对数极对数函数题型总结

合集下载

对数函数考点与题型归纳

对数函数考点与题型归纳

对数函数考点与题型归纳一、基础知识1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).y=log a x的3个特征(1)底数a>0,且a≠1;(2)自变量x>0;(3)函数值域为R.2.对数函数y=log a x(a>0,且a≠1)的图象与性质底数a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a的大小不确定时,需分a>1和0<a,<1两种情况进行讨论.3.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎝⎛⎭⎫1a ,-1,依据这三点的坐标可得到对数函数的大致图象.(2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.考点一 对数函数的图象及应用[典例] (1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.[解析] (1)因为y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意.(2)若x <log a x 在x ∈⎝⎛⎦⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,作出图象如图所示.由图象知14<log a 14, 所以⎩⎨⎧0<a <1,a 12>14,解得116<a <1.即实数a 的取值范围是⎝⎛⎭⎫116,1. [答案] (1)A (2)⎝⎛⎭⎫116,1 [变透练清]1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )解析:选C 函数f (x )=2log 4(1-x )的定义域为(-∞,1),排除A 、B ;函数f (x )=2log 4(1-x )在定义域上单调递减,排除D.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围.解:设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x ) =x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立,需f 1⎝⎛⎭⎫12≤f 2⎝⎛⎭⎫12, 所以有⎝⎛⎭⎫122≤log a 12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎡⎭⎫116,1.考点二 对数函数的性质及应用考法(一) 比较对数值的大小[典例] (2018·天津高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 因为c =log 1213=log 23>log 2e =a ,所以c >a .因为b =ln 2=1log 2e <1<log 2e =a ,所以a >b .所以c >a >b . [答案] D考法(二) 解简单对数不等式[典例] 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.[解析] 原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围是⎝⎛⎭⎫13,12.[答案] ⎝⎛⎭⎫13,12考法(三) 对数型函数性质的综合问题[典例] 已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间. [解] 因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).[题组训练]1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a解析:选C 0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213=log 23>1,∴c >a >b .2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,+∞ D .(0,+∞)解析:选A ∵-1<x <0,∴0<x +1<1.又∵f (x )>0,∴0<2a <1,∴0<a <12.3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________. 解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增,则y =ax 2-x 在[3,4]上单调递增,且y =ax 2-x >0恒成立,即⎩⎪⎨⎪⎧12a ≤3,9a -3>0,解得a >13.答案:⎝⎛⎭⎫13,+∞[课时跟踪检测]A 级1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎭⎫23,+∞D.⎝⎛⎭⎫23,+∞解析:选C 由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x . 3.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:选D ∵log 12x <log 12y <log 121,∴x >y >1.4.(2019·海南三市联考)函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )解析:选C 函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.5.(2018·惠州调研)若a =20.5,b =log π3,c =log 2sin 2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >bD .a >b >c解析:选D 依题意,得a >1,0<b =log π3<log ππ=1,而由0<sin 2π5<1,2>1,得c <0,故a >b >c .6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析:选A 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 128.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0, 且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1.答案:19.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________. 解析:由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).答案:(5,+∞)10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)11.求函数f (x )=log 2x ·log2(2x )的最小值.解:显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当x =22时,有f (x )min =-14. 12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. B 级1.已知函数f (x )=log a x (a >0,且a ≠1)满足f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,则f ⎝⎛⎭⎫1-1x >0的解集为( ) A .(0,1) B .(-∞,1) C .(1,+∞)D .(0,+∞)解析:选C 因为函数f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为单调函数,而2a <3a 且f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,所以f (x )=log a x 在(0,+∞)上单调递减,即0<a <1,结合对数函数的图象与性质可由f ⎝⎛⎭⎫1-1x >0,得0<1-1x<1,所以x >1,故选C. 2.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916, 因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案:(0,+∞)3.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数, 所以f (x )=f (-x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).。

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。

对数及对数函数知识点总结及题型分析

对数及对数函数知识点总结及题型分析

对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。

对数函数【八大题型】(人教A版2019必修第一册)

对数函数【八大题型】(人教A版2019必修第一册)

C. < < <
D. < < <
7
对数函数
【例 5】已知函数() = log ( + + 3) − 2.
(1)若 = 2,求函数()的值域
(2)若函数()在 1, + ∞ 上单调递增,求的取值范围


A





【变式 5-1】已知函数() = lg

, ∈
,8 ,则()的值域为(

A. −3,1
B. −1,3

C. 0,1
D. −3,0



【变式 1-2】下列各组函数中,定义域相同的一组是(


A. = 与 = log > 0, 且 ≠ 1)
B. = 2ln与 = ln
C. = lg与 = lg√
D. = 与 = lg

定义域



值域
R

过定点
(1,0)

单调性

函数值的
变化范围
上是减函数


上是增函数
当 0<x<1 时,y>0
当 0<x<1 时,y<0
当 x=1 时,y=0
当 x=1 时,y=0
当 x>1 时,y<0
当 x>1 时,y>0





2.底数 a 对对数函数图象的影响
(1)底数 a 与 1 的大小关系决定了对数函数图象的“升降”.
C. < <

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结对数与对数函数知识点及题型归纳总结知识点精讲⼀、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .⼆、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常⽤这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a题型归纳及思路提⽰题型 1 对数运算及对数⽅程、对数不等式思路提⽰对数的有关运算问题要注意公式的顺⽤、逆⽤、变形⽤等 .对数⽅程或对数不等式问题是要将其化为同底,利⽤对数单调性去掉对数符号,转化为不含对数的问题,但这⾥必须注意对数的真数为正 . ⼀、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注熟记对数的各种运算性质是求解本类问题的前提变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 32lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()C.( ,log a 3)D.(log a 3, )分析先将对数不等式化为同底的形式,再利⽤单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,⼜ 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x ⼆、对数⽅程例 2.59 解下列⽅151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析利⽤对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,⾸先⽅程中的 x 应满⾜x 10,原⽅程可变形为 25 x 2525 ,得 x 25 ,从⽽ x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原⽅程的解 .1(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是⽅程的解 . 评注解对数⽅程⼀定要注意对数⽅程成⽴条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利⽤对数函数的单调性来⽐较对数的⼤⼩,通常借助 0和 1作为分界点解析因为y log 5 x 在(0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )C.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则()A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 ⼤纲全国理 9)已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提⽰研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和⽅法问题是数和形结合的护体解释 .它为研究函数问题提供了思维⽅向、对数函数的图像例 2.62如图 2-15所⽰,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像,对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x变式 1 已知函数 f (x )为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所⽰,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标⼤⼩为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能⼀次为 2,3, , .故选 B .32评注对数函数在同⼀直⾓坐标系中的图像的相对位置与底数⼤⼩的关系如图 2-16 所⽰,则 0 c d 1 a b .ylog a x(a 0且a 1)在第⼀象限的图像, a 越⼤,图像越靠近 x 轴; a 越⼩,图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像⼤致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点⼆、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则解析因为 y log a x(a 0且a 1) 恒过点 (1,0) ,故令 x 1 1,即 x 0 时, y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a 上的最⼤值与最⼩值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最⼤值与最⼩值⼜ f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2. (log 2 x)2解析因为对数函数的底 a 1 ,所以函数f (x) log a x 在区间a,2a 上单调递增,故 f (x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最⼤值是最⼩值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最⼤值和最⼩值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x22解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最⼤值与最⼩值的差为题型 3 对数函数中的恒成⽴问题思路提⽰ (1)利⽤数形结合思想,结合对数函数的图像求解; (2)分离⾃变量与参变量,利⽤等价转化思想,转化为函数的最值问题,1 上恒成⽴ .解析依题意,函数 f (x)的图像如图 2-17所⽰,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析因为f(x) lgxx 1 2x a 4x 在x340 在 ,1 上恒成⽴ .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 a。

