N 的直角坐标为⎝⎛⎭⎫0,233.所以点P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6, 所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).3.在极坐标系中定点A ⎝⎛⎭⎫1,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上运动,当线段AB 最短时,求点B 的极坐标.解:∵ρcos θ+ρsin θ=0, ∴cos θ=-sin θ,tan θ=-1.∴直线的极坐标方程化为θ=3π4(直线如图).过A 作直线垂直于l ,垂足为B ,此时AB 最短.易得|OB |=22. ∴B 点的极坐标为⎝⎛⎭⎫22,3π4.4.(2014·扬州模拟)已知圆的极坐标方程为: ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 解:(1)原方程变形为: ρ2-4ρcos θ-4ρsin θ+6=0. x 2+y 2-4x -4y +6=0.(2)圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数),所以x +y =4+2sin ⎝⎛⎭⎫α+π4. 那么x +y 的最大值为6,最小值为2.5.(2014·苏州二模)已知直线l 的参数方程为{ x =2-t ,y =1+3t (t 为参数),圆C 的极坐标方程为ρ+2sin θ=0.(1)将直线的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)在圆C 上求一点P ,使得点P 到直线的距离最小. 解:(1)直线l 的普通方程为3x +y -1-23=0, 圆C 的普通方程为x 2+y 2+2y =0. (2)在圆C 上任取一点P (cos θ,-1+sin θ) (θ∈[0,2π)),P 到直线l 的距离 d =|3cos θ+sin θ-2-23|1+(3)2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π3-2-232=2+23-2sin ⎝⎛⎭⎫θ+π32,当θ=π6时,d min = 3,此时P ⎝⎛⎭⎫32,-12.6.(2014·高淳模拟)圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过圆O 1,圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ. 所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程. 同理x 2+y 2+y =0为圆O 2的直角坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.7.(2014·南京模拟)在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos⎝⎛⎭⎫θ+π3=1.(1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解:(1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆,C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则{ ρρ0=2,θ=θ0,即⎩⎨⎧ρ0=2ρ,θ0=θ.①因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝⎛⎭⎫θ0+π3=1,② 将①代入②,得2ρcos ⎝⎛⎭⎫θ+π3=1, 即ρ=2cos ⎝⎛⎭⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +322=1,因此点P 的轨迹是以⎝⎛⎭⎫12,-32为圆心,1为半径的圆.8.(2014·苏州模拟)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由{ x 2+y 2-x -y =0,x -y +1=0得{ x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 第二节参_数_方_程对应学生用书P1841.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数)注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性. [练一练]1.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.解析:∵y -2x -1=-3t 2t =-32,∴tan α=-32.答案:-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为________.(填“线段”“射线”“圆弧”或“双曲线的一支”)解析:化为普通方程为x =3(y +1)+2, 即x -3y -5=0, 由于x =3t 2+2∈[2,77], 故曲线为线段. 答案:线段1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.2.利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|. [练一练]1.已知P 1,P 2是直线⎩⎨⎧x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.解析:由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t =0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2.答案:|t 1+t 2|22.已知直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.解析:∵⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′,⎝⎛⎭⎫t ′=22t 代入x 2+y 2=4,得⎝⎛⎭⎫2-22t ′2+⎝⎛⎭⎫-1+22t ′2=4,t ′2-32t ′+1=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2-4×1=14. 答案:14对应学生用书P185参数方程与普通方程的互化1.曲线⎩⎨⎧x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________.解析:曲线化为普通方程为y 218+x 212=1,∴c =6,故焦距为2 6.答案:2 62.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m 的值是________.解析:圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消去参数θ,化为普通方程是(x -1)2+(y +2)2=1.因为直线与圆相切,所以圆心(1,-2)到直线的距离等于半径,即|3+4×(-2)+m |5=1,解得m =0或m=10.答案:0或103.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t(t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.解析:由题意可得,直线y =-3x ,曲线C 1:x 2+(y -2)2=4,曲线C 2:x 2+(y -1)2=1,画图可得,|AB |=4cos 30°×12= 3.答案: 3[备课札记] [类题通法]参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.[典例] (2014·郑州模拟)已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.[解] (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32.(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.[备课札记]解:a ×3=-1,故a =33. [类题通法]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [针对训练](2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.极坐标、参数方程的综合应用[典例] 在平面直角坐标系中,以坐标原点为极点,轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.[解] (1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[备课札记] [类题通法]涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.[针对训练](2014·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3).(2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+(π6-1)t ,y =3π6t(t 为参数).对应学生用书P186[课堂练通考点]1.(2013·重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4①, ⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3②,①②联立得A (4,8),B (4,-8),故|AB |=16. 答案:162.(2013·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=03.(2014·合肥模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π4.若直线l 与曲线C 交于A ,B 两点,则|AB |=________. 解析:首先消去参数t ,可得直线方程为3x -y +22=0,极坐标方程化为直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1,根据直线与圆的相交弦长公式可得|AB |=21-⎝⎛⎭⎫642=102.答案:1024.(2014·苏州模拟)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρsin 2θ=cos θ.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎩⎨⎧x =2-22t ,y =22t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解:(1)将y =ρsin θ,x =ρcos θ代入ρ2sin 2θ=ρcos θ中,得y 2=x , ∴曲线C 的直角坐标方程为:y 2=x .(2)把⎩⎨⎧x =2-22t ,y =22t ,代入y 2=x 整理得,t 2+2t -4=0,Δ>0总成立.设A ,B 两点对应的参数分别为t 1,t 2, ∵t 1+t 2=-2,t 1t 2=-4,∴|AB |=|t 1-t 2|=(-2)2-4×(-4)=3 2.[课下提升考能]1.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t , 得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .解方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,得公共点的坐标为(2,2),(12,-1).2.(2014·长春模拟)已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎨⎧x =5+32t ,y =12t(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设曲线C 与直线l 相交于P ,Q 两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.解:(1)由ρ=4cos θ,得ρ2=4ρcos θ, 即曲线C 的直角坐标方程为x 2+y 2=4x ;由⎩⎨⎧x =5+32t ,y =12t(t 为参数),得y =13(x -5), 即直线l 的普通方程为x -3y -5=0.(2)由(1)可知C 为圆,且圆心坐标为(2,0),半径为2, 则弦心距d =|2-3×0-5|1+3=32,弦长|PQ |=222-(32)2=7,因此以PQ 为一条边的圆C 的内接矩形面积 S =2d ·|PQ |=37.3.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数)和⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点为O ,P ,与圆C 2的交点为O ,Q ,求|OP |·|OQ |的最大值.解:(1)圆C 1和圆C 2的普通方程分别是(x -2)2+y 2=4和x 2+(y -1)2=1, 所以圆C 1和C 2的极坐标方程分别是 ρ=4cos θ和ρ=2sin θ.(2)依题意得,点P ,Q 的极坐标分别为P (4cos α,α), Q (2sin α,α),所以|OP |=|4cos α|,|OQ |=|2sin α|. 从而|OP |·|OQ |=|4sin 2α|≤4,当且仅当sin 2α=±1时,上式取“=”,即|OP |·|OQ |的最大值是4.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)试分别将曲线C 1的极坐标方程ρ=sin θ-cos θ和曲线C 2的参数方程⎩⎪⎨⎪⎧x =sin t -cos t y =sin t +cos t (t 为参数)化为直角坐标方程和普通方程;(2)若红蚂蚁和黑蚂蚁分别在曲线C 1和曲线C 2上爬行,求红蚂蚁和黑蚂蚁之间的最大距离(视蚂蚁为点).解:(1)由题意可得曲线C 1的直角坐标方程为 x 2+y 2+x -y =0, 曲线C 2:⎩⎨⎧sin t =x +y2,cos t =y -x2.即x 2+y 2=2.(2)由(1)知曲线C 1、曲线C 2均为圆,圆心分别为⎝⎛⎭⎫-12,12、(0,0),半径分别为22、2,则两圆的圆心距为⎝⎛⎭⎫-122+⎝⎛⎭⎫122=22=2-22,所以圆C 1:x 2+y 2+x -y =0与圆C 2:x 2+y 2=2内切. 所以红蚂蚁和黑蚂蚁之间的最大距离为圆C 2的直径2 2.5.(2014·福州模拟)如图,在极坐标系中,圆C 的圆心坐标为(1,0),半径为1.(1)求圆C 的极坐标方程;(2)若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.已知直线l 的参数方程为⎩⎨⎧x =-1+t cos π6,y =t sin π6(t 为参数),试判断直线l 与圆C 的位置关系.解:(1)如图,设M (ρ,θ)为圆C 上除点O ,B 外的任意一点,连结OM ,BM ,在Rt △OBM 中,|OM |=|OB |cos ∠BOM , 所以ρ=2cos θ.可以验证点O (0,π2),B (2,0)也满足ρ=2cos θ,故ρ=2cos θ为所求圆的极坐标方程.(2)由⎩⎨⎧ x =-1+t cos π6,y =t sin π6(t 为参数),得直线l 的普通方程为y =33(x +1), 即直线l 的普通方程为x -3y +1=0.由ρ=2cos θ,得圆C 的直角坐标方程为(x -1)2+y 2=1.因为圆心C 到直线l 的距离d =|1×1-3×0+1|2=1, 所以直线l 与圆C 相切.6.(2014·辽宁模拟)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线l :θ=π4与曲线C :⎩⎪⎨⎪⎧x =t +1y =(t -1)2(t 为参数)相交于A ,B 两点. (1)写出射线l 的参数方程和曲线C 的直角坐标方程;(2)求线段AB 中点的极坐标.解:(1)由题意得射线l 的直角坐标方程为y =x (x ≥0), 则射线l 的参数方程为⎩⎨⎧ x =22t ,y =22t (t ≥0,t 为参数),曲线C 的直角坐标方程为y =(x -2)2.(2)由⎩⎪⎨⎪⎧ y =x ,y =(x -2)2得⎩⎪⎨⎪⎧ x =1,y =1和⎩⎪⎨⎪⎧x =4,y =4, ∴可令A (1,1),B (4,4),∴线段AB 中点的直角坐标为(52,52), ∴线段AB 中点的极坐标为(522,π4). 7.(2014·郑州模拟)在直角坐标系xOy 中,直线l 经过点P (-1,0),其倾斜角为α.以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程为ρ2-6ρcos θ+5=0.(1)若直线l 与曲线C 有公共点,求α的取值范围;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围.解:(1)将曲线C 的极坐标方程ρ2-6ρcos θ+5=0化为直角坐标方程为x 2+y 2-6x +5=0.直线l 的参数方程为⎩⎪⎨⎪⎧ x =-1+t cos α,y =t sin α(t 为参数). 将⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数)代入x 2+y 2-6x +5=0整理得,t 2-8t cos α+12=0. ∵直线l 与曲线C 有公共点,∴Δ=64cos 2α-48≥0,∴cos α≥32或cos α≤-32. ∵α∈[0,π),∴α的取值范围是0,π6∪5π6,π. (2)曲线C 的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,其参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =2sin θ(θ为参数). ∵M (x ,y )为曲线C 上任意一点,∴x +y =3+2cos θ+2sin θ=3+22sin(θ+π4), ∴x +y 的取值范围是[3-22,3+22].8.(2014·昆明模拟)已知曲线C 的参数方程是⎩⎨⎧ x =a cos φ,y =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎪⎨⎪⎧x =3+t ,y =-1-t (t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系.(1)求曲线C 的普通方程;(2)若点A (ρ1,θ),B (ρ2,θ+2π3),C (ρ3,θ+4π3)在曲线C 上,求1|OA |2+1|OB |2+1|OC |2的值. 解:(1)直线l 的普通方程为x +y =2,与x 轴的交点为(2,0).又曲线C 的普通方程为x 2a 2+y 23=1,所以a =2,故所求曲线C 的普通方程是x 24+y 23=1. (2)因为点A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+2π3,C ⎝⎛⎭⎫ρ3,θ+4π3在曲线C 上,即点A (ρ1cos θ,ρ1sin θ),Bρ2cos ⎝⎛⎭⎫θ+2π3,ρ2sin(θ+2π3,Cρ3cos ⎝⎛⎭⎫θ+4π3,ρ3sin ⎝⎛⎭⎫θ+4π3在曲线C 上. 故1|OA |2+1|OB |2+1|OC |2=1ρ21+1ρ22+1ρ23=14cos 2θ+cos 2⎝⎛⎭⎫θ+2π3+cos 2⎝⎛⎭⎫θ+4π3+13sin 2θ+sin 2θ+2π3+sin 2⎝⎛⎭⎫θ+4π3 =141+cos 2θ2+1+cos ⎝⎛⎭⎫2θ+4π32+1+cos ⎝⎛⎭⎫2θ+8π32+131-cos 2θ2+1-cos ⎝⎛⎭⎫2θ+4π32+1-cos ⎝⎛⎭⎫2θ+8π32=14×32+13×32=78.。

