北师大七年级下全等三角形压轴题分类解析
(2021年整理)全等三角形压轴题及分类解析
全等三角形压轴题及分类解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全等三角形压轴题及分类解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为全等三角形压轴题及分类解析的全部内容。
BA O DCE图88年级三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD,连结AC 和BD ,相交于点E,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小。
2. 已知:点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,且AN 、BM 相交于O.① 求证:AN=BM② 求 ∠AOB 的度数。
③ 若AN 、MC 相交于点P ,BM 、NC 交于点Q,求证:PQ ∥AB.(湘潭·中考题)同类变式: 如图a,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE 。
(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c (草图即可),(1)中的结论还成立吗?作出判断不必说明理由.CBO D图7AEABCM N OPQ图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证: CD BE =,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.同类变式:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.图9 图10 图11CEN DABM图①CAE M BDN 图②4。
【北师大版】七年级数学下册《判定三角形全等的四种思路》专题试题(附答案)
北师大版七年级数学下册专题训练系列(附解析专训3判定三角形全等的四种思路名师点金:全等三角形是初中几何的重要内容之一,是几何入门最关键的一步,学习了判定三角形全等的几种方法之后,如何根据已知条件说明三角形全等,掌握说明全等的几种思路尤为重要.条件充足时直接用判定方法1.【中考·武汉】如图,AC和BD相交于点O,OA=OC,OB=OD,试说明:AB∥CD.(第1题)条件不足时添加条件用判定方法2.如图,点A,F,C,D在一条直线上,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.(第2题)非三角形问题中构造全等三角形用判定方法3.如图是一个风筝模型的框架,由DE=DF,EH=FH,就能说明∠DEH=∠DFH.试用你所学的知识说明理由.(第3题)4.如图,要测量AB的长,因为无法过河接近点A,可以在AB所在直线外任取一点D,在AB的延长线上任取一点E,连接ED和BD,并且延长BD到点G,使DG=BD,延长ED到点F,使DF=ED,连接FG,并延长FG到点H,使H,D,A在一条直线上,则HG=AB,试说明理由.(第4题)答案1.解:在△AOB 和△COD 中,⎩⎪⎨⎪⎧OA =OC ,∠AOB =∠COD ,OB =OD ,所以△AOB ≌△COD.所以∠A =∠C.所以AB ∥CD.2.解:补充条件:EF =BC ,可使得△ABC ≌△DEF.理由如下:因为AF =DC ,点A ,F ,C ,D 在一条直线上, 所以AF +FC =DC +FC ,即AC =DF.因为BC ∥EF ,所以∠EFD =∠BCA.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠BCA =∠EFD ,AC =DF ,所以△ABC ≌△DEF(SAS).点拨:答案不唯一.(第3题)3.解:如图,连接DH.在△DEH 和△DFH 中,⎩⎪⎨⎪⎧DE =DF ,EH =FH ,DH =DH ,所以△DEH ≌△DFH(SSS).所以∠DEH =∠DFH(全等三角形的对应角相等).4.解:在△DEB 和△DFG 中,因为DB =DG ,∠BDE =∠GDF ,DE =DF , 所以△DEB ≌△DFG(SAS).所以∠E =∠F.所以AE ∥FH.所以∠DBA =∠DGH.又因为DB =DG ,∠ADB =∠HDG ,所以△ADB ≌△HDG(ASA).所以HG =AB.。
北师大版七年级下全等三角形压轴题分类解析
BA O D C E 图七年级下三角形概括题归类之阳早格格创做一、单等边三角形模型1.(1)如图7,面O 是线段AD 的中面,分别以AO 战DO为边正在线段AD 的共侧做等边三角形OAB 战等边三角形OCD ,连结AC 战BD ,相接于面E ,连结BC .供∠AEB 的大小;(2)如图8,ΔOAB 牢固没有动,脆持ΔOCD 的形状战大小没有变,将ΔOCD 绕着面O 转动(ΔOAB 战ΔOCD 没有克没有及沉叠),供∠AEB 的大小.2.已知:面C 为线段AB 上一面,△ACM,△CBN 皆是等边三角形,且AN 、BM 相接于O. ①供证:AN=BM ②供∠AOB 的度数.③若AN 、MC 相接于面P ,BM 、NC 接于面Q ,供证:PQ ∥AB. (湘潭·中考题)共类变式:已知,如图①所示,正在ABC △战ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且面B A D ,,正在一条曲线上,对接BE CD M N ,,,分别为BE CD ,的中面.C B OD 图A EA B CM N O P Q(1)供证:①BE CD =;②AN AM =;(2)正在图①的前提上,将ADE △绕面A 按顺时针目标转动180,其余条件没有变,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造.4.如图,四边形ABCD 战四边形AEFG 均为正圆形,对接BG 与DE 相接于面H . (1)道明:△ABG ≌△ADE ;(2)试预测∠BHD 的度数,并道明缘由;(3)将图中正圆形ABCD 绕面A 顺时针转动(0°<∠BAE <180°),设△ABE 的里积为1S ,△ADG 的里积为2S ,推断1S 与2S 的大小闭系,并赋予道明.5.已知:如图,ABC △是等边三角形,过AB 边上的面D 做DG BC ∥,接AC 于面G ,正在GD 的延少线上与面E ,使DE DB =,对接AE CD ,. (1)供证:AGE DAC △≌△;(2)过面E 做EF DC ∥,接BC 于面F ,请您对接AF ,并推断AEF △是何如的三角形,试道明您的论断.二、笔曲模型(该模型正在前提题战概括题中均为沉面观察实量)C FG E D BAHC E ND A B M图① C AE M B D N 图②考面1:利用笔曲道明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 做CF ⊥AE ,垂脚为F ,过B 做BD ⊥BC 接CF 的延少线于D .供证:(1)AE =CD ; (2)若AC =12cm ,供BD 的少.考面2:利用角相等道明笔曲1. 已知BE ,CF 是△ABC 的下,且BP=AC ,CQ=AB ,试决定AP 与AQ 的数量闭系战位子闭系2.如图,正在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中面,DE ⊥AB ,垂脚为E ,过面B 做BF ∥AC 接DE 的延少线于面F ,对接CF .(1)供证:CD=BF ;(2)供证:AD ⊥CF ;(3)对接AF ,试推断△ACF 的形状.拓展坚韧:如图9所示,△ABC 是等腰曲角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 做AD 的垂线,接AB 于面E ,接AD 于面F ,供证:∠ADC =∠BDE .(提示:对于比此题的条件战上头那题的条件,对于比此题的图形战上题的图像,有什么辨别战通联?) AB CDEF 图3.如图1,已知正圆形ABCD 的边CD 正在正圆形DEFG 的边DE 上,对接AE ,GC .(1)试预测AE 与GC 有何如的位子闭系,并道明您的论断;(2)将正圆形DEFG 绕面D 按顺时针目标转动,使E 面降正在BC 边上,如图2,对接AE 战GC .您认为(1)中的论断是可还创造?若创造,给出道明;若没有创造,请道明缘由.4.如图1,ABC ∆的边BC 正在曲线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也正在曲线l 上,边EF 与边AC 沉合,且EF FP =(1) 正在图1中,请您通过瞅察、丈量,预测并写出AB与AP 所谦脚的数量闭系战位子闭系; (2) 将EFP ∆沿曲线l 背左仄移到图2的位子时,EP 接AC于面Q ,对接,AP BQ .预测并写出BQ 与AP 所谦脚的数量闭系战位子闭系,请道明您的预测;(3)将EFP ∆沿曲线l 背左仄移到图3的位子时,EP 的延少线接AC 的延少线于面Q,连结,AP BQ ,您认为(2)中所预测的BQ 与AP 的数量闭系战位子闭系战位子闭系还创造吗?若创造,给出道明;若没有创造,请道明缘由. l (1) A B (F)(E)C P A B E C F P Q (2) l三、等腰三角形(中考沉易面之一)考面1:等腰三角形本量的应用1. 如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中面,ED FD ⊥,ED 与AB 接于E ,FD 与AC 接于F .供证:BE AF =,AE CF =. 2.二个齐等的含30,60角的三角板ADE 战三角板ABC ,如图所示搁置,,,E A C 三面正在一条曲线上,连结BD ,与BD 的中面M ,连结,ME MC .试推断EMC ∆的形状,并道明缘由. 压轴题拓展:(三线合一本量的应用)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中面,90EDF ∠=︒,EDF ∠绕D 面转动,它的二边分别接AC 、CB (或者它们的延少线)于E 、F .当EDF ∠绕D 面转动到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S ∆∆∆+=.当EDF ∠绕D 面转动到DE 战AC 没有笔曲时,正在图2战图3那二种情况下,上述论断是可创造?若创造,请赋予道明;若没有创造,DEF S ∆,CEF S ∆,ABC S ∆又有何如的数量闭系?请写出您的预测,没有需道明.提示:此题为上头题手段概括应用,思路与第一题相似. 3. 已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 仄分∠ABC ,且BE ⊥AC 于E ,与CD 相接于面F ,H 是BC 边的中面,连结DH 与BE 相接于面G .(1)BF =AC (2)CE =12BF (3)CE 与BC 的大小闭系怎么样. 考面2:等腰曲角三角形(45度的偶像)A B E C F P l (3Q1.如图1,四边形ABCD是正圆形,M是AB延少线上一面.曲角三角尺的一条曲角边通过面D,且曲角顶面E正在AB边上滑动(面E没有与面A,B沉合),另一条曲角边与∠CBM的仄分线BF相接于面F.⑴如图14―1,当面E正在AB边的中面位子时:①通过丈量DE,EF的少度,预测DE与EF谦脚的数量闭系是;②对接面E与AD边的中面N,预测NE与BF谦脚的数量闭系是;③请道明您的上述二预测.