对数函数题型归纳大全非常完整

对数函数题型归纳大全非常完整

对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。

(完整版)对数函数图像及其性质题型归纳,推荐文档

(完整版)对数函数图像及其性质题型归纳,推荐文档

对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征Error!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x是对数函数,则实数a =__________.(1)图象与性质a >10<a <1图象(1)定义域{x |x >0}(2)值域{y |y R }∈(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x<1时,y >0性质(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3).y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1(4y ax ax R a =++数的定义域为,变式求实数的围。

对数及对数函数-知识点及题型归纳

对数及对数函数-知识点及题型归纳

- .可修编 .●高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,且a ≠1).★备考知考情通过对近几年高考试题的统计分析可以看出,本节内容- .可修编 .在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理《名师一号》P27注意:知识点一对数及对数的运算性质1.对数的概念一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N(a>0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.- .可修编 .注意:(补充)关注定义---指对互化的依据2.对数的性质与运算法则(1)对数的运算法则如果a>0且a ≠1,M>0,N>0,那么①log a (MN)=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n =nlog a M(n ∈R);④log a mM n=n m log a M.(2)对数的性质①a logaN =N ;②log a a N =N(a>0,且a ≠1).-.可修编 .(3)对数的重要公式①换底公式:log b N =log a N log a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b ·log b c ·log c d =log a d. 注意:(补充)特殊结论:log 10,log 1a a a ==知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!)a>1 0<a<1- .可修编 .2.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.(补充)设y =f(x)存在反函数,并记作y =f -1(x),1) 函数y =f(x)与其反函数y =f -1(x)的图象- .可修编 .关于直线y x 对称.2) 如果点P(x 0,y 0)在函数y =f(x)的图象上,则必有f -1(y 0)=x 0,反函数的定义域、值域分别为原来函数的值域、定义域.3)函数y =f(x)与其反函数y =f -1(x)的单调性相同.二、例题分析:(一)对数式的运算例1.(1)《名师一号》P27 对点自测1(2013·XX 文3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A .log a b ·log c b =log c aB .log a b ·log c a =log c b- .可修编 .C .log a (bc)=log a b ·log a cD .log a (b +c)=log a b +log a c解析 由对数的运算性质:log a (bc)=log a b +log a c ,可判断选项C ,D 错误;选项A ,由对数的换底公式知,log a b ·log c b =log c a ⇒lgb lga ·lgb lgc =lga lgc⇒lg 2b =lg 2a ,此式不恒成立,故错误;对选项B ,由对数的换底公式知,log a b ·log c a =lgb lga ·lga lgc =lgb lgc=log c b ,故恒成立. 答案 B- .可修编 .例1.(2) (补充) 计算下列各式的值 (1)2lg 2lg 3111lg 0.36lg823+=++ (2) 温故知新P22 第8题()22log 3lg5lg 2lg504+⋅+= (3)235111log log log 2589⋅⋅=答案:(1) 1 (2)10 (3)-12- .可修编 .注意: 准确熟练记忆对数运算性质多练lg 2lg51+=《名师一号》P28 高频考点 例1【规律方法】 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.例2.(1)《名师一号》P27 对点自测2(2014·XX 卷)已知4a =2,lgx =a ,则x =________.解析 ∵4a =2,∴a =log 42=12.由lgx =12,- .可修编 . 得x =10 12=10.例2.(2)《名师一号》P28 高频考点 例1(1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43解析:由x =log 43,得4x =3,即2x =3,2-x =33,-.可修编. ⎝⎭注意:指数与对数的互化a b=N⇔b=logaN(a>0,a≠1,N>0).练习:(补充)已知1135,2a b ka b==+=求k答案:k=例3.《名师一号》P28 高频考点例1(2)- .可修编 .已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,3-x +1,x ≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72因为f(1)=log 21=0,所以f(f(1))=f(0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312+1=3log 32 +1=2+1=3.所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.-.可修编 .二、对数函数的图象及性质的应用 例1. (补充)求下列函数的定义域. (1)y =log 0.5(4x -3). (2)y =log (x +1)(16-4x ).解析:(1)由函数定义知:⎩⎪⎨⎪⎧log 0.5(4x -3)≥04x -3>0∴⎩⎪⎨⎪⎧4x -3≤14x -3>0,即34<x ≤1.-.可修编 .故原函数的定义域是{x|34<x ≤1}.(2)由函数有意义知⎩⎪⎨⎪⎧x +1>0x +1≠116-4x>0∴⎩⎪⎨⎪⎧x>-1x ≠0x<2即-1<x<2,且x ≠0.故原函数的定义域为{x|-1<x<0,或0<x<2}. 练习:已知集合(){}22log x y x ax a R =--=XX 数a 的取值X 围.- .可修编 .解析:设f(x)=x 2-ax -a ,则y =log 2f(x), 依题意,f(x)>0恒成立,∴Δ=a 2+4a<0 ∴-4<a<0,即a 的X 围为(-4,0)例2.《名师一号》P27 对点自测5(2014·XX 卷)函数f(x)=log 2x ·log 2(2x)的最小值为________.-.可修编 .解析 根据对数运算性质,f(x)=log 2x ·log2 (2x)=12log 2x ·[2log 2(2x)]=log 2x(1+log 2x)=(log 2x)2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14,当x =22时,函数取得最小值-14.注意:换元后“新元”的取值X 围.练习:1、求下列函数的值域- .可修编 .(1)y =log 15(-x 2+2x +4)[答案] [-1,+∞)(2)f(x)=log 22x -3log 2x 2+2⎝ ⎛⎭⎪⎫12≤x ≤2[解析] 令t =log 2x ,∵12≤x ≤2∴-1≤t ≤1.∴函数化为y =t 2-6t +2=(t -3)2-7∵-1≤t ≤1.∴当t =-1,即x =12时,y max =9.当t =1,即x =2时,y min =-3, ∴函数的值域为[-3,9].2、已知集合(){}22log y y x ax aR =--=XX数a的取值X围.[分析]当且仅当f(x)=x2-ax-a的值能够取遍一切正实数时,y=log2(x2-ax-a)的值域才为R.而当Δ<0时,f(x)>0恒成立,仅仅说明函数定义域为R,而f(x)不一定能取遍一切正实数(一个不漏).要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x轴有交点(但此时定义域不再为R)[正解] 要使函数y=log2(x2-ax-a)的值域为R,应使f(x)=x2-ax-a能取遍一切正数,要使f(x)=x2-ax-a能取遍一切正实数,应有Δ=a2+4a≥0,∴a≥0或a≤-4,∴所求a的取值X围为(-∞,-4]∪[0,+∞)-.可修编.- .可修编 .例3. (1)《名师一号》P27 对点自测4已知a >0且a ≠1,则函数y =log a (x +2 015)+2的图象恒过定点________.解析 令x +2 015=1,即x =-2 014时,y =2,故其图象恒过定点(-2 014,2). 练习:- .可修编 .无论a 取何正数(a ≠1),函数()33log a y x =-+恒过定点 【答案】()43, 注意:对数函数()01log ,a y x a a =>≠且图象都经过定点(1, 0)例3. (2) (补充)如右下图是对数函数①y =log a x ,②y =log b x , ③y =log c x ,④y =log d x 的图象,则a 、b 、c 、d 与1的大小关系是 ( ) A .a>b>1>c>d B .b>a>1>d>c C .1>a>b>c>d- .可修编 .D .a>b>1>d>c【答案】B在上图中画出直线y =1,分别与①、②、③、④交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知c<d<1<a<b.注意:(补充)两个单调性相同的对数函数,它们的图象在位于直线x =1右侧的部分是“底大图低”. 利用1log a a =,图象都经过()1,a 点,作直线1y =,-.可修编 .则该直线与图象的交点的横坐标即为底数a 。

