随机过程第6章课件
随机过程-第六章 鞅与停时
E (Yn ) 0 E , Y (n ) ; X 0 0, X n Yi ,则 { X n , n 0} 关于 {Yn , n 0} 是鞅。
i 1
n
-1-
例 6.2 ( 独 立 同 分 布 变 量 之 积 ) 设 Y0 1 , {Yn , n 1} 服 从 独 立 同 分 布 , 且
3、若 { X n , n 0} 关于 {Yn , n 0} 是(上)鞅, g 是关于 Y0 , Y1 ,, Yn 的(非负)函数, 则
6.1 离散鞅的定义
定义 6.1 鞅:随机过程 { X n , n 0} 是鞅,如果 n 0 有
(1) E ( X n ) ; (2) E ( X n1 X 0 , X1 ,, X n ) X n , a.s. 鞅是公平赌博的一种推广。 假设我们把 X n 解释为第 n 次赌博后的赌资, 则根据定义 6.1, 第 n 1 次赌博后的平均赌资恰好等于 X n ,无论之前发生怎样的情况,即每次赌博胜负机会 均等。 对(2)式两边取期望得
f ( y) f ( z )dF ( z y)
则称 { X n n f (Yn ), n 0} 是一个鞅。 例 6.4 和例 6.5 将马尔可夫链与鞅这两个重要的随机过程有机地联系起来,在今后的实 际研究中应用广泛。 例 6.6 波利亚(Polya)坛子抽样模型:考虑一个装有红、黄两色球的坛子。假设最初 坛子中装有红黄两色各一个球,每次都按如下规则有放回地随机抽取:如果拿出的是红球, 则放回的同时再加一个同色的球;如果拿出的是黄色的球也采取同样的做法。以 Yn 第 n 次 抽取后坛子中的红球数,则 Y0 1 , Yn 是一个非时齐的马尔可夫链,转移概率为
a0 (Y1 ) a0 , E[ f (Z0 ) Y1 ] E[ f (Z0 )] ,令
北大随机过程课件:第 6 章 第 1 讲 最小均方误差线性估计汇编
a = E{s(t )x(t)}/ E{x(t) x(t)} = Rss (0) /[Rss (0) + Rnn (0)]
{ } { } 相应的最小均方误差是, E⎩⎨⎧ξ − ξˆ 2 ⎭⎬⎫ = E ξ 2 − E ξξˆ*
{ } E s(t) − sˆ(t) 2 = E{[s(t) − ax(t)]s(t)}
为了使均方误差最小,
应使 K = E{ξ/η },即:ξˆ(η= Y) = E{ξ/η= Y}
定理
设随机矢量 ξ = (ξ 1,ξ 2,"ξ n) 和 η = (η 1,η 2,"η m) 的联合概率密度函数是,
fξ η (x1, x2 ,", xn ; y1, y2 ," ym ) 且 fη ( y1, y2 ," ym ) ≠ 0 ,则ξ关于η的最小均方误
讨论 2:在上述条件下,估计误差正交于 s(u), u < t
E{[s(t + λ ) − as(t )]⋅ s(u)} = Rs s (t + λ − u) − aRs s (t − u)
σ σ σ σ =
e2 −α (t+λ −u) − a e2 −α (t−u) =
e − e e 2 −α (t+λ −u)
其中一个重要的问题就是确定估值参数 估值的评估:分析估值误差
均方误差最小的最佳线性估计
估值问题
设ξ和η是两个随机矢量,两者存在联合分布,其中η是观察矢量,通过η对ξ进 行估值,得到符合某种准则的最佳估值ξ。
1 均方误差最小的估值问题
均方误差最小的估值问题
设ξ和η是两个随机矢量,两者存在联合分布,设η是观察矢量,通过η对ξ进行 估值,求均方误差最小的估值ξ。
第6章信号处理简介
机电工程学院 Sun Chuan 68215 第6章 信号处理简介
随机信号分类
随机信号可分为平稳的和非平稳的。如果随机 信号的特征参数不随时间变化,则称为平稳的,否
则为非平稳的。一个平稳随机信号,若一次长时间
测量的时间平均值等于它的统计平均值(或称集合平 均值),则称这样的随机信号是各态历经的。通常把 工程上遇到的随机信号均认为是各态历经的。
