【数学】福建省莆田市2017届高考一模试卷(理)(解析版)
2017年高考真题——理科数学(福建卷)解析版
2017年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25 B .45CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d =. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点. B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,2412R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =∴==-15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥ 1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2017个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin x a x =-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin x h x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞当x π>且x 趋近于π时,()h x 趋向于+∞当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点21.(本题满分14分)(1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩ (Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系. 本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a = 所以直线l 的方程可化为cos sin 2ρθρθ+=从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+=所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
2017年福建省莆田市高考数学一模试卷(理科)含答案解析
2017年福建省莆田市高考数学一模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣6x+5≤0},B={x|y=log2(x﹣2)},则A∩B=()A.(1,2)B.[1,2)C.(2,5]D.[2,5]2.设复数z满足(1﹣i)z=3+i,则z=()A.1+2i B.2+2i C.2﹣i D.1+i3.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=﹣1”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也必要条件4.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x,则f(﹣2)=()A.B.﹣4 C.﹣D.45.我国古代数学著作《孙子算经》中有如下的问题:“今有方物一束,外周有三十二枚,问积几何?”设每层外周枚数为a,如图是解决该问题的程序框图,则输出的结果为()A.121 B.81 C.74 D.496.抛掷一枚均匀的硬币4次,正面不连续出现的概率是()A.B.C.D.7.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.2 D.8.已知函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f (x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是()A.(2k﹣,2k+),k∈Z B.(2kπ﹣π,2kπ+π),k∈ZC.(4k﹣,4k+),k∈Z D.(4kπ﹣π,4kπ+π),k∈Z9.已知双曲线E:﹣=1(a>0,b>0),点F为E的左焦点,点P为E 上位于第一象限内的点,P关于原点的对称点为Q,且满足|PF|=3|FQ|,若|OP|=b,则E的离心率为()A.B.C.2 D.10.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面积为2,若=,BE⊥DC,则的值为()A.﹣2 B.﹣2C.2 D.211.设F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,若|AB|=6,则|FM|的长为()A.B.C.2 D.312.定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+e x<1成立的x的取值范围为()A.(0,+∞) B.(﹣∞,0)C.(﹣1,+∞)D.(﹣∞,1)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(x+y)5的展开式中,x3y3的系数为.14.若x,y满足约束条件,则z=x﹣2y的最大值为.15.△ABC的内角A,B,C的对边分别为a,b,c,若=,则的取值范围是.16.如图,在菱形ABCD中,M为AC与BD的交点,∠BAD=,AB=3,将△CBD沿BD折起到△C1BD的位置,若点A,B,D,C1都在球O的球面上,且球O的表面积为16π,则直线C1M与平面ABD所成角的正弦值为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知数列{a n}的前n项和,其中k为常数,a1,a4,a13成等比数列.(1)求k的值及数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,证明:.18.(12分)某企业有甲乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[45,75)的为优质品,从两个分厂生产的产品中个随机抽取500件,测量这些产品的该项质量指标值,结果如表:(1)根据以上统计数据完成下面2×2列联表,并回答是否有99%的把握认为:“两个分厂生产的产品的质量有差异”?(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表)(3)经计算,甲分厂的500件产品质量指标值的样本方差s2=142,乙分厂的500件差评质量指标值的样本方差s2=162,可认为优质品率较高的分厂的产品质量指标值X服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,由优质品率较高的厂的抽样数据,能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%?附注:参考数据:≈11.92,≈12.73参考公式:k2=P(μ﹣2σ<x<μ+2σ)=0.9544,P(μ﹣3σ<x<μ+3σ)=0.9974.19.(12分)如图,在圆柱OO1中,矩形ABB1A1是过OO1的截面CC1是圆柱OO1的母线,AB=2,AA1=3,∠CAB=.(1)证明:AC1∥平面COB1;(2)在圆O所在的平面上,点C关于直线AB的对称点为D,求二面角D﹣B1C ﹣B的余弦值.20.(12分)已知曲线E:=1(a>b,a≠1)上两点A(x1,y1),B (x2,y2)(x1≠x2).(1)若点A,B均在直线y=2x+1上,且线段AB中点的横坐标为﹣,求a的值;(2)记,若为坐标原点,试探求△OAB的面积是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)已知函数f(x)=2x3﹣3x2+1,g(x)=kx+1﹣lnx.(1)若过点P(a,﹣4)恰有两条直线与曲线y=f(x)相切,求a的值;(2)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.[选修4-4坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C的方程为(x﹣1)2+(y﹣1)2=2,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的普通方程;(2)设点P为圆C上的任一点,求点P到直线l距离的取值范围.[选修4-5不等式选讲]23.已知函数f(x)=|x﹣4|+|x﹣2|.(1)求不等式f(x)>2的解集;(2)设f(x)的最小值为M,若2x+a≥M的解集包含[0,1],求a的取值范围.2017年福建省莆田市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣6x+5≤0},B={x|y=log2(x﹣2)},则A∩B=()A.(1,2)B.[1,2)C.(2,5]D.[2,5]【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣1)(x﹣5)≤0,解得:1≤x≤5,即A=[1,5],由B中y=log2(x﹣2),得到x﹣2>0,解得:x>2,即B=(2,+∞),则A∩B=(2,5],故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设复数z满足(1﹣i)z=3+i,则z=()A.1+2i B.2+2i C.2﹣i D.1+i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的意义即可得出.【解答】解:∵(1﹣i)z=3+i,∴(1+i)(1﹣i)z=(3+i)(1+i),化为:2z=2+4i,即z=1+2i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的意义,考查了推理能力与计算能力,属于基础题.3.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=﹣1”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义,结合直线平行的性质及判定分别进行判断即可.【解答】解:l1∥l2”得到:a2﹣1=0,解得:a=﹣1或a=1,所以应是充分不必要条件.故选:A【点评】本题考查了充分必要条件,考查直线平行的充要条件,是一道基础题.4.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x,则f(﹣2)=()A.B.﹣4 C.﹣D.4【考点】函数奇偶性的性质.【分析】依题意首先把x<0时,函数的解析式求出.再把x=﹣2代入函数式得出答案.【解答】解:设x<0,因为函数f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f[﹣(﹣x)]=﹣2﹣(﹣x)∴当x<0时,函数的解析式为f(x)=﹣2﹣x∴f(﹣2)=﹣2﹣(﹣2)=﹣4故选B.【点评】本题主要考查函数的奇偶性问题.此类问题通常先求出函数的解析式.5.我国古代数学著作《孙子算经》中有如下的问题:“今有方物一束,外周有三十二枚,问积几何?”设每层外周枚数为a,如图是解决该问题的程序框图,则输出的结果为()A.121 B.81 C.74 D.49【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的S,a的值,当a=40时,不满足条件a≤32,退出循环,输出S的值为81,即可得解.【解答】解:模拟程序的运行,可得a=1,S=0,n=1满足条件a≤32,执行循环体,S=1,n=2,a=8满足条件a≤32,执行循环体,S=9,n=3,a=16满足条件a≤32,执行循环体,S=25,n=4,a=24满足条件a≤32,执行循环体,S=49,n=5,a=32满足条件a≤32,执行循环体,S=81,n=6,a=40不满足条件a≤32,退出循环,输出S的值为81.故选:B.【点评】本题考查了求程序框图运行结果的问题,解题时应模拟程序框图运行过程,总结规律,得出结论,属于基础题.6.抛掷一枚均匀的硬币4次,正面不连续出现的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=24=16,再求出正面不连续出现包含的基本事件个数m=1+=8,由此能求出抛掷一枚均匀的硬币4次,正面不连续出现的概率.【解答】解:抛掷一枚均匀的硬币4次,基本事件总数n=24=16,正面不连续出现包含的基本事件个数m=1+=8,∴抛掷一枚均匀的硬币4次,正面不连续出现的概率:p==.故选:B.【点评】本题考查概率的求法,以及化简整理的运算能力,属于基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.7.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.2 D.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为:多面体DE﹣ABC.CE⊥底面ABC,DA⊥底面ABC.ADEC为矩形.△ABC为等腰直角三角形,BC=2,AC⊥AB.连接AE,该几何体的体积V=V E﹣ABC +V B﹣ADE,即可得出.【解答】解:如图所示,该几何体为:多面体DE﹣ABC.CE⊥底面ABC,DA ⊥底面ABC.ADEC为矩形.△ABC为等腰直角三角形,BC=2,AC⊥AB.连接AE,该几何体的体积V=V E﹣ABC +V B﹣ADE=+=.故选:B.【点评】本题考查了三棱锥的三视图与体积计算公式,考查了推理能力与计算能力,属于中档题.8.已知函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f (x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是()A.(2k﹣,2k+),k∈Z B.(2kπ﹣π,2kπ+π),k∈ZC.(4k﹣,4k+),k∈Z D.(4kπ﹣π,4kπ+π),k∈Z【考点】正弦函数的单调性.【分析】由题意可得+=42,求得ω的值,再根据对称中心求得φ的值,可得函数f(x)的解析式,利用正弦函数的单调性,求得f(x)的单调递增区间.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,∴+=42,即12+=16,求得ω=.再根据•+φ=kπ,k∈Z,可得φ=﹣,∴f(x)=sin(x﹣).令2kπ﹣≤x﹣≤2kπ+,求得4kπ﹣π≤x≤4kπ+π,故f(x)的单调递增区间为(4kπ﹣π,4kπ+π),k∈Z,故选:D.【点评】本题主要考查正弦函数的周期性、最值以及单调性,属于中档题.9.已知双曲线E:﹣=1(a>0,b>0),点F为E的左焦点,点P为E 上位于第一象限内的点,P关于原点的对称点为Q,且满足|PF|=3|FQ|,若|OP|=b,则E的离心率为()A.B.C.2 D.【考点】双曲线的简单性质.【分析】由题意可知:四边形PFQF1为平行四边,利用双曲线的定义及性质,求得∠OPF1=90°,在△QPF1中,利用勾股定理即可求得a和b的关系,根据双曲线的离心率公式即可求得离心率e.【解答】解:由题意可知:双曲线的右焦点F1,由P关于原点的对称点为Q,则丨OP丨=丨OQ丨,∴四边形PFQF1为平行四边,则丨PF1丨=丨FQ丨,丨PF丨=丨QF1丨,由|PF|=3|FQ|,根据椭圆的定义丨PF丨﹣丨PF1丨=2a,∴丨PF1丨=a,|OP|=b,丨OF1丨=c,∴∠OPF1=90°,在△QPF1中,丨PQ丨=2b,丨QF1丨=3a,丨PF1丨=a,∴则(2b)2+a2=(3a)2,整理得:b2=2a2,则双曲线的离心率e===,故选B.