初中数学华师大版第10章 轴对称、平移与旋转课后练习考试卷考点.doc
华师大版七年级下册数学第10章 轴对称、平移与旋转含答案(附答案)
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、下列汽车标志中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图标中,是轴对称图形的是()A. B. C. D.3、在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2 ﹣1D.2 +14、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是()A.40°B.35°C.30°D.15°5、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()A.平移变换B.轴对称变换C.旋转变换D.相似变换6、如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点,则点的坐标是()A.(2019,2)B.(2019, )C.(4038, )D.(4037, )7、如图,在矩形ABCD中,AB=8,BC=4.将矩形沿AC折叠,CD′与AB交于点F,则AF:BF的值为()A.2B.C.D.8、直角三角形纸片的两直角边长分别为6,8,现将△ABC如右图那样折叠,使点A与点B重合,则折痕BE的长是()A. B. C. D.9、下列说法中正确命题有()①一个角的两边分别垂直于另一个角的两边,则这两个角相等.②已知甲、乙两组数据的方差分别为:S2甲=0.12,S2乙=0.09 ,则甲的波动大.③等腰梯形既是中心对称图形,又是轴对称图形.④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为.A.0个B.1个C.2个D.3个10、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、下列图形是全等图形的是()A. B. C. D.12、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.两个圆形纸片随意平放在水平桌面上构成轴对称图形C.若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线D.等腰三角形一边上的高,中线及这边对角平分线重合13、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.114、下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.415、下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形二、填空题(共10题,共计30分)16、如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转,使点B 的对应点D恰好落在上,点C的对应点为E,则图中阴影部分的面积为________.17、如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为________.18、如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED 对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是________(填写序号)19、如图,将△ABC向左平移3cm得到△DEF,AB、DF交于点G,如果△ABC的周长是12cm,那么△ADG与△BGF的周长之和是________.20、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________ 种.21、在平面直角坐标系中点关于轴对称点的坐标为________.22、如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC,BD两次折叠后,得到如图2所示的扇形OAB,然后再沿OB的中垂线EF将扇形OAB剪成左右两部分,则∠OEF=________°;右边部分经过两次展开并压平后所得的图形的周长为________23、如图,长方形ABCD中,AB=8,BC=12,点E是边BC上一点,BE=5,点F是射线BA上一动点,连接EF,将△BEF沿着EF折叠,使B点的对应点P落在长方形一边的垂直平分线上,连接BP,则BP的长是________.24、如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________个.25、如图,在中,已知,,现将沿所在的直线向右平移4cm得到,与相交于点,若,则阴影部分的面积为________ .三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,在四边形中,、是对角线,已知是等边三角形,,,,求边的长.28、如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.29、在台阶侧面示意图中,台阶高1米,水平宽度2.5米,为迎接贵宾,要在台阶上铺宽度2米的地毯,项目负责人经过考虑准备在市场上购买每平方米200元地毯,他要准备多少现金?30、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、C6、D7、B8、A9、C10、A11、C12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
华师大版七年级数学下册《第十章轴对称、平移与旋转》 达标测试卷-带参考答案
华师大版七年级数学下册《第十章轴对称、平移与旋转》达标测试卷-带参考答案一、选择题(每题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看成是轴对称图形的是()2.下列四组图形中,不能视为由一个基本图形通过平移得到的是()3.美丽的雪花呈现出浪漫空灵的气质.如图,雪花图案可以看成是由自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°(第3题)(第5题)4.下列图形中既是轴对称图形又是中心对称图形的是()5.如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC 的长为()A.3 B.5 C.8 D.116.如图,在长方形ABCD中,E是CD上一点,连结AE,将△ADE沿AE折叠,使点D的对应点F落在BC上,若AB=3,BC=5,BF=4,则CE的长为()(第6题)A.2 B.1 C.53 D.437.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把其中一张扑克牌旋转180°.魔术师解除蒙具后,看到4张牌如图②所示.那么被旋转过的牌是()(第7题)A.方块4 B.黑桃5 C.梅花6 D.红桃7 8.