X(k ) x(n)e j2πkn/N
n 0
N 1
(2.4.1)
1 N 1 x(n) X(k )e j2πkn/N N k 0
机电工程学院 Sun Chuan 68215 第6章 信号处理简介
上述的离散傅里叶变换对将N个时域采样点x(n)与N 个频率采样点X((k)联系起来,建立了时域与频域的关 系,提供了通过计算机作傅里叶变换运算的一种数学 方法。利用计算机进行离散傅里叶变换可查阅相关文 献。
机电工程学院 Sun Chuan 68215 第6章 信号处理简介
图2.4.3 采样频率不同时的频谱波形
机电工程学院 Sun Chuan 68215 第6章 信号处理简介
3. 量化及量化误差
(1) 量化 将采样信号的幅值经过四舍五入的方法离散化的 过程称为量化。 (2) 量化电平 若采样信号可能出现的最大值为A,令其分 为B个间隔,则每个间隔Δx=A/B,Δx称为量化电平,每个量 化电平对应一个二进制编码。 (3) 量化误差 当采样信号落在某一区间内,经过四舍五入 而变为离散值时,则产生量化误差,其最大值是±0.5Δx。 量化误差的大小取决于A/D转换器的位数,其位数越高, 量化电平越小,量化误差也越小。比如,若用8位的A/D转换 器,8位二进制数为28=256,则量化电平为所测信号最大幅值 的1/256,最大量化误差为所测信号最大幅值的±1/512。
随机过程课件PPT资料(正式版)
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
随机振动--第6章-傅里叶变换
傅立叶变换的10大性质: j F ( ) f ( ) e d (5) 对称性定理: F [ F (t )] 2f ( ) 把F(w)的变量换成t, (6)时域微分定理 d n f (t ) n
F[ dt
t
倒频谱
n
] ( j ) F ( )
1 F [ f (at )] F ( ) a a
3、狄拉克δ函数(δ函数)
是一个广义函数,没有普遍意义下的函数值。 定义:满足下列条件的函数称为δ函数。
0 (1) (t ) (2) (t ) dt 1
当t 0 当t 0
推论一下:
0 (1) (t t 0) (2) (t t 0)dt 1
x (t )
n
c e
n
jnt
1 其中:c n T
T 2 T 2
x (t ) e
jnt
dt
2、傅立叶变换
狄氏条件: (1)函数f(t)连续或只有有限个第一 类间断点;(2)函数f(t) 只有有限个极值点。
傅立叶变换F ( )
f ( )e
j
d
1、傅立叶级数
1)傅立叶级数的实数形式
任一周期函数x(t),如在[-T/2,T/2] 区 间满足狄利克雷(狄氏)条件,都可 展开成傅立叶级数(傅氏级数)
狄氏条件:
(1)函数连续或只有有限个第一类间断点; (2)函数只有有限个极值点。
设一周期函数x(t ),周期为T,满足狄氏条件,则可将其展开成傅氏级数: a0 [ a n cos nt bn sin nt ] x(t ) 2 n 1
随机数学 第9讲 第六章平稳过程(1)
2 C X (τ ) = COV [ X (t ), X (t − τ )] = RX (τ ) − mX
2 C X (0) = DX ( t ) = RX (0) − mX .
则称 { X ( t ), t ∈ T }为宽平稳过程 , 或广义平稳过程 . 以下讨论中,若没有特别说明,平稳即指宽平稳。
第六章 平稳过程随机过程 6.1 平稳过程概念 平稳过程是指过程的统计特性不随时间的推移而变 化的随机过程。 一般,为了便于研究,我们只考虑随机过程的数字 特征特性的平稳性,即有如下宽平稳过程的 定义:
注1 平稳过程数字特征的特点
(1) 平稳过程的所有样本曲 线都在水平直线
x(t ) = mX 上下波动 , 平均偏离度为 σ X .
平稳过程X(t) 的“平均功率”
此式表明:
自相关 (自协方差 )函数都在 τ = 0处取到最大值 .