【点评】本题考查双曲线的简单几何性质简单几何性质,考查数形结合思想,属于中档题.10.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面积为2,若=,BE⊥DC,则的值为()A.﹣2 B.﹣2C.2 D.2【考点】平面向量数量积的运算.【分析】如图建立平面直角坐标系,设AD=m,则AD=,由BE⊥DC,∴,⇒m即可.【解答】解:如图建立平面直角坐标系,设AD=m,则AD=,∴A(0,),D(m,),C(2m,0),,=()'∵BE⊥DC,∴,⇒m=.∴,,则的值为﹣×+02×=﹣2.故选:A.【点评】本题考查了,向量的坐标运算,属于基础题.11.设F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,若|AB|=6,则|FM|的长为()A.B.C.2 D.3【考点】直线与抛物线的位置关系.【分析】先根据抛物线方程求出p的值,再由抛物线的性质求出AB的垂直平分线方程,可得到答案.【解答】解:∵抛物线y2=4x,∴p=2,设经过点F的直线y=k(x﹣1)与抛物线相交于A、B两点,A(x1,y1),B(x2,y2),直线y=k(x﹣1)代入y2=4x,整理可得k2x2﹣(2k2+4)x+k2=0,∴x1+x2=2+利用抛物线定义,AB中点横坐标为x1+x2=|AB|﹣p=6﹣2=4.AB中点横坐标为2∴2+=4,∴k=±AB中点纵坐标为k,AB的垂直平分线方程为y﹣k=﹣(x﹣2),令y=0,可得x=4,∴|FM|=3.故选:D.【点评】本题主要考查了抛物线的性质.属中档题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用,确定AB的垂直平分线方程是关键.12.定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+e x<1成立的x的取值范围为()A.(0,+∞) B.(﹣∞,0)C.(﹣1,+∞)D.(﹣∞,1)【考点】导数在最大值、最小值问题中的应用.【分析】构造函数:g(x)=,g(0)==﹣1.对任意x∈R,都有f(x)>f'(x)+1,可得g′(x)=<0,函数g(x)在R单调递减,利用其单调性即可得出.【解答】解:构造函数:g(x)=,g(0)==﹣1.∵对任意x∈R,都有f(x)>f'(x)+1,∴g′(x)==<0,∴函数g(x)在R单调递减,由f(x)+e x<1化为:g(x)=<﹣1=g(0),∴x>0.∴使得f(x)+e x<1成立的x的取值范围为(0,+∞).故选:A.【点评】本题考查了构造函数法、利用导数研究函数的单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(2x﹣1)(x+y)5的展开式中,x3y3的系数为20.【考点】二项式定理的应用.【分析】把(x+y)5 按照二项式定理展开,可得(x﹣2y)(x+y)5的展开式中x3y3的系数.【解答】解:根据根据(x+y)5 =(•x5+•x4y+•x3y2+x2y3+•xy4+•y5),可得(2x﹣1)(x+y)5的展开式中,x3y3的系数为2=20,故答案为:20.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题14.若x,y满足约束条件,则z=x﹣2y的最大值为2.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x﹣2y为,由图可知,当直线过点A(2,0)时,直线在y轴上的截距最小,z有最大值为2.故答案为:2.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.△ABC的内角A,B,C的对边分别为a,b,c,若=,则的取值范围是(1,2] .【考点】余弦定理.【分析】由已知整理可得:b2+c2﹣a2=bc,由余弦定理可得cosA=,结合范围A∈(0,π),可求A,由三角形内角和定理可求C=﹣B,利用正弦定理,三角函数恒等变换的应用化简可得=2sin(B+),由B∈(0,),利用正弦函数的性质可求sin(B+)∈(,1],即可得解.【解答】解:∵=,可得:(a﹣b+c)(a+b﹣c)=bc,∴整理可得:b2+c2﹣a2=bc,∴由余弦定理可得:cosA===,∵A∈(0,π),∴A=,可得:C=﹣B,∴====2sin(B+),∵B∈(0,),B+∈(,),可得:sin(B+)∈(,1],∴=2sin(B+)∈(1,2].故答案为:(1,2].【点评】本题主要考查了余弦定理,三角形内角和定理,正弦定理,三角函数恒等变换的应用,正弦函数的性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.如图,在菱形ABCD中,M为AC与BD的交点,∠BAD=,AB=3,将△CBD沿BD折起到△C1BD的位置,若点A,B,D,C1都在球O的球面上,且球O的表面积为16π,则直线C1M与平面ABD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出球半径为,根据图形找出直线C1M与平面ABD所成角,解三角形即可.【解答】解:如图所示,设O为球心,E、F分别为△ABD、△C1BD的外接圆圆心,则有OE⊥面ABD,OF⊥面C1BD,∵菱形ABCD中,∠BAD=,AB=3∴△ABD、△C1BD为等边△,故E、F分别为△ABD、△C1BD的中心.∵球O的表面积为16π,∴球半径为2.在直角△AOM中,OA=2,AE=,⇒QE=1.tan∠OME=,∵C1M⊥DB,AM⊥DB,∴DB⊥面AMC1,∴∠C1MA(或其补角)就是直线C1M与平面ABD所成角.∠C1MA=2∠OME,tan∠C1MA=tan(2∠OME)=,sin∠C1MA=,直线C1M与平面ABD所成角的正弦值为,故答案为:.【点评】本题考查了棱锥与外接球的关系,找出线面角是解题关键.属于中档题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•莆田一模)已知数列{a n}的前n项和,其中k为常数,a1,a4,a13成等比数列.(1)求k的值及数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,证明:.【考点】数列的求和.=2n+k﹣1(n≥2),再求【分析】(1)由已知数列的前n项和求得a n=S n﹣S n﹣1得首项,验证首项成立可得数列通项公式,结合a1,a4,a13成等比数列求得k,则通项公式可求;(2)把(1)中求得的通项公式代入,整理后利用裂项相消法求得数列{b n}的前n项和为T n,放缩可得.【解答】(1)解:由,有=2n+k﹣1(n≥2),a n=S n﹣S n﹣1又a1=S1=k+1,∴a n=2n+k﹣1.∵a1,a4,a13成等比数列,∴,即(2×4+k﹣1)2=(2×1+k﹣1)(2×13+k﹣1),解得k=2.∴a n=2n﹣1;(2)证明:∵=.∴.∴T n=b1+b2+…+b n===.【点评】本题考查数列递推式,考查了由数列的前n项和求数列的通项公式,训练了裂项相消法求数列的前n项和,属中档题.18.(12分)(2017•莆田一模)某企业有甲乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[45,75)的为优质品,从两个分厂生产的产品中个随机抽取500件,测量这些产品的该项质量指标值,结果如表:(1)根据以上统计数据完成下面2×2列联表,并回答是否有99%的把握认为:“两个分厂生产的产品的质量有差异”?(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表)(3)经计算,甲分厂的500件产品质量指标值的样本方差s 2=142,乙分厂的500件差评质量指标值的样本方差s 2=162,可认为优质品率较高的分厂的产品质量指标值X 服从正态分布N (μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s 2,由优质品率较高的厂的抽样数据,能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%? 附注: 参考数据:≈11.92,≈12.73参考公式:k 2=P (μ﹣2σ<x <μ+2σ)=0.9544,P (μ﹣3σ<x <μ+3σ)=0.9974.【考点】独立性检验.【分析】(1)根据统计数据填写2×2列联表,计算K 2,对照临界值表得出结论;(2)计算甲厂、乙厂优秀率,得出甲厂优秀品率高,计算甲厂的平均值; (3)根据(2)知甲厂产品的质量指标值X ~N (60,142),计算对应的概率值即可.【解答】解:(1)由以上统计数据填写2×2列联表,如下;计算K 2=≈8.772>6.635,对照临界值表得出,有99%的把握认为:“两个分厂生产的产品的质量有差异”;(2)计算甲厂优秀率为=0.8,乙厂优秀率为=0.72所以甲厂的优秀品率高, 计算甲厂数据的平均值为: =×(30×10+40×40+50×115+60×165+70×120+80×45+90×5)=60,(3)根据(2)知,μ=60,σ2=142,且甲厂产品的质量指标值X 服从正态分布X ~N (60,142), 又σ=≈11.92,则P (60﹣11.92<X <60+11.92)=P (48.08<X <71.92)=0.6826, P (X >71.92)===0.1587<0.18,故不能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%.【点评】本题主要考查了独立性检验与正态分布的特点及概率求解问题,也考查了推理与运算能力.19.(12分)(2017•莆田一模)如图,在圆柱OO 1中,矩形ABB 1A 1是过OO 1的截面CC 1是圆柱OO 1的母线,AB=2,AA 1=3,∠CAB=.(1)证明:AC 1∥平面COB 1;(2)在圆O 所在的平面上,点C 关于直线AB 的对称点为D ,求二面角D ﹣B 1C ﹣B 的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)连结B1C1、BC1,设BC1∩B1C=M,推导出四边形BB1C1C为平行四边形,从而MO∥AC1,由此能证明AC1∥平面COB1.(2)以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣B1C﹣B的二面角的余弦值.【解答】证明:(1)连结B1C1、BC1,设BC1∩B1C=M,∵BB1CC1,∴四边形BB1C1C为平行四边形,∴M为BC1的中点,在△ABC1中,O为AB的中点,∴MO∥AC1,又AC1⊄平面B1CD,MO⊂平面B1CD,∴AC1∥平面COB1.解:(2)如图,∵AB是圆O的直径,∴AC⊥BC,∵C1C⊥平面ABC,∴C1C⊥AC,C1C⊥BC,又∠BAC=60°,AB=2,∴AC=1,BC=,AA1=3,以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,则C(0,0,0),A(1,0,0),B(0,,0),C1(0,0,3),O(,0),B1(0,),在圆O上,C,D关于直线AB对称,△AOC为正三角形,且OA=1,∴CD=,∠ACD=30°,过点D作DP⊥x轴,DQ⊥y轴,垂足分别为P,Q,则CP=CD•cos=,CQ=CD•sin,∴D(,0),∴=(,0),设平面CDB1的一个法向量=(x,y,z),则,取y=﹣,得=(1,﹣,1),平面B1BC的一个法向量=(1,0,0),设二面角D﹣B1C﹣B的二面角为θ,则cosθ==.故二面角D﹣B1C﹣B的余弦值为.【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系及二面角、空间向量等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力;考查了化归与转化及数形结合的数学思想.20.(12分)(2017•莆田一模)已知曲线E:=1(a>b,a≠1)上两点A(x1,y1),B(x2,y2)(x1≠x2).(1)若点A,B均在直线y=2x+1上,且线段AB中点的横坐标为﹣,求a的值;(2)记,若为坐标原点,试探求△OAB的面积是否为定值?若是,求出定值;若不是,请说明理由.【考点】直线与椭圆的位置关系.【分析】(1)利用点差法求得直线的斜率公式,k==2,根据中点坐标公式,即可求得a的值;(2)设直线y=kx+m代入椭圆方程,利用韦达定理及由向量数量积的坐标运算,根据弦长公式,点到直线的距离公式,根据三角的面积公式即可求得△OAB的面积为定值.【解答】解:(1)由题意可知:①,②,两式相减得: +(y1+y2)(y1﹣y2)=0,由x1≠x2,则=﹣a2,由A,B在直线y=2x+1,则k==2,A,B中点横坐标为﹣,则中点的纵坐标为,∴﹣=2•,解得:a2=,又a>0,则a=,(2)直线AB的方程为y=kx+m,则,(1+a2k2)x2+2kma2x+a2(m2﹣1)=0,△>0,即(2kma2)2﹣4a2(m2﹣1)(1+a2k2)>0,则m2<1+a2k2,由韦达定理可知:则x1+x2=﹣,x1x2=,由m⊥n,则•=0,x1x2+a2y1y2=0,从而(1+a2k2)x1x2+kma2(x1+x2)+a2m2=0,代入并整理得2m2=1+a2k2,由原点O到直线AB的距离d=,则△OAB的面积S=•d•丨AB丨=•••丨x1﹣x2丨,=丨m丨•,=丨m丨•,=•,=•=,从而可得△OAB的面积,为定值.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆位置关系,考查韦达定理,弦长公式,点到直线的距离公式,考查向量的坐标运算,考查计算能力,属于中档题.21.(12分)(2017•莆田一模)已知函数f(x)=2x3﹣3x2+1,g(x)=kx+1﹣lnx.(1)若过点P(a,﹣4)恰有两条直线与曲线y=f(x)相切,求a的值;(2)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.【考点】利用导数研究函数的极值;根的存在性及根的个数判断;利用导数研究曲线上某点切线方程.【分析】(1)求导,利用导数求得f(x)在Q的切线方程,构造辅助函数,利用导数与函数单调性的关系,分类讨论即可求得a的值;(2)根据函数定义,求h(x),根据函数的单调性及函数零点的判断,采用分类讨论法,求得函数h(x)零点的个数,即可求得h(x)恰有三个零点时,实数k的取值范围.