对数、对数函数、反函数、最简指对数方程、任意角、三角比、诱导公式等超强练习及题型

对数、对数函数、反函数、最简指对数方程、任意角、三角比、诱导公式等超强练习及题型

龙文教育·高一年级第二学期数学期末复习(对数、反函数、对数函数、三角比)一、对数运算、反函数、对数函数、简单指对数方程 1、对数运算公式的应用 【典型例题】例1:已知3log 2,m =试用m 表示32log 18= 例2:已知25log 5,log 7a b ==,用a 、b 表示35log 562、对数函数的性质:定义域、值域、单调性、奇偶性 【典型例题】例1:求函数2()lg(9)f x x =-的定义域、值域并指出其单调递增区间_________ 例2:函数lga xy a x+=- (0)a >是____________函数 例3:函数x xx f +-=11lg )(的图像关于____________对称(原点、y 轴、x 轴对称、直线x y =)例4:函数x y alog=在[]2,4上最大值比最小值大1,则=a ____________例5:(1)已知函数()⎩⎨⎧≤>=0,20,log 3x x x x f x ,则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛91f f。

A .4B .41 C .4- D .41-(2)函数()34log15.0-=x y 的定义域为。

A .⎪⎭⎫⎝⎛1,43B .⎪⎭⎫ ⎝⎛+∞,43C .()+∞,1D .()+∞⎪⎭⎫⎝⎛,11,43(3)函数xy 416-=的值域是 。

A .[)+∞,0B .[]4,0C .[)4,0 D .()4,0例6:给定函数①21x y =,②()1log 21+=x y ,③1-=x y,④12+=x y ,其中在区间()1,0上单调递减的函数的序号是。

A .①② B .②③ C .③④ D .①④例7:设2log 3=a ,2ln =b ,215-=c ,则 。

A .c b a <<B .a c b <<C .b a c <<D .a b c <<例8:已知函数1()log (0,1)1ax f x a a x+=>≠-(1) 求()f x 的定义域;(2)判断函数的奇偶性,并加以证明; (3)当01a <<时,求使()0f x >的x 的取值范围。

对数及对数函数-知识点及题型归纳

对数及对数函数-知识点及题型归纳

●高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).★备考知考情通过对近几年高考试题的统计分析可以看出,本节内容. 资料. .. .在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理《名师一号》P27注意:知识点一对数及对数的运算性质1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”.. 资料. .. .. 资料. .. .注意:(补充)关注定义---指对互化的依据2.对数的性质与运算法则(1)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a (MN)=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n =nlog a M(n ∈R);④log a m M n=n m log a M.(2)对数的性质①a logaN =N ;②log a a N =N (a>0,且a≠1).. 资料. .. .(3)对数的重要公式①换底公式:log b N =log a N log a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10,log 1a a a ==知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!)a>1 0<a<12.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.(补充)设y=f(x)存在反函数,并记作y=f-1(x),1) 函数y=f(x)与其反函数y=f-1(x)的图象. 资料. .. .. 资料. .. .关于直线y x 对称.2) 如果点P(x 0,y 0)在函数y =f(x)的图象上,则必有f -1(y 0)=x 0 ,反函数的定义域、值域分别为原来函数的值域、定义域.3) 函数y =f(x)与其反函数y =f -1(x)的单调性相同.二、例题分析:(一)对数式的运算 例1.(1)《名师一号》P27 对点自测1(2013·陕西文3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A .log a b·log c b =log c aB .log a b·log c a =log c b. 资料. .. .C .log a (bc)=log a b·log a cD .log a (b +c)=log a b +log a c解析 由对数的运算性质:log a (bc)=log a b +log a c , 可判断选项C ,D 错误;选项A ,由对数的换底公式知,log a b·log c b =log c a ⇒lgb lga ·lgb lgc =lga lgc⇒lg 2b =lg 2a ,此式不恒成立,故错误;对选项B ,由对数的换底公式知,log a b·log c a =lgb lga ·lga lgc =lgb lgc=log c b ,故恒成立. 答案 B. 资料. .. .例1.(2) (补充) 计算下列各式的值 (1) 2lg 2lg 3111lg 0.36lg823+=++ (2) 温故知新P22 第8题()22log 3lg5lg 2lg504+⋅+= (3) 235111log log log 2589⋅⋅=答案:(1) 1 (2)10 (3)-12注意: 准确熟练记忆对数运算性质多练. 资料. .. .lg 2lg51+=《名师一号》P28 高频考点 例1【规律方法】 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.例2.(1)《名师一号》P27 对点自测2(2014·陕西卷)已知4a =2,lgx =a ,则x =________.解析 ∵4a =2,∴a =log 42=12.由lgx =12, 得x =10 12 =10.. 资料. .. .例2.(2)《名师一号》P28 高频考点 例1(1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43解析:由x =log 43,得4x =3,即2x =3,2-x =33, 所以(2x -2-x )2=⎝ ⎛⎭⎪⎫2332=43. 注意:指数与对数的互化a b =N ⇔b =log a N (a>0,a ≠1,N>0).. 资料. .. .练习:(补充)已知1135,2a bk a b ==+=求k答案: k =例3.《名师一号》P28 高频考点 例1(2)已知函数f(x)=⎩⎨⎧log 2x ,x>0,3-x +1,x≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值 是( )A .5B .3C .-1 D.72. 资料. .. .因为f(1)=log 21=0,所以f(f(1))=f(0)=2.因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312 +1 =3log 32 +1=2+1=3.所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.二、对数函数的图象及性质的应用例1. (补充)求下列函数的定义域.(1)y =log 0.5(4x -3).(2)y =log (x +1)(16-4x ).. 资料. .. .解析:(1)由函数定义知:⎩⎨⎧ log 0.5(4x -3)≥04x -3>0 ∴⎩⎨⎧ 4x -3≤14x -3>0,即34<x≤1. 故原函数的定义域是{x|34<x≤1}. (2)由函数有意义知⎩⎪⎨⎪⎧ x +1>0x +1≠116-4x >0∴⎩⎪⎨⎪⎧ x>-1x≠0x<2即-1<x<2,且x≠0.. 资料. .. . 故原函数的定义域为{x|-1<x<0,或0<x<2}.练习:已知集合(){}22log x y x ax a R =--=求实数a 的取值范围.解析:设f(x)=x 2-ax -a ,则y =log 2f(x),依题意,f(x)>0恒成立,∴Δ=a 2+4a<0∴-4<a<0,即a 的范围为(-4,0)例2.《名师一号》P27 对点自测5(2014·重庆卷)函数f(x)=log 2x ·log 2(2x)的最小值为________.. 资料. .. .解析 根据对数运算性质,f(x)=log 2x ·log 2 (2x)=12log 2x·[2log 2(2x)]=log 2x(1+log 2x)=(log 2x)2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14,当x =22时,函数取得最小值-14.注意:换元后“新元”的取值范围.. 资料. .. .练习:1、求下列函数的值域(1)y =log 15(-x 2+2x +4)[答案] [-1,+∞)(2)f(x)=log 22x -3log 2x 2+2⎝ ⎛⎭⎪⎫12≤x≤2 [解析] 令t =log 2x ,∵12≤x≤2∴-1≤t≤1. ∴函数化为y =t 2-6t +2=(t -3)2-7∵-1≤t≤1.∴当t =-1,即x =12时,y max =9. 当t =1,即x =2时,y min =-3,. 资料. .. . ∴函数的值域为[-3,9].2、已知集合(){}22log y y x ax aR =--=求实数a 的取值范围.[分析]当且仅当f(x)=x 2-ax -a 的值能够取遍一切正实数时,y =log 2(x 2-ax -a)的值域才为R.而当Δ<0时,f(x)>0恒成立,仅仅说明函数定义域为R ,而f(x)不一定能取遍一切正实数(一个不漏).要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x 轴有交点(但此时定义域不再为R)[正解] 要使函数y =log 2(x 2-ax -a)的值域为R ,应使f(x)=x 2-ax -a 能取遍一切正数,要使f(x)=x 2-ax -a能取遍一切正实数,应有Δ=a2+4a≥0,∴a≥0或a≤-4,∴所求a的取值范围为(-∞,-4]∪[0,+∞)例3. (1)《名师一号》P27 对点自测4已知a>0且a≠1,则函数y=log a(x+2 015)+2的图象恒过定点________.解析令x+2 015=1,即x=-2 014时,y=2,故其图象恒过定点(-2 014,2).. 资料. .. .. 资料. .. .练习:无论a 取何正数(a≠1),函数()33log a y x =-+恒过定点【答案】()43,注意:对数函数()01log ,a y x a a =>≠且图象都经过定点(1, 0)例3. (2) (补充)如右下图是对数函数①y =log a x ,②y =log b x ,③y =log c x ,④y =log d x 的图象,则a 、b 、c 、d 与1的大小关系是 ( )A.a>b>1>c>dB.b>a>1>d>cC.1>a>b>c>dD.a>b>1>d>c【答案】B在上图中画出直线y=1,分别与①、②、③、④交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知c<d<1<a<b.注意:(补充)两个单调性相同的对数函数,. 资料. .. .. 资料. .. .它们的图象在位于直线x=1右侧的部分是“底大图低”.利用1logaa=,图象都经过()1,a点,作直线1y=,则该直线与图象的交点的横坐标即为底数a。