RX (0) ≥ 0.
RX (−τ ) = RX (τ ) ,
2 证明: RX (0) = E[ X (t ) X (t )] = E X (t ) 2 = Ψ X ≥ 0.
e − λt ( λt ) , k = 0,1, 2, k!
k
若随机点在[0,t]内出现偶数次 ,则
若随机点在[0,t]内出现奇数次 ,则 X ( t ) = −1; (1)计算 mX ( t ) , C X ( t1 , t2 )
⎛ ( λt )0 ( λt )2 ( λt )4 ⎞ = e − λt ⎜ + + + ⎟ ⎜ 0! ⎟ 2! 4! ⎝ ⎠ λt − λt −2 λ t ⎞ 1+ e − λt ⎛ e + e [0,t]内随机 = e ⎜ ⎟ = 2 2 ⎝ ⎠ 点出现奇数次
计量经济学第6章时间序列分析
则一个时间序列是“弱平稳的”,通常情况下,我们所 说的平稳性指的就是弱平稳。
三、五种经典的时间序列类型
1.白噪声( White noise)
白噪声通常用εt表示,是一个纯粹的随机过程,满足: (1)E(εt) = 0 , 对所有t成立; (2)V ar(εt) = σ2,对所有t成立; (3)Cov (εt, εt+k) = 0,对所有t和k≠0成立。
而与α、β无关。
2. ADF检验
在DF检验中,实际上是假定了时间序列是由具有白噪声 随机误差项的一阶自回归过程AR(1)(见教材式6.3.2)生成的。 但在实际检验中,时间序列可能由更高阶的自回归过程生成 的,或者随机误差项并非是白噪声的,为了保证DF检验中随 机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,
第六章 时间序列分析
6.1 时间序列分析的基本概念 6.2 平稳性检验 6.3 ARIMA模型 6.4 协整与误差修正模型 6.5* 向量自回归(VAR)模型
第一节 时间序列分析的基本概念
一、时间序列与随机过程
随机变量组成的一个有序序列称为随机过程,记为{X t ,t T }
的两个模型分别进行检验,可以得到同样的结论。
第三节 ARIMA模型
ARIMA 模 型 ( autoregressive integrated moving average model ),又称为 Box-Jenkins 模型,简称为 BJ 模 型。它是单变量时间序列在同方差情况下进行线性建模的 最常用的方法。 ARIMA 模型实质上是差分运算与 ARMA 模型 的组合,它不同于经济计量模型的两个主要特点是:第一, 这种建模方法不以经济理论为依据,而是依据变量自身的 变化规律,利用外推机制描述时间序列的变化;第二,明 确考虑时间序列的非平稳性,如果时间序列非平稳,建立 模型之前应先通过差分把它变换成平稳的时间序列,再考 虑建模问题。
《数学随机过程》PPT课件
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .
随机过程第六章
2 X
mx2
若随机过程X(t)平稳,则其均值、均方值和方差均为常数。
对于严平稳随机过程X(t)的二维分布F2(X1,X2;t1,t2)=F2(X1,X2;t1+ ε,t2+ ε), 若令ε=-t1,则
F2(X1,X2;t1,t2)=F2(X1,X2;0,t2-t1),令t2-t1= τ ,则 F2(X1,X2;t1,t2)=F2(X1,X2; τ)
1.
l.i.mcn
lim
n
cn
c
2. l.i.mU U
3. l.i.m(cnU ) cU
4. l.i.m(aX n bYn ) aX bY
5.
lim
n
E[
X
n
]
E[ X
]
E[l.i.mXn
]
6.