【解答】解:(1)设切点Q(t,f(t)),由直线f(x)=2x3﹣3x2+1,求导,f′(x)=6x2﹣6x,则f(x)在Q点的切线的斜率k=6t2﹣6t,则切线方程为y﹣f(t)=(6t2﹣6t)(x﹣t),由切线过点P(a,﹣4),则﹣4﹣f(t)=(6t2﹣6t)(a﹣t),整理得:4t3﹣(3+6a)t2+6at﹣5=0,又由曲线恰有两条切线,即方程恰有两个不同的解,令H(t)=4t3﹣(3+6a)t2+6at﹣5,求导H′(t)=12t2﹣6(6+12a)t+6a,令H′(t)=0,解得:t=,t=2,当a=时,H′(t)≥0,函数H(t)在R上单调递增,没有两个零点,不符合题意,当a>时,且t∈(﹣∞,)∪(a,+∞)时,H′(t)>0,当t∈(,a)时,H′(t)<0,∴H(t)在(﹣∞,),(a,+∞)单调递增,在(,a)单调递减;要使H(t)在R上有两个零点,则,或,由H()=﹣﹣a+3a﹣5=(a﹣),H(a)=4a3﹣(3+6a)a2+6a2﹣5=﹣(a+1)(2a2﹣5a+5),=﹣(a+1)[2(a﹣)2+],∴或,则a=,当a<时,同理可知:或,则a=﹣1,综上可知:a=﹣1或a=;(2)f(x)=2x3﹣3x2+1=(x﹣1)2(2x+1),∴f(x)在(0,+∞)上只有一个零点x=1,g′(x)=k﹣,当k≤0时,g′(x)<0,则g(x)在(0,+∞)上单调递减,g(x)在(0,+∞)上至多只有一个零点,故k≤0不符合题意;当k>0,g′(x)=k﹣=0,解得:x=,∴当x∈(0,)时,g′(x)<0,当x∈(,+∞)时,g′(x)>0,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增;∴g(x)有最小值g()=2+lnk,①当k=时,g()=0,g(x)只有一个零点,不满足题意;②当k>时,g()>0,g(x)在(0,+∞)上无零点,不满足题意;③当<k<时,g()<0,由g()•g(1)=(2+lnk)(k+1)<0,∴g(x)在(1,)上有一个零点,设为x1,若g()•g()<0,g(x)在(,+∞)上有一个零点,设为x2,易证>(>e2),下面证明:g()>0,令F(x)=e x﹣x2,(x>2),求导F′(x)=e x﹣2x,F′′(x)=e x﹣2>e2﹣2>0,∴F(x)在(2,+∞)上单调递增;∴F(x)>F(2)=e2﹣4>0,∴e2﹣x2>0,即e2>x2,(x>2),现在去x=,由0<k<e﹣2,∴x>e2>2,则g()=k•+1﹣ln,=k•+1﹣,由>e2>2,则>,∴g()>k•+1﹣=1>0,∴g(x1)=g(x2)=0∴由g(1)=k+1>0,f(x1)>0,f(x2)>0,故h(1)>f(1)=0,h(x1)=g(x1)=0,h(x2)=g(x2)=0,故h(x)有三个零点,综上可知:满足题意的k的取值范围为(0,).【点评】本题考查导数及其应用等基础知识,考查抽象概括能力、推理能力句函数和方程思想、分类和整合思想,是一道综合题,属于难题.[选修4-4坐标系与参数方程]22.(10分)(2017•莆田一模)在直角坐标系xOy中,圆C的方程为(x﹣1)2+(y﹣1)2=2,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的普通方程;(2)设点P为圆C上的任一点,求点P到直线l距离的取值范围.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由题意求出圆C的参数方程和直线l的普通方程;(2)由题意设P(,),由点到直线的距离公式表示出点P到直线l距离,利用两角和的正弦公式化简后,由正弦函数的值域求出答案.【解答】解:(1)∵圆C的方程为(x﹣1)2+(y﹣1)2=2,∴圆C的参数方程为(α为参数),∵直线l的极坐标方程为,∴,即ρsinθ+ρcosθ﹣4=0,∴直线l的普通方程是x+y﹣4=0;(2)由题意设P(,),∴点P到直线l距离d===,∵,∴,即,∴点P到直线l距离的取值范围是[0,].【点评】本题考查参数方程、极坐标方程与普通方程法转化,点到直线的距离公式,两角和的正弦公式,以及正弦函数的值域等,考查化归与转化思想,化简、计算能力.[选修4-5不等式选讲]23.(2017•莆田一模)已知函数f(x)=|x﹣4|+|x﹣2|.(1)求不等式f(x)>2的解集;(2)设f(x)的最小值为M,若2x+a≥M的解集包含[0,1],求a的取值范围.【考点】绝对值不等式的解法;函数的最值及其几何意义.【分析】(1)f(x)=|x﹣4|+|x﹣2|=.分x≤2时,;2<x<4,x≥4,解f(x)>2.(2))由|x﹣4|+|x﹣2|≥2,得M=2,由2x+a≥M的解集包含[0,1],得20+a ≥2,21+a≥2【解答】解:(1)f(x)=|x﹣4|+|x﹣2|=.∴当x≤2时,f(x)>2,6﹣2x>2,解得x<2;当2<x<4时,f(x)>2得2>2,无解;当x≥4时,f(x)>2得2x﹣6>2,解得>4.所以不等式f(x)>2的解集为(﹣∞,2)∪(4,+∞).(2))∵|x﹣4|+|x﹣2|≥2,∴M=2,∵2x+a≥M的解集包含[0,1],∴20+a≥2,21+a≥2,∴a≥1.故a的取值范围为:[1,+∞)【点评】本题考查了绝对值不等式的解法,及恒成立问题,属于中档题.。
2017福建高考真题数学理(含解析)
2017年普通高等学校招生统一考试(福建卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、若集合(是虚数单位),,则等于A. B. C. D.2、下列函数为奇函数的是A. B. C. D.3、若双曲线的左、右焦点分别为,点在双曲线上,且,则等于A. B. C. D.4、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:根据上表可得回归本线方程,其中,据此估计,该社区一户收入为万元家庭年支出为A.万元B.万元C.万元D.万元5、若变量满足约束条件则的最小值等于A. B. C. D.6、阅读如图所示的程序框图,运行相应的程序,则输出的结果为A. B. C. D.7、若是两条不同的直线,垂直于平面,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条8、若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于A. B. C. D.9、已知,若点是所在平面内一点,且,则的最大值等于A. B. C. D.10、若定义在上的函数满足,其导函数满足,则下列结论中一定错误的是A. B. C. D.二、填空题:本大题共5小题,每小题4分,共20分。
11、的展开式中,的系数等于.(用数字作答)12、若锐角的面积为,且,则等于.13、如图,点的坐标为,点的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于.14、若函数(且)的值域是,则实数的取值范围是.15、一个二元码是由和组成的数字串,其中称为第位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由变为,或者由变为)已知某种二元码的码元满足如下校验方程组:其中运算定义为:.现已知一个这种二元码在通信过程中仅在第位发生码元错误后变成了,那么利用上述校验方程组可判定等于.三、解答题:本大题共6小题,共80分。
(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
福建省莆田第一中学2017届高三下学期考前模拟(最后一卷)数学(理)试题(附解析)
莆田一中2016-2017学年高三理数5月模拟试卷满分 150分考试时间 120分钟一、选择题(本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意)1.已知集合A={x N|x1},B={x|x2-x-20},则A B=( )A. {0,1}B. {-1,0,1}C. [-1,1]D. {1}【答案】A【解析】因为A={x N|x1},B={x|x2-x-20},所以A B={0,1},故选A.2.若复数z满足z2=-4,则||=( )A. B. 3 C. D. 5【答案】C【解析】因为z2=-4,所以,,故选C.3.一批产品次品率为4%,正品中一等品率为75%.现从这批产品中任取一件,恰好取到一等品的概率为( )A. 0.75B. 0.71C. 0.72D. 0.3【答案】C【解析】因为这批产品次品率为,所以正品率为,又因为正品中一等品率为,所以这批产品一等品率为,从这批产品中任取一件,恰好取到一等品的概率为.4.公差不为0的等差数列{a n}的前n项的和为S n,若a6=3a4,且S10=a4,则的值为( )A. 15B. 21C. 23D. 25【答案】D【解析】设公差为,由,且,则,解得,故选D.5.已知双曲线+=1的一条渐近线斜率大于1,则实数m的取值范围( )A. (0,4)B. (0,)C. (0,2)D. (,4)【答案】B【解析】是双曲线,,又双曲线的一条渐近线斜率大于1,,得,故选B.6.某几何体的三视图如图所示,则该几何体的表面积为( )A. 8-B. 8-C. 24-D. 24+【答案】C【解析】由已知三视图得到几何体是一个棱长为的正方体切割去半径为的个球,所以表面积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( )A. 2B. 3C. 4D. 5【答案】C【解析】开始,输入,则,判断,否,循环,,则,判断,否,循环,则,判断,否,循环,则,判断,是,输出,结束.故选择C.8.函数f(x)=x2-sin|x|在[-2,2]上的图象大致为( )A. B. C. D.【答案】B【解析】函数在是偶函数,则,在可得,令,可得方程只有一个解,如图:可知,在由一个极值点,排除,,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.9.函数f(x)=cos(x+)(>0)在[0,]内值域为[-1,],则的取值范围是( )A. [,]B. [,]C. [,+)D. [,]【答案】D【解析】函数,当时,,画出图形如图所示:则,解得,的取值范围是,故选D.10.已知点A(5,0),抛物线C:y2=2px(0<p<5)的准线为l,点P在C上,作PH l于H,且|PH|=|PA|,APH=120,则p=( )A. 1B. 2C. 3D. 4【答案】B【解析】设,故做,则由,则,由抛物线的定义可知:,则,则,则,将代入抛物线方程,解得的值,故选B.11.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )A. B. C. D.【答案】A【解析】将平面延展与交于连结,并延长与延长线交于,平面交于,可知等于与成角,,由正方体的性质可知,,故选 . 12.已知直线l1:y=x+a分别与直线l2:y=2(x+1)及曲线C:y=x+ln x交于A,B两点,则A,B两点间距离的最小值为( )A. B. 3 C. D. 3【答案】D【解析】由,得,由,得,,在上递减,在上递增,,即两点间距离的最小值为,故选D.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).二、填空题(本大题共有4个小题,每题5分,共20分)13.设变量x,y满足约束条件则z=x-2y的最大值为_______【答案】【解析】不等式组表示平面区域为:且可得,则经过时,在轴上的截距最大,即,故答案为 . 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.已知a=(,),|b|=1,|a+2b|=2,则b在a方向上的投影=_______【答案】【解析】,可得,即为,即有,可得在方向上的投影为,故答案为 .15.(x+3)(x+1)4展开式中不含x2项的系数之和为________【答案】42【解析】展开式中含项的系数之和为,所有项系数和为,所以展开式中不含x2项的系数之和为,故答案为 .16.数列{a n}的前n项和为S n,且S3=1,S4=-3, a n+3=2a n(n N*),则S2017=______【答案】-1【解析】,,故答案为 .三、解答题(本大题共6个小题,共70分,解答时要求写出必要的文字说明或推演步骤. 请按照题目顺序在第Ⅱ卷各个题目的答题区域内作答.)17.如图,在ABC中,B=,D为边BC上的点,E为AD上的点,且AE=8,AC=4,CED =.(1)求CE的长(2)若CD=5,求cos DAB的值【答案】(Ⅰ);(Ⅱ)【解析】试题分析:(I)在中,由余弦定理,解方程即可结果;(II)由正弦定理得,再根据同角三角函数之间的关系及两角差的余弦定理可得结果.试题解析:(Ⅰ)∵,在中,由余弦定理得,∴,∴,∴.(Ⅱ)在中,由正弦定理得,∴,∴,∵点在边上,∴,而<∴只能为钝角,∴,∴ ,.18.如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C AC1(Ⅰ)求证:平面AA1B1B面BB1C1C;(Ⅱ)若D是CC1中点,ADB是二面角A-CC1-B的平面角,求直线AC1与平面ABC所成角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)先证明, 从而,结合可得,进而可得结论;(2)分别以为轴建立空间直角坐标系,分别求出平面的一个法向量及直线的AC1一个方向向量,根据空间向量夹角余弦公式,可得结果.试题解析:(1)连结,因为为菱形,所以,又,,所以,故。
2017年福建省莆田六中高考一模数学试卷(理科)【解析版】
第 4 页(共 22 页)
19. (12 分)如图,四棱锥 P﹣ABCD 的底面 ABCD 是平行四边形,侧面 PAD 是 边长为 2 的正三角形,AB=BD= (1)求证:平面 PAD⊥平面 ABCD; (2)设 Q 是棱 PC 上的点,当 PA∥平面 BDQ 时,求二面角 A﹣BD﹣Q 的余弦 值. ,PB=3.
三、解答题(本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演 算步骤. ) 17. (12 分)已知△ABC 中,AC=2,A=120°,cosB= (1)求边 AB 的长; (2)设 D 是 BC 边上的一点,且△ACD 的面积为 ,求∠ADC 的正弦值. sinC.
18. (12 分)某种产品的质量以其质量指标衡量,并依据质量指标值划分等级如 表: 质量指标值 m m<185 185≤m< M≥205 205 等级分)给出关于双曲线的三个命题: ①双曲线 ﹣ =1 的渐近线方程是 y=± x;
②若点 (2, 3) 在焦距为 4 的双曲线
﹣
=1 上, 则此双曲线的离心率 e=2;
③若点 F,B 分别是双曲线
﹣
=1 的一个焦点和虚轴的一个端点,则线段
FB 的中点一定不在此双曲线的渐近线上. 其中正确命题的个数是( A.0 6. (5 分) 记不等式 B.1 ) C.2 D.3
第 2 页(共 22 页)
A.v=vx+ai 10 . (
B.v=v(x+ai) 5 分
C.v=aix+v ) 已
D.v=ai(x+v) 知 函 数
, 若 |α ﹣ β| 的最小值为 ,且 f(x)的图象关于点 ) B. D. 对称,则函数 f(x)的单
调递增区间是( A. C.
莆田(文科)
2017年福建省莆田市高考数学 一模试卷(理科)
17. (12 分) (2017• 莆田一模)已知数列{an }的前 n 项和 常数,a6=13. (1)求 k 的值及数列{an}的通项公式; (2)若 ,求数列{bn }的前 n 项和 Tn .
,其中 k 为
】解: (1)∵ ﹣1+k.
k<﹣1,g(1)<0,g(x)在[1,+∞)上无零点; k=﹣1,g(1)=0,g(x)在[1 ,+∞)上有 1 个零点; ﹣1<k <0,g(1)>0,g(e1 k)=ke1 k+k<0 ,g(x)在 [1,+∞)上有 1 个零 点; 综上所述,k<﹣1 时,h (x)有 1 个零点;﹣1≤k<0 时,h (x)有两个零点; (2)设切点(t,f(t ) ) ,f′(x)=6x2﹣6x,∴切线斜率 f′ (t)=6t 2﹣6t, ∴切线方程为 y﹣f(t)=(6t 2﹣6t ) (x﹣t) , ∵切线过 P(a,﹣4) ,∴﹣4﹣f(t)=(6t 2﹣6t ) (a﹣t ) , ∴4t3 ﹣3t2﹣6t 2a+6ta﹣5=0①
.
∴当 x≤2 时,f(x)>2,6﹣2x>2,解得 x<2; 当 2<x<4 时,f(x)>2 得 2>2,无解; 当 x≥4 时,f(x)>2 得 2x﹣6>2,解得>4. 所以不等式 f(x)>2 的解集为(﹣∞,2)∪(4,+∞) .