对数及对数函数 知识点总结及典例

对数及对数函数 知识点总结及典例

对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。

对数运算与对数函数典型题总结

对数运算与对数函数典型题总结

对数及对数函数知识点一、对数的定义及运算1、对数定义:若(a 0,a 1)x a N =>≠且,则____________x =2、 对数的性质:01log =a 1l o g =a a3、 对数的运算性质(1)N M MN a a a log log )(log +=(2)N M NMa a alog log log -= (3)log log n ma a mb b n=4、换底公式换底公式 b N N a a b log log log = 1log log a b b a=5、两个对数恒等式 N aNa =l o g log N a a N =二、对数函数的图像及性质log (a 0,a 1)a y x =>≠且(1)01a <<当时 (2)当1a >时三、指数对数函数的关系题型总结 一、 对数的运算1、求下列式子中x 的值(1)0)(log log 52=x (2)1)(lg log 3=x (3)64log 32______=(4)已知0))(log (log log ))(log (log log 243432==y x 求y x +的值3、已知y x==38log ,324,则y x 2+的值为____________4、设2b =5b =m,且11a b+=2,则m=______________________ A 、B 、10C 、20D 、1005、ba ba 112173+==,求=___________________ 6、若__________3log ,2log 123==则a7、22)2(lg 20lg 5lg 8lg 325lg +⋅++=______________________ 8、2.1lg 10lg 38lg 27lg -+=__________________9、已知lg 2,lg3a b ==,则lg12lg15等于( ) A 、21a b a b +++ B 、21a b a b +++ C 、21a b a b +-+ D 、21a ba b+-+10、4log 3lg 33log 46log 1323911023⎪⎭⎫ ⎝⎛++-++=____________________11、3log 41,44___________x x x -=+=则12、若32x +9=10·3x ,那么x 2+1的值为 A .1 B .2C .5D .1或513、已知2lg(x -2y)=lgx+lgy ,则yx的值为A .1B .4C .1或4D .41或414、114511___________11log log 93+=15、21log log 9log 7log 44923=a ,则=a ____________16、若x 3log 2log 23=,则=x ( )A 、1-B 、1C 、23)2(logD 、22)3(log17、5361log log 6log 2,________3x x ⋅⋅==若则18、函数的最小值为________19、已知______)0,0(,lg lg 则>>=b a b aA b a =B 1==ab b a 或C b a ±=D 1=ab二、 对数函数的图像及其应用1、在同一直角坐标系中,函数的图像可能是( )2、(2013福建)函数()()2ln 1f x x =+的图像大致是2()log )f x x =x x g x x x f a a log )(),0()(=≥=3、函数y =ln(1-x )的图象大致为( )4、函数y =log 2|x |的图象大致为( )5、若()21log a x x -<在(1,2)上恒成立,则a 的范围是_________6、已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞)7、已知函数()()()__________,2,log 3的取值范围则若a f a f x x f >=8、(2014辽宁)已知,,则( ) A . B . C . D .9、比较大小2log 3与2log 3.5, 2log 8.3log 2121与 ,6.3log 2.3log 6.3log 442,, ,8.0log log 23与π 10、已知1log 2a <1,那么a 的取值范围是 A 、0<a<12 B 、a>12 C 、12<a<1 D 、0<a<12或a>111、已知11log log 022ab >>,则a ,b 的关系是 A 、1<b<a B 、1<b<a C 、0<a<b<1 D 、0<b<a<1132a -=21211log ,log 33b c ==a b c >>a c b >>c a b >>c b a >>三、 对数函数的性质及应用(定义域,值域,单调性,奇偶性)1、 已知函数(){)0(32log 12)(≤>+=x x x x x f 若()00,3x x f 则>的取值范围是___________________2、【2014天津高考理第4题】函数的单调递增区间是 ( )(A ) (B ) (C ) (D )3、函数y =log (x 2-5x +6)的单调增区间为( )A .(52,+∞)B .(3,+∞)C .(-∞,52) D .(-∞,2)4、 若定义在区间)0,1(-内的函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是___________5、 ※已知)2(log )(ax x f a -=在]1,0[上是减函数,求实数a 的取值范围___________6、函数()()_________,4,161,log 32的最小值为则x f x x x f ⎥⎦⎤⎢⎣⎡∈+=7、求函数[]的最大值与最小值4,2,5log log 41241∈+-⎪⎪⎭⎫⎝⎛=x x x y8(1)已知函数的取值范围,求实数的定义域为a R )2lg(2a x x y ++=(2)已知函数的取值范围,求实数的值域为a R )2lg(2a x x y ++=9、判断函数()x xy -+=1lg 2的奇偶性()()212log 4f x x =-()0,+¥(),0-¥()2,+¥(),2-?10、已知函数()()()____________________,2111lg =-=+-=a f a f x x x f 则若11、若函数()()__________2log 22=++=a a x x x f a 是奇函数,则当堂检测1、已知f (e x)=x ,则f (5)等于( ) A .e 5 B .5eC .ln5D .log 5e2、(2014陕西理)42,lg ,____________a x a a ===则3.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( ) A .}1|{>x x B .}0|{>x x C .}1|{-<x xD .}11|{>-<x x x 或 4函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)5、(2011天津理)324log 0.3log 3.4log 3.615,5,5a b c ⎛⎫=== ⎪⎝⎭,比较大小_______________6、设0<a <1,函数f (x )=log a (a 2x-2a x-2),则使f (x )<0的x 的取值范围是( ) A .(-∞,0) B .(0,+∞) C .(-∞,log a 3) D .(log a 3,+∞)7、已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,则a 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]8、已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( )(A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24。