全国卷历年高考极坐标与参数方程真题归类分析(含答案)

全国卷历年高考极坐标与参数方程真题归类分析(含答案)
(1)写出 的普通方程;
(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设 , 为 与 的交点,求 的极径.
6.解析⑴将参数方程转化为一般方程 ①

,消 可得 ,即点 的轨迹方程为 .
⑵将极坐标方程转化为一般方程 ,联立 ,解得 .
由 ,解得 ,即 的极半径是 .
【解析】(1)由 得 +y2=1.因为ρsin = ρsinθ+ ρcosθ=2 ,
所以x+y=4.所以C1的普通方程为 +y2=1,C2的直角坐标方程为x+y=4.
(2)由题意,可设点P的直角坐标为 ,因为C2是直线,所以 的最小值即为P到C2的距离d(α)的最小值,d(α)= .
当且仅当α=2kπ+ (k∈Z)时,d(α)取得最小值,最小值为 ,此时P的直角坐标为
∴x2+y2=4x.即(x-2)2+y2=4.②
C3:化为普通方程为y=2x,由题意:C1和C2的公共方程所在直线即为C3.
①-②得:4x-2y+1-a2=0,即为C3,所以1-a2=0,所以a=1.
(2016年2卷)在直线坐标系xOy中,圆C的方程为 .
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
∴ 的极坐标方程为 , 的极坐标方程为 .……5分
(Ⅱ)将 代入 ,得 ,解得 = , = ,|MN|= - = ,
因为 的半径为1,则 的面积 = .
1.(2015年2卷)在直角坐标系xOy中,曲线 (t为参数,且t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2 cos θ.
因此A的极坐标为(2sin α,α),B的极坐标为(2 cos α,α).

【高考解码】(新课标)2015届高考数学二轮复习 坐标系与参数方程

【高考解码】(新课标)2015届高考数学二轮复习 坐标系与参数方程

坐标系与参数方程1.(2014·北京高考)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上【解析】 因为(1,-2)为圆的对称中点,所以在直线y =-2x 上,故选B . 【答案】 B2.(2014·广东高考)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.【解析】 ∵2ρcos 2θ=sin θ,∴2ρ2cos 2 θ=ρsin θ即2x 2=y , ∵ρcos θ=1,∴x=1, ⎩⎪⎨⎪⎧2x 2=y ,x =1⇒x =1,y =2,∴交点坐标为(1,2). 【答案】 (1,2)3.(2014·陕西高考)在极坐标系中,点(2,π6)到直线ρsin ⎝⎛⎭⎪⎫θ-π6=1的距离等于________.【解析】 将点的极坐标、直线的极坐标方程化为直角坐标、普通方程,利用点到直线的距离公式求解.点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12sin θ=1,32y -12x =1,12x -32y +1=0,点(3,1)到直线12x -32y +1=0的距离为⎪⎪⎪⎪⎪⎪12×3-32×1+1⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322=1.【答案】 14.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.【解】 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以|AB|=|t 1-t 2|=8 2.从近三年高考来看,该部分高考命题的热点考向为: 1.极坐标方程①该考向主要考查极坐标方程与直角坐标方程的相互转化,以及会写出简单图形的极坐标方程.②根据新课标省份的出题特点,既可以命制选择、填空题,难度为容易题;又可以命制解答题,难度中等.一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.参数方程及应用①此考向主要考查参数方程与普通方程之间的互化能力,考查学生对基础公式及方法的理解和应用.②各地都有自己的命题特点,总的趋势为以填空题形式出现时,综合力度较小;以解答题形式出现时,常常把极坐标方程与参数方程融合在一起考查,难度一般不大,填空题5分左右,解答题10分左右.3.极坐标方程与参数方程的综合应用①此考向主要考查极坐标与参数方程的综合应用(互化、位置关系、最值等),突出考查转化和化归的思想及能力.②主要以解答题的形式体现,难度中等.极坐标方程【例1】 (1)(2014·安徽江南十校眹考)在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2+1,圆C 的圆心为⎝⎛⎭⎪⎫2,π4,半径为2,则直线l 被圆C 所截得的弦长是________.(2)(2013·安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【解析】 (1)直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2+1,可化为直角坐标方程x +y =2+2,由圆C 的圆心为⎝ ⎛⎭⎪⎫2,π4,得圆C 的圆心的直角坐标系(1,1),所以圆心C (1,1)到直线l 的距离d =|1+1-2-2|2=1,又因为圆C 的半径r =2,所以直线l 被圆C 截得的弦长为2r 2-d 2=2.(2)在直角坐标系中,圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1.从而垂直于x 轴的两条切线方程分别为x =0,x =2,即θ=π2(ρ∈R )和ρcos θ=2.【答案】 (1)2 (2)B【规律方法】 1.研究极坐标方程往往要与直角坐标方程进行相互转化.当条件涉及角度和到定点距离时,引入极坐标系会对问题的解决带来很大的方便.2.在极坐标方程化为直角坐标方程时,只要整体上用x 代换其中的ρcos θ、y 代替其中的ρsin θ即可,其中所含的ρ2也可以写成ρ2(cos 2θ+sin 2θ)=x 2+y 2.[创新预测] 1.(1)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.(2)(2013·北京高考)在极坐标系中,点(2,π6)到直线ρsin θ=2的距离等于________.【解析】 (1)利用公式法转化求解.直角坐标方程x 2+y 2-2x =0可化为x 2+y 2=2x ,将ρ2=x 2+y 2,x =ρcos θ代入整理得ρ=2cos θ.(2)将极坐标转化为直角坐标求解.极坐标系中点(2,π6)对应的直角坐标为(3,1).极坐标系中直线ρsin θ=2对应直角坐标系中直线y =2.故所求距离为1.【答案】 (1)ρ=2cos θ (2)1参数方程及应用【例2】 (2014·全国新课标Ⅰ高考)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t ,(t为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【解】 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ,(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.【规律方法】 将曲线的参数方程化为普通方程时,要把其中的参数消去,还要注意其中的x 、y 的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.[创新预测]2.(1)(2013·陕西高考)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.(2)(2013·湖南高考)在平面直角坐标系xOy中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 (1)利用直角坐标方程和参数方程的转化关系求解参数方程.将x 2+y 2-x =0配方,得(x -12)2+y 2=14,∴圆的直径为1.设P (x ,y ),则x =|OP |cos θ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ,∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)将参数方程化为普通方程后求解.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【答案】 (1)⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数) (2)3极坐标方程与参数方程的综合应用【例3】 (2014·全国新课标Ⅱ高考)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈[0,π2].(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.【解】 (1)∵ρ=2cos θ,∴ρ2=2ρcos θ,∴x 2+y 2=2y ,(0≤y ≤1).C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t y =sin t (t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为(1+cos π3,sin π3),即(32,32).【规律方法】 1.要判断参数方程或极坐标方程所描述的方程类型,常常是将其转化为直角坐标系下的普遍方程.但是,对于一些常见的参数方程或极坐标方程,如果能够快速识别方程的形式,理解对应参数的几何意义,则可使问题得到快速的突破.2.在坐标系与参数方程的考查中,最能够体现坐标方法的解题优势,灵活地利用坐标方法可以使问题得到简捷的解答.[创新预测]3.(2014·福建厦门质检)在平面直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知圆C 的极坐标方程为ρ2-8ρcos θ+12=0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数).(1)写出圆C 的直角坐标方程;(2)若点P 为圆C 上的动点,求点P 到直线l 距离的最大值.【解】 (1)由⎩⎪⎨⎪⎧ρ2=x 2+y 2ρcos θ=x 得,x 2+y 2-8x +12=0,所以圆C 的直角坐标方程为(x -4)2+y 2=4. (2)直线l 的普通方程为x -y -2=0.设与直线l 平行的直线l ′的方程为x -y +m =0,则当直线l ′与圆C 相切时:|4+m |2=2,解得m =-22-4或m =22-4(舍去),所以直线l 与直线l ′的距离d =|-22-4--2=2+2,即点P 到直线l 距离的最大值2+ 2.。

2015年高考数学4—4坐标系与参数方程(解答+答案)

2015年高考数学4—4坐标系与参数方程(解答+答案)

2015年高考数学4—4坐标系与参数方程1.(2015广东文数14. (坐标系与参数方程选做题))在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .2.(2015广东理数14.(坐标系与参数方程选做题)) 已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为 A(22,47π),则点A 到直线l 的距离为 。

3.(2015湖北理数16.(选修4-4:坐标系与参数方程))在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l与C 相交于A ,B 两点,则||AB = .4.(2015新课标Ⅰ文数(23)(本小题满分10分)选修4-4;坐标系与参数方程) 在直角坐标系xOy 中。

直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

(I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积5.(2015新课标II 文数23.(本小题满分10分)选修4 - 4:坐标系与参数方程)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。

(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求||AB 的最大值。

2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)

2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015-2019高考数学理科(全国卷和自主命题)分类汇编 专题14 坐标系与参数方程