⑵如图14―2,当面E正在AB边上的任性位子时,请您正在AD边上找到一面N,使得NE=BF,从而预测此时DE与EF有何如的数量闭系并道明2.正在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中面,DG⊥AC接AB于面G.(1)如图1,E为线段DC上任性一面,面F正在线段DG 上,且DE=DF,连结EF与CF,过面F做FH⊥FC,接曲线AB于面H.①供证:DG=DC②推断FH 与FC 的数量闭系并加以道明.(2)若E 为线段DC 的延少线上任性一面,面F 正在射线DG 上,(1)中的其余条件没有变,借帮图2绘出图形.正在您所绘图形中找出一对于齐等三角形,并推断您正在中得出的论断是可爆收改变.(本小题间接写出论断,没有必道明) 共类变式:(期终考查本题哦)已知:△形,M 是BC 延少线上一面,曲角三角尺的一条曲角边通过面A ,且60º角的顶面E 正在BC 上滑动,(面E 没有与面B 、C 沉合),斜边与∠ACM 的仄分线CF 接于面F(1)如图(1)当面E 正在BC 边得中面位子时 预测AE 与EF 谦脚的数量闭系是.连结面E 与AB边得中面N,预测BE战CF谦脚的数量闭系是.请道明您的上述预测;(2)如图(2)当面E正在BC边得任性位子时,AE战EF 有何如的数量闭系,并道明您的缘由?四、角仄分线问题1.如图:E 正在线段CD 上,EA 、EB 分别仄分∠DAB 战∠CBA,∠AEB=90°,设AD =x ,AD BE图2G H FE D C B A 图1 E图(2)BC =y ,且,x y 谦脚2268250x y x y +--+=(1)供AD 战BC 的少;(2)您认为AD 战BC 另有什么闭系?并考证您的论断;(3)您能供出AB 的少度吗?若能,请写出推理历程;若没有克没有及,请道明缘由.①,OP 是∠MON 的仄分线,请您利用该图形绘一对于以OP 天圆曲线为对于称轴的齐等三角形.请您参照那个做齐等三角形的要领,解问下列问题:(1)如图②,正在△ABC 中,∠ACB 是曲角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的仄分线,AD 、CE 相接于面F .请您推断并写出FE 与FD 之间的数量闭系;(2)如图③,正在△ABC 中,如果∠ACB 没有是曲角,而(1)中的其余条件没有变,请问,您正在(1)中所得论断是可仍旧创造?若创造,请道明;若没有创造,请道明缘由. 3.(北京市中考模拟题)如图,正在四边形ABCD 中,AC 仄分BAD ∠,过C 做CE AB ⊥于E ,而且1()2AE AB AD =+,则ABC ADC ∠+∠等于几?4.如图,△ABC 中,AD 仄分∠BAC ,DG ⊥BC且仄分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.(1)道明BE=CF 的缘由;(2)如果AB=a ,A C BD E EDG FCB A (第23题图) O P A M N E BCD F A CE F B D 图① 图② 图③AC=b,供AE、BE的少.5、正在△ABC中,AB=2AC,AD仄分∠BAC,AD=BD,供证:CD⊥AC6、如图,已知正在△ABC中,∠BAC为曲角,AB=AC,D为AC上一面,CE⊥BD于E.(1)若BD仄分∠ABC,供证CE=BD;(2)若D为AC上一动面,∠AED怎么样变更,若变更,供它的变更范畴;若没有变,供出它的度数,并道明缘由.7已知:如图E正在△ABC的边AC上,且∠AEB=∠ABC.(1)供证:∠ABE=∠C;(2)若∠BAE的仄分线AF接BE于F,FD∥BC接AC于D,设AB=5,AC=8,供DC的少.五、中面问题1.正在△ABC中,D为BC的中面,过D面的曲线GF接AC于F,接AC的仄止线BG于面G.DE GF⊥,并接AB于面E.连结EG.(1)供证:BG CF=;(2)请预测BE CF+与EF的大小闭系,并加以道明2.如左下图,正在ABC⊥,E为BC∠=∠,AD BCB C∆中,若2边的中面.供证:2=.AB DE3.已知ABC=,BD为AB的延少线,且BD AB∆中,AB AC=,CE为ABC ∆的AB 边上的中线.供证2CD CE =(提示:倍少中线试试)附加思索题:(此题有很佳天思维锻炼价格,值得深进思索商量)以ABC ∆的二边AB 、AC 为腰分别背中做等腰Rt ABD ∆战等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.对接DE ,M 、N 分别是BC 、DE 的中面.商量:AM 与DE 的位子闭系及数量闭系.⑴如图①当ABC ∆为曲角三角形时,AM 与DE 的位子闭系是;线段AM 与DE 的数量闭系是;⑵将图①中的等腰Rt ABD ∆绕面A 沿顺时针目标转动θ︒(090θ<<)后,如图②所示,⑴问中得到的二个论断是可爆收改变?并道明缘由.6、问题:已知ABC △中,2BAC ACB ∠=∠,面D 是ABC △内的一面,且AD CD =,BD BA =.商量DBC ∠与ABC ∠度数的比值. 请您完毕下列商量历程:先将图形特殊化,得出预测,再对于普遍情况举止分解并加以道明. (1)当90BAC ∠=︒时,依问题中的条件补齐左图. 瞅察图形,AB 与AC 得数量闭系为________;当推出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______;可得到DBC ∠与ABC ∠度数的比值为_________.(2)当90BAC ∠≠︒时,请您绘出图形,钻研DBC ∠与ABC ∠度数的比值是可与(1)中的论断相共,写出您的预测并加以道明.8、(1)如图1,正在正圆形ABCD 中,面C B A 图1D CB AE,F分别正在边BC,CD上,AE,BF接于面O,∠AOF=90°.供证:BE=CF.(2)如图2,正在正圆形ABCD中,面E,H,F,G分别正在边AB,BC,CD,DA上,EF,GH接于面O,∠FOH=90°,EF=4.供GH的少.(3)已知面E,H,F,G分别正在矩形ABCD的边AB,BC,CD,DA 上,EF,GH接于面O,∠FOH=90°,EF=4.间接写出下列二题的问案:①如图3,矩形ABCD由2个齐等的正圆形组成,供GH 的少;②如图4,矩形ABCD由n个齐等的正圆形组成,供GH的少(用n的代数式表示).。
新北师大版七下第三章全等三角形的判定专题复习
E A C
D
全等三角形判定
2、如图所示,已知∠B=∠C ,请你添加 一个条件 ,依据 AAS 使得 BD=CE △ABC≌△ABD
B
E A C
D
全等三角形判定
1、如图所示,已知AB=DC,请你添加一 AC=DB 个条件 ∠ACB=∠DBC ,依据 SAS 使得 △ABC≌△DCB
B
思 路
E A C
A D
B
C
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件∠ACB=∠DBC ,依据 ASA 使 得△ABC≌△DCB
A D
B
C
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件 ∠A=∠D ,依据 AAS 使 得△ABC≌△DCB 思
A
D
B
C
已 知 一 边 一 角
D
已 找夹边(ASA) 知 两 角 找任一对边 (AAS)
全等三角形判定
1、如图所示,已知∠A=∠D,请你添加 一个条件 ∠ABC=∠DC ,依据 AAS 使 B 得△ABC≌△DCB 思
路
A D 已 知 一 边 C 一 角 若 边 为 角 找任一角 (AAS) 的 对 边
B
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件 AB=D ,依据 SAS 使 C 得△ABC≌△DCB
大湖中学 赖世挺
一、知识点
1、定义:能够 完全重合的两个三角形 称为全等 三角形。 2、表示法:符号“≌”,如下图,△ABC与 A △DEF全等,记作 △ABC≌△DEF 。 注意:记两个三角形全等时,要把 B C 对应顶点 的字母写在 对应位置 上。 D 全等三角形的 对应边 相等; 3、性质: E 全等三角形的 对应角 相等。 4、判定三角形全等的方法: SSS SAS ASA AAS
北师大版七年级下册数学[全等三角形判定一(基础)知识点整理及重点题型梳理]
北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形判定一(SSS,ASA ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】(2015•武汉模拟)如图,在△ABC 和△DCB 中,AB=DC ,AC=DB ,求证:△ABC ≌△DCB .【答案】证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).类型二、全等三角形的判定2——“角边角”2、(2016•安徽模拟)如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(1)小明添加的条件是:AP=BP.你认同吗?(2)你添加的条件是,请用你添加的条件完成证明.【思路点拨】(1)根据全等三角形的判定进行解答即可;(2)添加∠APO=∠BPO,利用ASA 判断得出△AOP≌△BOP.【答案】(1)不认同;(2)∠APO=∠BPO.【解析】解:(1)不认同,按小明添加的条件,就是用“边边角”证明全等,而“边边角”是不能说明三角形全等的;(2)∠APO=∠BPO.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA).故答案为:∠APO=∠BPO.【总结升华】此题主要考查了全等三角形的判定,全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE.在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF4、已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF.【思路点拨】(1)证△ABO ≌△CDO ,得AO =OC ,BO =DO (2)证△AEO ≌△CFO 或△BEO ≌△DFO【答案与解析】证明:∵AB ∥DC∴∠A=∠C在△ABO 与△CDO 中A C (AOB COD ∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等) AB=CD∴△ABO ≌△CDO (AAS )∴AO =CO ,BO=DO在△AEO 和△CFO 中A C (AOE COF ∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等) ∴△AEO ≌△CFO (ASA )∴OE =OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB ,点C 是碉堡的底部,点D 是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD =∠BAC ,∠ABD =∠ABC =90°.在△ABD 和△ABC 中,ABD ABC AB ABBAD BAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△ABC (ASA )∴BD =BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。