对数函数专题——含参对数函数完整版题型汇总

对数函数专题——含参对数函数完整版题型汇总

对数函数专题——含参对数函数完整版题型汇总一、定义与性质1. 对数函数的定义对数函数是指定义域在正数集合上的函数,它的函数值是指数函数的反函数。

通常用符号 $\log$ 表示对数函数。

2. 对数函数的性质- 对数函数的图像是一条倾斜的曲线,与指数函数的图像关于直线 $y = x$ 对称。

- 对数函数具有单调递增性质,即随着自变量的增加,函数值也会增加。

- 对数函数的定义域是正数集合,值域是实数集合。

二、常见题型1. 对数运算题型例题:计算 $\log_3 27$。

解析:由于 $3^3 = 27$,所以 $\log_3 27 = 3$。

2. 对数方程题型例题:求解方程 $2^x = 8$。

解析:将 $8$ 表示成 $2$ 的幂次形式得到 $8 = 2^3$,所以$2^x = 2^3$,即 $x = 3$。

3. 对数不等式题型例题:求解不等式 $\log_2 \left( \frac{x}{3} \right) \geq 2$。

解析:根据对数定义,$\log_2 \left( \frac{x}{3} \right) \geq2$ 可转化为 $\frac{x}{3} \geq 2^2$,即 $\frac{x}{3} \geq 4$。

解得$x \geq 12$。

三、注意事项1. 在计算对数函数的值时,要注意指数与对数的关系,充分运用指数函数和对数函数的定义和性质。

2. 在解对数方程和不等式时,要注意将题目中的式子转化为指数形式,再进行相应的运算。

以上是对数函数专题中含参对数函数完整版题型汇总的简要内容。

对数函数作为数学中常见的函数之一,在应用中具有广泛的用途。

掌握对数函数的基本定义、性质和解题方法,有助于提高数学问题的解决能力。

2024年高考数学高频考点题型总结一轮复习 对数与对数函数(精练:基础+重难点)

2024年高考数学高频考点题型总结一轮复习 对数与对数函数(精练:基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第11练对数与对数函数(精练)【A组在基础中考查功底】一、单选题⎝⎭....【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意ππ),,22y x x⎛⎫=∈- ⎪⎝⎭,cos x为偶函数,则ln(cos)x为偶函数,cos1x<<,则ln(cos)0x<.故选A.(2023春·黑龙江哈尔滨·高三哈尔滨市第十三中学校校考开学考试)已知函数()|f x=令1()44g b a b b b=+=+,根据对勾函数的图像与性质易得所以()(1)5g b g >=.故4a b +>故选:C.7.(2023·全国·高三专题练习)已知函数与坐标轴的正半轴相交,则mn 的最大值为(A .12B .14【答案】C【分析】求出A ,代入直线方程,再根据基本不等式可求出结果【详解】令11x -=,即2x =,得则21m n +=且0m >,0n >,由222122m n mn mn +≥⇒≥当且仅当14m =,12n =时,等号成立,故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最41+....【答案】A【分析】先求出定义域,由)x 为偶函数,结合函数在结合函数图象的走势,排除【详解】()22ln 41x x x f x =+变形为,定义域为()(,00,∞-U )()22ln ln 2222x x x x x x ----==++为偶函数,关于y 轴对称.1x <<时,()0f x <,,排除BC ,→+∞时,()0f x →,故排除故选:A .(2023·河南周口·统考模拟预测)若,21log 62b =,12c ⎛⎫= ⎪⎝⎭.b a c >>B .c b a >>D .【答案】A二、多选题当01a <<时,函数()lg f x x =在函数()πsin2x g x =在[]0,a 上单调递增,所以所以π1sin22a a a M m -==,解得当1a ≥时,函数()lg f x x =在[a 由图可知,函数()πsin2x g x =在所以11lg 2a a M m a -=-=,解得结合选项,实数a 可以是13和10故选:BD.三、填空题15.(2023·上海·高三专题练习)若实数x 、y 满足lg x m =、110m y -=,则xy =______________.【答案】10【分析】根据指数式与对数式的关系,将lg x m =转化为指数式,再根据指数运算公式求值.【详解】由lg x m =,得10m x =,所以1110101010m m m m xy -+-=⋅==,故答案为:10.16.(2023·全国·高三专题练习)已知函数()1log 2(0a y x a =+->且1)a ≠的图像恒过定点P ,且点P 在圆220x y mx m +++=外,则符合条件的整数m 的取值可以为__________.(写出一个值即可)【答案】5(不唯一,取4m >的整数即可)【分析】先求定点P 的坐标,结合点在圆外以及圆的限制条件可得m 的取值.【详解】因为函数()1log 2a y x =+-的图像恒过定点()1,1,所以()1,1P ;因为点P 在圆220x y mx m +++=外,所以22110m m +++>且240m m ->,解得10m -<<或4m >;又m 为整数,所以m 的取值可以为5,6,7, .故答案为:5(不唯一,取4m >的整数即可).【B组在综合中考查能力】一、单选题A .14B .15C .16D .【答案】D【分析】根据题意可得()10145n-%≤,两边取对数能求出冷轧机至少需要安装轧辊的对数【详解】厚度为10α=mm 的带钢从一端输入经过减薄率为4%的n 对轧辊后厚度为二、多选题三、填空题四、解答题【C组在创新中考查思维】一、解答题二、单选题则函数()y f x =的图象关于直线令()t f x =因为函数()()()2g x f x af x =+故当()1f x =时,方程()g x =所以,要使函数()()2g x f x =+所以,关于t 方程22t at b ++=所以,由韦达定理得1,a b =-=故选:B【点睛】本题解题的关键点在于数形结合,将问题转化为关于1,0a b =-=.三、多选题5.(2023春·辽宁·高三朝阳市第一高级中学校联考阶段练习)已知函数列说法正确的是()四、填空题由题意可知,4cos 25θ=,所以22tan 3tan 2,1tan 4θθθ==-解得tan 因为θ为锐角,所以tan 3,1θ=由对称性,不妨取直线AD 进行研究,则直线π1tan tan tan()41tan k θαθθ+==+=-设切点A 的横坐标为1x ,切点e mx y m '=,所以1e 2mx AD k m ==。