(2) )∵|x﹣4|+|x﹣2|≥2,∴M=2, ∵2x +a≥M 的解集包含[0,1], ∴20+a≥2,21+a≥2,∴a≥1. 故 a 的取值范围为:[1,+∞)
﹣ ﹣
由题意,方程①有 3 个不同的解. 令 H(t)=4t 3﹣3t2 ﹣6t2a+6ta﹣5,则 H′ (t)=12t2 ﹣6t﹣12at+6a=0.t= 或 a. a= 时,H′( t)≥0,H( t)在定义域内单调递增,H(t)不可能有两个零点, 方程①不可能有两个解,不满足题意; a 时,在(﹣ ) , (a,+∞)上,H′(t)>0,函数单调递增,在( ,
福建省莆田第一中学2017届高三下学期考前模拟(最后一卷)数学(理)试题(含解析)
莆田一中2016-2017学年高三理数5月模拟试卷满分 150分考试时间 120分钟一、选择题(本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意)1.已知集合A={x N|x1},B={x|x2-x-20},则A B=( )A. {0,1}B. {-1,0,1}C. [-1,1]D. {1}【答案】A【解析】因为A={x N|x1},B={x|x2-x-20},所以A B={0,1},故选A.2.若复数z满足z2=-4,则||=( )A. B. 3 C. D. 5【答案】C【解析】因为z2=-4,所以,,故选C.3.一批产品次品率为4%,正品中一等品率为75%.现从这批产品中任取一件,恰好取到一等品的概率为( )A. 0.75B. 0.71C. 0.72D. 0.3【答案】C【解析】因为这批产品次品率为,所以正品率为,又因为正品中一等品率为,所以这批产品一等品率为,从这批产品中任取一件,恰好取到一等品的概率为.4.公差不为0的等差数列{a n}的前n项的和为S n,若a6=3a4,且S10=a4,则的值为( )A. 15B. 21C. 23D. 25【答案】D【解析】设公差为,由,且,则,解得,故选D.5.已知双曲线+=1的一条渐近线斜率大于1,则实数m的取值范围( )A. (0,4)B. (0,)C. (0,2)D. (,4)【答案】B【解析】是双曲线,,又双曲线的一条渐近线斜率大于1,,得,故选B.6.某几何体的三视图如图所示,则该几何体的表面积为( )A. 8-B. 8-C. 24-D. 24+【答案】C【解析】由已知三视图得到几何体是一个棱长为的正方体切割去半径为的个球,所以表面积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( )A. 2B. 3C. 4D. 5【答案】C【解析】开始,输入,则,判断,否,循环,,则,判断,否,循环,则,判断,否,循环,则,判断,是,输出,结束.故选择C.8.函数f(x)=x2-sin|x|在[-2,2]上的图象大致为( )A. B. C. D.【答案】B【解析】函数在是偶函数,则,在可得,令,可得方程只有一个解,如图:可知,在由一个极值点,排除,,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.9.函数f(x)=cos(x+)(>0)在[0,]内值域为[-1,],则的取值范围是( )A. [,]B. [,]C. [,+)D. [,]【答案】D【解析】函数,当时,,画出图形如图所示:则,解得,的取值范围是,故选D.10.已知点A(5,0),抛物线C:y2=2px(0<p<5)的准线为l,点P在C上,作PH l于H,且|PH|=|PA|,APH=120,则p=( )A. 1B. 2C. 3D. 4【答案】B【解析】设,故做,则由,则,由抛物线的定义可知:,则,则,则,将代入抛物线方程,解得的值,故选B.11.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )A. B. C. D.【答案】A【解析】将平面延展与交于连结,并延长与延长线交于,平面交于,可知等于与成角,,由正方体的性质可知,,故选 .12.已知直线l1:y=x+a分别与直线l2:y=2(x+1)及曲线C:y=x+ln x交于A,B两点,则A,B两点间距离的最小值为( )A. B. 3 C. D. 3【答案】D【解析】由,得,由,得,,在上递减,在上递增,,即两点间距离的最小值为,故选D.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).二、填空题(本大题共有4个小题,每题5分,共20分)13.设变量x,y满足约束条件则z=x-2y的最大值为_______【答案】【解析】不等式组表示平面区域为:且可得,则经过时,在轴上的截距最大,即,故答案为 . 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.已知a=(,),|b|=1,|a+2b|=2,则b在a方向上的投影=_______【答案】【解析】,可得,即为,即有,可得在方向上的投影为,故答案为 .15.(x+3)(x+1)4展开式中不含x2项的系数之和为________【答案】42【解析】展开式中含项的系数之和为,所有项系数和为,所以展开式中不含x2项的系数之和为,故答案为 .16.数列{a n}的前n项和为S n,且S3=1,S4=-3, a n+3=2a n(n N*),则S2017=______【答案】-1【解析】,,故答案为 .三、解答题(本大题共6个小题,共70分,解答时要求写出必要的文字说明或推演步骤. 请按照题目顺序在第Ⅱ卷各个题目的答题区域内作答.)17.如图,在ABC中,B=,D为边BC上的点,E为AD上的点,且AE=8,AC=4,CED =.(1)求CE的长(2)若CD=5,求cos DAB的值【答案】(Ⅰ);(Ⅱ)【解析】试题分析:(I)在中,由余弦定理,解方程即可结果;(II)由正弦定理得,再根据同角三角函数之间的关系及两角差的余弦定理可得结果.试题解析:(Ⅰ)∵,在中,由余弦定理得,∴,∴,∴.(Ⅱ)在中,由正弦定理得,∴,∴,∵点在边上,∴,而<∴只能为钝角,∴,∴ ,.18.如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C AC1(Ⅰ)求证:平面AA1B1B面BB1C1C;(Ⅱ)若D是CC1中点,ADB是二面角A-CC1-B的平面角,求直线AC1与平面ABC所成角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)先证明, 从而,结合可得,进而可得结论;(2)分别以为轴建立空间直角坐标系,分别求出平面的一个法向量及直线的AC1一个方向向量,根据空间向量夹角余弦公式,可得结果.试题解析:(1)连结,因为为菱形,所以,又,,所以,故。
【福建省莆田】2017学年高考一模数学年(理科)试题
17.(1)解:由2n S n kn =+,有121(2)n n n a S S n k n -==+-≥-, 又111a S k ==+, ∴21n a n k =+-.∵1a ,4a ,13a 成等比数列, ∴24113a a a =,即2(241)(211)(2131)k k k ⨯+-=⨯+-⨯+-,解得2k =.∴21n a n =-; (2)证明:∵1441(1)(3)(22)(26)(1)(3)n n n b a a n n n n +===++++++.∴111()213n b n n =-++.∴12n n T b b b =+++,1111111111111[()()()()()()]+-+-+=-+-+--+18.解:(1)由以上统计数据填写22⨯列联表,如下;计算21000(400140360100)8.772 6.635760240500500K ⨯⨯-⨯=≈>⨯⨯⨯,对照临界值表得出,有99%的把握认为:“两个分厂生产的产品的质量有差异”; (2)计算甲厂优秀率为4000.8500=,乙厂优秀率为3600.72500=, 所以甲厂的优秀品率高, 计算甲厂数据的平均值为:1(301040405011560165701208045905)60500x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯=, (3)根据(2)知,60μ=,2142σ=,且甲厂产品的质量指标值X 服从正态分布X ~(60,142)N ,又11.92σ≈,则(6011.926011.92)(48.0871.92)0.6826P X P X -<<+=<<=,1(48.0871.92)10.6826(71.92)0.15870.1822P X P X -<<->===<,故不能够认为该分厂生产的产品中,质量指标值不低于71.92的产品至少占全部产品的18%. 19.证明:(1)连结11B C 、1BC ,设11BC B C M =,∵11BB CC ∥, ∴四边形11BB C C 为平行四边形, ∴M 为1BC 的中点,在1ABC △中,O 为AB 的中点, ∴1MO AC ∥,又1AC ⊄平面1B CD ,MO ⊂平面1B CD , ∴11AC COB ∥平面.解:(2)如图,∵AB 是圆O 的直径, ∴AC BC ⊥,∵1C C ABC ⊥平面, ∴11,C C AC C C BC ⊥⊥, 又60BAC ︒∠=,2AB =, ∴1AC =,BC 13AA =,以点C 为坐标原点,分别以CA ,CB ,1OC 为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0)C ,(1,0,0)A,B ,10,(0,3)C,1(2O,1(B ,在圆O 上,C ,D 关于直线AB 对称,AOC △为正三角形,且1OA =,∴CD =30ACD ∠=,过点D 作DP x ⊥轴,DQ y ⊥轴,垂足分别为P ,Q ,则3cos 2CP CD ACD =∠=,1sin 2CQ CD ACD =∠==,∴3(2D ,∴3(2CD =,设平面1CDB 的一个法向量(,,)n x y z =,则30330nCD x n CB y z ⎧=+=⎪⎨=+=⎪⎩,取y =(1,3,1)n =-,平面1B BC 的一个法向量(1,0,0)n =, 设二面角1D B C B --的二面角为θ, 则cos ||||5||m mn n θ===.故二面角1D B C B --.20.解:(1)由题意可知:2211221x y a b +=①,2222221x y a b+=②,两式相减得:121212122()()()0)(x x x x y y y y a +-+-+=, 由12x x ≠,则121211222()()()()x x x x y y y a y +-=-+-,由A ,B 在直线21y x =+,则12122y y k x x -==-,A ,B 中点横坐标为13-,则中点的纵坐标为13,∴2213223a -=-,解得:212a =,又0a>, 则a (2)直线AB 的方程为y kx m =+,则2221y kx m x y a =+⎧⎪⎨+=⎪⎩,222222(12)1)(0a k x kma x a m +-++=, 0∆>,即222222(241)(1)()0kma a m a k +-->,则2221m a k +<,由韦达定理可知:则2122221kma x x a k +=-+,221222(1)1a m x x a k-=+, 由m n ⊥,则0m n =,212120x x a y y +=,从而222221212(10)()a k x x kma x x a m ++++=,代入并整理得22221m a k =+,由原点O 到直线AB 的距离d =,则OAB △的面积212211||1||221S d AB k x x k ==+-+,121||()2m x x =+221(1||2kma a m =-+ 222||(11m a m a k =-+ 22||2m a m m =, a =,21.解:(1)设切点(,())Q t f t ,由直线32()231f x x x -=+,求导,2()66f x x x '=-, 则()f x 在Q 点的切线的斜率266k t t =-,则切线方程为2()(66)()y f t t t x t -=--,由切线过点(,4)P a -,则24()(66)()f t t t a t ---=-,整理得:32436)650(t a t at ++-=-,又由曲线恰有两条切线,即方程恰有两个不同的解,令32(()436)65H t t a t at =++--,求导2()126(612)6H t t a t a '=++-,令()0H t '=,解得:12t =,2t =, 当12a =时,()0H t '≥,函数()H t 在R 上单调递增,没有两个零点,不符合题意, 当12a >时,且1(,)(,)2t a ∈-∞+∞时,()0H t '>,当1(,)2t a ∈时,()0H t '<,∴()H t 在1(,)2-∞,(,)a +∞单调递增,在1(,)2a 单调递减;要使()H t 在R 上有两个零点,则1()02()H H a a ⎧=⎪⎨⎪<⎩,或1()02()0H H a ⎧>⎪⎨⎪=⎩,由113337()35()224222H a a a =--+-=-, 322(()436)65H a a a a a =++--2(1)(255)a a a -=-++ 2515(1)[2()8]4a a =-+-+,∴70210a a ⎧-=⎪⎨⎪+>⎩或70210a a ⎧->⎪⎨⎪+=⎩, 则72a =, 当12a <时,同理可知:10702a a +=⎧⎪⎨-<⎪⎩或10702a a +<⎧⎪⎨-=⎪⎩,则1a =-, 综上可知:1a =-或72a =; (2)322()231(1)21)(f x x x xx -=+=+﹣, ∴()f x 在(0,)+∞上只有一个零点1x =,1()g x k x'=-,当0k ≤时,()0g x '<,则()g x 在(0,)+∞上单调递减,()g x 在(0,)+∞上至多只有一个零点,故0k ≤不符合题意;当0k >,1()0g x k x '=-=,解得:1x k=, ∴当1(0,)x k ∈时,()0g x '<,当1(,)x k ∈+∞时,()0g x '>,∴()g x 在1(0,)k 上单调递减,在1(,)k+∞上单调递增;∴()g x 有最小值1()2ln g k k=+,①当21e k =时,1()0g k=,()g x 只有一个零点,不满题意;②当21ek >时,1()0g k >,()g x 在(0,)+∞上无零点,不满足题意; ③当21ek <时,1()0g k <,由1()(1)(2ln )(1)0g g k k k =++<,∴()g x 在1(1,)k 上有一个零点,设为1x ,若11()(e )0k g g k<,()g x 在1(,)k +∞上有一个零点,设为2x ,易证1211e ()e k k k>>,下面证明:1(e )0k g >,令2()e x F x x =-,(2)x >,求导()e 2x F x x '=-,2()e 2e 20x F x -=>-''>,∴()(2,)F x +∞在上单调递增;∴2()(2)e 40F x F ->=>,∴22e 0x ->,即22e x >,(2)x >, 现在去1e k x =,由20e k -<<, ∴2e 2x >>,则111(e )e 1lne k k k g k =+-,11e 1kk k =+-, 由21e 2k >>,则121e k k >, ∴1211(e )110k g k k k>+-=>,∴12()()0g x g x ==,∴由(1)10g k =+>,1()0f x >,2()0f x >,故(1)(1)0h f >=,11()()0h x g x ==,22()()0h x g x ==, 故()h x 有三个零点,22.解:(1)∵圆C 的方程为22(1)(1)2x y -+-=,∴圆C的参数方程为11x y αα⎧=⎪⎨=+⎪⎩(α为参数),∵直线l的极坐标方程为πsin()4ρθ+=∴)ρθθ+=sin cos 40ρθρθ+-=, ∴直线l 的普通方程是40x y +-=; (2)由题意设(1,1)P αα+,∴点P 到直线l距离dπ|2sin()2|α+-=πsin()1|4α=+-,∵π1sin()14α-≤+≤,∴π0sin()1|4α≤+-≤即0d ≤≤,[选修4—5不等式选讲]23.