专题4.4 全等三角形的判定【八大题型】(举一反三)(北师大版)(解析版)七年级下册
专题4.2与三角形有关的线段【八大题型】【北师大版】【题型1三角形的分类】 (2)【题型2判断三角形的个数】 (4)【题型3三角形三边关系的应用】 (6)【题型4三角形的稳定性】 (9)【题型5三角形的角平分线、中线和高线概念辨析】 (11)【题型6三角形的中线与面积问题】 (14)【题型7三角形的中线与周长问题】 (18)【题型8证明三角形中线段不等关系】 (21)【题型1三角形的分类】【例1】(2021秋•漳平市期中)下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④【分析】①根据等腰三角形及等边三角形的定义进行解答即可;②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;③根据等腰三角形的定义进行解答;④根据三角形按角分类情况可得答案.【解答】解:①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.故选:C.【变式1-1】(2021秋•威县期末)下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:甲正确的分类应该为,乙分法正确;故选:C.【变式1-2】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【分析】根据三角形按边的分类可直接选出答案.【解答】解:三角形根据边分类如下:三角形不等边三角形等腰三角形底和腰不相等的等腰三角形等边三角形;故选:B.【变式1-3】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【分析】根据等腰三角形的判定和直角三角形的性质判断即可.【解答】解:A、任意一个直角三角形被斜边的中线分割成两个等腰三角形,说法正确;B、有的等腰三角形不能分割成两个等腰三角形,说法错误;C、任意一个直角三角形可以被斜边的高分割成两个直角三角形,说法正确;D、任意一个等腰三角形可以被底边上的高分割成两个直角三角形,说法正确;故选:B.【题型2判断三角形的个数】【例2】(2021•蒙阴县校级开学)如图中三角形的个数是()A.3B.4C.5D.6【分析】结合图形写出所有的三角形,得到答案.【解答】解:图中有△ABE、△ABC、△BCE、△BCD、△CED共5个,故选:C.【变式2-1】(2022春•建邺区校级期中)如图,以AB为边的三角形的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的概念、结合图形写出以AB为边的三角形.【解答】解:△ABC、△ABE、△ABF、△ABD四个三角形是以AB为边的三角形,故选:D.【变式2-2】(2021秋•安徽期中)现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是()A.3B.4或5C.6或7D.8【分析】根据三角形的定义,先得出三角形的个数.再根据三角形的分类,得出锐角三角形的个数.【解答】解:由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时,∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形;故还有11﹣5﹣3=3个锐角三角形.故选:A.【变式2-3】(2022秋•饶平县校级期末)观察图形规律:(1)图①中一共有个三角形,图②中共有个三角形,图③中共有个三角形.(2)由以上规律进行猜想,第n 个图形共有个三角形.【分析】(1)根据图形直接数出三角形个数即可;(2)根据(1)中所求得出数字变化规律,进而求出即可.【解答】解:(1)如图所示:图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.故答案为:3,6,10;(2)∵1+2=3,1+2+3=6,1+2+3+4=10,∴第n 个图形共有:1+2+3+…+(n +1)=(�+1)(�+2)2.故答案为:(�+1)(�+2)2.长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【题型3三角形三边关系的应用】【例3】(2022•平桂区二模)老师布置了一份家庭作业:用老师给的三根小木棍做出一个三角形木架,三根小木棍的长度分别为:5cm 、9cm 、10cm ,要求只能对10cm 的小木棍进行裁剪(裁剪后长度为整数).你认为同学们最多能做出()个不同的三角形木架.A.1B.2C.6D.10【分析】根据三角形的三边关系列出不等式组,判断即可.【解答】解:设从10cm的小木棍上裁剪的线段长度为xcm,则9﹣5<x<9+5,即4<x<14,∴整数x的值为5cm、6cm、7cm、8cm、9cm、10cm,∴同学们最多能做出6个不同的三角形木架,故选:C.【变式3-1】(2022春•秦淮区期中)如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是()A.7B.10C.11D.14【分析】分四种情况、根据三角形的三边关系解答即可.【解答】解:①选3+4、6、8作为三角形,则三边长为7、6、8;7﹣6<8<7+6,能构成三角形,此时两个螺丝间的最长距离为8;②选6+4、3、8作为三角形,则三边长为10、3、8;8﹣3<10<8+3,能构成三角形,此时两个螺丝间的最大距离为10;③选3+8、4、6作为三角形,则三边长为111、4、6;4+6<11,不能构成三角形,此种情况不成立;④选6+8、3、4作为三角形,则三边长为14、3、4;而3+4<14,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为10,故选:B.【变式3-2】(2022•襄州区模拟)一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个【分析】首先设三角形第三边长为x,根据三角形的三边关系可得9﹣5<x<5+9,解不等式可得x的取值范围,再根据周长是偶数确定x的值,进而可得答案.【解答】解:设三角形第三边长为x,由题意得:9﹣5<x<5+9,解得:4<x<14,∵周长是偶数,∴x=6,8,10,12,共4个.故选:B.【变式3-3】(2021秋•祁阳县期末)已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形的个数为()A.6个B.8个C.10个D.12个【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,用穷举法即可得出答案.【解答】解:∵三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,列举法:当4是最大边时,有(1,4,4),(2,3,4),(2,4,4),(3,3,4),(3,4,4).当4是中间的边时,有(2,4,5),(3,4,5),(3,4,6).共8个,故选:B.要应用在实际生活中.【题型4三角形的稳定性】【例4】(2021春•左权县月考)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:可以推断出斜拉索大桥中运用的数学原理是三角形的稳定性.故答案为:三角形的稳定性.【变式4-1】(2021秋•云梦县月考)下列生活中的一些事实运用了“三角形稳定性”的是()A.B.C.D.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:儿童座架利用三角形的稳定性,座架形成三角形不变形,结实,故C符合题意;A、B、D不是三角形,故选项不符合题意.故选:C.【变式4-2】(2021秋•龙岩期末)下列图形中,不具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性进行解答即可.【解答】解:A、不具有稳定性,故此选项符合题意;B、具有稳定性,故此选项不符合题意;C、具有稳定性,故此选项不合题意;D、具有稳定性,故此选项不符合题意;故选:A.【变式4-3】(2021秋•岚皋县校级月考)要使如图所示的六边形木架不变形,则至少需要钉上木条的根数为()A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过六边形的一个顶点作对角线,有6﹣3=3条对角线,所以至少要钉上3根木条.故选:C.外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.【题型5三角形的角平分线、中线和高线概念辨析】【例5】(2022春•泗县期中)如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG 交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有()A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线C.CH为△ACD边AD上的高D.AH为△ABC的角平分线【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:A、根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B、根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C、根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;D、根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误.故选:C.【变式5-1】(2021春•镇江期中)如图,△ABC的角平分线AD与中线BE相交于点O,有下列两个结论:①AO是△ABE的角平分线:②DE是△ADC的中线,其中()A.只有①正确B.只有②正确C.①和②都正确D.①和②都不正确【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】解:∵△ABC的角平分线AD与中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②在△ADC中,AE=CE,∴DE是△ADC的中线,故②正确;故选:C.【变式5-2】(2022春•静安区期中)下列判断错误的是()A.三角形的三条高的交点在三角形内B.三角形的三条中线交于三角形内一点C.直角三角形的三条高的交点在直角顶点D.三角形的三条角平分线交于三角形内一点【分析】根据三角形的角平分线,中线,高的定义一一判断即可.【解答】解:A、锐角三角形的三条高的交点在三角形内,故本选项说法错误,符合题意;B、三角形的三条中线交于三角形内一点,故本选项说法正确,不符合题意;C、直角三角形的三条高的交点在直角顶点,故本选项说法正确,不符合题意;D、三角形的三条角平分线交于三角形内一点,故本选项说法正确,不符合题意.故选:A.【变式5-3】(2021秋•茶陵县期末)下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.4【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A .