根据对数函数知识点及题型归纳总结

根据对数函数知识点及题型归纳总结

根据对数函数知识点及题型归纳总结一、对数函数的基本概念- 对数函数是指以某个正数为底数的幂运算与常用对数的函数关系。

- 常用对数是以10为底的对数,通常用符号log表示。

- 自然对数是以常数e(约等于2.718)为底的对数,通常用符号ln表示。

二、对数函数的性质1. 对数函数的定义域和值域:- 对数函数的定义域为正实数集合。

- 对数函数的值域为实数集合。

2. 对数函数的图像特点:- 对数函数的图像是一条平滑的曲线,且过点(1, 0)。

- 对数函数的图像在(0, +∞)上是递增的。

- 自然对数函数ln(x)的图像在(0, +∞)上是上凸的。

3. 对数函数的性质和运算法则:- 对数函数中,底数为1的对数函数恒等于0。

- 对数函数的乘法法则:loga(mn) = loga(m) + loga(n)。

- 对数函数的除法法则:loga(m/n) = loga(m) - loga(n)。

- 对数函数的幂运算法则:loga(m^k) = k·loga(m)。

三、对数函数的常见题型1. 简单计算题型:- 计算给定底数和真数的对数值。

- 根据对数值计算给定底数和真数。

2. 方程求解题型:- 将对数方程转化为指数方程求解。

- 求解含对数的复合方程。

3. 不等式求解题型:- 将对数不等式转化为指数不等式求解。

- 求解含对数的复合不等式。

4. 图像应用题型:- 根据对数函数的图像特点作图。

- 根据图像解决实际问题。

总结:对数函数是数学中常用的函数之一,掌握对数函数的基本概念、性质和运算法则,能够灵活运用对数函数解决各种题型和实际问题。

希望通过这份文档,能够帮助大家系统地研究和掌握对数函数相关知识。

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳题型一:指数式与对数式互化1、将下列指数式改写为对数式:7/1 γ3 1(1)5'3=125; (2)鼠=4;(3) - =8; (4) 6'2 =-⑸ 54 = 625; (6)2一6(7)3" =27; = 5.732、将下列对数式改写成指数式:(1) log2 64 = 6 ;(2) log3— = -4 ;(3) lg0.001 = -3;81(4)%4 = -2 ⑸ log। 8 = -3 ;(6)ιθgJl +√2) = -1,题型二:对数的简单运算1、求下列各式的值:(1)lθg216j (2) log21 ;(3) log5 25 ;(4) log04 1 ;(5) IglO; (6) IglOO; (7) IgO.Ol;(8) ∣ne>5.2、求下列各式的值:(1) 2一喻3;(2) lθ2⅛35 (3) e3,n7;(4) log392; (5) IglOO2; (6) lg0.0012.3、计算:(1) log927 ;(2) ∣og用81;(3)卜唱方625题型三:求未知数1、求下列各式中工的值:⑴ log;x = -3;(2)logγ49 = 4 ;(3) lg0.00∞l = x j (4) ↑n y fe=-x∙2(5) log64x = -- ;(6) log x8 = 6;(7) lgl∞ = x j(8) -∖ne2 =x-32、求下列各式中X的值:⑴ log2(log5x) = 05(2) log3(lgx) = l.(3)已知Iog2(log3(log4x))=θ,且log4(log2y)=L求五.)口的值.(4) log3(3「l”og3(3i-g题型四:对数计算1、求下列各式的值: ∕1x 2log 32-log 332 + log 38(5)(l °s 2125 +1°8425+⅝85)∙(tog 1258÷log 254+log 52) (6) 1°δ2 25 lθ838 1°g l 27 4、计算下列各式的值:=22)log 256.25 + lgθ.θl + ln√β-2l+lθδz3(3)322log 32-log 3y + log 38-5,°g53 4log 23-log 2^÷7,o ^5÷log 9√3(4)- 4(4) log 3√27+lg25 + lg4 + 7,og72 +(-9.8)°(6) log 525 + lg —+ ln√^ + 2,og23 100(7)322log 32-log 3-+log 38lg5 + lg2-(-^-)^2 +(>∕2-l)0 +log^ 8(8)32、计算下列各式的值:21g 5 + ∣l g 8 + l g 5.1g20÷l g 22(l g 2)3 + 31g2.1g5 + (l g 5)3l g 25÷lg21g 50÷(l g 2)221g5 + ∣lg8 + lg5∙lg20 + (lg2)2 (4) 3(5) lg2×lg50+lg5×l g 20-21g 5×l g 23、计算下列各式的值:log 1 2 + 21g4 + lg→e 3,n2/ A、 ;O(6)lg5.1g20-lg2.1g 50-l g 25∙θg 251 1°g4 5-log 13-log 2 4 + 5,og5 2(2) 2 3(4) Iog23∙log35∙log516j(4) (log32+log92)(Iog 43 + Iog83).题型五:用已知参数表示1、已知48" =24,试用〃表示下列各式: (1) log 48 2 •(2) log 48 3 .一 M 32、设x = log0M, y = log 〃N (。