解:(1)62,2()4||22,242|6|,4x x f x x x x x x -≤⎧⎪=-+-=<<⎨⎪-≥⎩.∴当2x ≤时,()2f x >,622x ->,解得2x <; 当24x <<时,()2f x >得22>,无解; 当4x ≥时,()2f x >得262x ->,解得4x >. 所以不等式()2f x >的解集为(,2)(4,)-∞+∞.(2))∵4||22||x x -+-≥, ∴2M =,∵2x a M +≥的解集包含[0,1], ∴022a +≥,122a +≥,a≥.∴1+∞.故a的取值范围为:[1,)福建省莆田市2017年高考一模数学(理科)试卷解析一、选择题1.【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣1)(x﹣5)≤0,解得:1≤x≤5,即A=[1,5],由B中y=log2(x﹣2),得到x﹣2>0,解得:x>2,即B=(2,+∞),则A∩B=(2,5],故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的意义即可得出.【解答】解:∵(1﹣i)z=3+i,∴(1+i)(1﹣i)z=(3+i)(1+i),化为:2z=2+4i,即z=1+2i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的意义,考查了推理能力与计算能力,属于基础题.3.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义,结合直线平行的性质及判定分别进行判断即可.【解答】解:l1∥l2”得到:a2﹣1=0,解得:a=﹣1或a=1,所以应是充分不必要条件.故选:A【点评】本题考查了充分必要条件,考查直线平行的充要条件,是一道基础题.4.【考点】函数奇偶性的性质.【分析】依题意首先把x<0时,函数的解析式求出.再把x=﹣2代入函数式得出答案.【解答】解:设x<0,因为函数f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f[﹣(﹣x)]=﹣2﹣(﹣x)∴当x<0时,函数的解析式为f(x)=﹣2﹣x∴f(﹣2)=﹣2﹣(﹣2)=﹣4故选B.【点评】本题主要考查函数的奇偶性问题.此类问题通常先求出函数的解析式.5.【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的S,a的值,当a=40时,不满足条件a≤32,退出循环,输出S的值为81,即可得解.【解答】解:模拟程序的运行,可得a=1,S=0,n=1满足条件a≤32,执行循环体,S=1,n=2,a=8满足条件a≤32,执行循环体,S=9,n=3,a=16满足条件a≤32,执行循环体,S=25,n=4,a=24满足条件a≤32,执行循环体,S=49,n=5,a=32满足条件a≤32,执行循环体,S=81,n=6,a=40不满足条件a≤32,退出循环,输出S的值为81.故选:B.【点评】本题考查了求程序框图运行结果的问题,解题时应模拟程序框图运行过程,总结规律,得出结论,属于基础题.6.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=24=16,再求出正面不连续出现包含的基本事件个数m=1+=8,由此能求出抛掷一枚均匀的硬币4次,正面不连续出现的概率.【解答】解:抛掷一枚均匀的硬币4次,基本事件总数n=24=16,正面不连续出现包含的基本事件个数m=1+=8,∴抛掷一枚均匀的硬币4次,正面不连续出现的概率:p==.故选:B.【点评】本题考查概率的求法,以及化简整理的运算能力,属于基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.7.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为:多面体DE﹣ABC.CE⊥底面ABC,DA⊥底面ABC.ADEC为矩形.△ABC 为等腰直角三角形,BC=2,AC⊥AB.连接AE,该几何体的体积V=V E﹣ABC+V B﹣ADE,即可得出.【解答】解:如图所示,该几何体为:多面体DE﹣ABC.CE⊥底面ABC,DA⊥底面ABC.ADEC为矩形.△ABC为等腰直角三角形,BC=2,AC⊥AB.连接AE,该几何体的体积V=V E﹣ABC+V B﹣ADE=+=.故选:B.【点评】本题考查了三棱锥的三视图与体积计算公式,考查了推理能力与计算能力,属于中档题.8.【考点】正弦函数的单调性.【分析】由题意可得+=42,求得ω的值,再根据对称中心求得φ的值,可得函数f(x)的解析式,利用正弦函数的单调性,求得f(x)的单调递增区间.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,∴+=42,即12+=16,求得ω=.再根据•+φ=kπ,k∈Z,可得φ=﹣,∴f(x)=sin(x﹣).令2kπ﹣≤x﹣≤2kπ+,求得4kπ﹣π≤x≤4kπ+π,故f(x)的单调递增区间为(4kπ﹣π,4kπ+π),k∈Z,故选:D.【点评】本题主要考查正弦函数的周期性、最值以及单调性,属于中档题.9.【考点】双曲线的简单性质.【分析】由题意可知:四边形PFQF1为平行四边,利用双曲线的定义及性质,求得∠OPF1=90°,在△QPF1中,利用勾股定理即可求得a和b的关系,根据双曲线的离心率公式即可求得离心率e.【解答】解:由题意可知:双曲线的右焦点F1,由P关于原点的对称点为Q,则丨OP丨=丨OQ丨,∴四边形PFQF1为平行四边,则丨PF1丨=丨FQ丨,丨PF丨=丨QF1丨,由|PF|=3|FQ|,根据椭圆的定义丨PF丨﹣丨PF1丨=2a,∴丨PF1丨=a,|OP|=b,丨OF1丨=c,∴∠OPF1=90°,在△QPF1中,丨PQ丨=2b,丨QF1丨=3a,丨PF1丨=a,∴则(2b)2+a2=(3a)2,整理得:b2=2a2,则双曲线的离心率e===,故选B.【点评】本题考查双曲线的简单几何性质简单几何性质,考查数形结合思想,属于中档题.10.【考点】平面向量数量积的运算.【分析】如图建立平面直角坐标系,设AD=m,则AD=,由BE⊥DC,∴,⇒m 即可.【解答】解:如图建立平面直角坐标系,设AD=m,则AD=,∴A(0,),D(m,),C(2m,0),,=()'∵BE⊥DC,∴,⇒m=.∴,,则的值为﹣×+02×=﹣2.故选:A.【点评】本题考查了,向量的坐标运算,属于基础题.11.【考点】L!:由三视图求面积、体积.【分析】由已知得到几何体为平放的三棱柱,根据图中数据计算表面积.【解答】解:由已知得到几何体如图:三棱柱的表面积为=3+2;故答案为:3+2【考点】直线与抛物线的位置关系.【分析】先根据抛物线方程求出p的值,再由抛物线的性质求出AB的垂直平分线方程,可得到答案.【解答】解:∵抛物线y2=4x,∴p=2,设经过点F的直线y=k(x﹣1)与抛物线相交于A、B两点,A(x1,y1),B(x2,y2),直线y=k(x﹣1)代入y2=4x,整理可得k2x2﹣(2k2+4)x+k2=0,∴x1+x2=2+利用抛物线定义,AB中点横坐标为x1+x2=|AB|﹣p=6﹣2=4.AB中点横坐标为2∴2+=4,∴k=±AB中点纵坐标为k,AB的垂直平分线方程为y﹣k=﹣(x﹣2),令y=0,可得x=4,∴|FM|=3.故选:D.【点评】本题主要考查了抛物线的性质.属中档题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用,确定AB的垂直平分线方程是关键.12.【考点】导数在最大值、最小值问题中的应用.【分析】构造函数:g(x)=,g(0)==﹣1.对任意x∈R,都有f(x)>f'(x)+1,可得g′(x)=<0,函数g(x)在R单调递减,利用其单调性即可得出.【解答】解:构造函数:g(x)=,g(0)==﹣1.∵对任意x∈R,都有f(x)>f'(x)+1,∴g′(x)==<0,∴函数g(x)在R单调递减,由f(x)+e x<1化为:g(x)=<﹣1=g(0),∴x>0.∴使得f(x)+e x<1成立的x的取值范围为(0,+∞).故选:A.【点评】本题考查了构造函数法、利用导数研究函数的单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于难题.二、填空题13.【考点】二项式定理的应用.【分析】把(x+y)5 按照二项式定理展开,可得(x﹣2y)(x+y)5的展开式中x3y3的系数.【解答】解:根据根据(x+y)5 =(•x5+•x4y+•x3y2+x2y3+•xy4+•y5),可得(2x﹣1)(x+y)5的展开式中,x3y3的系数为2=20,故答案为:20.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x﹣2y为,由图可知,当直线过点A(2,0)时,直线在y轴上的截距最小,z有最大值为2.故答案为:2.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【考点】余弦定理.【分析】由已知整理可得:b2+c2﹣a2=bc,由余弦定理可得cosA=,结合范围A∈(0,π),可求A,由三角形内角和定理可求C=﹣B,利用正弦定理,三角函数恒等变换的应用化简可得=2sin(B+),由B∈(0,),利用正弦函数的性质可求sin(B+)∈(,1],即可得解.【解答】解:∵=,可得:(a﹣b+c)(a+b﹣c)=bc,∴整理可得:b2+c2﹣a2=bc,∴由余弦定理可得:cosA===,∵A∈(0,π),∴A=,可得:C=﹣B,∴====2sin(B+),∵B∈(0,),B+∈(,),可得:sin(B+)∈(,1],∴=2sin(B+)∈(1,2].故答案为:(1,2].【点评】本题主要考查了余弦定理,三角形内角和定理,正弦定理,三角函数恒等变换的应用,正弦函数的性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.【考点】直线与平面所成的角.【分析】求出球半径为,根据图形找出直线C1M与平面ABD所成角,解三角形即可.【解答】解:如图所示,设O为球心,E、F分别为△ABD、△C1BD的外接圆圆心,则有OE⊥面ABD,OF⊥面C1BD,∵菱形ABCD中,∠BAD=,AB=3∴△ABD、△C1BD为等边△,故E、F分别为△ABD、△C1BD的中心.∵球O的表面积为16π,∴球半径为2.在直角△AOM中,OA=2,AE=,⇒QE=1.tan∠OME=,∵C1M⊥DB,AM⊥DB,∴DB⊥面AMC1,∴∠C1MA(或其补角)就是直线C1M与平面ABD所成角.∠C1MA=2∠OME,tan∠C1MA=tan(2∠OME)=,sin∠C1MA=,直线C1M与平面ABD所成角的正弦值为,故答案为:.【点评】本题考查了棱锥与外接球的关系,找出线面角是解题关键.属于中档题.三、解答题17.【考点】数列的求和.【分析】(1)由已知数列的前n项和求得a n=S n﹣S n﹣1=2n+k﹣1(n≥2),再求得首项,验证首项成立可得数列通项公式,结合a1,a4,a13成等比数列求得k,则通项公式可求;(2)把(1)中求得的通项公式代入,整理后利用裂项相消法求得数列{b n}的前n 项和为T n,放缩可得.【点评】本题考查数列递推式,考查了由数列的前n项和求数列的通项公式,训练了裂项相消法求数列的前n项和,属中档题.18.【考点】独立性检验.【分析】(1)根据统计数据填写2×2列联表,计算K2,对照临界值表得出结论;(2)计算甲厂、乙厂优秀率,得出甲厂优秀品率高,计算甲厂的平均值;(3)根据(2)知甲厂产品的质量指标值X~N(60,142),计算对应的概率值即可.【点评】本题主要考查了独立性检验与正态分布的特点及概率求解问题,也考查了推理与运算能力.19.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)连结B1C1、BC1,设BC1∩B1C=M,推导出四边形BB1C1C为平行四边形,从而MO∥AC1,由此能证明AC1∥平面COB1.(2)以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣B1C﹣B的二面角的余弦值.【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系及二面角、空间向量等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力;考查了化归与转化及数形结合的数学思想.20.【考点】直线与椭圆的位置关系.【分析】(1)利用点差法求得直线的斜率公式,k==2,根据中点坐标公式,即可求得a的值;(2)设直线y=kx+m代入椭圆方程,利用韦达定理及由向量数量积的坐标运算,根据弦长公式,点到直线的距离公式,根据三角的面积公式即可求得△OAB的面积为定值.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆位置关系,考查韦达定理,弦长公式,点到直线的距离公式,考查向量的坐标运算,考查计算能力,属于中档题.21.【考点】利用导数研究函数的极值;根的存在性及根的个数判断;利用导数研究曲线上某点切线方程.【分析】(1)求导,利用导数求得f(x)在Q的切线方程,构造辅助函数,利用导数与函数单调性的关系,分类讨论即可求得a的值;(2)根据函数定义,求h(x),根据函数的单调性及函数零点的判断,采用分类讨论法,求得函数h(x)零点的个数,即可求得h(x)恰有三个零点时,实数k的取值范围.【点评】本题考查导数及其应用等基础知识,考查抽象概括能力、推理能力句函数和方程思想、分类和整合思想,是一道综合题,属于难题.22.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由题意求出圆C的参数方程和直线l的普通方程;(2)由题意设P(,),由点到直线的距离公式表示出点P到直线l距离,利用两角和的正弦公式化简后,由正弦函数的值域求出答案.【点评】本题考查参数方程、极坐标方程与普通方程法转化,点到直线的距离公式,两角和的正弦公式,以及正弦函数的值域等,考查化归与转化思想,化简、计算能力.23.【考点】绝对值不等式的解法;函数的最值及其几何意义.【分析】(1)f(x)=|x﹣4|+|x﹣2|=.分x≤2时,;2<x<4,x≥4,解f(x)>2.(2))由|x﹣4|+|x﹣2|≥2,得M=2,由2x+a≥M的解集包含[0,1],得20+a≥2,21+a≥2.【点评】本题考查了绝对值不等式的解法,及恒成立问题,属于中档题.。
2017年福建省莆田市普通高中毕业班质量检查理科数学试