2015-2019高考数学理科(全国卷和自主命题)分类汇编 专题14  坐标系与参数方程

专题14 坐标系与参数方程2019年1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45 D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2.【解析】(1)因为221111t t--<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-. l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l .3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭;(2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=.因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤ ⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤ ⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1)2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=.2018年1.【2018年理数天津卷】已知圆x 2+y 2−2x =0的圆心为C ,直线{x =−1+√22t,y =3−√22t(t 为参数)与该圆相交于A ,B 两点,则ΔABC 的面积为___________. 【答案】122.【2018年理北京卷】在极坐标系中,直线ρcosθ+ρsinθ=a(a >0)与圆ρ=2cosθ相切,则a =__________. 【答案】1+√2【解析】分析:根据ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为ρ2=x2+y2,x=ρcosθ,y=ρsinθ,由ρcosθ+ρsinθ=a(a>0),得x+y=a(a>0),由ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2=2x,即(x−1)2+y2==1,∴a=1±√2,∵a>0,∴a=1+√2.1,因为直线与圆相切,所以√2−θ)=2,曲线C的方程为ρ= 3.【2018年江苏卷】在极坐标系中,直线l的方程为ρsin(π64cosθ,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为2√3=2√3.因此,直线l被曲线C截得的弦长为2√3.所以AB=4cosπ64.【2018年理新课标I卷】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ−3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【答案】 (1)(x+1)2+y2=4.|x|+2.(2)综上,所求C1的方程为y=−43详解:(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(−1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以√k2+1=2,故k=−43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=−43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以√k2+1=2,故k=0或k=43.经检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=−43|x|+2.5.【2018年全国卷Ⅲ理】在平面直角坐标系xOy中,⊙O的参数方程为{x=cosθ,y=sinθ(θ为参数),过点(0 , −√2)且倾斜角为α的直线l与⊙O交于A , B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【答案】(1)(π4,3π4)(2){x=√22sin2α,y=−√22−√22cos2α(α为参数,π4<α<3π4)详解:(1)⊙O的直角坐标方程为x2+y2=1.当α=π2时,l与⊙O交于两点.当α≠π2时,记tanα=k,则l的方程为y=kx−√2.l与⊙O交于两点当且仅当√2√1+k2<1,解得k<−1或k>1,即α∈(π4,π2)或α∈(π2,3π4).综上,α的取值范围是(π4,3π4).(2)l的参数方程为{x=tcosα,y=−√2+tsinα(t为参数,π4<α<3π4).设A,B,P对应的参数分别为t A,t B,t P,则t P=t A+t B2,且t A,t B满足t2−2√2tsinα+1=0.于是t A +t B =2√2sinα,t P =√2sinα.又点P 的坐标(x,y)满足{x =t P cosα,y =−√2+t P sinα. 所以点P 的轨迹的参数方程是{x =√22sin2α,y =−√22−√22cos2α(α为参数,π4<α<3π4).6.【2018年理数全国卷II 】在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθ,y =4sinθ(θ为参数),直线l 的参数方程为{x =1+tcosα,y =2+tsinα(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1, 2),求l 的斜率.【答案】(1)当cosα≠0时,l 的直角坐标方程为y =tanα⋅x +2−tanα,当cosα=0时,l 的直角坐标方程为x =1.(2)−2详解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cosα≠0时,l 的直角坐标方程为y =tanα⋅x +2−tanα, 当cosα=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 (1+3cos 2α)t 2+4(2cosα+sinα)t −8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=−4(2cosα+sinα)1+3cos 2α,故2cosα+sinα=0,于是直线l 的斜率k =tanα=−2.过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是{x =x 0+tcosαy =y 0+tsinα.(t 是参数,t 可正、可负、可为0)若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则(1)M 1,M 2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α). (2)|M 1M 2|=|t 1-t 2|.(3)若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=|t 1+t 22|.(4)若M 0为线段M 1M 2的中点,则t 1+t 2=0.2017年1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点2.【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.【答案】1 【解析】试题分析:将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.3.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d.=16a =-.综上,8a =或16a =-.4. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

2015年五年高考数学(文)真题精编——专题16 选修部分

2015年五年高考数学(文)真题精编——专题16 选修部分

一、选择题1. 【2012四川,文2】7(1)x +的展开式中2x 的系数是( )A 、21B 、28C 、35D 、422. 【2012四川,文11】方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A 、28条B 、32条C 、36条D 、48条二、填空题1. 【 2014湖南文12】在平面直角坐标系中,曲线2:1x C y ⎧=+⎪⎪⎨⎪=+⎪⎩t 为参数)的普通方程为___________. 【答案】10x y --=【解析】联立21x y ⎧=+⎪⎪⎨⎪=⎪⎩消t 可得110x y x y -=⇒--=,故填10x y --=. 【考点定位】参数方程2. 【2013湖南,文11】在平面直角坐标系xOy 中,若直线l 1:21x s y s =+⎧⎨=⎩(s 为参数)和直线l 2:,21x at y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为__________. 【答案】4【解析】l 1的普通方程为:x =2y +1,l 2的普通方程为:x =a ·12y +,即22a ax y =+,∴a =4. 3. 【 2012湖南文10】在极坐标系中,曲线1C:sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.【点评】本题考查直线的极坐标方程、圆的极坐标方程,直线与圆的位置关系,考查转化的思想、方程的思想,考查运算能力;题型年年有,难度适中.把曲线1C 与曲线2C 的极坐标方程都转化为直角坐标方程,求出与x 轴交点,即得.4. 【 2012湖南文11】某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______. 【答案】7【解析】用分数法计算知要最少实验次数为7.【点评】本题考查优选法中的分数法,考查基本运算能力.5. 【 2011湖南文9】在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 【答案】2【解析】曲线221:143x y C +=,曲线2:10C x y -+=,联立方程消y 得27880x y +-=,易得0∆>,故有2个交点.6.【 2011湖南文10】已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 .【答案】40或60(只填一个也正确)【解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:1510(9010)608x =+⨯-=,210906040x =+-=,由对称性可知,第二次试点可以是40或60.7. 【2015高考湖南,文12】在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____. 【答案】2211xy +-=()【考点定位】圆的极坐标方程8. 【2011高考陕西版文第15题】(不等式选做题)若不等式|1||2|x x a ++-…对任意x ∈R 恒成立,则a 的取值范围是 .【答案】(,3]-∞ 【解析】试题分析:当1x -…时,|1||2|12213x x x x x ++-=---+=-+…; 当12x -<…时,|1||2|123x x x x ++-=+-+=; 当2x >时,|1||2|12213x x x x x ++-=++-=->; 综上可得|1||2|3x x ++-…,所以只要3a …, 即实数a 的取值范围是(,3]-∞. 考点:绝对值的不等式.9. 【2011高考陕西版文第15题】(几何证明选做题)如图,∠B=∠D ,AE BC ⊥,90ACD ∠= ,且AB=6,AC=4,AD=12,则AE= .【答案】2 【解析】试题分析:因为AE BC ⊥,所以∠AEB=90ACD ∠= ,又因为∠B=∠D ,所以△AEB ∽△ACD ,所以AC ADAE AB=,所以 64212AB AC AE AD ⋅⨯===. 考点:平面几何的证明.10. 【2011高考陕西版文第15题】(坐标系与参数方程选做题)直角坐标系xOy 中,以原点O 为极点,x轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线1C :3cos sin x y θθ=+⎧⎨=⎩(θ为参数)和曲线2C :1ρ=上,则||AB 的最小值为 . 【答案】1考点:极坐标、参数方程.11. 【2012高考陕西版文第15题】(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范是 . 【答案】42≤≤-a 【解析】试题分析:|||1|3x a x -+-≤表示在数轴上,a 到1的距离小于等于3,即31≤-a , 则42≤≤-a . 考点:绝对值的几何意义.12. 【2012高考陕西版文第15题】(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB ⋅= .【答案】5 【解析】试题分析:∵6AB =,则圆的半径为3,连接OD ,则3OD =.又1AE =,则2OE =,在直角三角形OED 中,5222=-=OE OD ED ,根据射影定理,在直角三角形EDB 中,52==⋅ED DB DF . 考点:平面几何的计算.13. 【2012高考陕西版文第15题】(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .考点:极坐标.14. 【2013高考陕西版文第15题】(不等式选做题)设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是__________.【答案】(-∞,+∞) 【解析】试题分析:由不等式性质知:|x -a |+|x -b |≥|(x -a )-(x -b )|=|b -a |=|a -b |>2,所以|x -a |+|x -b |>2的解集为全体实数. 考点:解绝对值不等式.15.【2013高考陕西版文第15题】(几何证明选做题)如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A =∠C ,PD =2DA =2,则PE =__________.【解析】试题分析:∵PE ∥BC ,∴∠C =∠PED . 又∠C =∠A ,故∠A =∠PED . 又∠P =∠P ,故△PED ∽△P AE ,则PE PDPA PE=,∴PE 2=P A ·PD . 又PD =2DA =2, ∴P A =PD +DA =3, ∴PE 2=3×2=6,∴PE .考点:平面内求距离.16. 【2013高考陕西版文第15题】(坐标系与参数方程选做题)圆锥曲线2,2x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是__________.【答案】(1,0) 【解析】试题分析:由2,2x t y t⎧=⎨=⎩消去t 得,y 2=4x ,故曲线表示为焦点(1,0)的抛物线.考点:参数方程.17. 【2014高考陕西版文第15题】(不等式选做题)设R n m b a ∈,,,,且5,522=+=+nb ma b a ,则22n m +的最小值为______.考点:柯西不等式.18. 【2014高考陕西版文第15题】(几何证明选做题)如图,ABC ∆中,6=BC ,以BC 为直径的半圆分别交AC AB ,于点F E ,,若AE AC 2=,则EF =_______.【答案】3 【解析】试题分析:由四边形BCFE 为圆内接四边形AEF C ⇒∠=∠,AFEB ∠=∠AEF ACB ⇒∆∆ ⇒12AE EF AC BC ==,又因为6BC =,所以3EF =,故答案为3. 考点:几何证明;三角形相似.19. 【2014高考陕西版文第15题】(坐标系与参数方程选做题)在极坐标系中,点)6,2(π到直线1)6sin(=-πθρ的距离是_______.【答案】1考点:极坐标方程;点到直线距离.20. 【2011四川,文13】9(1)x +的展开式中3x 的系数是_________.(用数字作答)【答案】84【解析】∵9(1)x +的展开式中3x 的系数是639984C C ==.21. 【2014高考广东卷.文.14】(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为22cossin ρθθ=和cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________. 【答案】()1,2.【解析】曲线1C 的极坐标方程为()22cos sin ρθρθ=,化为普通方程得22y x =, 曲线2C 的普通方程为1x =,联立曲线1C 和2C 的方程得221y x x ⎧=⎨=⎩,解得12x y =⎧⎨=⎩,因此曲线1C 和2C 交点的直角坐标为()1,2.【考点定位】本题考查极坐标与参数方程的相互转化以及曲线的交点坐标求解,属于中等题.22. 【2014高考广东卷.文.15】(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长.图1FDCBA【答案】3【解析】由于四边形ABCD 为平行四边形,则//AB CD ,因此CDF AEF ∆∆ ,由于2EB AE =,所以1133AE AB CD ==,因此3CD AE=,故3CDF CD AEF AE ∆==∆的周长的周长. 【考点定位】本题考查相似三角形性质的应用,属于中等题.23. 【2013高考广东卷.文.14】(坐标系与参数方程选做题)已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为__________. 【答案】1cos ,sin x y ϕϕ=+⎧⎨=⎩(φ为参数)【考点定位】本题考查极坐标与参数方程,属于基础题24. 【2012高考广东卷.文.14】(坐标系与参数方程选做题) 在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为2:(x C y θθθ⎧=⎪⎨=⎪⎩是参数,02πθ≤≤)和21:(x C t y ⎧=⎪⎪⎨⎪=⎪⎩是参数),它们的交点坐标为_______. 【答案】(2,1)【解析】根据普通方程与参数方程的转化可得2212:5(,0),:1C x y x y C y x +=≥=- 联立消元可得解得:交点坐标为(2,1),故填()2,1.【考点定位】本题考查了参数方程,属于基础题25. 【2011高考广东卷.文.14】(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ≤<和254x ty t⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________.【答案】【考点定位】本题考查了参数方程,属于基础题26. 【2015高考广东,文14】(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4-【解析】曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.【考点定位】1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.27. 【2015高考广东,文15】(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .【答案】3【考点定位】1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.28. 【2013高考广东卷.文.15】(几何证明选讲选做题)如图,在矩形ABCD 中,AB =,BC =3,BE ⊥AC ,垂足为E ,则ED =__________.【解析】在Rt △ABC 中,AB =,BC =3,tan ∠BAC =BCAB=【考点定位】本题考查几何证明,属于能力题29. 【2012高考广东卷.文.15】(几何证明选讲选做题)如图3所示,直线PB 与圆O 想切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠,若,AD m AC n ==,则AB =_______.【解析】,PBA DBA ACB BAD CAB BAD CAB ∠=∠=∠∠=∠⇒∆∆得:2AB ADAB AC AD mn AB AC AB=⇔=⨯=⇔=,.【考点定位】本题考查了几何证明中三角形相似与切割线定理,属于能力题30. 【2011高考广东卷.文.15】 (几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.【答案】75【考点定位】本题考查了几何证明中的相似,属于能力题31. 【2013上海,文4】已知21 1x =0,1 1x y =1,则y =______.【答案】1 【解析】已知21 1x =x -2=0 x =2,又1 1x y =x -y =1 联立上式,解得x =2,y =1.32. 【2012上海,文3】函数sin 2 () 1 cos x f x x=-的最小正周期是__________.【答案】π【解析】f (x )=sin x cos x +2=12sin2x +2, 所以T =2π2=π. 33. 【2011上海,文11】行列式a cb d(a ,b ,c ,d ∈{-1,1,2})所有可能的值中,最大的是______.【答案】6 【解析】三、解答题1. 【2015高考陕西,文22】选修4-1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C . (I)证明:CBD DBA ∠=∠(II)若3,ADDC BC ==,求O 的直径.【答案】(I)证明略,详见解析; (II)3.【考点定位】1.几何证明;2.切割线定理.2. 【2015高考陕西,文23】选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 【答案】(I) (223x y +-=; (II) (3,0).【解析】 试题分析:(I)由ρθ=,得2sin ρθ=,从而有22x y +=,所以(223x y +-=(II)设132P t ⎛⎫+ ⎪⎝⎭,又C=故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).【考点定位】1. 极坐标系与参数方程;2.点与圆的位置关系.3. 【2015高考陕西,文24】选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{|24}x x <<(I)求实数,a b 的值;(II)的最大值.【答案】(I) 3,1a b =-=;(II)4. 【解析】试题分析:(I)由x a b +<,得b a x b a --<<-,由题意得24b a b a --=⎧⎨-=⎩,解得3,1a b =-=;(II)+=+≤4==,当且仅当=即1t =时等号成立,故min4+=.【考点定位】1.绝对值不等式;2.柯西不等式.4. 【2013课标全国Ⅱ,文22】(本小题满分10分)选修4—1:几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ²AE =DC ²AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 【解析】:(1)因为CD 为△ABC 外接圆的切线, 所以∠DCB =∠A . 由题设知BC DCFA EA=, 故△CDB ∽△AEF ,所以∠DBC =∠EFA . 因为B ,E ,F ,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB²BA=2DB2,所以CA2=4DB2+BC2=6DB2.而DC2=DB²DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为1 2 .5.【2013课标全国Ⅱ,文23】(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.6.【2012全国新课标,文24】选修4—5:不等式选讲已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【解析】:(1)当a =-3时,25,2,()1,23,25, 3.x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;(22)7. 【2014全国2,文22】(本小题满分10分)选修4-1:几何证明选讲 如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC的中点,AD 的延长线交O 于点E .证明: (Ⅰ)BEEC =;(Ⅱ)22AD DE PB ⋅=【解析】(Ⅰ)连接,AB AC .由题设知,PA PD =,故PAD PDA ∠=∠.因为=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,=DCA PAB ∠∠,所以=DAC BAD ∠∠,从而⌒BE =⌒EC.因此BE EC =. (Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2,DC PB BD PB ==,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.8. 【2014全国2,文23】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(Ⅰ)求C 得参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y=+垂直,根据(1)中你得到的参数方程,确定D 的坐标.9. 【2014全国2,文24】(本小题满分10分)选修4-5:不等式选讲设函数1()||||(0)f x x x a a a=++-> (Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.【解析】(Ⅰ)由0a >,有11()()f x x x a x x a a a =++-≥+--12a a=+≥,所以()2f x ≥.(Ⅱ)1(3)33f a a =++-.当a 3>时,1(3)f a a=+,由(3)5f <得3a <<当03a <≤时,1(3)6f a a=-+,由(3)5f <3a <≤.综上,a 的取值范围是.10. 【2013课标全国Ⅱ,文24】(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且a +b +c =1.证明: (1)ab +bc +ca ≤13; (2)222a b c b c a++≥1.11.【2012全国新课标,文22】选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【解析】:(1)因为D,E分别为AB,AC的中点,所以DE∥BC.12.【2012全国新课标,文23】选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解析】:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1),B(,1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].13.【2014全国1,文22】如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E ,且CB CE =.(I )证明:D E ∠=∠;(II )设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.14. 【2014全国1,文23】已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=ty t x l 222:(t 为参数)(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.15. 【2014全国1,文24】若,0,0>>b a 且ab ba=+11(I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由.【解析】(111a b =+≥,得2ab ≥,且当a b ==时等号成立.故33ab +≥≥a b ==时等号成立.所以33a b +的最小值为(2)由(1)知,23a b +≥≥.由于6>,从而不存在a ,b ,使得236a b +=.16. 【2015高考新课标1,文22】选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E .(I )若D 为AC 中点,求证:DE 是 O 切线;(II )若OA =,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60°试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE =DC ,∴∠DEC =∠DCE , 连结OE ,∠OBE =∠OEB ,∵∠ACB +∠ABC =90°,∴∠DEC +∠OEB =90°, ∴∠OED =90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE =1,AE =x ,由已知得AB =BE =,由射影定理可得,2AE CE BE = ,∴2x =,解得x =,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理17.【2013课标全国Ⅰ,文22】(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.【解析】 (1)证明:连结DE,交BC于点G.18.【2013课标全国Ⅰ,文23】(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【解析】:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.19. 【2013课标全国Ⅰ,文24】(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围. 【解析】:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. (2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即a ≤43. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 20. 【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12考点:直角坐标方程与极坐标互化;直线与圆的位置关系21. 【2015高考新课标1,文24】(本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围.【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.22.【2011新课标,文22】【解析】23.【2011新课标,文23】【解析】24.【2011新课标,文24】【解析】25.【2014年.浙江。