【题型6三角形的中线与面积问题】【例6】(2022春•广州期中)如图,△ABC 的面积是24,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是()A .9B .9.5C .10.5D .10【分析】根据中线的性质,可得:△AEF 的面积=12×△ABE 的面积=14×△ABD 的面积=18×△ABC 的面积=3,△AEG 的面积=3,根据三角形中位线的性质可得△EFG 的面积=14×△BCE 的面积=3,进而得到△AFG 的面积.【解答】解:∵点D 是BC 的中点,∴AD 是△ABC 的中线,∴△ABD的面积=△ADC的面积=12×△ABC的面积,同理得:△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=18×24=3,△AEG的面积=3,△BCE的面积=12×△ABC的面积=12,又∵FG是△BCE的中位线,∴△EFG的面积=14×△BCE的面积=14×12=3,∴△AFG的面积是3×3=9,故选:A.【变式6-1】(2022春•邗江区校级期中)如图,在△ABC中,D,E分别是BC,AD的中点,点F在BE上,且EF=2BF,若S△BCF=2cm2,则S△ABC=()A.3B.6C.8D.12【分析】根据EF=2BF,S△BCF=2cm2,求得S△BEC=3S△BCF=6cm2,根据三角形中线把三角形分成两个面积相等的三角形可得S△BDE=S△CDE=12S△BEC=3cm2,从而求出S△ABD=S△ACD=2S△BDE=6cm2,再根据S△ABC=2S△ABD计算即可得解.【解答】解:如图,∵EF=2BF,S△BCF=2cm2,∴S△BEC=3S△BCF=3×2=6cm2,∵D是BD的中点,∴S△BDE=S△CDE=12S△BEC=3cm2,∵E是AD的中点,∴S△ABD=S△ACD=2S△BDE=6cm2,∴S△ABC=2S△ABD=12cm2,∴△ABC的面积为12cm2,故选:D.【变式6-2】(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.8【分析】根据AD是△ABC的中线,点E是AD的中点,得出三角形EDC的面积+三角形AEB的面积与三角形ABC的面积的关系即可.【解答】解:∵AD是△ABC的中线,∴S△ABD=S△ACD=12S△ABC,∵点E是AD的中点,∴S△ABE=S△BDE=12S△ABD,S △EDC=S△CAE=12S△ACD,∴S△ABE=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=14S△ABC+14S△ABC=12S△ABC=12×8=4,故选:A.【变式6-3】(2022春•泰兴市校级月考)如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC=48,则S△DEF的值为.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:连接CD,如图所示:∵点D是AG的中点,∴S△ABD=12S△ABG,S△ACD=12S△AGC,∴S△ABD+S△ACD=12S△ABC=24,∴S△BCD=12S△ABC=24,∵点E是BD的中点,∴S△CDE=12S△BCD=12,∵点F是CE的中点,∴S△DEF=12S△CDE=6.故答案为:6.【题型7三角形的中线与周长问题】【例7】(2021秋•乳山市校级月考)在△ABC中,∠B<∠C,AD为BC边的中线,△ABD 的周长与△ADC的周长相差3,AB=8,则AC=.【分析】根据三角形的中线的定义可得BD=CD,然后求出△ABD与△ADC的周长差,然后代入数据计算即可得解.【解答】解:如图:∵AD为BC边的中线,∴BD=CD,∵△ABD与△ADC的周长差为3,AB=8,∠B<∠C,∴C△ABD﹣C△ADC=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=8﹣AC=3,解得AC=5.故答案为:5.【变式7-1】(2021秋•涧西区校级期中)如图,在△ABC中,AD是BC边上的中线,△ADC 的周长比△ABD的周长多2,AB+AC=8,则AC的长为.【分析】根据三角形的中线的定义得到BD =DC ,根据三角形的周长公式得到AC ﹣AB =2,根据题意列出方程组,解方程组得到答案.【解答】解:∵AD 是BC 边上的中线,∴BD =DC ,由题意得,(AC +CD +AD )﹣(AB +BD +AD )=2,整理得,AC ﹣AB =2,则퐴 −퐴 =2퐴 +퐴 =8,解得,퐴 =5퐴 =3,故答案为:5.【变式7-2】(2021春•芙蓉区校级月考)△ABC 中,AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成40和60两部分,求BC 的长.【分析】先根据AD 是BC 边上的中线得出BD =CD ,设BD =CD =x ,AB =y ,则AC =4x ,再分△ACD 的周长是60与△ABD 的周长是60两种情况进行讨论即可.【解答】解:∵AD 是BC 边上的中线,AC =2BC ,∴BD =CD ,设BD =CD =x ,AB =y ,则AC =4x ,分为两种情况:①AC +CD =60,AB +BD =40,则4x +x =60,x +y =40,解得:x =12,y =28,即BC=2x=24,AB=28,AC=4x=48,∵BC+AB=24+28=52>AC,∴此时符合三角形三边关系定理;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,∵AC+BC=32+16=48<AB,∴此时不符合三角形三边关系定理;综合上述:BC=24.【变式7-3】(2022秋•重庆期末)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+12DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+12DE=272(cm).【题型8证明三角形中线段不等关系】【例8】(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.【变式8-1】(2021春•嵩县期末)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC与2BD的大小关系,并说明理由.【分析】根据三角形两边之和大于第三边即可求解.【解答】解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.【变式8-2】(2022春•台江区校级期末)如图,在△ABC中,已知∠BAC=70°,∠ABC 和∠ACB的平分线相交于点D.(1)求∠BDC的度数;(2)试比较DA+DB+DC与12(AB+BC+AC)的大小,写出推理过程.【分析】(1)先由三角形内角和定理求出∠ABC+∠ACB=110°,再由角平分线的定义求出∠CBD+∠BCD=55°,然后由三角形内角和定理即可得出答案;(2)由三角形的三边关系得:DA+DB>AB,DB+DC>BC,DA+DC>AC,则2(DA+DB+DC)>AB+BC+AC,即可得出结论.【解答】解:(1)∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵∠ABC和∠ACB的平分线相交于点D,∴∠ABD=∠CBD=12∠ABC,∠ACD=∠BCD=12∠ACB,∴∠CBD+∠BCD=12(∠ABC+∠ACB)=12×110°=55°,∴∠BDC=180°﹣(∠CBD+∠BCD)=180°﹣55°=125°;(2)DA+DB+DC>12(AB+BC+AC),理由如下:在△ABD中,由三角形的三边关系得:DA+DB>AB①,同理:DB+DC>BC②,DA+DC>AC③,①+②+③得:2(DA+DB+DC)>AB+BC+AC,∴DA+DB+DC>12(AB+BC+AC).【变式8-3】(2021秋•饶平县校级期中)在锐角三角形ABC中,AB>AC,AM为中线,P 为△AMC内一点,证明:PB>PC(如图).【分析】在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,根据在两边对应相等的两个三角形中,第三边大的,所对的角也大,得出∠AMB>∠AMC.而∠AMB+∠AMC=180°,则∠AMC<90°.由于P为锐角△AMC内一点,过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.【解答】证明:在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,∴∠AMB>∠AMC,∴∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.所以PB>PC.。
(完整word版)北师大版七年级数学下册三角形难题全解
来源:2011-2012学年广东省汕头市潮南区中考模拟考试数学卷(解析版)考点:三角形如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90o-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO,由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90o,∴AE⊥BF.(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF来源:2012-2013学年吉林省八年级上期中考试数学试卷(解析版)考点:四边形如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF 的位置;(2)线段BE与DF有什么关系?证明你的结论.【答案】(1)绕点A旋转90°;(2)BE=DF,BE⊥DF.【解析】本题考查的是旋转的性质,全等三角形的判断和性质(1)根据旋转的概念得出;(2)根据旋转的性质得出△ABE≌△ADF,从而得出BE=DF,再根据正方形的性质得出BE⊥DF.(1)图中是通过绕点A旋转90°,使△ABE变到△ADF的位置.(2)BE=DF,BE⊥DF;延长BE交DF于G;由△ABE≌△ADF,得BE=DF,∠ABE=∠ADF;又∠AEB=∠DEG;∴∠DGB=∠DAB=90°;∴BE⊥DF.来源:2012年江苏省东台市七年级下学期期中考试数学试卷(解析版)如图,在△a bc中,已知∠abc=30°,点d在bc上,点e在ac上,∠bad=∠ebc,ad交be于f.1.求的度数;2.若eg∥ad交bc于g,eh⊥be交bc于h,求∠heg的度数.【答案】1.∠BFD=∠ABF+∠BAD (三角形外角等于两内角之和)∵∠BAD=∠EBC,∴∠BFD=∠ABF+∠EBC,∴∠BFD=∠ABC=30°;2.∵EG∥AD,∴∠BFD=∠BEG=30°(同位角相等)∵EH⊥BE,∴∠HEB=90°,∴∠HEG=∠HEB-∠BEG=90°-30°=60°.【解析】1.∠BFD的度数可以利用角的等效替换转化为∠ABC的大小,2.在直角三角形中,有平行线,利用同位角即可求解.三角形强化训练和深化☣1、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是_________°.