莆田市高中毕业班教学质量检查试卷数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用O.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x1,x2,…,x n的标准差锥体体积公式1ShV=3其中x为样本平均数其中S为底面面积,h为高柱体体积公式 球的表面积、体积公式V =Sh 24S R =π,343V R =π其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填涂在答题卡相应位置.1.下列函数中,为奇函数的是( )A .y=x+1B .y=x 2C .y=2xD .y=x|x|2.已知R ∈a ,复数)1)(2(i i a z +-=(i 为虚数单位)在复平面内对应的点为M ,则“0=a ”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.若a >0,b >0,a+b=1,则b a y 11+=的最小值是( )A .2B .3C .4D .54.函数)22sin(π+=x y 图象的一条对称轴方程为( ) A .x =-π2 B .4π=-x C .x =π8 D .x =π45.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A .12 B .1 D6.阅读右图所示的程序框图,运行相应的程序,若输出的S 的值等于126,则判断框中的①可以是( )A .i>4?B .i>5?C .i>6?D .i>7?7.若直线y=kx -k 交抛物线x y 42=于A ,B 两点,且线段AB 中点到y 轴的距离为3,则AB =( )A .12B .10C .8D .68.学校将5个参加知识竞赛的名额全部分配给高一年段的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配名额或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种9.常用以下方法求函数)()]([x g x f y =的导数:先两边同取以e 为底的对数(e≈2.71828…,为自然对数的底数)得ln ()ln ()y g x f x =,再两边同时求导,得'1'()ln ()()[ln ()]'⋅=+⋅y g x f x g x f x y,即()'[()]{'()ln ()()[ln ()]'}g x y f x g x f x g x f x =+⋅.运用此方法可以求函数()x h x x =(x>0)的导函数.据此可以判断下列各函数值中最小的是 ( )A .1()3h B .1()h e C .1()2h D .2()h e 10.如图,ABC ∆所在平面上的点*()N ∈n P n 均满足∆n P AB 与∆n P AC 的面积比为3;1,1(21)3+=-+ n n n n n x P A P B x P C (其中,{}n x 是首项为1的正项数列),则5x 等于( )A .65B .63C .33D .31第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填写在答题卡的相应位置.11.集合{}31<<-=x x A ,{}1=<B x x ,则=⋂B A ________.12.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如下表:根据上表数据可得y 与x 之间的线性回归方程^^7.0a x y +=,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.13.向区域201,01,⎧≤≤⎪≤≤⎨⎪≥⎩x y y x 内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.已知圆1:22=+y x O 和双曲线)0,0(1:2222>>=-b a by a x C .若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O外切且顶点都在双曲线C 上的菱形ABCD ,则=-2211b a ___________. 15.定义:[]()R ∈x x 表示不超过x 的最大整数.例如[]15.1=,[]0.51-=-.给出下列结论:①函数[]x y sin =是奇函数;②函数[]x y sin =是周期为π2的周期函数;③函数[]sin cos =-y x x 不存在零点;④函数[][]x x y cos sin +=的值域是{}1,0,1,2--.其中正确的是_____________.(填上所有正确命题的编号)三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 把答案填在答题卡相应位置.16.本小题满分13分已知数列{a n }的首项为1,前n 项和S n1(2)n =≥. (Ⅰ)求S n 与数列{a n }的通项公式; (Ⅱ)设11n n n b a a +=(n∈N *),求使不等式121225n b b b +++> 成立的最小正整数n .17.本小题满分13分 已知函数)0(21cos cos sin 3)(2>+-=ωωωωx x x x f 经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间,23ππ⎡⎤-⎢⎥⎣⎦上的值域;(Ⅱ)∆ABC 的内角,,A B C 所对的边分别为c b a ,,,已知()1,3f A π+=4+=b c ,a =ABC ∆的面积.18.本小题满分13分甲、乙两位选手为为备战我市即将举办的“推广妈祖文化·印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲 83 81 93 79 78 84 88 94乙 87 89 89 77 74 78 88 98(I )依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(II )本次竞赛设置A 、B 两问题,规定:问题A 的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B 的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A ,B 成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I )中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.19.本小题满分13分如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于︒180)到ABEF 的位置.(Ⅰ)求证:CE//平面ADF ;(Ⅱ)若K 为线段BE 上异于B,E 的点,CE=22.设直线AK 与平面BDF 所成角为ϕ,当︒︒≤≤4530ϕ时,求BK 的取值范围.20.本小题满分13分如图,椭圆C :22221(0)x y a b a b +=>>的离心率e =,且椭圆C 的首项为的短轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,M ,N 椭圆C 上的三个动点.(i )若直线MN 过点D (0,12-),且P 点是椭圆C 的上顶点,求△PMN 面积的最大值;(ii )试探究:是否存在△PMN 是以O 为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.21.本小题满分14分已知函数f(x)=lnx+12ax 2+b (a ,b∈R). (Ⅰ)若曲线y=f(x)在x=1处的切线为y=-1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f(x)在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于0()f x '?若存在,给予证明;若不存在,说明理由.莆田市高中毕业班教学质量检查试卷理科数学试题参考解答及评分标准一、选择题(本大题共10小题,每小题5分,共50分)1.D 2.A 3.B 4.A 5.B6.C 7.C 8.A 9.B 10.D二、填空题(本大题共5小题,每小题4分,共20分)14.115.②③④11.{}11<<x12.7.5 13.3-x4三、解答题(本大题共6小题,共80分)解答应写出文字说明、证明过程或演算步骤.16.本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想.满分13分.解:n=≥,1(2)是首项为1,公差为1的等差数列,………1分所以-1)1=n,……………2分从而S n=n2.…………………3分当n=1时,a1=S1=1,当n>1时,a n =S n -S n -1=n 2-(n -1)2=2n -1.因为11a =也符合上式,所以a n =2n -1.…………………6分 (Ⅱ)由(Ⅰ)知1111()(21)(21)22121n b n n n n ==--+-+,……………8分 所以1211111111(1)()()2323522121n b b b n n +++=-+-++--+ 11(1)22121n n n =-=++,……………10分 由122125n n >+,解得n>12.………………12分 所以使不等式成立的最小正整数为13.……………13分17.本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想.满分13分.解:(Ⅰ)①处应填入6π.………1 分1cos 21()222x f x x ωω+=-+………3分12cos 2sin(2)226x x x πωωω=-=-.………4分因为T=522()233πππ-=,所以222ππω=,12ω=,即()sin()6f x x π=-.………5分 因为,23x ππ⎡⎤∈-⎢⎥⎣⎦,所以2366x πππ-≤-≤,所以11sin()62x π-≤-≤, 从而得到)(x f 的值域为11,2⎡⎤-⎢⎥⎣⎦.………7 分 (Ⅱ)因为()sin()136f A A ππ+=+=,又0,A π<<所以7666A πππ<+<, 得62A ππ+=,3A π=.………9分由余弦定理得2222cos a b c bc A =+-2()2cos 3b c bc bc π=+--2()3b c bc =+-,即2243bc =-,所以3bc =. (11)分所以 ABC ∆的面积11sin 322==⨯=S bc A .………13 分18.本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.满分13分.解:(I )记甲、乙两位选手近8次的训练的平均成绩分别为x 甲、x 乙,方差分别为2s 甲、2s 乙. 8381937978848894858+++++++==x 甲,8998777487787988858+++++++==x 乙. (2)分222222222165[(8385)(8185)(9385)(7985)(7885)(8485)(8885)(9485)]82=-+-+-+-+-+-+-+-=s 甲,2222222221[(8985)(9885)(7785)(7485)(8785)(7885)(8985)(8885)]568=-+-+-+-+-+-+-+-=s 乙. ………………4分因为x x =甲乙,22s s <甲乙,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.………………5分(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B成功”,则P(C)=34, P(D)=14,且事件C与事件D相互独立.………………6分记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P(C)=14,P(ξ=100)=P(CD)=3394416⨯=,P(ξ=400)=P(CD)=3134416⨯=.即ξ的分布列为:所以甲按AB顺序获得奖品价值的数学期望1935250100400416164Eξ=⨯+⨯+⨯=.………………9分记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P(D)=34,P(η=300)=P(DC)=1114416⨯=,P(η=400)=P(DC)=3134416⨯=,即η的分布列为:所以甲按BA顺序获得奖品价值的数学期望3133750300400416164Eη=⨯+⨯+⨯=.………………12分因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.………………13分19.本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.满分13分.(Ⅰ)证明:正方形ABCD 中,CD //BA ,正方形ABEF 中,EF //BA .…………2分∴EF //CD ,∴四边形EFDC 为平行四边形,∴CE//DF . (3)分又DF ⊂平面ADF ,CE ⊄平面ADF ,∴CE//平面ADF . …………5分(Ⅱ)解: BE=BC=2,CE=22,∴222BE BC CE +=,∴∆BCE 为直角三角形,BE ⊥BC ,……………6分又BE ⊥BA ,BC ⋂BA=B ,BC 、BA ⊂平面ABCD ,∴BE ⊥平面ABCD . ……………7分 以B为原点, BC 、 BA 、BE 的方向分别为x 轴、y轴、z 轴的正方向,建立空间直角坐标系,则B (0,0,0),F (0,2,2),A (0,2,0),)0,2,2(=BD ,)2,2,0(=BF . 设K (0,0,m ),平面BDF 的一个法向量为),,(z y x n =. 由0=⋅,0=⋅,得220,220,+=⎧⎨+=⎩x y y z 可取)1,1,1(-=,............ (9)分又),2,0(m AK -=,于是sin =ϕ=2432mm +⋅+,︒︒≤≤4530ϕ,∴22sin 21≤≤ϕ,即⎧⎪⎨⎪⎩…………11分结合20<<m ,解得3240-≤<m ,即BK 的取值范围为(0,324-]............. (13)分20.本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想.满分14分.解:(Ⅰ)由题意得22222,,⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩c a b a b c 解得a=2,b=1,…………………………………3分 所以椭圆方程为2214x y +=.………………………………………………………………3分(Ⅱ)(i )解法一:由已知,直线MN 的斜率存在, 设直线MN 方程为y=kx -12,M (x 1,y 1),N (x 2,y 2).由221,41,2⎧+=⎪⎪⎨⎪=-⎪⎩x y y kx 得(1+4k 2)x2-4kx -3=0,所以12122243,1414k x x x x k k -+==++,又3||2=PD .……5分所以S△PMN=12|PD|·|x 1-x 2|= (6)分==.…………………………………7分 令t=t22316t k -= 所以S△PMN =223661312(14)16==-+++⋅t t t t t t ,………………………………………………8分 令h(t)=1t t +,t ∈+∞),则22211'()1t h t t t-=-=>0,所以h(t)在+∞)单调递增, 则t=k=0时,h(t)的最小值,为, 所以△PMN面积的最大值为2.……………………9分解法二:由已知,直线MN 的斜率存在,设直线MN 方程为y=kx -12,M (x 1,y 1),N (x 2,y 2).由221,41,2⎧+=⎪⎪⎨⎪=-⎪⎩x y y kx 得(1+4k 2)x2-4kx -3=0,所以12122243,1414k x x x x k k -+==++.…………………5分所以|MN|== 点P (0,1)到直线MN 的距离=.………6分 所以S △PMN =12|MN|·=.…………………………………7分以下同解法一.(ii )假设存在△PMN 是以O 为中心的等边三角形. (1)当P 在y 轴上时,P 的坐标为(0,1),则M ,N 关于y 轴对称,MN 的中点Q 在y 轴上. 又O为△PMN的中心,所以2PO OQ=,可知111(0,),(),)222Q M N ---.从而|MN|=|PM|=2,|MN|≠|PM|,与△PMN 为等边三角形矛盾.(2)当P 在x 轴上时,同理可知,|MN|≠|PM|,与△PMN 为等边三角形矛盾.……………10分(3)当P 不在坐标轴时,设P (x 0,y 0),MN 的中点为Q ,则k OP =00y x ,又O为∆PMN 的中心,则2PO OQ =,可知00(,)22--x y Q .设M (x 1,y 1),N (x 2,y 2),则1202+==-Q x x x x ,1202+==-Q y y y y ,又x 12+4y 12=4,x 22+4y 22=4,两式相减得k MN =01212121212120111444-++=-=-⋅=-⋅-++xy y x x x x x x y y y y y ,……11分从而k MN =0014-⋅x y .……12分所以k OP ·k MN =00y x ·(0014x y -⋅)=14-≠ -1,所以OP 与MN 不垂直,与等边△PMN 矛盾.……13分 综上所述,不存在△PMN 是以O 为中心的等边三角形.………………………14分21.