2015年高考数学专项训练——极坐标与参数方程

2015年高考数学专项训练——极坐标与参数方程

2015年高考数学专项复习——极坐标与参数方程一.解答题(共30小题)1.(2014•漳州一模)在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为.(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.的参数方程为,知曲线的普通方程是,由点4sin):,知=,,,,4sin:∴∴2.(2013•临汾模拟)已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.)∵,∴的直角坐标方程为,距离是引的切线长的最小值是3.(2014•郑州一模)选修4﹣4:坐标系与参数方程在极坐标系中,曲线L:ρsin2θ=2cosθ,过点A(5,α)(α为锐角且)作平行于的直线l,且l与曲线L分别交于B,C两点.(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线l的普通方程;(Ⅱ)求|BC|的长.可得4.(2014•吉林二模)已知某圆的极坐标方程为:ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.(,故x+y=4+(+))4x+y=4+(+5.(2014•河南一模)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.=,由,可化为.,即=•6.(2014•许昌一模)在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.(+,射线.可得普通方程:直线,射线OM(,射线=,射线,解得,即Q,解得或|PQ|==27.(2014•泰州模拟)已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为.试在曲线C上求一点M,使它到直线l的距离最大.的普通方程是.的坐标是8.(2014•齐齐哈尔一模)选修4﹣4:坐标系与参数方程直线(极轴与x轴的非负半轴重合,且单位长度相同).(1)求圆心C到直线l的距离;(2)若直线l被圆C截的弦长为的值.(()由弦心距、半径、半弦长之间的关系得:9.(2014•郑州二模)在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.,即,直线公共点的一个极坐标为10.(选做题)直角坐标系xOy和极坐标系Ox的原点与极点重合,x轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为为参数).(1)在极坐标系下,曲线C与射线和射线分别交于A,B两点,求△AOB的面积;(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C与直线l的交点坐标.消去参数得它的普通方程为:,分别代入得,AOB=S=|OA||OB|=.t=2,代入x=2y=,11.选修4﹣4:坐标系与参数方程在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线,(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.,即)由…公共点的一个极坐标为12.(附加题﹣选做题)(坐标系与参数方程)已知曲线C的参数方程为,α∈[0,2π),曲线D的极坐标方程为.(1)将曲线C的参数方程化为普通方程;(2)曲线C与曲线D有无公共点?试说明理由.)先由,)由)由,)由13.已知⊙O1与⊙O2的极坐标方程分别是ρ=2cosθ和ρ=2asinθ(a是非零常数),(1)将两圆的极坐标方程化为直角坐标方程;(2)若两圆的圆心距为,求a的值.OOO与14.(2014•赤峰模拟)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.+﹣|OA|,),﹣)+))(cos时,,,﹣),﹣,故直线的斜率为﹣=15.(2014•锦州二模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为(t为参数).曲线C的极坐标方程为ρsin2θ=8cosθ.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,与x轴的交点为F,求+的值.,可得===∴+===16.(2014•贵州模拟)在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.的参数方程为的参数方程为,可得,即可得出.的参数方程为的参数方程为∴∵,∴∴的取值范围是17.(2014•商丘三模)在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.,)的直角坐标为(代入圆=2),2[2)18.(2014•长葛市三模)在极坐标系中,曲线C的极坐标方程为ρ=4sin(θ+).现以点O为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(I)写出直线l和曲线C的普通方程;(Ⅱ)设直线l和曲线C交于A,B两点,定点P(﹣2,﹣3),求|PA|•|PB|的值.的参数方程为化为普通方程为:,∴,∴19.(2014•河南模拟)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=.(Ⅰ)写出曲线C1与直线l的直角坐标方程;(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.Q=的直角坐标方程为Q当且仅当距离的最小值为20.(2014•商丘二模)已知极坐标系的极点为直角坐标系xoy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(Ⅰ)求C的直角坐标方程;(Ⅱ)直线l=(t为参数)与曲线C交于A,B两点,与y轴交于E,求+的值.l=(l=(∴==21.(2014•鄂尔多斯模拟)已知曲线C1的参数方程是(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣2cosθ.(Ⅰ)写出C1的极坐标方程和C2的直角坐标方程;(Ⅱ)已知点M1、M2的极坐标分别是(1,π)、(2,),直线M1M2与曲线C2相交于P、Q两点,射线OP与曲线C1相交于点A,射线OQ与曲线C1相交于点B,求+的值.+,分别代入椭圆方程中,求出的值,求和即得的值.的参数方程是++),∴=1++)=1=cos++∴=cos++==.22.(2013•辽宁)在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.x+1得,),)y=﹣∴23.(2013•许昌二模)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(α为参数),点Q的极坐标为(2,π).(Ⅰ)化圆C的参数方程为极坐标方程;(Ⅱ)若直线l过点Q且与圆C交于M,N两点,求当|MN|最小时,直线l的直角坐标方程.,π=24.(2013•保定一模)选修4﹣4:坐标系与参数方程已知:直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).(1)若在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P 的极坐标为(4,),判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求点Q到直线l的距离的最大值与最小值的差.)化为直角坐标为(2(y=的参数方程为d=+r=,最大值为+,25.(2012•辽宁)选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.,,),)解法一:由的公共弦的参数方程为)代入于的公共弦的参数方程为26.(2012•商丘二模)已知在平面直角坐标系xOy内,点P(x,y)在曲线C:为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值.的距离为,则联立方程,或,舍去.为27.(2012•海口模拟)选修4﹣4坐标系与参数方程在平面直角坐标系中,取原点为极点x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ=2cosθ,直线C2的参数方程为:(t为参数)(I )求曲线C1的直角坐标方程,曲线C2的普通方程.(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的倍得到曲线C3,P为曲线C3上一动点,求点P到直线C2的距离的最小值,并求出相应的P点的坐标.,的参数方程为:((==,此时,点的坐标为(28.(2011•三亚模拟)(选做题)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.+=得:圆心(﹣,﹣)的圆心到直线∴﹣时,圆29.(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.点的极角为,的极坐标为(,点的直角坐标为()的参数方程为30.选修4﹣4:坐标系与参数方程已知圆锥曲线C:(θ为参数)和定点,F1,F2是此圆锥曲线的左、右焦点.(1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程;(2)经过点F1,且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.的方程中,得:,轨迹为椭圆,其焦点的斜率为,倾斜角为(,得的方程中,得:的异侧21。