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结知识点精讲一、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .二、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常用这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a(a,b0且a 1,b 1);题型归纳及思路提示题型 1 对数运算及对数方程、对数不等式 思路提示对数的有关运算问题要注意公式的顺用、逆用、变形用等 .对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正 . 一、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注 熟记对数的各种运算性质是求解本类问题的前提 变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 3lg522lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()A.( ,0)B.(0, )C.( ,log a 3)D.(log a 3, )分析 先将对数不等式化为同底的形式,再利用单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,又 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x 二、对数方程 例 2.59 解下列方151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析 利用对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,首先方程中的 x 应满足x 10,原方程可变形为 25 x 2525 ,得 x 25 ,从而 x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原方程的解 .2( 2)log x 21(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是方程的解 . 评注解对数方程一定要注意对数方程成立条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利用对数函数的单调性来比较对数的大小,通常借助 0和 1作为分界点解析 因为y log 5 x 在 (0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )A.a b cB.a c bC.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则( )A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 大纲全国理 9) 已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法 问题是数和形结合的护体解释 .它为研究函数问题提供了思维方向、对数函数的图像 例 2.62如图 2-15所示,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像, 对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x3 ,又 0 a 1,变式 1 已知函数 f (x ) 为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析 给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所示,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标大小为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能一次为 2,3, , .故选 B .32评注对 数函数 在同一 直角坐标系中 的图像的相对位置与底数大小的关系如图 2-16 所示,则 0 c d 1 a b .ylog a x(a 0且a 1)在第一象限的图像, a 越大,图像越靠近 x 轴; a 越小, 图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像大 致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点 二、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则A.a b C.c a cB.c b a b Db. ac 例 2.63 函数 y log a (x 1) 2的图像必过定点 分析 对数函数 y log a x(a 0且a 1)的图像过定点 (1,0) ,即 log a 1 0.解析因为 y log a x(a 0且a 1) 恒 过点 (1,0) ,故令 x 1 1,即 x 0 时 , y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a上的最大值与最小值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最大值与最小值又 f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2.(log 2 x)2解析因 为 对 数 函 数 的 底 a 1 , 所以函数f (x) log a x 在 区 间a,2a 上 单 调 递 增 , 故 f (x)maxlog a 2a, f(x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最大值是最小值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最大值和最小值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x212解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最大值与最小值的差为 题型 3 对数函数中的恒成立问题思路提示 (1)利用数形结合思想,结合对数函数的图像求解; (2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题,1 上恒成立 .解析依题意,函数 f (x)的图像如图 2-17所示,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析 因为f(x) lgxx 1 2x a 4x 在x3,1 上有意义,即1 2x40 在 ,1 上恒成立 .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 axx若 g(x) 存在最大值, 则 g(x) a 恒成立等价于 g(x)max a ;A.(0,1)B.(1,2)C. 1,2D. 0,121在2 ,1 上 为减函数 ,故 g(x) 在 ,1 上为增 函数, 所以对 任意的,1 时, g(x) g(1)因为 a ,1 上恒成立,所以 a所以 a 的取值范围是3,4若 g(x) 不存在最大值,设其值域为 g(x)m,n ,则 g(x) a 恒成立等价于 a n .变式 1 当 x (1,2) 时,不等式2x1log a x 恒成立,则 a 的取值范围是()1.设 a log 1 2,b log 1 3,c,则( )222A.a b cB.a c bC.b c aDb. a clog 2 ( x 1)(x 2)2.设函数 f(x)x1 12 1(x 2),若 f (x 0) 1 ,则 x 0 的取值范围是()A.( ,0) U(2,) B.(0,2)C.( , 1)U (3, )D.( 1,3)3.设定义在区间 (1 axb,b)上的函数 f (x) lg 是奇函数 (a,b R 且a1 2x2),则 A. 1, 2B. 0, 2C.(1, 2)D.(0, 2)4.已知 y log a (2ax) 在 0,1 上是 x 的减函数,则a 的取值范围是()最有效训练题0.2a b的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2, )评注 为了求 a 的取值范围, 把a 进行了分离, 变式 2 函数 f (x) log a (x 3a)(a0且a 1),当点 P(x, y) 是函数 y f(x)图像上的点时,点Q(x 2a, y)是函数 y g(x) 图像上的点 .1) 写出函数 y g(x) 的解析式; 2) 当 a a 2,a 3 时,恒有f(x) g(x) 1,试确定 a 的取值范围2y f (x) log 5 x 的零点个数是()A.3B.4C.5D.67.设函数 f(x) ln(x 1) ,若 1 a b 且f(a) f(b),则 a b 的取值范围是 ___________________ .8.已知 lg x lg y 2lg(2 x 3y) ,则 log 2 y ________________ .3x29.若函数 y log a (x 1 2 ax 1)在 1,2 上为增函数,则实数 a 的取值范围是 _____________ ..1 ax11.设 f(x) log 1 为奇函数, a 为常数 .2 x 1(1)求 a 的值;(2)证明: f(x)在区间 (1, )内单调递增;3)若对于区间 3,4 上的每一个 x 值,不等式 f (x)1212.已知集合 P,2 ,函数 y log 2( ax 22x 2) 的定义域为 Q .1)若 PI Q,求实数 a 的取值范围;2)若方程 log 2 ( ax 2 2x 2) 2在 P 内有解,求实数 a 的取值范围则函数2x ,10.已知函数f (x) log2x ,正实数m,n满足m n,且f(m) f(n),若f(x) 在区间m2,n 上的最大值为2 ,则m n __________________ .m 恒成立,求实数m 的取值范围2。

第18讲 对数及对数式运算5大考题型总结(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第18讲 对数及对数式运算5大考题型总结(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第18讲对数及对数式运算5大常考题型总结【考点分析】考点一:对数式的运算①对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.②常见对数的写法:1.一般对数:以(0a a >且1)a ≠为底,记为log Na,读作以a 为底N 的对数;2.常用对数:以10为底,记为lg N ;3.自然对数:以e 为底,记为ln N ;③对数的性质:1.特殊对数:1log 0a =;log 1aa =;其中0a >且1a ≠2.对数恒等式:log Na a N =(其中0a >且1a ≠,0N >)3.对数换底公式:log log log c a c b b a =如:252log 7lg7ln 7log 7=log 5lg5ln 7==.倒数原理:1log log a b b a =如:321log 2log 3=.约分法则:log log log a b a b c c⋅=④对数的运算法则:1.log ()log log a a a MN M N =+;2.log log log aa a MM N N=-;3.log log (m na a nb b m m=,)n R ∈; 4.log a b a b =和log b a a b =.【题型目录】题型一:对数的定义题型二:指数对数的互化题型三:对数的运算求值题型四:换底公式的应用题型五:对数式的应用题【典型例题】题型一:对数的定义【例1】(2021·全国高一课前预习)在()()31log 32a b a -=-中,实数a 的取值范围为______.【答案】1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解析】由题意,要使式子()()31log 32a b a -=-有意义,则满足310311320a a a ->⎧⎪-≠⎨⎪->⎩,解得1233a <<或2332a <<,即实数a 的取值范围为1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.【题型专练】1.(2022江苏省江阴市第一中学高一期中)使式子(31)log (3)x x --有意义的x 的取值范围是()A .3x >B .3x <C .133x <<D .133x <<且23x ≠()1k +有意义,则实数k 的取值范围是______.【答案】()()1,00,1-U 【分析】结合对数性质建立不等关系,即可求解.【详解】若()()1log 1k k +-有意义,则满足101110k k k +>⎧⎪+≠⎨⎪->⎩,解得()()1,00,1k ∈-⋃.故答案为:()()1,00,1-U 题型二:指数对数的互化【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log 3127=-3.【答案】(1)log 5125=3;(2)41log 216=-;(3)31327-=【解析】(1)∵53=125,∴log 5125=3.(2)∵21416-=,∴41log 216=-.(3)∵31log 327=-,∴31327-=【题型专练】1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.(1)3128-=;(2)17ab ⎛⎫= ⎪⎝⎭;(3)1lg31000=-.【答案】(1)21log 38=-;(2)17log b a =;(3)31101000-=.【解析】(1)由3128-=可得21log 38=-;(2)由17ab ⎛⎫= ⎪⎝⎭得17log b a =;(3)由1lg31000=-可得31101000-=.2.(2022全国高一课时练习)指数式和对数式互相转化:(1)4e a =⇒____________.(2)31327-=⇒____________.(3)21log 416=-⇒____________.(4)2log 83=⇒____________.【答案】ln 4a =31log 327=-41216-=328=【解析】log (0,1,0)ba a Nb N a a N =⇔=>≠>.故答案为:ln 4a =,31log 327=-,41216-=,328=.题型三:对数的运算求值【例1】(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【例2】(2022陕西·长安一中高一期中)设函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)(log 6)f f -⋅=()A .3B .6C .9D .12【答案】C【分析】根据给定分段函数直接计算即可得解【详解】函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)1log 43f -=+=,2log 62(log 6)223f =÷=,所以2(2)(log 6)9f f -⋅=.故选:C【例3】(2022全国高一专题练习)计算:(1)659log 25log 3log 6⋅⋅=_________.(2)()()24525log 5log 0.2log 2log 0.5++=_________.(3)235111log log log 2589⋅⋅=_________.(4)()24892log 3log 9log 27log 3log n n ++++⋅=L __________.(5)6log +=__________.【答案】11412-5212【解析】(1)原式226565365331log 5log 3log 62log 5log 3log 6log 5log 3log 62=⋅⋅=⋅⨯=⋅⋅lg5lg3lg 61lg 6lg5lg3=⋅⋅=(2)原式25log 5log log 2log log ⎛⎫⎛⎫=++=⋅ ⎪⎪ ⎪⎪⎝⎭⎝⎭25111log 5log 2224=⨯=(3)原式232235235log 5log 2log 32log 5(3)log 2(2)log 3---=⋅⋅=-⨯-⨯-23512log 5log 2log 312=-⋅⋅=-(4)原式()2322322223log 3log 3log 3log 3log n n =++++⋅L ()22522222335log 3log 3log 3log 3log 2log 35lo 2g 22nn n =++++⋅=⨯=L(5)26662log log log 61===Q 所以原式12故答案为:1,14,12-,52,12【例4】(2022·全国·高一课时练习)已知()122021log 5a x x x ⋅⋅⋅=,则222122021log log log a a a x x x ++⋅⋅⋅+=______.【答案】10【分析】由同底数对数加法公式以及log log ba a Nb N =,可得答案.。