本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.满分14分.解:(Ⅰ)由已知得1(1)1,2(1)10,f a b f a ⎧=+=-⎪⎨⎪'=+=⎩解得1,1.2a b =-⎧⎪⎨=-⎪⎩…………… 2分此时211()ln 22f x x x =--,1(1)(1)()x x f x x xx-+'=-=-(x>0).令()0f x '=,得1x =,f(x),()f x '的变化情况如下表:所以函数f(x)的增区间为(0,1),减区间为(1,+∞).……………… 4分 (Ⅱ)211()ax f x ax x x+'=+=(x>0).(1)当a≥0时,()0f x '>恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.………5分(2)当a<0时,令()0f x '=,得x =f(x),()f x '的变化情况如下表:所以函数f(x)的增区间为(0,,减区间为(,+∞).……………… 7分要使函数f(x)在区间(m ,+∞)上不单调,须且只须,即210a m -<<. 所以对任意给定的正数m ,只须取满足210a m -<<的实数a ,就能使得函数f(x)在区间(m ,+∞)上不单调.…… 8分 (Ⅲ)存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于0()f x '. (9)分证明如下:令g(x)=lnx -x+1(x>0),则1()1g x x'=-, 易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x-1. (*)……… 10分 由21021()()()f x f x f x x x -'=-,得21210210ln ln 11()2x x a x x ax x x x -++=+-.……………… 11分令211()()2p x a x x ax =+-,2121ln ln 1()x x q x x x x-=--,则p(x),q(x)在区间[x 1,x 2]上单调递增. 且12112111()()()022p x a x x ax a x x =+-=-<,22121211()()()022p x a x x ax a x x =+-=->, 结合(*)式可得,2221111211211211ln1ln ln 111()0x x x x x x q x x x x x x x x x x --=-=-<-=---,1121222212212212ln(1)ln ln 111()0x x x x x x q x x x x x x x x x x ----=-=->-=---.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x 1,x 2]上单调递增,且h(x 1)<0,h(x 2)>0,…… 13分 所以函数h(x)在区间(x 1,x 2)上存在唯一的零点x 0, 即2121021ln ln 11()2x x a x x ax x x x -++=--成立,从而命题成立.…………… 14分(注:在(Ⅰ)中,未计算b 的值不扣分.)。
2017年福建省高考数学试卷与解析PDF(理科)(全国新课标ⅰ)
2017年福建省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年福建省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p 1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
福建省莆田市高考数学一模试卷(理科)
福建省莆田市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知x,y满足条件则2x+4y的最小值为()A . 6B . 12C . -6D . -122. (2分)(2017·衡水模拟) 设p:()x<1,q:log2x<0,则p是q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分)(2017·衡水模拟) 执行如图程序框图,则输出结果为()A . 5B . 4C . 3D . 24. (2分)(2017·山东模拟) 现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如图:则按照从左到右图象对应的函数序号安排正确的一组是()A . ①④③②B . ③④②①C . ④①②③D . ①④②③5. (2分)(2017·衡水模拟) 已知sin(α+ )+sinα=﹣,﹣<α<0,则cos(α+ )等于()A . ﹣B . ﹣C .D .6. (2分)(2017·衡水模拟) 某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .7. (2分)(2017·衡水模拟) 已知F1、F2分别为双曲线﹣ =1(a>0,b>0)的左、右焦点.过F2作双曲线的渐近线的垂线,垂足为P,则|PF1|2﹣|PF2|2=()A . 4a2B . 4b2C . 3a2+b2D . a2+3b28. (2分)(2017·衡水模拟) 已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A .B . πC . 2πD .9. (2分)(2017·衡水模拟) 已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是()A . 若m∥α,α∩β=n,则m∥nB . 若m⊥α,m⊥n,则n∥αC . 若m⊥α,n⊥β,α⊥β,则m⊥nD . 若α⊥β,α∩β=n,m⊥n,则m⊥β10. (2分)(2017·衡水模拟) 在△ABC中,内角A,B,C所对的边分别为a,b,c,A= ,b2﹣a2= ,则tanC=()A . 2B . ﹣2C .D . ﹣11. (2分)(2017·衡水模拟) 设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点, ++ = ,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3 ,则S12+S22+S32=()A . 2B . 3C . 6D . 912. (2分)(2017·衡水模拟) 定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足,,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是()A .B . ()C . (,1)D . (,1)二、填空题 (共4题;共4分)13. (1分)已知x、y的取值如表:x0134y 2.2 4.3 4.8 6.7若x、y具有线性相关关系,且回归方程为 =0.95x+a,则a的值为________.14. (1分)(2017·武邑模拟) 设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.15. (1分)(2017·衡水模拟) 如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足(m,n均为正实数),则的最小值为________.16. (1分)(2017·衡水模拟) 已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是________.三、解答题 (共5题;共40分)17. (5分)(2017·漳州模拟) 已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn , b1=1,bn+1=3Sn+1.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若数列{cn}满足,n∈N* ,求c1+c2+…+c2017的值.18. (5分)(2017·衡水模拟) 如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).(Ⅰ)求证:PB⊥DE;(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.19. (10分)(2017·衡水模拟) 4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X)附:K2= n=a+b+c+dP(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.82820. (15分)(2017·衡水模拟) 已知两动圆F1:(x+ )2+y2=r2和F2:(x﹣)2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B 满足:• =0.(1)求曲线C的方程;(2)证明直线AB恒经过一定点,并求此定点的坐标;(3)求△ABM面积S的最大值.21. (5分)(2017·衡水模拟) 设函数f(x)= ﹣ax,e为自然对数的底数(Ⅰ)若函数f(x)的图象在点(e2 , f(e2))处的切线方程为 3x+4y﹣e2=0,求实数a,b的值;(Ⅱ)当b=1时,若存在 x1 ,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求实数a的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共40分) 17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、。
福建省莆田第一中学2017届高三考前模拟(最后一卷)数学(理)试题(解析版)
试卷满分 150 分
考试时间 120 分钟
一、选择题(本大题共有 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有
一项是符合题意)
1.已知集合 A={x N|x£1},B={x|x2-x-2£0},则 A B=( )
A. {0,1} B. {-1,0,1} C. [-1,1] D. {1}
【答案】 【解析】
,可得
,即为
,即有
,可得 在 方向上的投影为
,故答案为 .
15.(x+3)(x+1)4 展开式中不含 x2 项的系数之和为________
【答案】42
【解析】
展开式中含 项的系数之和为
,
所有项系数和
为
,所以
展开式中不含 x2 项的系数之和为
案为 .
16.数列{an}的前 n 项和为 Sn,且 S3=1,S4=-3, an+3=2an(nÎN*),则 S2017=______
()
A. 0.75 B. 0.71
【答案】C
C. 0.72
D. 0.3
【解析】
因为这批产品次品率为 ,所以正品率为 ,又因为正品中一等品率为 ,所以
这批产品一等品率为
,从这批产品中任取一件,恰好取到一等品的概率
为.
4.公差不为 0 的等差数列{an}的前 n 项的和为 Sn,若 a6=3a4,且 S10=la4,则l的值为( ) A. 15 B. 21 C. 23 D. 25 【答案】D
【解析】
试题分析:(1)先证明
, 从而
,结合
可得
,进
而可得结论;(2)分别以
2017届福建省莆田市高三第一次模拟考试(一模)试卷 理科综合
莆田市2017届高三高中毕业班3月教学质量检查理科综合试卷可能用到的相对原子质量:H 1 N 14 O 16 Na 23 Al 27 S 32 Cl 35.5 V 51第I卷(共21题,共126分)一、选择题(本题包括13小题。
每小题给出的四个选项中,只有一个选项正确)1.下列有关细胞结构和功能的叙述,正确的是A.核糖体是噬菌体、细菌和酵母菌共有的细胞器B.高等植物细胞之间都通过细胞膜接触来进行信息交流C.癌细胞的恶性增殖和转移与癌细胞膜成分的改变有关D.细胞核是遗传信息库,也是细胞代谢的中心2.下列关于实验中变量的叙述,正确的是A.探究酸碱度对过氧化氢酶活性的影响,过氧化氢分解速率是自变量B.探究植物生长调节剂浓度对插条生根的影响,插条生根数是因变量C.模拟探究细胞大小与物质运输的关系,琼脂块的体积大小是无关变量D.观察植物细胞的质壁分离与复原实验,原生质层位置的变化是无关变量3.关于生物变异与进化的叙述,正确的是A.自然选择使种群基因频率发生定向改变B.用秋水仙素处理单倍体幼苗均能得到纯合子C.基因突变、基因重组与染色体变异为蓝藻进化提供原材料D.转基因抗虫棉实现了苏云金芽孢杆菌与棉花的共同进化4.下列关于人体内环境稳态与调节的叙述,正确的是A.内环境中可发生性激素、神经递质等物质的合成B.胰岛素通过催化葡萄糖的氧化分解降低血糖含量C.在膝跳反射中,兴奋在神经纤维上的传导是双向的D.组织液渗回血浆和渗入淋巴的量相差较大5.下列关于种群、群落和生态系统的叙述,错误的是A.调査作物植株上蚜虫的种群密度可以采用样方法B.维持生态系统的正常功能需要不断得到来自系统外的能量C.群落的演替达到相对稳定阶段后,物种组成不再发生变化D.一般来说,生态系统中营养结构越复杂抵抗力稳定性越高6.某研究发现,与抑癌基因邻近的基因能指导合成一种反义RNA,该反义RNA可以与抑癌基因转录成的mRNA形成杂交分子,从而阻断抑癌基因的表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省莆田市2017届高考数学一模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣6x+5≤0},B={x|y=log2(x﹣2)},则A∩B=()A.(1,2)B.[1,2)C.(2,5]D.[2,5]2.(5分)设复数z满足(1﹣i)z=3+i,则z=()A.1+2i B.2+2i C.2﹣i D.1+i3.(5分)设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=﹣1”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也必要条件4.(5分)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x,则f(﹣2)=()A.B.﹣4C.﹣D.45.(5分)我国古代数学著作《孙子算经》中有如下的问题:“今有方物一束,外周有三十二枚,问积几何?”设每层外周枚数为a,如图是解决该问题的程序框图,则输出的结果为()A.121B.81C.74D.496.(5分)抛掷一枚均匀的硬币4次,正面不连续出现的概率是()A.B.C.D.7.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.2D.8.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是()A.(2k﹣,2k+),k∈Z B.(2kπ﹣π,2kπ+π),k∈ZC.(4k﹣,4k+),k∈Z D.(4kπ﹣π,4kπ+π),k∈Z9.(5分)已知双曲线E:﹣=1(a>0,b>0),点F为E的左焦点,点P为E上位于第一象限内的点,P关于原点的对称点为Q,且满足|PF|=3|FQ|,若|OP|=b,则E的离心率为()A.B.C.2D.10.(5分)在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面积为2,若=,BE⊥DC,则的值为()A.﹣2B.﹣2C.2D.211.(5分)设F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB 的垂直平分线交x轴于点M,若|AB|=6,则|FM|的长为()A.B.C.2D.312.(5分)定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+e x<1成立的x的取值范围为()A.(0,+∞)B.(﹣∞,0)C.(﹣1,+∞)D.(﹣∞,1)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上. 13.(5分)(2x﹣1)(x+y)5的展开式中,x3y3的系数为.14.(5分)若x,y满足约束条件,则z=x﹣2y的最大值为.