2015年高考真题——数学理(新课标Ⅰ卷)解析版

2015年高考真题——数学理(新课标Ⅰ卷)解析版

绝密★启封并使用完毕前试题类型:A注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年新课标1理 设复数z 满足=i ,则|z|=1+z 1z-(A )1 (B (C (D )2【答案】A考点:1.复数的运算;2.复数的模.2015年新课标1理 (2)sin20°cos10°-co s 160°sin10°=(A )(B (C ) (D )12-12【答案】D【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=,故选D.12考点:诱导公式;两角和与差的正余弦公式2015年新课标1理 (3)设命题P :n N ,>,则P 为∃∈2n 2n ⌝ (A )n N, > (B ) n N, ≤∀∈2n 2n ∃∈2n 2n(C )n N, ≤ (D ) n N, =∀∈2n 2n ∃∈2n 2n【答案】C【解析】试题分析::,故选C.p ⌝2,2n n N n ∀∈≤考点:特称命题的否定2015年新课标1理 (4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.312【答案】A【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:独立重复试验;互斥事件和概率公式2015年新课标1理 (5)已知M (x 0,y 0)是双曲线C :上的一点,2212x y -=F 1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是1MF ∙2MF(A )()(B )()(C )() (D )(【答案】A考点:向量数量积;双曲线的标准方程2015年新课标1理 (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015届高考数学(二轮复习)专题检测:坐标系与参数方程

2015届高考数学(二轮复习)专题检测:坐标系与参数方程

45 坐标系与参数方程 1.在极坐标系中,曲线C1:ρ(cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值. 解 ρ(cos θ+sin θ)=1, 即ρcos θ+ρsin θ=1对应的普通方程为x+y-1=0, ρ=a(a>0)对应的普通方程为x2+y2=a2. 在x+y-1=0中,令y=0,得x=. 将代入x2+y2=a2得a=. 2.(2014·安徽改编)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cos θ,求直线l被圆C截得的弦长. 解 直线l的参数方程(t为参数)化为直角坐标方程是y=x-4,圆C的极坐标方程ρ=4cos θ化为直角坐标方程是x2+y2-4x=0.圆C的圆心(2,0)到直线x-y-4=0的距离为d==.又圆C的半径r=2,因此直线l被圆C截得的弦长为2=2. 3.(2014·福建)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数). (1)求直线l和圆C的普通方程; (2)若直线l与圆C有公共点,求实数a的取值范围. 解 (1)直线l的普通方程为2x-y-2a=0, 圆C的普通方程为x2+y2=16. (2)因为直线l与圆C有公共点, 故圆C的圆心到直线l的距离d=≤4, 解得-2≤a≤2. 4.(2013·课标全国Ⅱ)已知动点P、Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点. (1)求M的轨迹的参数方程; (2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点. 解 (1)依题意有P(2cos α,2sin α), Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M的轨迹的参数方程为 (α为参数,0<α<2π). (2)M点到坐标原点的距离 d==(0<α0,故可设t1,t2是上述方程的两实根,所以 又直线l过点P(3,), 故由上式及t的几何意义得 PA+PB=|t1|+|t2|=t1+t2=3. 方法二 (1)同方法一. (2)因为圆C的圆心为点(0,),半径r=,直线l的普通方程为y=-x+3+. 由得x2-3x+2=0. 解得或 不妨设A(1,2+),B(2,1+), 又点P的坐标为(3,), 故PA+PB=+=3. 11.已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D按逆时针次序排列,点A的极坐标为. (1)求点A,B,C,D的直角坐标; (2)设P为C1上任意一点,求PA2+PB2+PC2+PD2的取值范围. 解 (1)由已知可得A, B, C, D, 即A(1,),B(-,1),C(-1,-),D(,-1). (2)设P(2cos φ,3sin φ),令S=PA2+PB2+PC2+PD2,则S=16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,所以S的取值范围是[32,52]. 12.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=4·cos. (1)将圆C的极坐标方程化为直角坐标方程; (2)若圆上有且仅有三个点到直线l的距离为,求实数a的值. 解 (1)由ρ=4cos, 得ρ=4cos θ-4sin θ. 即ρ2=4ρcos θ-4ρsin θ. 由得x2+y2-4x+4y=0, 得(x-2)2+(y+2)2=8. 所以圆C的直角坐标方程为(x-2)2+(y+2)2=8. (2)直线l的参数方程可化为y=2x+a, 则由圆的半径为2知,圆心(2,-2)到直线y=2x+a的距离恰好为. 所以=,解得a=-6±.。