解析:由题意可知折叠前,由BC//AD得:∠BFE=∠DEF=25°将纸带沿EF折叠成图b后,∠GEF=∠DEF=25°所以图b中,∠DGF=∠GEF+∠BFE=25°+25°=50°又在四边形CDGF中,∠C=∠D=90°则由:∠DGF+∠GFC=180°所以:∠GFC=180°-50°=130°将纸带再沿BF第二次折叠成图C后∠GFC角度值保持不变且此时:∠GFC=∠EFG+∠CFE所以:∠CFE=∠GFC-∠EFG=130°-25°=1052、在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.解法1:【解析】证明:∵∠BAC=900AD⊥BC∴∠1=∠B∵CE是角平分线∴∠2=∠3∵∠5=∠1+∠2∠4=∠3+∠B∴∠4=∠5∴AE=AF过F作FM⊥AC并延长MF交BC于N∴MN//AB∵FG//BD∴四边形GBDF为平行四边形∴GB=FN∵AD⊥BC,CE为角平分线∴FD=FM在Rt△AMF和RtNDF中∴△AMF≌△NDF∴AF=FN∴AE=BG解法2:解:作EH⊥BC于H,如图,∵E是角平分线上的点,EH⊥BC,EA⊥CA,∴EA=EH,∵AD为△ABC的高,EC平分∠ACD,∴∠ADC=90°,∠ACE=∠ECB,∴∠B=∠DAC,∵∠AEC=∠B+∠ECB,∴∠AEC=∠DAC+∠ECA=∠AFE,∴AE=AF,∴EG=AF,∵FG∥BC,∴∠AGF=∠B,∵在△AFG和△EHB中,∠GAF=∠BEH∠AGF=∠BAF=EH,∴△AFG≌△EHB(AAS)∴AG=EB,即AE+EG=BG+GE,∴AE=BG.3、如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.解:作CF⊥AB于F,交AD于G ,如图,∵△ABC为等腰直角三角形,∴∠ACF=∠BCF=45°,即∠ACG=45°,∠B=45°,∵CE⊥AD,∴∠1+∠ACE=∠2+∠ACE=90°,∴∠1=∠2,在△AGC和△CEB中∠1=∠2AC=CB∠ACG=∠CBE,∴△AGC≌△CEB(ASA),∴CG=BE,∵AD为腰CB上的中线,∴CD=BD,在△CGD和△BED中CG=BE∠GCD=∠BCD=BD,∴△CGD≌△BED(SAS),∴∠CDA=∠EDB.4、如图,已知AD和BC相交于点O ,且均为等边三角形,以平行四边形ODEB,连结AC,AE和CE。
北师大七年级全等三角形压轴题推荐
全等强化训练和深化 ☣1、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.2、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.ADFC GE B图1ADF C GE B 图2 ADFGE B图3A ECF B D 图1 图3ADFECBA D BC E图2F3、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;4、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;图1 图2ADBECF 1A1CADBECF 1A1C5、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
(完整版)北师大版七年级下全等三角形压轴题分类解析
BA ODCE图8七年级下三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小; (2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2. 已知:点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,且AN 、BM 相交于O.① 求证:AN=BM ② 求 ∠AOB 的度数。
③ 若AN 、MC 相交于点P ,BM 、NC 交于点Q ,求证:PQ ∥AB 。
(湘潭·中考题)同类变式: 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE.(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE ,△AMN 是等边三角形.CBOD图7 AEA BCMNO PQ(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.同类变式:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD,的中点.(1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4. 如图,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H .(1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD 的度数,并说明理由;图9 图10 图11CENDA BM图①CAE M BDN 图②(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积 为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.5.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF二、 垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ; (2)若AC =12 cm ,求BD 的长.C FGEDAH2. (西安中考)如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 。
北师大版七年级下全等三角形压轴题分类解析
七年级下三角形综合题归类一、双等边三角形模型1.(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2.已知:AN 、BM相交于潭·中考题)ADE△中,AB 点B A D ,,分别为BE CD ,(1(24.(1(2(3 为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.5.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△; (2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.二、垂直模型(该模型在基础题和综合题中均为重点考察内容) 考点1:利用垂直证明角相等C FGEDBAH 图① 图②1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ; (2)若AC =12cm ,求BD 的长. 考点2:利用角相等证明垂直1. 已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系2.如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)(2)(3)连接是等腰直角三角形,90°,AD 是BC ,F ,求证:∠ADC(提示:) 3.如图1(1(2和GC .4.如图1在直线l (1)(2),AP BQ .(3线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.三、等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用 1. 如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC l (1) A B (F) (E)C PAB EC F P Q (2) l AB EC F P l交于F .求证:BE AF =,AE CF =.2. 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连结BD ,取BD 的中点M ,连结,ME MC .试判断EMC ∆的形状,并说明理由. 压轴题拓展:(三线合一性质的应用)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S ∆∆∆+=.当E D F ∠绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.3. CD 相交于点BC 的大小考点21. 如图经过点D 的平分线⑴①②③⑵2.在Rt △(1F 作FH ⊥FC ①求证:DG=DC②判断FH 与FC 的数量关系并加以证明.(2)若E 为线段DC 的延长线上任意一点,点F 在射线DG 上,(1)中的其他条件不变,借助图2画出图形。
北师大版七年级下全等三角形压轴题分类解析
BAO DCE图七年级下三角形综合题归类一、双等边三角形模型1、(1)如图7,点O 就是线段AD 的中点,分别以AO 与DO 为边在线段AD 的同侧作等边三角形OAB 与等边三角形OCD,连结AC 与BD,相交于点E,连结BC.求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状与大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 与ΔOCD 不能重叠),求∠AEB 的大小、2、已知:点C 为线段AB 上一点,△ACM,△CBN 都就是等边三角形,且AN 、BM 相交于O 、 ①求证:AN=BM②求∠AOB 的度数。
③若AN 、MC 相交于点P,BM 、NC 交于点Q,求证:PQ ∥AB 。
(湘潭·中考题)同类变式:已知,如图①所示,在与中,,,,且点在一条直线上,连接分别为的中点.(1)求证:①;②;(2)在图①的基础上,将绕点按顺时针方向旋转,其她条件不变,得到图②所示的图形.请直接写出(1)中的两个结论就是否仍然成立、4、如图,四边形ABCD 与四边形AEFG 均为正方形,连接BG 与DE 相交于点H .(1)证明:△ABG △ADE ;(2)试猜想BHD 的度数,并说明理由;(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<BAE <180°),ABE 的面积C B OD 图A EABC M NOP QCE N D AB M 图①CAEMBD N图②为,△ADG 的面积为,判断与的大小关系,并给予证明.5、已知:如图,就是等边三角形,过边上的点作,交于点,在的延长线上取点,使,连接. (1)求证:; (2)过点作,交于点,请您连接,并判断就是怎样的三角形,试证明您的结论.二、垂直模型(该模型在基础题与综合题中均为重点考察内容) 考点1:利用垂直证明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 就是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . 求证:(1)AE =CD ; (2)若AC =12cm,求BD 的长. 考点2:利用角相等证明垂直1. 已知BE,CF 就是△ABC 的高,且BP=AC,CQ=AB,试确定AP 与AQ 的数量关系与位置关系2、如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)求证:CD=BF; (2)求证:AD ⊥CF;(3)连接AF ,试判断△ACF 的形状、拓展巩固:如图9所示,△ABC 就是等腰直角三角形,∠ACB =90°,AD 就是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC =∠BDE.