lim
n,m
E[
X
nYm
]
E[
XY
]
E[(l.i.mX
n
)(l.i.mYm
)]
定理6.2
设{Xn}为二阶矩随机序列,则{Xn}均方收敛的充要条件为下列极限存在:
各态历经定理的意义:
一个实平稳过程,如果它是各态历经的,则可用任意一个样本函数的
时间平均代替过程的集合平均,即
mX
l.i.m 1 T T
T
x(t)dt,
0
RX
(t)
l.i.m
T
1 T
T
x(t)x(t )dt
0
若样本函数X(t)只在有限区间[0,T]上给出,则对于实平稳过程有下列估
计式
l.i.m 1
T 2T
T
T X (t) X (t ) dt RX ( )
第6章 窄带随机过程
1 lim T 2T
1 ˆ lim T x (t )dt T 2T
T
T
x 2 ( t )dt
性质4. 平稳随机过程X(t)和其对应的Hilbert变换
ˆ (t )的自相关函数满足: X
1 lim 其中, R X ( ) T 2T
RX ˆ ( ) RX ( ) ,
性质8. RX Y (0) E[ X (t )Y (t )] 0, RY X (0) 0 性质9. GX ( ) Lp [GZ ( 0 ) GZ ( 0 )] 其中,Lp[· ]为求等效低通运算。即,令ω0=0 性质10. G X ( ) GY ( ) 性质11. GX Y ( ) jLp [GZ ( 0 ) GZ ( 0 )] 性质12. GY X ( ) G X Y ( ),
第六章 窄带随机过程
一、窄带随机过程的定义 很多无线电系统的通频带 是比较窄的,它们远小于 其中心频率 0 ,这种系统只允许输入信号靠近 0 附近的 频率分量通过,故称为窄带系统。其满足:
0 , 0 一般为高频载波。
同理,可定义窄带随机过程,即: 若一个随机过程的功率谱密度,只分布在高频载波 ω0 附近的一个较窄的频率范围∆ω内,且满足ω0>>∆ω 时,则称该过程为窄带随机过程。记为:Z( t ) 。
[ X (t ) cos 0 (t ) Y (t ) sin 0 (t )]}
RX (t , t ) cos 0 t cos 0 (t ) RXY (t , t ) cos 0 t sin 0 (t ) RYX (t , t ) sin 0 t cos 0 (t ) RY (t , t ) sin 0 t sin 0 (t )
随机过程 课件
fY
y
f
X
0
h
y
h
'
y , y
其它情况
,
h(y)是g(x)的反函数, min g x , max g x 。
1.2 二维随机变量及其概率分布
1.2.1 分布函数
定义1:二维分布函数
设X,Y为定义在同一概率空间 S,, P 上的两个随机变量,
则(X,Y)称为二维随机变量,对任意 x, y R ,令
,则n维向量 Y Y1,,Yn 的概率密度函数为
fY
y
fX hy
h
y
h1
h
y
y1
hn
y1
hn yn
hn yn
1.4 随机变量的数字特征
1.4.1数字期望(expected value, probabilistic average, mean) 1、一维随机变量的数学期望
E
X
x xpX
xf
则
P n1
An
n1
P
An
则称P(A)为事件A出现的概率,称(S, Ω, P)为一个概率空间。
定义2:随机变量
设已知一个概率空间 S,, P ,对于 s S , X(s)是一个取实数值的单值函数,若对于任意实数x,s : X s x 是一个随机事件,也就是 s : X s x ,则称X(s)为随机变量。
1.3.2 边沿分布
F xk F ,, xk ,,
1.3.3 独立性
定义2:如果 P X1 x1,, X n xn P X1 x1 P Xn xn
,则 X1,, X n 是相互独立得。
离散型:
P X1 x1,, X n xn P X1 x1 P X n xn
概率论第六章 窄带随机过程
pB (
ut )
1
2
2
exp(
ut
2
2
)
ut 0
可见,窄带高斯过程包络平方的一维概率密度函数 为指数分布。一个重要的特例是σ2=1的情况,此时有
pu (ut )
1 exp( ut ),
2
2
ut
0
其均值为E[ut]=2,方差为D[ut]=4.