2015年高考数学真题分类汇编:专题(16)选修部分(理科)及答案

2015年高考数学真题分类汇编:专题(16)选修部分(理科)及答案

专题十六 选修部分1.【2015高考北京,理11】在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为.【答案】1【解析】先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ+=化为直角坐标方程60x +-=,利用点到直线距离公式1d .考点定位:本题考点为极坐标方程与直角坐标方程的互化及求点到直线距离,要求学生熟练使用极坐标与直角坐标互化公式进行点的坐标转化及曲线方程的转化,熟练使用三个距离公式,包括两点间的距离、点到直线的距离、两条平行线的距离.【名师点睛】本题考查极坐标基础知识,要求学生使用互化公式熟练进行点的坐标转化及曲线方程的转化,然后利用点到直线距离公式求出距离,本题属于基础题,先把点的极坐标化为直角坐标,再把直线的极坐标方程化为直角坐标方程,最后求点到直线的距离. 2.【2015高考湖北,理15】(选修4-1:几何证明选讲】如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC= .【答案】21 【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线, 由切割线定理知,)(2BC PB PB PC PB PA +=⋅=,因为3BC PB =, 所以224PB PA =,即PB PA 2=,第15题图APBC由PAB ∆∽PCA ∆,所以21==PA PB AC AB . 【考点定位】圆的切线、割线,切割线定理,三角形相似.【名师点睛】判定两个三角形相似要注意结合图形的性质特点灵活选择判定定理.在一个题目中,相似三角形的判定定理和性质定理可能多次用到.3.【2015高考湖北,理16】在直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A B 两点,则||AB = . 【答案】52由两点间的距离公式得52)223223()2222(||22=+++=AB . 【考点定位】极坐标方程、参数方程与普通方程的转化,两点间的距离.【名师点睛】化参数方程为普通方程时,未注意到普通方程与参数方程的等价性而出错. 4.【2015高考重庆,理14】如图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE :ED =2:1,则BE =_______.题(14)图P【答案】2【解析】首先由切割线定理得2PA PC PD =⋅,因此26123PD ==,9CD PD PC =-=,又:2:1CE ED =,因此6,3CE ED ==,再相交弦定理有AE EB CE ED ⋅=⋅,所以6329CE ED BE AE ⋅⨯===. 【考点定位】相交弦定理,切割线定理.【名师点晴】平面几何问题主要涉及三角形全等,三角形相似,四点共圆,圆中的有关比例线段(相关定理】等知识,本题中有圆的切线,圆的割线,圆的相交弦,由圆的切割线定理和相交弦定理就可以得到题中有关线段的关系. 5.【2015高考重庆,理15】已知直线l 的参数方程为11x ty t=-+⎧⎨=+⎩(t 为参数】,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为235cos 24(0,)44ππρθρθ=><<,则直线l 与曲线C 的交点的极坐标为_______. 【答案】(2,)π【解析】直线l 的普通方程为2y x =+,由2cos 24ρθ=得222(cos sin )4ρθθ-=,直角坐标方程为224x y -=,把2y x =+代入双曲线方程解得2x =-,因此交点.为(2,0)-,其极坐标为(2,)π.【考点定位】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.【名师点晴】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式】消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式cos sin x y ρθρθ=⎧⎨=⎩,222tan x y y xρθ⎧+=⎪⎨=⎪⎩等可以把极坐标方程与直角坐标方程互化,本题这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.6.【2015高考重庆,理16】若函数()12f x x x a =++-的最小值为5,则实数a =_______. 【答案】4a =或6a =-【解析】由绝对值的性质知在1x =-或x a =时()f x 可能取得最小值,若(1)215f a -=--=,32a =或72a =-,经检验均不合;若()5f a =,则15x +=,4a =或6a =-,经检验合题意,因此4a =或6a =-. 【考点定位】绝对值的性质,分段函数.【名师点晴】与绝对值有关的问题,我们可以根据绝对值的定义去掉绝对值符号,把问题转化为不含绝对值的式子(函数、不等式等】,本题中可利用绝对值定义把函数化为分段函数,再利用函数的单调性求得函数的最小值,令此最小值为5,求得a 的值.7.【2015高考广东,理14】(坐标系与参数方程选做题)已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为 74A π⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为 ..【考点定位】极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的距离,转化与化归思想.【名师点睛】本题主要考查正弦两角差公式,极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的距离,转化与化归思想的应用和运算求解能力,属于容易题,解答此题在于准确把极坐标问题转化为平面直角坐标问题,利用平面几何点到直线的公式求解. 8. 【2015高考广东,理15】(几何证明选讲选作题】如图1,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD = .【答案】8.【解析】如下图所示,连接OC ,因为//OD BC ,又BC AC ⊥,所以OP AC ⊥,又O 为AB 线段的中点,所以1122OP BC ==,在Rt OCD ∆中,122OC AB ==,由直角三角形的射影定理可得2OC OP OD =⋅即222812OC OD OP===,故应填入8.【考点定位】直线与圆的位置关系,直角三角形的射影定理.【名师点睛】本题主要考查直线与圆的位置关系,直角三角形的射影定理运用,属于中档题,解答平面几何问题关键在于认真审题分析图形中的线段关系,适当作出辅助线段,此题连接OC ,则容易得到Rt OCD ∆,并利用直角三角形的射影定理求得线段OD 的值.9.【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A 】83 (B 】3 (C 】103 (D 】52【答案】A【解析】由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.【考点定位】相交弦定理.【名师点睛】本题主要考查相交弦定理、数形结合思想、数学计算能力.应用相交弦定理及,得到相应线段的关系:,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,再利用线段三等分析点的性质,结合图形,进行适当的转化,进行运算,体现数学基本思想:数形结合.是基础题. 10.【2015高考安徽,理12】在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 . 【答案】6【考点定位】1.极坐标方程与普通方程的转化;2.圆上的点到直线的距离.【名师点睛】对于极坐标与参数方程的问题,考生要把握好如何将极坐标方程转化成普通方程,抓住核心:222,cos ,sin x y x y ρρθρθ=+==,普通方程转化成极坐标方程,抓住核心:222,tan yx y xρθ+==.圆上的点到直线的距离最大值或最小值,要考虑到圆的半径加上(或减去】圆心到直线的距离.11.【2015高考新课标2,理22】选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,圆O 与ABC ∆的底边BC 交于M 、N 两点与底边上的高AD 交于点G ,与AB 、AC 分别相切于E 、F 两点.(Ⅰ】证明://EF BC ;GAEFONDB CM(Ⅱ】 若AG 等于O的半径,且AE MN ==求四边形EBCF 的面积.【答案】(Ⅰ】详见解析;. 【解析】(Ⅰ】由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC . (Ⅱ】由(Ⅰ】知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4AO =,2OE =.因为2OM OE ==,12DM MN ==,所以1OD =.于是5AD =,AB =.所以四边形EBCF的面积221122⨯-⨯=【考点定位】1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质.【名师点睛】平面几何中平行关系的证明往往有三种方法:①由垂直关系得出;②由角的关系得出;③由平行关系的传递性得出;除了用常规方法求面积外,通过割补法,将所求面积转化为易求面积的两个图形的和或者差更简洁.【2015高考上海,理3】若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= .【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵【名师点睛】线性方程组的增广矩阵是线性方程组另一种表示形式,明确其对应关系即可解决相应问题.即11112211211222221122+++++++++n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b =⎧⎪=⎪⎪⎨⎪⎪=⎪⎩对应增广矩阵为{11121121222212n nn n nnn a a a b a a a b a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12.【2015高考新课标2,理23】选修4-4:坐标系与参数方程 在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠】,其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=. (Ⅰ】.求2C 与1C 交点的直角坐标;(Ⅱ】.若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值. 【答案】(Ⅰ】(0,0)和3)2;(Ⅱ】4.(Ⅱ】曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为,)αα.所以2sin cos AB αα=-4in()3s πα=-,当56πα=时,AB 取得最大值,最大值为4. 【考点定位】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.【名师点睛】(Ⅰ】将曲线2C 与1C 的极坐标方程化为直角坐标方程,联立求交点,得其交点的直角坐标,也可以直接联立极坐标方程,求得交点的极坐标,再化为直角坐标;(Ⅱ】分别联立2C 与1C 和3C 与1C 的极坐标方程,求得,A B 的极坐标,由极径的概念将AB 表示,转化为三角函数的最大值问题处理,高考试卷对参数方程中参数的几何意义和极坐标方程中极径和极角的概念考查加大了力度,复习时要克服把所有问题直角坐标化的误区. 13.【2015高考新课标2,理24】(本小题满分10分】选修4-5不等式选讲 设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ】若ab cd >+>;>是a b c d -<-的充要条件.【答案】(Ⅰ】详见解析;(Ⅱ】详见解析.【解析】(Ⅰ】因为2a b =++,2c d =++,由题设a b c d +=+,ab cd >,得22>+>.(Ⅱ】(ⅰ】若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >+>(ⅱ】若>,则22>,即a b ++>c d ++.因为a b c d +=+,所以ab cd >,于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-,综上,+>是a b c d -<-的充要条件.【考点定位】不等式证明.【名师点睛】+>,只需证明22+>,展开结合已知条件易证;(Ⅱ】充要条件的证明需要分为两步,即充分条件的证明和必要条件的证明.证明的关键是寻找条件和结论以及它们和已知之间的联系. 15. 【2015江苏高考,21】A (选修4—1:几何证明选讲】如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析 【解析】试题分析:利用等弦对等角,同弧对等角,得到ABD E ∠=∠,又公共角BAE ∠,所以两三角形相似试题解析:因为C AB =A ,所以D C ∠AB =∠. 又因为C ∠=∠E ,所以D ∠AB =∠E , 又∠BAE 为公共角,可知D ∆AB ∽∆AEB . 【考点定位】相似三角形【名师点晴】1.判定两个三角形相似的常规思路(1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”. 2.借助图形判断三角形相似的方法(1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例;(3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. 21.B (选修4—2:矩阵与变换】已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值. 【答案】1120-⎡⎤A =⎢⎥⎣⎦,另一个特征值为1.A(第21——A 题)从而矩阵A 的特征多项式()()()21fλλλ=+-,所以矩阵A 的另一个特征值为1.【考点定位】矩阵运算,特征值与特征向量 【名师点晴】求特征值和特征向量的方法 (1)矩阵a b c d ⎡⎤A =⎢⎥⎣⎦的特征值λ满足()0()()0a b f a d bc c d λλλλλ--==⇒---=--,属于λ的特征向量x y α⎡⎤=⎢⎥⎣⎦满足x x A y y λ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦. (2)求特征向量和特征值的步骤: ①解()0a bf cdλλλ--==--得特征值;②解()0()0a x by cx d y λλ--=⎧⎨-+-=⎩,取x =1或y =1,写出相应的向量.21. C (选修4—4:坐标系与参数方程】已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.【解析】试题分析:先根据222,sin ,cos x y y x ρρθρθ=+==将圆C 的极坐标方程化成直角坐标方程,再根据圆的标准方程得到其半径.试题解析:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系x y O .圆C 的极坐标方程为240ρθθ⎫+-=⎪⎪⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=, 即()()22116x y -++=,所以圆C. 【考点定位】圆的极坐标方程,极坐标与之间坐标互化【名师点晴】1.运用互化公式:222,sin ,cos x y y x ρρθρθ=+==将极坐标化为直角坐标; 2.直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行. 21.D (选修4—5:不等式选讲】 解不等式|23|3x x ++≥【答案】153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或【解析】试题分析:根据绝对值定义将不等式化为两个不等式组的并集,分别求解即可试题解析:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-.综上,原不等式的解集是153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或.【考点定位】含绝对值不等式的解法【名师点晴】①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 16.【2015高考福建,理21】选修4-2:矩阵与变换 已知矩阵2111,.4301A B ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭(Ⅰ)求A 的逆矩阵1A -; (Ⅱ)求矩阵C ,使得AC=B.【答案】(Ⅰ)312221⎛⎫- ⎪ ⎪-⎝⎭; (Ⅱ)32223⎛⎫ ⎪ ⎪--⎝⎭.【考点定位】矩阵和逆矩阵.【名师点睛】本题考查逆矩阵和逆矩阵的性质,是通过伴随矩阵和矩阵的乘法求解,属于基础题,注意运算的准确性.17.【2015高考福建,理21】选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty t ì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴】中,直线lsin()m,(m R).4pq -=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=. (Ⅱ)依题意,圆心C 到直线l 的距离等于2,即2,=解得m=-3±【考点定位】1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成y 和x 即可 18.【2015高考福建,理21】选修4-5:不等式选讲已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值;(Ⅱ)求2221149a b c ++的最小值. 【答案】(Ⅰ) 4;(Ⅱ)87.【解析】(Ⅰ)因为(x)|x ||x ||(x )(x )||a |f a b c a b c b c =++++?-++=++,当且仅当a xb -#时,等号成立,又0,0a b >>,所以|a b |a b +=+,所以(x)f 的最小值为a bc ++,所以a b c 4++=.(Ⅱ)由(1)知a b c 4++=,由柯西不等式得()()22222114912+3+1164923a b a b c c a b c ⎛⎫⎛⎫++++≥⨯⨯⨯=++= ⎪ ⎪⎝⎭⎝⎭ 即222118497a b c ++?. 当且仅当1132231b ac ==,即8182,,777a b c ===时,等号成立 所以2221149a b c ++的最小值为87.【考点定位】1、绝对值三角不等式;2、柯西不等式.【名师点睛】当x 的系数相等或相反时,可以利用绝对值不等式求解析式形如()f x x a x b =+++的函数的最小值,以及解析式形如()f x x a x b =+-+的函数的最小值和最大值,否则去绝对号,利用分段函数的图象求最值.利用柯西不等式求最值时,要注意其公式的特征,以出现定值为目标.19.【2015高考陕西,理22】(本小题满分10分】选修4-1:几何证明选讲如图,AB 切O 于点B ,直线D A 交O 于D ,E 两点,C D B ⊥E ,垂足为C .(I 】证明:C D D ∠B =∠BA ; (II 】若D 3DC A =,C B =,求O 的直径.【答案】(I 】证明见解析;(II 】3.又C D B ⊥E ,所以C D D 90∠B +∠E B =,从而C D D ∠B =∠BE . 又AB 切圆O 于点B ,得D D ∠BA =∠BE ,所以C D D ∠B =∠BA . (II 】由(I 】知D B 平分C ∠BA ,则=3BA ADBC CD=,又BC,从而AB =,所以4AC ==,所以D=3A .由切割线定理得2=AD AB AE ×,即2=6ADAB AE =,故D D 3E =AE -A =,即圆O 的直径为3.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理.【名师点晴】本题主要考查的是直径所对的圆周角、弦切角定理和切割线定理,属于容易题.解题时一定要注意灵活运用圆的性质,否则很容易出现错误.凡是题目中涉及长度的,通常会使用到相似三角形、全等三角形、正弦定理、余弦定理等基础知识. 20.【2015高考陕西,理23】选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数】.以原点为极点,x 轴正半轴为极轴建立极坐标系,C 的极坐标方程为ρθ=.(I 】写出C 的直角坐标方程;(II 】P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【答案】(I 】(223x y +=;(II 】()3,0. 【解析】试题分析:(I 】先将ρθ=两边同乘以ρ可得2sin ρθ=,再利用222x y ρ=+,sin x ρθ=可得C 的直角坐标方程;(II 】先设P ,再利用二次函数的性质可得C P 的最小值,进而可得P 的直角坐标.试题解析:(I 】由ρθ=,得2sin ρθ=,从而有22+x y =,所以(22+3x y -=.(II)设1(3t)2P +,又,则|PC |==, 故当0t =时,C P 取最小值,此时P 点的直角坐标为()3,0.考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质. 【名师点晴】本题主要考查的是极坐标方程化为直角坐标方程、参数的几何意义和二次函数的性质,属于容易题.解决此类问题的关键是极坐标方程或参数方程转化为平面直角坐标系方程,并把几何问题代数化.21.【2015高考陕西,理24】(本小题满分10分】选修4-5:不等式选讲 已知关于x 的不等式x a b +<的解集为{}24x x <<. (I 】求实数a ,b 的值;(II 的最大值. 【答案】(I 】3a =-,1b =;(II 】4.故max4 =.考点:1、绝对值不等式;2、柯西不等式.【名师点晴】本题主要考查的是绝对值不等式和柯西不等式,属于容易题.解题时一定要注意不等式与方程的区别,否则很容易出现错误.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.用柯西不等式证明或求最值要注意:①所给不等式的形式是否与柯西不等式的兴致一致,若不一致,需要将所给式子变形;②等号成立的条件.22.【2015高考新课标1,理22】选修4-1:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E.(Ⅰ】若D为AC的中点,证明:DE是O的切线;(Ⅱ】若OA ,求∠ACB的大小.【答案】(Ⅰ】见解析(Ⅱ】60° 【解析】试题分析:(Ⅰ】由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE =DC ,OE =OB ,利用等量代换可证∠DEC +∠OEB=90°,即∠OED =90°,所以DE 是圆O 的切线;(Ⅱ】设CE =1,由OA =得,AB =AE =x ,由勾股定理得BE =由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.试题解析:(Ⅰ】连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE =DC ,∴∠DEC =∠DCE , 连结OE ,∠OBE =∠OEB ,∵∠ACB +∠ABC =90°,∴∠DEC +∠OEB =90°, ∴∠OED =90°,∴DE 是圆O 的切线. ……5分(Ⅱ】设CE =1,AE =x ,由已知得AB =BE =, 由射影定理可得,2AE CE BE =,∴2x =,解得x ACB =60°. ……10分【考点定位】圆的切线判定与性质;圆周角定理;直角三角形射影定理【名师点睛】在解有关切线的问题时,要从以下几个方面进行思考:①见到切线,切点与圆心的连线垂直于切线;②过切点有弦,应想到弦切角定理;③若切线与一条割线相交,应想到切割线定理;④若要证明某条直线是圆的切线,则证明直线与圆的交点与圆心的连线与该直线垂直.23.【2015高考新课标1,理23】选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ】求1C ,2C 的极坐标方程; (Ⅱ】若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积.【答案】(Ⅰ】cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ】12【解析】试题分析:(Ⅰ】用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ】将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.24.【2015高考新课标1,理24】选修4—5:不等式选讲已知函数=|x +1|-2|x-a |,a >0.(Ⅰ】当a =1时,求不等式f (x )>1的解集;(Ⅱ】若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ】2{|2}3x x <<(Ⅱ】(2,+∞】 【解析】(Ⅰ】当a =1时,不等式f (x )>1化为|x +1|-2|x-1|>1, 等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<. ……5分(Ⅱ】由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +.由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞】. ……10分【考点定位】含绝对值不等式解法;分段函数;一元二次不等式解法【名师点睛】对含有两个绝对值的不等式问题,常用“零点分析法”去掉绝对值化为若干个不等式组问题,原不等式的解集是这些不等式组解集的并集;对函数多个绝对值的函数问题,常利用分类整合思想化为分段函数问题,若绝对值中未知数的系数相同,常用绝对值不等式的性质求最值,可减少计算.25.【2015高考湖南,理16】16.(1】如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明: (1】180MEN NOM ∠+∠=; (2】FE FN FM FO ⋅=⋅【答案】(1】详见解析;(2】详见解析. 【解析】试题分析:(1】首先根据垂径定理可得90OME ∠=, 90ENO ∠=,再由四边形的内角和即可得证;(2】由(1】中的结论可得O ,M ,E ,N 四点共圆,再由割线定理即得FE FN FM FO ⋅=⋅试题解析:(1】如图a 所示, ∵M ,N 分别是弦AB ,CD 的中点,∴OM AB ⊥,ON CD ⊥,即90OME ∠=, 90ENO ∠=,180OME ENO ∠+∠=,又四边形的内角和等于360,故180MEN NOM ∠+∠=;(2】由(I 】知,O ,M ,E ,N 四点共圆,故由割线定理即得FE FN FM FO ⋅=⋅【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.(Ⅱ】已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数】,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1】将曲线C 的极坐标方程化为直角坐标方程;(2】设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值.【答案】(1】0222=-+x y x ;(2】18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|.【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程,实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极坐标与参数方程中同样适用.(Ⅲ】设0,0a b >>,且11a b a b +=+. (1】2a b +≥;(2】22a a +<与22b b +<不可能同时成立.【答案】(1】详见解析;(2】详见解析.【解析】试题分析:(1】将已知条件中的式子可等价变形为1=ab ,再由基本不等式即可得证;(2】利用反证法,假设假设22<+a a 与22<+b b 同时成立,可求得10<<a ,10<<b ,从而与1=ab 矛盾,即可得证试题解析:由abb a b a b a +=+=+11,0>a ,0>b ,得1=ab ,(1】由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a ;(2】假设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 得10<<a ,同理10<<b ,从而1<ab ,这与1=ab 矛盾,故22<+a a 与22<+b b 不可能成立.【考点定位】1.基本不等式;2.一元二次不等式;3.反证法.【名师点睛】本题主要考查了不等式的证明与反证法等知识点,属于中档题,第一小问需将条件中的式子作等价变形,再利用基本不等式即可求解,第二小问从问题不可能同时成立,可以考虑采用反证法证明,否定结论,从而推出矛盾,反证法作为一个相对冷门的数学方法,在后续复习时亦应予以关注.。