(提示:对比此题的条件与上面那题的条件,对比此题的图形与上题的图像,有什么区别与联系?) 3、如图1,已知正方形的边在正方形的边上,连接,、 (1)试猜想与有怎样的位置关系,并证明您的结论;CFG ED B AHA BC D EF图连2,如图,边上点落在使,针方向旋转按顺时绕点将正方形(2),若不成立;给出证明,中的结论就是否还成立?若成立(1)、您认为与接请说明理由、4、如图1,的边BC 在直线上,且的边也在直线上,边与边重合,且(1) 在图1中,请您通过观察、测量,猜想并写出与所满足的数量关系与位置关系;(2) 将沿直线向左平移到图2的位置时,交于点,连接、猜想并写出与所满足的数量关系与位置关系,请证明您的猜想; (3)将沿直线向左平移到图3的位置时,的延长线交的延长线于点Q,连结,您认为(2)中所猜想的与的数量关系与位置关系与位置关系还成立不?若成立,给出证明;若不成立,请说明理由、三、等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用 1. 如图,中,,,就是中点,,与交于,与交于.求证:,.2. 两个全等的含,角的三角板与三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结.试判断的形状,并说明理由.压轴题拓展:(三线合一性质的应用)已知中,,,为边的中点,,绕点旋转,它的两边分别交、(或它们的延长线)于、. 当绕点旋转到于时(如图1),易证.当绕点旋转到与不垂直时,在图2与图3这两种情况下,上述结论就是否成立?若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出您的猜想,不需证明.提示:此题为上面题目的综合应用,思路与第一题相似。
专题4.3 全等三角形的性质【八大题型】(举一反三)(北师大版)(解析版)七年级下册
专题4.3全等三角形的性质【八大题型】【北师大版】【题型1全等图形的概念】 (1)【题型2全等三角形的对应元素判断】 (4)【题型3全等三角形的性质(求长度)】 (6)【题型4全等三角形的性质(求角度)】 (9)【题型5全等三角形的性质(判断结论)】 (12)【题型6全等三角形的性质(探究角度之间的关系)】 (17)【题型7全等三角形的性质(动点问题)】 (21)【题型8全等三角形的性质(证明题)】 (25)【题型1全等图形的概念】【例1】(2022春•偃师市期末)下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【分析】直接利用全等图形的定义与性质分别分析得出答案.【解答】解:A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选:C.【变式1-1】(2021秋•思南县期中)有下列说法,其中正确的有()①两个等边三角形一定能完全重合;②如果两个图形是全等图形,那么它们的形状和大小一定相同;③两个等腰三角形一定是全等图形;④面积相等的两个图形一定是全等图形.A.1个B.2个C.3个D.4个【分析】直接利用全等图形的性质分别分析得出答案.【解答】解:①两个等边三角形不一定能完全重合,故此选项不合题意;②如果两个图形是全等图形,那么它们的形状和大小一定相同,故此选项符合题意;③两个等腰三角形不一定是全等图形,故此选项不合题意;④面积相等的两个图形不一定是全等图形,故此选项不合题意.故选:A.【变式1-2】(2021秋•蔡甸区期中)如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤【分析】本题可通过旋转,看后边四个实线图形能和①中图形完全重合的便是①的全等形.【解答】解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,故选:C.【变式1-3】(2021春•宁德期末)在如图所示的网格图中,每个小正方形的边长都为1.沿着图中的虚线,可以将该图形分割成2个全等的图形.在所有的分割方案中,最长分割线的长度等于.【分析】沿着图中的虚线,可以将该图形分割成2个全等的图形.画出所有的分割方案,即可得到最长分割线的长度.【解答】解:分割方案如图所示:由图可得,最长分割线的长度等于7.故答案为:7.【知识点3全等三角形的性质】全等三角形的对应边相等,对应角相等.(另外全等三角形的周长、面积相等,对应边上的中线、角平分线、高线均相等)【题型2全等三角形的对应元素判断】【例2】(2021秋•南沙区期末)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.115°B.65°C.40°D.25°【分析】根据三角形内角和定理求出∠2,根据全等三角形的性质解答即可.【解答】解:由三角形内角和定理得,∠2=180°﹣115°﹣25°=40°,∵两个三角形全等,∴∠1=∠2=40°,故选:C.【变式2-1】(2021秋•大连期中)如图,△ABN≌△ACM,∠B和∠C是对应角,AB和AC 是对应边,其它对应边及对应角正确的是()A.∠ANB和∠AMC是对应角B.∠BAN和∠CAB是对应角C.AM和BM是对应边D.BN和CN是对应边【分析】全等三角形的对应顶点在对应位置,按顺序找即可.关键要细心,找对对应角和对应边.【解答】解:∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC.故选:A.【变式2-2】(2021春•泰兴市期末)边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为奇数,则DF的值为()A.3B.4C.3或5D.3或4或5【分析】根据三角形的三边关系求得AC的范围,然后根据全等三角形的对应边相等即可求解.【解答】解:AC的范围是2<AC<6,则AC的奇数值是3或5.△ABC和△DEF全等,AB与DE是对应边,则DE=AB=2,当DF=AC时,DF=3或5.当DF=BC时,DF=4.故选:D.【变式2-3】(2021秋•鲁甸县期末)如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2y﹣1,若这两个三角形全等,则x+y=.【分析】根据全等三角形的对应边相等列出方程,解方程分别求出x 、y ,计算即可,注意分类讨论.【解答】解:∵两个三角形全等,∴3x ﹣2=5,2y ﹣1=7或3x ﹣2=7,2y ﹣1=5,解得:x =73,y =4或x =3,y =3,则x +y =193或6,故答案为:193或6.【题型3全等三角形的性质(求长度)】【例3】(2021秋•青田县期末)如图,已知△ABC ≌△DEF ,B ,E ,C ,F 在同一条直线上.若BF =8cm ,BE =2cm ,则CE 的长度()cm .A .5B .4C .3D .2【分析】根据全等三角形的性质得出BC =EF ,求出BE =CF =2cm ,再求出答案即可.【解答】解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC ﹣CE =EF ﹣CE ,∴BE =CF ,∵BE =2cm ,∴CF =BE =2cm ,∵BF =8cm ,∴CE=BF﹣BE﹣CF=8﹣2﹣2=4(cm),故选:B.【变式3-1】(2022秋•巴南区期末)如图,△ABC≌△BDE,AB⊥BD,AB=BD,AC=4,DE=3,CE的长为()A.1B.2C.3D.4【分析】根据全等三角形的性质和线段的和差即可得到结论.【解答】解:∵△ABC≌△BDE,∴BE=AC=4,BC=DE=3,∴CE=BE﹣BC=1,故选:A.【变式3-2】(2020秋•永嘉县校级期末)如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.7【分析】根据全等三角形性质,可得:∠ABC=∠DBE,进而得出∠ABD=∠FBE,得出∠FBE=∠E,得出BF=EF即可.【解答】解:∵△ABC≌△DBE,∴∠ABC=∠DBE,BE=BC,∴∠ABC﹣∠DBF=∠DBE﹣∠DBF,即∠ABD=∠FBE,∵∠ABD=∠E,∴∠FBE=∠E,∴BF=EF=BC﹣CF=10﹣4=6,故选:C.【变式3-3】(2021春•沙坪坝区期末)如图,△ABC中,点D、点E分别在边AB、BC上,连结AE、DE,若△ADE≌△BDE,AC:AB:BC=2:3:4,且△ABC的周长比△AEC 的周长大6.则△AEC的周长为.【分析】由AC:AB:BC=2:3:4,可设AC=2x,AB=3x,BC=4x.△ABC的周长比△AEC的周长大6,可推断出x=2,故AC=4,BC=8.由△ADE≌△BDE,得AE=BE,故CAEC=AE+EC+AC=BE+EC+AC=BC+AC=12.△【解答】解:∵△ADE≌△BDE,∴BE=AE.∴CAEC=AE+EC+AC=BE+EC+AC=BC+AC.△∵AC:AB:BC=2:3:4,∴设AC=2x,AB=3x,BC=4x.∵△ABC的周长比△AEC的周长大6,∴CABC﹣C△AEC=6.△∴(AB+BC+AC)﹣(BC+AC)=6.∴AB=3x=6.∴x=2.∴AC=2x=4,BC=4x=8.∴CAEC=BC+AC=8+4=12.△故答案为:12.【题型4全等三角形的性质(求角度)】【例4】(2022春•鼓楼区校级期末)如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=27°,∠CDB′=98°,则∠C′的度数为()A.60°B.45°C.43°D.34°【分析】根据对顶角相等求出∠ADB,根据三角形内角定理求出∠BAD,根据角平分线的定义求出∠BAC,进而求出∠C,根据全等三角形对应角相等解答即可.【解答】解:∵∠CDB′=98°,∴∠ADB=∠CDB′=98°,∴∠BAD=180°﹣∠B﹣∠ADB=55°,∵AB′平分∠BAC,∴∠BAC=2∠BAD=110°,∴∠C=180°﹣∠B﹣∠BAC=43°,∵△ABC≌△A′B′C′,∴∠C′=∠C=43°,故选:C.【变式4-1】(2021秋•民权县期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84°B.60°C.48°D.43°【分析】根据全等三角形的性质得出∠BAC=∠EAD,AB=AD,根据等腰三角形的性质和三角形内角和定理求出∠ADB=∠ABD=43°,根据平行线的性质得出∠EAD=∠ADB=43°,再求出答案即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠EAD,AB=AD,∵∠BAD=94°,∴∠ADB=∠ABD=12×(180°﹣∠BAD)=43°,∵AE∥BD,∴∠EAD=∠ADB=43°,∴∠BAC=∠EAD=43°,故选:D.【变式4-2】(2021秋•招远市期中)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=56°,则∠CAF的度数为()A.36°B.24°C.56°D.34°【分析】根据全等三角形的性质得出∠BCA=∠ECD,求出∠BCE=∠ACF,求出∠ACF =56°,再根据直角三角形的两锐角互余得出即可.【解答】解:∵△ABC≌△DEC,∴∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,即∠BCE=∠ACF,∵∠BCE=56°,∴∠ACF=56°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF=90°﹣∠ACF==34°,故选:D.