§6.5余弦信号与窄带高斯过程之 和的概率分布
一、余弦信号加窄带高斯过程的包络和相位概率分布
类似地,如果一个随机过程的功率谱密度,只分 布在高频载波ω0附近的一个窄频率范围Δω内,在 此范围之外全为零,且满足ω0>>Δω时,则称之为 窄带过程。
一、窄带过程的物理模型和数学模型
一个典型的确定性窄带信号可表示为
x(t) a(t) cos[0t (t)]
其中,a(t)为幅度调制或包络调制信号,Ф(t)为 相位调制信号,它们相对于载频ω0而言都是慢变化的。
根据希尔伯特变换的性质: RXˆ ( ) RX ( )
RXˆX ( ) RXXˆ ( ) RˆX ( )
整理,得 RX ( ) RZ ( )cos0 RˆZ ( )sin0
同理可以证明 RY ( ) RZ ( )cos0 RˆZ ( )sin0
RX ( ) RY ( )
窄带过程性质的证明
第六章 窄带随机过程
6.1 窄带随机过程的一般概念 6.2希尔伯特变换 6.3 窄带随机过程的性质 6.4窄带高斯随机过程的包络和相位的概率分布 6.5余弦信号与窄带高斯过程之和的概率分布
§ 6.1 窄带随机过程的一般概念
窄带信号的频率或窄带系统的频率响应被限制在 中心频率ω0附近一个比较窄的范围内,而中心频率ω0 又离开零频足够远。
《随机过程教程》PPT课件幻灯片PPT
主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
《随机过程》第6章习题及参考答案
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
《随机过程》课件
泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
随机过程_课件
第一章 概率论基础1.从传统的长度概念说起1.1 区间(a,b )、[a,b]等都有长度,用字母L 表示,而且知道L (a,b)=b-a我们进而认为(*)L 是一种(函数)运算,自变量*为一维数轴上的区间,显然,(*)L 应满足:(1) L(*)0≥非负性;(2)有限可加性;(3)甚至要求满足可列可加性∑∞=∞==11)()(n n n n I L I L我们提出问题1:区间I 作为R 的子集,具有长度,那么R 的一般子集E 也有长度吗?答案是否定的。
因为传统长度是集合的右端点与左端点之差值,而只有区间这种集合才有端点。
问题2:是否可以推广L 为某*L 作为一般点集E 的长度呢?当然可以适当推广L 成为某种运算*L ,用以作为更广泛的一类集合(包含全体区间)的“长度”。
但是,事实表明,无论怎样改进*L ,都无法适应R 的全体子集。
1.2长度L 向某*L 推广的直接动力是,人们发现了Riemann积分的缺陷并希望加以改进。
Riemann 积分的缺陷1:()ba f x dx ⎰也可写成[,]()ab f x dx ⎰,积分符号的右下角就是积分区间,也就是积分范围,此范围不可以是一般的实数点集,只能是区间。
缺陷2:按照黎曼积分的定义(工科高数教材):(1)分割区间[,]a b 成为若干小区间1[,]k k xx -,1,2,,k n = (2)任意取小区间1[,]k k x x -的点k ξ,求值()k f ξ,进而得到第k 个小矩形的面积()k k x f ξ∆(3)做和1()n k k k x f ξ=∆∑,也即全体小矩形面积之和(4)01lim ()n k k k x f λξ→=∆∑,这一步是对前三步工作的无穷细化。
这种方法的核心思想是微小范围内以直代曲,例如,第k 个小矩形的面积应是()k x f x dx ∆⎰,但这里却以()k k x f ξ∆加以代替,依据是在很小区间1[,]k k x x -上,函数()f x 的变化不大,可以近似看成常数()kf ξ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用和广泛应用。
2013-4-26 胡朝明 26-4
§3.1 马尔可夫过程的概念