广东省13市2015届高三数学 分类汇编 坐标系与参数方程

广东省13市2015届高三数学 分类汇编 坐标系与参数方程

广东省13市2015届高三上学期期末考试数学文试题分类汇编坐标系与参数方程1、(东莞市2015届高三)在极坐标系中,直线被曲线C : =2所截得弦的中点的极坐标为_____ 2、(佛山市2015届高三)在极坐标系中,曲线1C :()2cos sin 1ρθθ+=与曲线2C :a ρ=(0a >)的一个交点在极轴上,则a =______3、(广州市2015届高三)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A ,B ,则线段AB 的垂直平分线的极坐标方程为______4、(惠州市2015届高三)在极坐标系中,直线sin()24πρθ+=被圆4ρ=截得的弦长为___________5、(清远市2015届高三)在极坐标系中,点A (2,6π)与曲线()3R πθρ=∈上的点的最短距离为_____ 6、(汕头市2015届高三)在平面直角坐标系中,直线l 的参数方程为33x t y t =+⎧⎨=-⎩(参数R t ∈),圆的参数方程为2cos 2sin 1x y θθ=⎧⎨=+⎩(参数[)0,2θπ∈),则圆心到直线l 的距离为 7、(汕尾市2015届高三)已知圆C 的极坐标方程为2cos ρθ=,直线l 的极坐标方程为3πθ=,则圆心到直线l 的距离等于8、(韶关市2015届高三)在极坐标系中,圆ρ=4cos θ的圆心到直线6πθ=()R ρ∈的距离是___9、(深圳市2015届高三)在极坐标系中,点)3,2(π到直线3cos =θρ的距离等于10、(湛江市2015年高考模拟一)11、(珠海市2015届高三)在极坐标系中,曲线2sin ρθ=与sin cos 2ρθρθ-=相交于点A 、B 两点,则AB =______参考答案1、)43,2(π 2、2 3、sin()42πρθ+= 4、、16、2257 8、1 9、2 10、2 11。