对数与对数函数题型归纳

对数与对数函数题型归纳

对数与对数函数题型归纳题型一 对数式的化简与求值 【题型要点】对数运算的一般思路(1)转化:①利用a b =N ⇔b =log a N (a >0,且a ≠1)对题目条件进行转化. ②利用换底公式化为同底数的对数运算.(2)恒等式:关注log a 1=0,log a a N =N ,a log aN =N 的应用.(3)拆分:将真数化为积、商或底数的指数幂形式,正用对数的运算法则化简..(4)合并:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂的运算.【例1】(2019·全国卷Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________. 【例2】设2a =5b =m ,且1a +1b =2,则m 等于________.【例3】已知log 23=a ,3b =7,则log 37221的值为________.【例4】.计算log 29×log 34+2log 510+log 50.25等于( ) A .0 B .2 C .4D .6题型二 对数函数的图象及应用【题型要点】1.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b . 在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 2.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎪⎭⎫⎝⎛11,a ,特别地要注意a >1和0<a <1的两种不同情况. (2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【例1】已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x 与g (x )=-log b x 的图象可能是( )【例2】在同一直角坐标系中,函数y =1a x ,y =log a ⎪⎭⎫ ⎝⎛+21x (a >0,且a ≠1)的图象可能是( )题型三 对数函数的性质及应用 命题角度一 比较大小【题型要点】比较对数值大小的常见类型及解题方法50.5A .a <c <b B .a <b <c C .b <c <aD .c <a <b【例2】已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c的大小关系为()A .a >b >cB .b >a >cC .c >b >aD .c >a >b命题角度二 解对数不等式【题型要点】求解对数不等式的两种类型及方法【例3】设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【例4】已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________. 命题角度三 与对数函数有关的函数性质问题【题型要点】1.解与对数函数有关的函数性质问题的三个关注点 (1)定义域,所有问题都必须在定义域内讨论. (2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的. 2.解决与对数函数有关的函数的单调性问题的具体步骤【例5】函数y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .(2,+∞)【例6】.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.【例7】已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.题型四 数形结合法在对数函数问题中的应用【例1】设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【例2】设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.二、高效训练突破 一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤0,log 2x ,x >0,则⎪⎭⎫⎝⎛21f =( ) A .-1 B .1 C .-12D.222.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a3.已知a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <c <bD .a <b <c4.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )5.设a =log 0.30.4,b =log 30.4,则( ) A .ab <a +b <0 B .a +b <ab <0 C .ab <0<a +bD .a +b <0<ab6.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1 B .10.1 C .lg 10.1D .10-10.17.若log 2x =log 3y =log 5z <-1,则( ) A .2x <3y <5z B .5z <3y <2x C .3y <2x <5zD .5z <2x <3y8.已知2log 311=x x 1=log 132,x 2=2-12,x 3满足331x ⎪⎭⎫ ⎝⎛=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2二、填空题1.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则⎪⎭⎫⎝⎛21f =________. 2.已知2x =72y =A ,且1x +1y=2,则A 的值是________.3.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.4.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.5.已知函数y =log a (x -1)(a >0,且a ≠1)的图象过定点A ,若点A 也在函数f (x )=2x +b 的图象上,求f (log 23) 6.已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________.7.若函数f (x )=log a (x 2-ax +1)(a >0且a ≠1)没有最小值,则a 的取值范围是________. 8.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,则a 的取值范围为________. 三 解答题1.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡230,上的最大值.2.已知函数f(x)=log a x(a>0且a≠1)的图象过点(4,2).(1)求a的值;(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域;(3)在(2)的条件下,求g(x)的单调减区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数极对数函数题型总结
例题讲解
一、利用对数恒等式化简求值
1.求值:
2.求的值(a,b,c∈R+,且不等于1,N>0)
二、积、商、幂的对数
3.求值
(1)(2)lg2·lg50+(lg5)2(3)lg25+lg2·lg50+(lg2)2
4.已知3a=5b=c,,求c的值.
5.设a、b、c为正数,且满足a2+b2=c2.求证:.
6.已知:a2+b2=7ab,a>0,b>0. 求证:.
三、换底公式的运用
7.(1)已知log x y=a,用a表示;
(2)已知log a x=m,log b x=n,log c x=p,求log abc x.
8.求值:(1);(2);(3).
9.
10.
11.四、对数运算法则的应用
12.9.求值
13.(1) log89·log2732
14.(2)
15.(3)
16.(4)(log2125+log425+log85)(log1258+log254+log52)
17.
18.10.求值:
19.
11.已知:log23=a,log37=b,求:log4256=?
五、函数的定义域、值域
求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.
12. 求下列函数的定义域.
(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).
13.函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.
六、函数图象问题
七、14.作出下列函数的图象:
八、(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.
九、
七、对数函数的单调性及其应用
利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.
15.已知则()
A.B.C.D.
16. 已知f(log a x)=
(a>0且a ≠1),试判断函数f(x)的单调性.
17.求函数y=
(-x 2+2x+3)的值域和单调区间.
八、函数的奇偶性
18. 判断下列函数的奇偶性. (1)
(2).
九、对数函数性质的综合应用
十、 19.已知函数f(x)=lg(ax 2+2x+1).
十一、 (1)若函数f(x)的定义域为R ,求实数a 的取值范围;
(2)若函数f(x)的值域为R ,求实数a 的取值范围.
课堂练习
1. 若f(x)=1+log x 3,g(x)=2log 2x ,试比较f(x)与g(x)的大小。

2. 已知函数f(x)=x x x
x --+-10
101010。

(1)判断f(x)的单调性;
(2)求f -1(x)。

3. 已知x 满足不等式2(log 2x )2-7log 2x+3≤0,求函数f(x)=log 24
log 22x x ⋅的最大值和最小值。

4. 已知函数f(x 2-3)=lg 622-x x , (1)f(x)的定义域; (2)判断f(x)的奇偶性;
(3)求f(x)的反函数; (4)若f[)(x φ]=lgx,求)3(φ的值。

5. 设0<x<1,a>0且a ≠1,比较)1(log x a -与)1(log x a +的大小。

6. 已知函数f(x)=log 31
822+++x n x mx 的定义域为R ,值域为[0,2],求m,n 的值。

7. 已知x>0,y ≥0,且x+2y=21,求g (x )=log 2
1(8xy+4y 2+1)的最小值。

8.求函数
)x |x lg(|x 4y 2
+-=的定义域.
9.已知函数)ax 2(log y a -=在[0,1]上是减函数,求实数a 的取值范围.
10.已知)a 1x (log )x (f a -+=,求使f(x)>1的x 的值的集合.。

相关文档
最新文档