【变式4-3】(2022春•武侯区期末)如图,在△ABC中,在边BC上取一点D,连接AD,在边AD上取一点E,连接CE.若△ADB≌△CDE,∠BAD=α,则∠ACE的度数为()A.αB.α﹣45°C.45°﹣αD.90°﹣α【分析】根据全等三角形的性质可得∠ADB=∠CDE,AD=CD,∠DCE=∠BAD,进一步可得∠CDE=90°,∠ACD=45°,即可求出∠ACE的度数.【解答】解:∵△ADB≌△CDE,∴∠ADB=∠CDE,AD=CD,∠DCE=∠BAD,∵∠ADB+∠CDE=180°,∴∠CDE=90°,∴∠ACD=∠CAD=45°,∵∠BAD=α,∴∠DCE=α,∴∠ACE=45°﹣α,故选:C.【题型5全等三角形的性质(判断结论)】【例5】(2022•龙岗区模拟)如图,△ABC≌△A′B′C,且点B′在AB边上,点A′恰好在BC的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【分析】根据全等三角形的性质得出BC=B′C,∠ACB=∠A′CB′,∠B=∠A′B′C,再逐个判断即可.【解答】解:∵△ABC≌△A′B′C,∴BC=B′C,∠ACB=∠A′CB′,∠B=∠A′B′C,A.∵∠ACB=∠A′CB′,∴∠ACB﹣∠ACB′=∠A′CB′﹣∠ACB′,∴∠BCB′=∠ACA′,故本选项不符合题意;B.∵BC=B′C,∴∠B=∠CB′B,∴∠A′CB′=∠B+∠BB′C=2∠B,∵∠ACB=∠A′CB′,∴∠ACB=2∠B,故本选项不符合题意;C.不能推出∠B′CA=∠B′AC,故本选项符合题意;D.∵∠B=∠BB′C,∠B=∠A′B′C,∴∠A′B′C=∠BB′C,即B′C平分∠BB′A′,故本选项不符合题意;故选:C.【变式5-1】(2021春•海口期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.【变式5-2】(2021秋•新乐市期末)如图,△ABD≌△EBC,AB=12,BC=5,A,B,C 三点共线,则下列结论中:①CD⊥AE;②AD⊥CE;③∠EAD=∠ECD;正确的是【分析】根据全等三角形的性质和等腰直角三角形的性质可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:延长AD交EC于点N,延长CD交AE于点M,∵△ABD≌△EBC,∴∠ABD=∠EBC,AB=EB,BD=BC,∠DAB=∠CEB,∵∠ABD+∠EBC=180°,∠BAE=∠BEA,∠BDC=∠BCD,∴∠ABD=∠EBC=90°,∴∠BAE=∠BEA=45°,∠BDC=∠BCD=45°,∴∠BAE+∠BCD=90°,∴∠AMC=90°,∴CD⊥AE,故①正确;∵∠CEB+∠ECB=90°,∠BAD=∠BEC,∴∠BAD+∠ECB=90°,∴∠ANC=90°,∴AD⊥CE,故②正确;∵∠ADB=∠EAD+∠AED=∠EAD+45°,∠ECB=∠ECD+∠BCD=∠ECD+45°,∠ADB=∠ECB,∴∠EAD=∠ECD,故③正确;故填:①②③.【变式5-3】(2021秋•五常市期末)如图,点E是CD上的一点,Rt△ACD≌Rt△EBC,则下结论:①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,成立的有个.【分析】根据全等三角形的性质得出AC=BE,CD=BC,∠ACD=∠CBE,∠D=∠BCE,根据以上结论即可推出AC<BC,∠D≠∠BED,∠ACB=90°,AD+DE=CD=BC>BE,即可判断各个小题.【解答】解:∵Rt△ACD≌Rt△EBC,∴AC=BE,∵在Rt△BEC中,BE<BC,∴AC<BC,∴①错误;∵∠CAD=∠CEB=∠BED=90°,∠D<∠CAD,∴∠D≠∠BED,∴AD和BE不平行,∴②错误;∵Rt△ACD≌Rt△EBC,∴∠ACD=∠CEE,∠D=∠BCE,∵∠CAD=90°,∴∠ACD+∠D=90°,∴∠ACB=∠ACD+∠BDE=90°,∴③正确;∵Rt△ACD≌Rt△EBC,∴AD=CE,CD=BC,CD=CE+DE=AD+DE=BC,∵BE<BC,∴AD+DE>BE,∴④错误;故答案为:1.【题型6全等三角形的性质(探究角度之间的关系)】【例6】(2022•长春二模)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO =∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=12(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+12(180°﹣α)=90°,整理得,α=2β.故选:B.【变式6-1】(2021秋•林州市期末)如图,点D,E,F分别在△ABC的边AB,BC,CA 上(不与顶点重合),设∠BAC=α,∠FED=θ.若△BED≌△CFE,则α,θ满足的关系是()A.α+θ=90°B.α+2θ=180°C.α﹣θ=90°D.2α+θ=180°【分析】由∠BAC=α,得∠B+∠C=180°﹣α,根据△BED≌△CFE,即有∠B=∠C=90°−12α,∠BDE=∠FEC,故∠FEC+∠BED=90°+12α,从而90°+12α+θ=180°,即可答案.【解答】解:∵∠BAC=α,∴∠B+∠C=180°﹣α,∵△BED≌△CFE,∴∠B=∠C=90°−12α,∠BDE=∠FEC,∴∠BDE+∠BED=180°﹣∠B=180°﹣(90°−12α)=90°+12α,∴∠FEC+∠BED=90°+12α,∵∠FED=θ,∠FEC+∠BED+∠FED=180°,∴90°+12α+θ=180°,∴α+2θ=180°,故选:B.【变式6-2】(2022春•徐汇区校级期末)如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:4【分析】利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选:D.【变式6-3】(2022•定远县模拟)如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=α,∠BFC=β,则()A.2α+β=180°B.2β﹣α=145°C.α+β=135°D.β﹣α=60°【分析】延长C′D交AC于M,如图,根据全等的性质得∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,再利用三角形外角性质得∠C′MC=∠C′+∠C′AM=∠C′+2α,接着利用C′D∥B′E得到∠AEB=∠C′MC,而根据三角形内角和得到∠AEB′=180°﹣∠B′﹣α,则∠C′+2α=180°﹣∠B′﹣α,所以∠C′+∠B′=180°﹣3α,利用三角形外角性质和等角代换得到∠BFC=∠C=α+∠C′+∠B′,所以∠BFC=β=180°﹣2α,进一步变形后即可得到答案.【解答】解:延长C′D交AC于M,如图,∵△ADC≌△ADC′,△AEB≌△AEB′,∴∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,∴∠C′MC=∠C′+∠C′AM=∠C′+2α,∵C′D∥B′E,∴∠AEB′=∠C′MC,∵∠AEB′=180°﹣∠B′﹣∠B′AE=180°﹣∠B′﹣α,∴∠C′+2α=180°﹣∠B′﹣α,∴∠C′+∠B′=180°﹣3α,∵β=∠BFC=∠BDF+∠DBF=∠DAC+∠ACD+∠B'=α+∠ACD+∠B′=α+∠C′+∠B′=α+180°﹣3α=180°﹣2α,即:2α+β=180°.故选:A.【题型7全等三角形的性质(动点问题)】【例7】(2021秋•柘城县期中)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P 在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM 上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QPA两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【变式7-1】(2021春•浦东新区校级期末)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5B.3C.2.25或3D.1或5【分析】分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=12BC=12×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出v=3.【解答】解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=12BC=12×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴v=3,∴v的值为:2.25或3,故选:C.【变式7-2】(2021春•和平区期末)如图,CA⊥AB于点A,AB=8,AC=4,射线BM⊥AB于点B,一动点E从A点出发以2个单位/秒沿射线AB运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,若点E经过t秒(t>0),△DEB与△BCA全等,则t的值为秒.【分析】此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AB=BE进行计算即可.【解答】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:2,6,8.【变式7-3】(2021春•高新区期末)如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A 路径向终点运动,终点为A点.点P和Q分别以每秒1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E、作QF ⊥l于F,当点P运动秒时,以P、E、C为顶点的三角形和以Q、F、C为顶点的三角形全等.【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t 的方程,解方程即可.【解答】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6﹣t,QC=8﹣3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,即6﹣t=8﹣3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t﹣6,QC=3t﹣8,∵由①知:PC=CQ,∴t ﹣6=3t ﹣8,t =1;t ﹣6<0,即此种情况不符合题意;③当P 、Q 都在AC 上时,如图3,CP =6﹣t =3t ﹣8,t =72;④当Q 到A 点停止,P 在BC 上时,AC =PC ,t ﹣6=6时,解得t =12.⑤P 和Q 都在BC 上的情况不存在,因为P 的速度是每秒1cm ,Q 的速度是每秒3cm ;答:点P 运动1或72或12秒时,以P 、E 、C 为顶点的三角形上以O 、F 、C 为顶点的三角形全等.故答案为:1或72或12.【题型8全等三角形的性质(证明题)】【例8】(2021秋•大化县期中)如图所示,已知△ABD ≌△CFD ,AD ⊥BC 于D .(1)求证:CE ⊥AB ;(2)已知BC =7,AD =5,求AF 的长.