江苏省2015届高考数学模拟试题分类汇编:第16章-极坐标与参数方程

江苏省2015届高考数学模拟试题分类汇编:第16章-极坐标与参数方程

目录(基础复习部分)第十六章 坐标系与参数方程 (1)第01课 极坐标方程 ................................................................................................................................ 1 第02课 常用曲线的参数方程 . (5)第十六章 坐标系与参数方程第01课 极坐标方程(南京三模)在极坐标系中,设圆C :ρ=4 cos θ 与直线l :θ=π4 (ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解: 以极点为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,则由题意,得圆C 的直角坐标方程 x 2+y 2-4x =0,直线l 的直角坐标方程 y =x . ………………………… 4分由⎩⎨⎧x 2+y 2-4x =0,y =x , 解得⎩⎨⎧x =0,y =0,或 ⎩⎨⎧x =2,y =2.所以A (0,0),B (2,2).从而以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2,即x 2+y 2=2x +2y .………………………… 7分将其化为极坐标方程为:ρ2-2ρ(cos θ+sin θ)=0,即ρ=2(cos θ+sin θ).…………………… 10分已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫-=- ⎪⎝⎭,曲线2C 的极坐标方程为4πρθ⎛⎫=-⎪⎝⎭,判断两曲线的位置关系. 解:将曲线12,C C 化为直角坐标方程得:1:20C x ++=,----------------------------------------------------------------------3分222:220C x y x y +--=-------------------------------------------------------------------6分即()()222:112C x y -+-=,圆心到直线的距离d >,-------------------------8分 ∴曲线12C C 与相离.-----------------------------------------------------------------------10分已知半圆C 的参数方程为cos ,1sin x y αα=⎧⎨=+⎩(α为参数),[,]22ππα∈-.(1)在直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,求半圆C 的极坐标方程;(2)在(1)的条件下,设T 是半圆C 上的一点,且3OT =,试写出T 点的极坐标.(南京盐城模拟一)在极坐标系中,求圆2cos ρθ=的圆心到直线2sin()13πρθ+=的距离.解:将2cos ρθ=化为普通方程为2220x y x +-=,圆心为(1,0), ………………4分又2sin()13πρθ+=即132(sin )12ρθθ=, 310x y +-=. (8)分故所求的圆心到直线的距离31d -= ………………10分(苏州期末)在极坐标系中,已知圆3cos ρθ=与直线2cos 4sin 0a ρθρθ++=相切,求实数a 的值.C.解:圆3cos ρθ=的普通方程为223x y x +=,即2239()24x y -+=. 直线2cos 4sin 0a ρθρθ++=的普通方程为240x y a ++=.3|2|32a ⋅+=,解得3a =-±(金海南三校联考)在极坐标系中,已知A (1,)3π,B (9,)3π,线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及△ABC 的面积.解:易得线段AB 的中点坐标为(5,π3), ……………………………………………………2分设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos(θ-π3)=5,所以,l 的极坐标方程为ρcos(θ-π3)=5, ……………………………………………………6分令θ=0,得ρ=10,即C (10,0).…………………………………………………… 8分所以,△ABC 的面积为:12×(9-1)×10×sin π3=203. ……………………………………10分(泰州二模)已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l的极坐标方程为sin 4ρθπ⎛⎫-= ⎪⎝⎭(1)把直线l 的极坐标方程化为直角坐标方程;(2)已知P 为椭圆221169:x y C +=上一点,求P 到直线l 的距离的最小值.解:(1)直线l的极坐标方程sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos θθ=,即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=;…………5分(2)P 为椭圆221169x y C +=:上一点,设(4cos 3sin )P αα,,其中[)02,α∈π,则P 到直线l的距离d ==4cos 5ϕ=,3sin 5ϕ=, ∴当cos()1αϕ+=-时,d…………10分 (南通调研二)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点 的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, …… 4分联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=,解得112x =,22x =,所以AB中点的横坐标为12524x x +=,纵坐标为…… 8分化为极坐标为()5π 23,. …… 10分 (方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,,…… 2分 消去θ,得2540ρρ-+=, 解得11ρ=,24ρ=, …… 6分所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. …… 10分(注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分.)(苏北三市调研三)已知曲线1C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数).在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为πcos 4ρθ⎛⎫+= ⎪⎝⎭1C 与2C 交点的极坐标,其中0,02πρθ<≥≤.解法一:将22cos ,2sin x y αα=+⎧⎨=⎩消去参数α,得()2224x y -+=,所以1C 的普通方程为:2240x y x +-=. ……………………4分将曲线2C 的极坐标方程化为直角坐标方程得:40x y --=. ……………………6分由2240,40,x y x x y ⎧+-=⎨--=⎩解得4,0x y =⎧⎨=⎩或2,2.x y =⎧⎨=-⎩ ……………………8分所以1C 与2C 交点的极坐标分别为()4,0或74π⎛⎫ ⎪⎝⎭. ……………………10分解法二:将22cos ,2sin x y αα=+⎧⎨=⎩消去参数α,得()2224x y -+=,所以1C 的普通方程为:2240x y x +-=. ……………………4分所以1C 的极坐标方程为4cos ρθ=. ……………………6分代入πcos 4ρθ⎛⎫+= ⎪⎝⎭cos(2)4πθ+, …………………………8分所以1C 与2C 交点的极坐标分别为()4,0或74π⎛⎫⎪⎝⎭. ……………………10分第02课 常用曲线的参数方程已知两个动点P ,Q 分别在两条直线1:l y x =和2:l y x =-上运动,且它们的横坐标分别为角q 的正弦,余弦,[0,π]q ∈.记OM OP OQ =+u u u u r u u u r u u u r,求动点M 的轨迹的普通方程.C .选修4—4:坐标系与参数方程解:设(,)M x y ,则sin cos ,sin cos ,x y q q q q =+⎧⎨=-⎩………………………2分两式平方相加得222x y +=. ………………………5分又π)4x +q ,π)4y -q ,[0,π]∈q ,所以[x ∈-,[y ∈-. ………………………8分所以动点M 轨迹的普通方程为222x y +=(x ,[y ∈-).……………………10分在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =3+32t ,y =2+12t(t 为参数 ),圆C的参数方程为⎩⎨⎧x =3+cos θ,y =sin θ(θ为参数).若点P 是圆C 上的动点,求点P 到直线l 的距离的最小值. 解:(方法一)直线l 的普通方程为x -3y +3=0. …………………………………… 3分因为点P 在圆C 上,故设P (3+cos θ,sin θ), 从而点P 到直线l 的距离d =|3+cos θ-3sin θ+3|12+(-3)2=|23-2sin(θ-π6)|2. …………………… 7分所以d min =3-1.即点P 到直线l 的距离的最小值为3-1. ……………………………… 10分 (方法二)直线l 的普通方程为x -3y +3=0. ……………………………… 3分 圆C 的圆心坐标为(3,0),半径为1. 从而圆心C 到直线l 的距离为d =|3-0+3|12+(-3)2=3. ………………………… 6分所以点P 到直线l 的距离的最小值为3-1. ………………………… 10分已知在平面直角坐标系xOy 中,圆O 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数);以原点O 为极点,以x轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为(sin cos )1ρθθ-=,直线l 与圆O 相交于A B 、两点,求弦AB 的长.21.C .解:圆O :224x y +=,直线l :10x y -+=, ………………5分圆心O 到直线l 的距离d ==AB ==………10分 在极坐标系中,曲线C 的极坐标方程为2cos 2sin r q q =+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为1,x t y =+⎧⎪⎨=⎪⎩(t 为参数),求直线l 被曲线C 所截得的弦长.解:曲线C 的直角坐标方程为22220x y x y +--=,圆心为(1,1) …………………………………………………………3分0y -=, ………………………………………5分所以圆心到直线的距离为12d ==, ………………………………8分所以弦长==. ………………………………………………………10分(南通调研一)在平面直角坐标xOy 中,已知曲线C 的参数方程为21,214x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),曲线与直线l :12y x=相交于A ,B 两点,求线段AB 的长.(扬州期末)已知曲线C 1的极坐标方程为2cos()42πρθ-=-,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线C 2的参数方程为2cos ,sin ,x y αα=⎧⎨=⎩求曲线C 1与曲线C 2交点的直角坐标. 由2cos()42πρθ-=-,得曲线1C 的直角坐标系的方程为10x y ++=, ……3分 由2cos ,sin x y αα=⎧⎨=⎩得曲线2C 的普通方程为21(11)x y x +=-≤≤, ……7分 由210,1x y x y ++=⎧⎨+=⎩得220x x --=,即2x =(舍去)或1x =-,所以曲线1C 与曲线2C 交点的直角坐标为(1,0)-. (镇江期末)已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos ,10sin x y θθ=⎧⎨=⎩(θ为参数). (1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.解:(1)由πsin()63ρθ-=,得1(sin )62ρθθ=,12y ∴-=120y -+=. ……4分圆的方程为22100x y +=. ……6分(2)6d =Q ,10r =,∴弦长16l ==. ……10分 己知直线l 的参数方程为,21x t y t =⎧⎨=+⎩(t 为参数),圆C 的参数方程为,sin x acos y a θθ=⎧⎨=⎩.(a >0. θ为参数),点P 是圆C 上的任意一点,若点P 到直线l 的距离的最大值为15+,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二十二 坐标系与参数方程
1.(15北京理科)在极坐标系中,点π23⎛
⎫ ⎪⎝
⎭‚
到直线()
cos 6ρθθ+=的距离为

【答案】1 【解析】
试题分析:先把点(2,)3
π
极坐标化为直角坐标
,再把直线的极坐标方程()
cos 6ρθθ+=化为
直角坐标方程60x +-=
,利用点到直线距离公式1d =
=.
考点:1.极坐标与直角坐标的互化;2.点到直线距离.
2.(15年广东理科)已知直线l 的极坐标方程为24
sin(2=-)
π
θρ,点A 的极坐标为
74A π⎛
⎫ ⎪⎝⎭
,则点A 到直线l 的距离为
【答案】
2
. 【解析】依题已知直线l
:2sin 4πρθ⎛⎫
-
= ⎪⎝

74A π⎛
⎫ ⎪⎝⎭
可化为l :10x y -+=和()2,2A -,所以
点A 与直线l 的距离为
d =
=
,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.
3.(15年广东文科)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1
C 的极坐标方程为()cos sin 2ρθθ
+=-,曲线2C 的参数方程为2
x t
y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角
坐标为 . 【答案】()2,4- 【解析】
试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为2
8y x =,由2
2
8x y y x
+=-⎧⎨=⎩得:2
4
x y =⎧⎨
=-⎩,
所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.
考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 4.(15年福建理科)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x t
y t
ì=+ïí
=-+ïî为参数.在极坐标系(与
平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为
sin()m,(m R).4
p
q -
=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值.
【答案】(Ⅰ) ()()
22
129x y -++=,0x y m --=;(Ⅱ) m=-3±
【解析】
试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()
()2
2
1
29x y -++= ,利用cos x ρθ=,
sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解.
试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()
22
129x y -++=,
sin()m 4
p
q -
=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=. (Ⅱ)依题意,圆心C 到直线l 的距离等于2,即
|12m |
2

--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.
5.(15年新课标2理科)在直角坐标系xOy 中,曲线C 1:cos sin x t y t α
α=⎧⎨=⎩
(t 为参数,t ≠ 0),其中0 ≤ α < π,
在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。

(1)求C 2与C 3交点的直角坐标;
(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求||AB 的最大值。

6.(15年新课标2文科)在直角坐标系xOy 中,曲线1cos ,
:sin ,
x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,
在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;
(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.
【答案】(I )()30,0,22⎛⎫ ⎪ ⎪⎝⎭
;(II )4. 【解析】
试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解
考点:参数方程、直角坐标及极坐标方程的互化.
7.(15年陕西理科)在直角坐标系x y O 中,直线l
的参数方程为132x t y ⎧=+⎪⎪
⎨⎪=⎪⎩(t 为参数).以原点为极点,x
轴正半轴为极轴
建立极坐标系,C
的极坐标方程为ρθ=.
(I )写出C 的直角坐标方程;
(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 【答案】(I
)(2
2
3x y +=;
(II )()3,0. 【解析】
试题分析:(I
)先将ρθ=两边同乘以ρ
可得2sin ρθ=,再利用222
x y ρ=+,sin x ρθ=可得C 的直角坐标方程;(II )先设P
的坐标,则C P =,再利用二次函数的性质可得C P 的最小值,进而可得P 的直角坐标.
试题解析:(I
)由2,sin ρθρθ==得,
从而有(2
222
+,+3x y x y ==所以.
(II)
设1(3t),2P +又,
则|PC |==, 故当t=0时,|PC|取最小值,此时P 点的直角坐标为(3,0).
考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.
8.(15年陕西文科)在直角坐标版权法xOy 吕,直线l
的参数方程为132(2
x t t y t ⎧
=+⎪⎪
⎨⎪=⎪⎩为参数)
,以原点为极点,x 轴的正半轴为极轴建立极坐标系,C
的极坐标方程为ρθ=.
(I)写出C 的直角坐标方程;
(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 【答案】
(I) (2
2
3x y +-=; (II) (3,0).
【解析】
试题分析:(I)
由ρθ=
,得2sin ρθ=
,从而有22x y +=
,所以(2
2
3x y +=
(II)
设1322P t ⎛⎫+ ⎪⎝⎭,
又(0,C ,
则PC ==故当0t =时,PC
取得最小值,此时P 点的坐标为(3,0). 试题解析:(I)
由ρθ=,
得2sin ρθ=,
从而有22x y +=
所以(2
2
3x y +=
(II)
设132P t ⎛⎫+
⎪⎝⎭
,又C ,
则PC ==
故当0t =时,PC 取得最小值,
此时P 点的坐标为(3,0).
考点:1. 坐标系与参数方程;2.点与圆的位置关系.
9.(15年江苏)已知圆C 的极坐标方程为2sin()404
π
ρθ+--=,求圆C 的半径.
考点:圆的极坐标方程,极坐标与之间坐标互化。

相关文档
最新文档