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若=,则的取值范围是.16.(5分)如图,在菱形ABCD中,M为AC与BD的交点,∠BAD=,AB=3,将△CBD沿BD折起到△C1BD的位置,若点A,B,D,C1都在球O的球面上,且球O的表面积为16π,则直线C1M与平面ABD所成角的正弦值为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知数列{a n}的前n项和,其中k为常数,a1,a4,a13成等比数列.(1)求k的值及数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,证明:.18.(12分)某企业有甲乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[45,75)的为优质品,从两个分厂生产的产品中个随机抽取500件,测量这些产品的该项质量指标值,结果如表:分组[25,35)[35,45)[4,55)[55,65)[65,75)[75,85)[85,95)甲厂频数1040115165120455乙厂频数56011016090705(1)根据以上统计数据完成下面2×2列联表,并回答是否有99%的把握认为:“两个分厂生产的产品的质量有差异”?(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表)(3)经计算,甲分厂的500件产品质量指标值的样本方差s2=142,乙分厂的500件差评质量指标值的样本方差s2=162,可认为优质品率较高的分厂的产品质量指标值X服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,由优质品率较高的厂的抽样数据,能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%?附注:参考数据:≈11.92,≈12.73参考公式:k2=P(μ﹣2σ<x<μ+2σ)=0.9544,P(μ﹣3σ<x<μ+3σ)=0.9974.P(k2≥k)0.050.010.001h 3.841 6.63510.828 19.(12分)如图,在圆柱OO1中,矩形ABB1A1是过OO1的截面CC1是圆柱OO1的母线,AB=2,AA1=3,∠CAB=.(1)证明:AC1∥平面COB1;(2)在圆O所在的平面上,点C关于直线AB的对称点为D,求二面角D﹣B1C﹣B的余弦值.20.(12分)已知曲线E:=1(a>b,a≠1)上两点A(x1,y1),B(x2,y2)(x1≠x2).(1)若点A,B均在直线y=2x+1上,且线段AB中点的横坐标为﹣,求a的值;(2)记,若为坐标原点,试探求△OAB的面积是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)已知函数f(x)=2x3﹣3x2+1,g(x)=kx+1﹣ln x.(1)若过点P(a,﹣4)恰有两条直线与曲线y=f(x)相切,求a的值;(2)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.[选修4-4坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C的方程为(x﹣1)2+(y﹣1)2=2,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的普通方程;(2)设点P为圆C上的任一点,求点P到直线l距离的取值范围.[选修4-5不等式选讲]23.已知函数f(x)=|x﹣4|+|x﹣2|.(1)求不等式f(x)>2的解集;(2)设f(x)的最小值为M,若2x+a≥M的解集包含[0,1],求a的取值范围.参考答案一、选择题1.C【解析】由A中不等式变形得:(x﹣1)(x﹣5)≤0,解得:1≤x≤5,即A=[1,5],由B中y=log2(x﹣2),得到x﹣2>0,解得:x>2,即B=(2,+∞),则A∩B=(2,5],故选:C.2.A【解析】∵(1﹣i)z=3+i,∴(1+i)(1﹣i)z=(3+i)(1+i),化为:2z=2+4i,即z=1+2i.故选:A.3.A【解析】l1∥l2”得到:a2﹣1=0,解得:a=﹣1或a=1,所以应是充分不必要条件.故选:A4.B【解析】设x<0,因为函数f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f[﹣(﹣x)]=﹣2﹣(﹣x)∴当x<0时,函数的解析式为f(x)=﹣2﹣x∴f(﹣2)=﹣2﹣(﹣2)=﹣4故选B.5.B【解析】模拟程序的运行,可得a=1,S=0,n=1满足条件a≤32,执行循环体,S=1,n=2,a=8满足条件a≤32,执行循环体,S=9,n=3,a=16满足条件a≤32,执行循环体,S=25,n=4,a=24满足条件a≤32,执行循环体,S=49,n=5,a=32满足条件a≤32,执行循环体,S=81,n=6,a=40不满足条件a≤32,退出循环,输出S的值为81.故选:B.6.B【解析】抛掷一枚均匀的硬币4次,基本事件总数n=24=16,正面不连续出现包含的基本事件个数m=1+=8,∴抛掷一枚均匀的硬币4次,正面不连续出现的概率:p==.故选:B.7.B【解析】如图所示,该几何体为:多面体DE﹣ABC.CE⊥底面ABC,DA⊥底面ABC.ADEC 为矩形.△ABC为等腰直角三角形,BC=2,AC⊥AB.连接AE,该几何体的体积V=V E﹣ABC+V B﹣ADE=+=.故选:B.8.D【解析】函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,∴+=42,即12+=16,求得ω=.再根据•+φ=kπ,k∈Z,可得φ=﹣,∴f(x)=sin(x﹣).令2kπ﹣≤x﹣≤2kπ+,求得4kπ﹣π≤x≤4kπ+π,故f(x)的单调递增区间为(4kπ﹣π,4kπ+π),k∈Z,故选:D.9.B【解析】由题意可知:双曲线的右焦点F1,由P关于原点的对称点为Q,则丨OP丨=丨OQ丨,∴四边形PFQF1为平行四边,则丨PF1丨=丨FQ丨,丨PF丨=丨QF1丨,由|PF|=3|FQ|,根据椭圆的定义丨PF丨﹣丨PF1丨=2a,∴丨PF1丨=a,|OP|=b,丨OF1丨=c,∴∠OPF1=90°,在△QPF1中,丨PQ丨=2b,丨QF1丨=3a,丨PF1丨=a,∴则(2b)2+a2=(3a)2,整理得:b2=2a2,则双曲线的离心率e===,故选B.10.A【解析】如图建立平面直角坐标系,设AD=m,则AD=,∴A(0,),D(m,),C(2m,0),,=()'∵BE⊥DC,∴,⇒m=.∴,,则的值为﹣×+02×=﹣2.故选:A.11.D【解析】∵抛物线y2=4x,∴p=2,设经过点F的直线y=k(x﹣1)与抛物线相交于A、B两点,A(x1,y1),B(x2,y2),直线y=k(x﹣1)代入y2=4x,整理可得k2x2﹣(2k2+4)x+k2=0,∴x1+x2=2+利用抛物线定义,AB中点横坐标为x1+x2=|AB|﹣p=6﹣2=4.AB中点横坐标为2∴2+=4,∴k=±AB中点纵坐标为k,AB的垂直平分线方程为y﹣k=﹣(x﹣2),令y=0,可得x=4,∴|FM|=3.故选:D.12.A【解析】构造函数:g(x)=,g(0)==﹣1.∵对任意x∈R,都有f(x)>f'(x)+1,∴g′(x)==<0,∴函数g(x)在R单调递减,由f(x)+e x<1化为:g(x)=<﹣1=g(0),∴x>0.∴使得f(x)+e x<1成立的x的取值范围为(0,+∞).故选:A.二、填空题13.20【解析】根据根据(x+y)5 =(•x5+•x4y+•x3y2+x2y3+•xy4+•y5),可得(2x﹣1)(x+y)5的展开式中,x3y3的系数为2=20,故答案为:20.14.2【解析】由约束条件作出可行域如图,化目标函数z=x﹣2y为,由图可知,当直线过点A(2,0)时,直线在y轴上的截距最小,z有最大值为2.故答案为:2.15.(1,2]【解析】∵=,可得:(a﹣b+c)(a+b﹣c)=bc,∴整理可得:b2+c2﹣a2=bc,∴由余弦定理可得:cos A===,∵A∈(0,π),∴A=,可得:C=﹣B,∴====2sin(B+),∵B∈(0,),B+∈(,),可得:sin(B+)∈(,1],∴=2sin(B+)∈(1,2].故答案为:(1,2].16.【解析】如图所示,设O为球心,E、F分别为△ABD、△C1BD的外接圆圆心,则有OE⊥面ABD,OF⊥面C1BD,∵菱形ABCD中,∠BAD=,AB=3∴△ABD、△C1BD为等边△,故E、F分别为△ABD、△C1BD的中心.∵球O的表面积为16π,∴球半径为2.在直角△AOM中,OA=2,AE=,⇒QE=1.tan∠OME=,∵C1M⊥DB,AM⊥DB,∴DB⊥面AMC1,∴∠C1MA(或其补角)就是直线C1M与平面ABD所成角.∠C1MA=2∠OME,tan∠C1MA=tan(2∠OME)=,sin∠C1MA=,直线C1M与平面ABD所成角的正弦值为,故答案为:.三、解答题 17.(1)解:由,有a n =S n ﹣S n ﹣1=2n +k ﹣1(n ≥2),又a 1=S 1=k +1, ∴a n =2n +k ﹣1.∵a 1,a 4,a 13成等比数列,∴,即(2×4+k ﹣1)2=(2×1+k ﹣1)(2×13+k ﹣1),解得k =2. ∴a n =2n ﹣1; (2)证明:∵=.∴.∴T n =b 1+b 2+…+b n ===.18.解:(1)由以上统计数据填写2×2列联表,如下;甲 厂乙 厂合计优质品 400 360 760 非优质品 100 140 240 合计5005001000 计算K 2=≈8.772>6.635,对照临界值表得出,有99%的把握认为:“两个分厂生产的产品的质量有差异”;(2)计算甲厂优秀率为=0.8,乙厂优秀率为=0.72所以甲厂的优秀品率高,计算甲厂数据的平均值为:=×(30×10+40×40+50×115+60×165+70×120+80×45+90×5)=60,(3)根据(2)知,μ=60,σ2=142,且甲厂产品的质量指标值X服从正态分布X~N(60,142),又σ=≈11.92,则P(60﹣11.92<X<60+11.92)=P(48.08<X<71.92)=0.6826,P(X>71.92)===0.1587<0.18,故不能够认为该分厂生产的产品的产品中,质量指标值不低于71.92的产品至少占全部产品的18%.19.证明:(1)连结B1C1、BC1,设BC1∩B1C=M,∵BB 1CC1,∴四边形BB1C1C为平行四边形,∴M为BC1的中点,在△ABC1中,O为AB的中点,∴MO∥AC1,又AC1⊄平面B1CD,MO⊂平面B1CD,∴AC1∥平面COB1.解:(2)如图,∵AB是圆O的直径,∴AC⊥BC,∵C1C⊥平面ABC,∴C1C⊥AC,C1C⊥BC,又∠BAC=60°,AB=2,∴AC=1,BC=,AA1=3,以点C为坐标原点,分别以CA,CB,OC1为x轴,y轴,z轴,建立空间直角坐标系,则C(0,0,0),A(1,0,0),B(0,,0),C1(0,0,3),O(,0),B1(0,),在圆O上,C,D关于直线AB对称,△AOC为正三角形,且OA=1,∴CD=,∠ACD=30°,过点D作DP⊥x轴,DQ⊥y轴,垂足分别为P,Q,则CP=CD•cos=,CQ=CD•sin,∴D(,0),∴=(,0),设平面CDB1的一个法向量=(x,y,z),则,取y=﹣,得=(1,﹣,1),平面B1BC的一个法向量=(1,0,0),设二面角D﹣B1C﹣B的二面角为θ,则cosθ==.故二面角D﹣B1C﹣B的余弦值为.20.解:(1)由题意可知:①,②,两式相减得:+(y1+y2)(y1﹣y2)=0,由x1≠x2,则=﹣a2,由A,B在直线y=2x+1,则k==2,A,B中点横坐标为﹣,则中点的纵坐标为,∴﹣=2•,解得:a2=,又a>0,则a=,(2)直线AB的方程为y=kx+m,则,(1+a2k2)x2+2kma2x+a2(m2﹣1)=0,△>0,即(2kma2)2﹣4a2(m2﹣1)(1+a2k2)>0,则m2<1+a2k2,由韦达定理可知:则x1+x2=﹣,x1x2=,由m⊥n,则•=0,x1x2+a2y1y2=0,从而(1+a2k2)x1x2+kma2(x1+x2)+a2m2=0,代入并整理得2m2=1+a2k2,由原点O到直线AB的距离d=,则△OAB的面积S=•d•丨AB丨=•••丨x1﹣x2丨,=丨m丨•,=丨m丨•,=•,=•=,从而可得△OAB的面积,为定值.21.解:(1)设切点Q(t,f(t)),由直线f(x)=2x3﹣3x2+1,求导,f′(x)=6x2﹣6x,则f(x)在Q点的切线的斜率k=6t2﹣6t,则切线方程为y﹣f(t)=(6t2﹣6t)(x﹣t),由切线过点P(a,﹣4),则﹣4﹣f(t)=(6t2﹣6t)(a﹣t),整理得:4t3﹣(3+6a)t2+6at﹣5=0,又由曲线恰有两条切线,即方程恰有两个不同的解,令H(t)=4t3﹣(3+6a)t2+6at﹣5,求导H′(t)=12t2﹣6(6+12a)t+6a,令H′(t)=0,解得:t=,t=2,当a=时,H′(t)≥0,函数H(t)在R上单调递增,没有两个零点,不符合题意,当a>时,且t∈(﹣∞,)∪(a,+∞)时,H′(t)>0,当t∈(,a)时,H′(t)<0,∴H(t)在(﹣∞,),(a,+∞)单调递增,在(,a)单调递减;要使H(t)在R上有两个零点,则,或,由H()=﹣﹣a+3a﹣5=(a﹣),H(a)=4a3﹣(3+6a)a2+6a2﹣5=﹣(a+1)(2a2﹣5a+5),=﹣(a+1)[2(a﹣)2+],∴或,则a=,当a<时,同理可知:或,则a=﹣1,综上可知:a=﹣1或a=;(2)f(x)=2x3﹣3x2+1=(x﹣1)2(2x+1),∴f(x)在(0,+∞)上只有一个零点x=1,g′(x)=k﹣,当k≤0时,g′(x)<0,则g(x)在(0,+∞)上单调递减,g(x)在(0,+∞)上至多只有一个零点,故k≤0不符合题意;当k>0,g′(x)=k﹣=0,解得:x=,∴当x∈(0,)时,g′(x)<0,当x∈(,+∞)时,g′(x)>0,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增;∴g(x)有最小值g()=2+ln k,①当k=时,g()=0,g(x)只有一个零点,不满足题意;②当k>时,g()>0,g(x)在(0,+∞)上无零点,不满足题意;③当<k<时,g()<0,由g()•g(1)=(2+ln k)(k+1)<0,∴g(x)在(1,)上有一个零点,设为x1,若g()•g()<0,g(x)在(,+∞)上有一个零点,设为x2,易证>(>e2),下面证明:g()>0,令F(x)=e x﹣x2,(x>2),求导F′(x)=e x﹣2x,F′′(x)=e x﹣2>e2﹣2>0,∴F(x)在(2,+∞)上单调递增;∴F(x)>F(2)=e2﹣4>0,∴e2﹣x2>0,即e2>x2,(x>2),现在去x=,由0<k<e﹣2,∴x>e2>2,则g()=k•+1﹣ln=k•+1﹣,由>e2>2,则>,∴g()>k•+1﹣=1>0,∴g(x1)=g(x2)=0∴由g(1)=k+1>0,f(x1)>0,f(x2)>0,故h(1)>f(1)=0,h(x1)=g(x1)=0,h(x2)=g(x2)=0,故h(x)有三个零点,综上可知:满足题意的k的取值范围为(0,).22.解:(1)∵圆C的方程为(x﹣1)2+(y﹣1)2=2,∴圆C的参数方程为(α为参数),∵直线l的极坐标方程为,∴,即ρsinθ+ρcosθ﹣4=0,∴直线l的普通方程是x+y﹣4=0;(2)由题意设P(,),∴点P到直线l距离d===,∵,∴,即,∴点P到直线l距离的取值范围是[0,].23.解:(1)f(x)=|x﹣4|+|x﹣2|=.∴当x≤2时,f(x)>2,6﹣2x>2,解得x<2;当2<x<4时,f(x)>2得2>2,无解;当x≥4时,f(x)>2得2x﹣6>2,解得>4.所以不等式f(x)>2的解集为(﹣∞,2)∪(4,+∞).(2)∵|x﹣4|+|x﹣2|≥2,∴M=2,∵2x+a≥M的解集包含[0,1],∴20+a≥2,21+a≥2,∴a≥1.故a的取值范围为:[1,+∞)。