给定随机过程{X(t),tT},如果对于参数中任意n个时 刻ti,i=1,2,…,n,t1<t2<…<tn有 P{X(tn)<xn|X(t1)=x1,X(t2)=x2,…,X(tn-1)=xn-1} =P{X(tn)<xn|X(tn-1)=xn-1} (3.1) 则称随机过程{X(t),tT}为马尔可夫过程,简称马氏过程。 具有(3.1)式性质称为具有马尔可夫性、无后效性或无记忆性。 由条件分布函数的定义,(3.1)等价于 F(xn;tn|x1,x2,…,xn-1;t1,t2,…,tn-1)=F(xn;tn|xn-1;tn-1)。 如果概率密度函数存在,它等价于 f(xn;tn|x1,x2,…,xn-1;t1,t2,…,tn-1)=f(xn;tn|xn-1;tn-1)。 随机过程具有马尔可夫性质是说:当给定X(t1), X(t2), …,X(tn-1)时,X(tn)的条件分布只依赖于X(tn-1)的已知值, 而与在tn-1以前X(t)的取值无关。
26-21
转移矩阵:
2013-4-26
胡朝明
3.带有两个反射壁的随机游动
状态空间E={1,2,3,4,5}。转移概率: p11=0,p12=1,p1j=0,j=3,4,5; p55=0,p54=1,p5j=0,j=1,2,3; pi,i-1=q,pi,i+1=p,i=2,3,4; pij=0,ji-1,i+1,i=2,3,4。 状态1和5永远不能停留,称为反射壁。
iu
更新计数过程 相关函数 R(s,t)=min(s,t)+2st。
2013-4-26 胡朝明 26-2
等待时间序列n服从参数为的n阶爱而朗分布; 协方差函数 C(s,t)=min(s,t);
本讲主要内容
马尔可夫过程
• • • • • 马尔可夫过程的概念 马尔可夫过程的分类 离散参数马氏链 k步转移概率、 k步转移矩阵 齐次马尔可夫链
2013-4-26 胡朝明 26-5
转移概率
给定马氏过程{X(t),tT},条件概率 p(s,t;x,y)=P{X(t)<y|X(s)=x} 称为马氏过程的转移概率。
若转移概率与s无关,则此过程称为齐次(时)马 氏过程。
马氏过程{X(t),tT}中,X(t)的取值x称为状态, X(t)=x表示过程在时刻t处于状态x,过程所取状 态的全体 E={x:X(t)=x,tT} 称为状态空间。
p
j E
ij
( k ) 1;
p
j E
ij
1。
2013-4-26
胡朝明
26-17
例1 贝努里序列
如上节例2所述,贝努里序列是一个齐次 马氏链,其转移矩阵为
q P q p p
一般地,独立同分布的离散随机变量序列 {X(n),n=0,1,2,…}都是齐次马氏链。
状态空间E={1,2,3,4,5}。转移概率 p11=p55=1;p1j=0,j1;p5j=0,j5; pi,i-1=q,pi,i+1=p,i=2,3,4; pi,j=0,ji-1,i+1。 质点运动到1,5时,永远留在那里,称状态1,5为 吸收壁(状态)。
1 q P 0 0 0 0 0 q 0 0 0 p 0 q 0 0 0 p 0 0 0 0 0 p 1
t1<t2<…<tn,有 P{X(tn)<xn|X(t1)=x1,X(t2)=x2,…,X(tn-1)=xn-1} =P{X(tn)-X(tn-1)<xn-xn-1|X(t1)-X(t0)=x1, X(t2)-X(t1)=x2-x1,…,X(tn-1)-X(tn-2)=xn-1-xn-2} =P{X(tn)-X(tn-1)<xn-xn-1} =P{X(tn)<xn|X(tn-1)=xn-1} 马氏性成立,故独立增量过程{X(t),t0}是马尔可夫过程。
转移矩阵: P 0 0 0 q 0 0 0 q 0 p 0 q 0 p 0 0 0 p 0 0 0
2013-4-26
胡朝明
26-20
2.两个吸收壁随机游动
2013-4-26 胡朝明 26-6
马尔可夫过程的分类
参数集T 离散 连续 连续参数马氏链 离散 离散参数马氏链
状态空间E
连续 离散参数马氏序列 连续参数马氏过程
2013-4-26
胡朝明
26-7
例1 一维随机游动
在直线上非负整数点作随机游动的质点,当时 刻n时处于位置i(i0),时刻n+1时处于i+1的概率为 p i ,处于i-1的概率为q i ,不动的概率为r i (p i +q i +r i =1),若以X(n)表示时刻n质点的位置,那么{X(n), n=0,1,2,…}离散参数马氏链。 这是因为,当X(n)=i时,X(n+1),X(n+2),… 等以后的行为只与X(n)=i有关,而与质点在n以前 如何到达i是无关的。它的状态空间E={0,1,2,…}。