【分析】(1)由△ABD ≌△CFD ,得出∠BAD =∠DCF ,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD =DC ,即可得出BD =DF ,进而解决问题.【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【变式8-1】(2021秋•海淀区校级期中)如图,A,E,C三点在同一直线上,且△ABC≌△DAE.(1)线段DE,CE,BC有怎样的数量关系?请说明理由.(2)请你猜想△ADE满足什么条件时,DE∥BC,并证明.【分析】(1)根据全等三角形的性质得出AE=BC,DE=AC,再求出答案即可;(2)根据全等三角形的性质得出∠AED=∠C,根据平行线的性质得出∠C=∠DEC,再根据邻补角互补得出∠AED+∠DEC=180°,再求出∠AED=90°即可.【解答】(1)解:DE=CE+BC.理由:∵△ABC≌△DAE,∴AE=BC,DE=AC.∵A,E,C三点在同一直线上,∴AC=AE+CE,∴DE=CE+BC;(2)猜想:DE∥BC,则∠DEC=∠C.∵△ABC≌△DAE,∴∠AED=∠C,∴∠AED=∠DEC.又∵∠AED+∠DEC=180°,∴∠AED=∠DEC=90°,∴当△ADE满足∠AED=90°时,DE//BC.【变式8-2】(2021秋•灌云县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【变式8-3】(2021秋•定远县校级期中)如图所示,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.(1)求证:CD⊥AB;(2)求∠B的度数;(3)求证:EF∥AC.【分析】(1)由△ACD≌△ECD可得出∠ADC=∠EDC,结合点A、D、E、B共线即可得出∠ADC=∠EDC=90°,即CD⊥AB;(2)设∠B=α,根据△ACD≌△ECD、△CEF≌△BEF可得出∠A=∠CED、∠B=∠BCE,由三角形的外角性质结合三角形内角和定理即可得出关于α的一元一次方程,解之即可得出结论;(3)根据全等的性质得∠EFB=∠EFC,再利用平角定义得到∠EFB=90°,则∠ACB =∠EFB,然后根据平行线的判定可判断EF∥AC.【解答】(1)证明:∵△ACD≌△ECD,∴∠ADC=∠EDC.∵点A,D,E,B共线,∴∠ADC+∠EDC=180°,∴∠ADC=∠EDC=90°,∴CD⊥AB;(2)解:设∠B=α,∵△ACD≌△ECD,△CEF≌△BEF,∴∠A=∠CED,∠B=∠BCE=α,∵∠CED=∠B+∠BCE,∠A+∠B+∠ACB=180°,∴2α+α+90°=180°,∴α=30°,即∠B=30°;(3)证明:∵△CEF≌△BEF,∴∠EFC=∠EFB,而∠EFB+∠EFC=180°,∴∠EFB=90°,∵∠ACB=90°,∴∠ACB=∠EFB,∴EF∥AC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级下全等三角形压轴题分类解析————————————————————————————————作者:————————————————————————————————日期:B AODC E 图七年级下三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.同类变式: 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE =,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.图9 图10C B OD图AE同类变式:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180o ,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4. 如图,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H . (1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD 的度数,并说明理由;(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.5.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF二、 垂直模型(该模型在基础题和综合题中均为重点考察内容) 考点1:利用垂直证明角相等1. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC交CF 的延长线于D .C F GED BAHC E ND A B M 图 C AE M B D N 图求证:(1)AE =CD ; (2)若AC =12 cm ,求BD 的长.2.(西安中考)如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 。
图(1) 图(2) 图(3) (1)试说明: BD=DE+CE.(2) 若直线AE 绕A 点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD 与DE 、CE 的关系如何?写结论,并说明理由。
(3) 若直线AE 绕A 点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD 与DE 、CE 的关系如何? 写出结论,可不说明理由。
3. 直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=o o,则EF BE AF -(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<o o,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.B考点2:利用角相等证明垂直1. 已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系2. 如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)求证:CD=BF ; (2)求证:AD ⊥CF ;(3)连接AF ,试判断△ACF 的形状.拓展巩固:如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .3. 如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论;(2)将正方形DEFG 绕点D 按顺时针方向旋转,使E 点落在BC 边上,如图2,连接AE 和GC .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.B ACEFQPD ABC DE F 图4.如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也 在直线l 上,边EF 与边AC 重合,且EF FP =(1) 在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2) 将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.三、 等腰三角形(中考重难点之一) 考点1:等腰三角形性质的应用1. 如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC 交于F .求证:BE AF =,AE CF =.2. 两个全等的含30o ,60o角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连结BD ,取BD 的中点M ,连结,ME MC .试判断EMC ∆的形状,并说明理由.l(A B((C P AB EC F P Q (l AB EC FP l(Q ABCD E F压轴题拓展:(三线合一性质的应用)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S ∆∆∆+=.当EDF ∠绕D 点旋转到DE 和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.FEDCBA图1AECF BD图2AECFBD图33. 已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H是BC 边的中点,连结DH 与BE 相交于点G 。
(1) BF =AC (2) CE =12BF (3)CE 与BC 的大小关系如何。
考点2:等腰直角三角形(45度的联想)1. 如图1,四边形ABCD 是正方形,M 是AB 延长线上一点。
直角三角尺的一条直角边 经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .⑴ 如图14―1,当点E 在AB 边的中点位置时:① 通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ; ② 连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ;③ 请证明你的上述两猜想.⑵ 如图14―2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N, 使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系并证明2. 在Rt △ABC 中,AC =BC ,∠ACB =90°,D 是AC 的中点,DG ⊥AC 交AB 于点G.(1)如图1,E 为线段DC 上任意一点,点F 在线段DG 上,且DE=DF ,连结EF 与 CF ,过点F 作FH ⊥FC ,交直线AB 于点H . ①求证:DG=DC②判断FH 与FC 的数量关系并加以证明.(2)若E 为线段DC 的延长线上任意一点,点F 在射线DG 上,(1)中的其他条件不变,借助图2画出图形。
在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变.(本小题直接写出结论,不必证明)同类变式:(期末考试原题哦) 已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边与∠ACM 的平分线CF 交于点F (1)如图(1)当点E 在BC 边得中点位置时○1猜想AE 与EF 满足的数量关系是 . ○2连结点E 与AB边得中点N,猜想BE和CF满足的数量关系是 .○3请证明你的上述猜想; (2)如图(2)当点E在BC边得任意位置时,AE和EF 有怎样的数量关系,并说明你的理由?四、 角平分线问题1. 如图:E 在线段CD 上,EA 、EB 分别平分∠DAB 和∠CBA, ∠AEB=90°,设AD =x , BC =y ,且,x y 满足2268250x y x y +--+=AD BCGE图2G HF EDCBA图1图(1)NF MCB AE图(2)FMC BACE(1)求AD 和BC 的长;(2)你认为AD 和BC 还有什么关系?并验证你的结论; (3)你能求出AB 的长度吗?若能,请写出推理过程;若不能,请说明理由.2. 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。