为马氏链{X(n),n=0,1,…}在m时刻的k步转移矩阵。 一步转移矩阵P(m,1)简称转移矩阵。 由转移概率的定义,显然有:
p ij ( m , k ) 0
2013-4-26
p
j E
ij
(m , k ) 1
26-16
胡朝明
齐次马尔可夫链
若马氏链{X(n),n=0,1,2,…}的转移概率pij(m,k)与m 无关,即 pij(m,k)=P{X(m+k)=j|X(m)=i}=pij(k); pij(m,1)=P{X(m+1)=j|X(m)=i}=pij(1)=pij; 则称{X(n),n=0,1,2,…}为齐次马尔可夫链,简称齐次马氏 链。 齐次马氏链的k步转移矩阵记为: P(m,k)=P(k)=(pij(k))i,jE 一步转移矩阵,简称转移矩阵,记为: P(m,1)=P(1)=P=(pij)i,jE 齐次马氏链的转移概率具有如下性质: 0pij(k)1, 0pij1,
2013-4-26 胡朝明 26-11
二项计数过程
设{X(n),n=1,2,…}是贝努里随机序列,X(0) =0,X(n),n=1,2,…是相互独立同分布的贝努里随 机变量,设
Y (n )
k 1
n
X (k ), n 1,2 , , Y ( 0 ) 0
称{Y(n),n=0,1,2,…}为二项计数过程(广义随机游 动),它是平稳独立增量过程,因而是离散参数 马氏链。
成立,则称{X(n),n=0,1,2,…}为离散参数马尔可 夫链,简称马氏链。
2013-4-26 胡朝明 26-14
k步转移概率
设{X(n),n=0,1,2,…}为马氏链,E={0,1,2, …},称条件概率 pij(m,k)=P{X(m+k)=j|X(m)=i} 为马氏链{X(n),n=0,1,…}在m时刻的k步转移概率. k步转移概率的直观意义是:质点在时刻m时 处于状态i,再经过k步(k个单位时间)处于状态j 的条件概率。 特别地,k=1时, pij(m,1)=P{X(m+1)=j|X(m)=i} 称为一步转移概率,简称转移概率。
2013-4-26 胡朝明 26-15
k步转移矩阵
称矩阵 P ( m , k )
( p ij ( m , k )) i , j E p 01 ( m , k ) p 11 ( m , k ) p n1 (m , k ) p 0n (m , k ) p 1n (m , k ) p nn (m , k ) p 00 ( m , k ) p 10 ( m , k ) p (m , k ) n0
此,随机游动{X(n),n=0,1,2,…}是齐次马氏链。
随机游动的统计特征由它在边界的特点决定, 下面给出几种特殊的情形。
2013-4-26 胡朝明 26-19
1.自由(无限制)随机游动
状态空间E={…,-2,-1,0,1,2,…}两端无限
制。转移概率:
pi,i-1=q,pi,i+1=p,其余pi,j=0,ji-1,i+1
2013-4-26 胡朝明 26-9
贝努里随机序列
特例 贝努里随机序列,即X(n),n=0,1,
2,…是相互独立同分布的贝努里随机变量,
X(n) P 0 q 1 p
0<p<1,p+q=1 n=1,2,…
{X(n),n=0,1, 2,…}是离散参数马氏链。
2013-4-26
胡朝明
26-10
例3
独立增量过程{X(t),t0},(X(0)=0)是马尔可夫过程。 证明 设 {X(t),tT}是独立 增 量过程 , X(0)=0,对任意
2013-4-26
胡朝明
26-18
例2 随机游动
一质点在数轴上的整数点上作随机游动的, 以X(n)表示时刻n质点的位置。质点在某一时刻m
时处于状态i,即X(m)=i,则下一步以概率q左移
到状态i-1,即p i,i-1 (m,1)=q;而以概率p右移到状 态i+1,即p i,i+1 (m,1)=p。因而质点将来所处的状 态X(m+1),X(m+2),…,X(m+k)等仅与现在所处的 状态X(m)=i有关,而与过去所处的状态无关。因
2013-4-26
胡朝明
26-8