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为()(第8题)A.407 B.406 C.405 D.404二、填空题(每题3分,共18分)9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________°.(第9题)(第11题)10.把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.11.如图,方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的最小度数是________°.12.如图,直角三角形DEF是由直角三角形ABC沿BC平移得到的,若AB=8,BE=3,DH=2,则图中阴影部分的面积是________.(第12题)(第13题)13.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C的对应点C′落在△ABC内,则∠1+∠2=________°.14.如图,在锐角三角形ABC中,AB=8,△ABC的面积为40,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为________.(第14题)三、解答题(共78分)15.(6分)如图是正方形纸片ABCD,点E、F分别在边BC、CD上,连结AF,AE,将△ABE,△ADF分别沿AE、AF折叠,折叠后边AB与AD恰好重叠于AG,求∠EAF的大小.(第15题)第3 页共12 页16.(6分)如图,在边长均为1的小正方形组成的网格中,△AOB的顶点均在格点上.(1)将△AOB向下平移2个单位后得到△A1O1B1,请画出△A1O1B1;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请画出△A2OB2;(3)△A3OB3与△AOB关于点O中心对称,请画出△A3OB3.(第16题)17.(6分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.(第17题)18.(7分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种不同的方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.(第18题)19.(7分)如图,△ABD≌△EBC,AB=3 cm,BC=6 cm.(1)求DE的长;(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?(第19题)20.(7分)如图,E是正方形ABCD的边AB上一点,AB=4,AE=1.5,△DAE逆时针旋转后能够与△DCF重合.第5 页共12 页(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断△DFE的形状,并说明理由.(3)求四边形ABFD的面积.(第20题)21.(8分)如图①②均为上底为1,下底为2,高为1的直角梯形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.(第21题)22.(9分)如图,小丽将直角三角形ABC沿某条直线折叠,使斜边的两个端点A 与B重合,折痕为DE.(1)如果AC=6,BC=8,试求△ACD的周长;(2)如果∠CAD∶∠BAD=4∶7,求∠B的度数.(第22题)23.(10分)如图①,将一副直角三角尺OCD、PMN放在同一条直线AB上,其中∠PNM=30°,∠OCD=45°.(1)【观察猜想】将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=________.(2)【操作探究】将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)【深化拓展】将图①中的三角尺OCD绕点O按顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.(第23题)第7 页共12 页24.(12分)将一副直角三角尺按如图①所示的方式摆放在直线MN上(∠DEC=60°,∠BAC=45°),保持三角尺EDC不动,将三角尺ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图②,当CA平分∠DCE时,求此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB之间的数量关系,并说明理由;(3)在旋转过程中,当三角尺ABC的某一边平行于三角尺EDC的某一边时,求此时t的值.(第24题)答案一、1.B 2.C 3.C 4.A 5.B6.D思路点睛:根据长方形的面积列方程求解.7.A点拨:观察发现旋转之前和旋转之后扑克牌的图案没变化,所以旋转的扑克牌转180°后图案与原来相同,只有方块4符合题意,故选A.8.D思路点睛:根据平移的性质得出AA1=5,A1A2=5,A1B1=6,A2B2=6,进而求出AB1和AB2的长,然后总结规律,得出AB n=(n+1)×5+1,求出n 即可.二、9.12010.6011.9012.2113.8014.10三、15.解:∵四边形ABCD是正方形,∴∠BAD=90°由折叠的性质得,∠DAF=∠GAF=12∠DAG,∠BAE=∠GAE=12∠BAG,∴∠EAF=∠GAF+∠GAE=12∠DAG+12∠BAG=12(∠DAG+∠BAG)=12∠BAD=45°.16.解:(1)如图,△A1O1B1即为所作.(2)如图,△A2OB2即为所作.(3)如图,△A3OB3即为所作.(第16题) 17.解:由旋转的性质可得,AB=AD,∠ADE=∠B=70°∴∠ADB=∠B=70°∴∠CDE=180°-∠ADB-∠ADE=40°.18.解:如图.(方法不唯一)(第18题)第9 页共12 页19.解:(1)∵△ABD ≌△EBC ∴AB =BE ,BD =BC∴DE =BD -BE =BC -AB =6-3=3(cm).(2)垂直.∵△ABD ≌△EBC ,且A 、B 、C 在一条直线上 ∴∠ABD =∠CBE ,∠ABD +∠CBE =180° ∴∠ABD =∠CBE =90°,即DB ⊥AC . 20.解:(1)旋转中心是点D ,旋转角为90°.(2)△DFE 是等腰直角三角形.理由如下: ∵四边形ABCD 是正方形,∴∠ADC =90°.根据旋转的性质可得DE =DF ,∠EDF =∠ADC =90° ∴△DFE 是等腰直角三角形.(3)∵四边形ABCD 是正方形,∴∠A =90°,AD =AB =4,S正方形ABCD=4×4=16,根据旋转的性质可得S △CDF =S △ADE =12AD ·AE =12×4×1.5=3 ∴S 四边形ABFD =S 正方形ABCD +S △CDF =16+3=19. 21.解:(1)如图①所示. (2)如图②所示.(第21题)22.解:(1)由折叠的性质可得BD =AD ,∴△ACD 的周长=AC +AD +CD =AC+BD +CD =AC +BC =6+8=14. (2)可设∠CAD =4x °,∠BAD =7x °由折叠的性质可得∠B =∠BAD ,∴∠B =7x ° ∵∠C =90°,∴∠B +∠DAB +∠CAD =90° ∴7x °+7x °+4x °=90°,解得x =5,∴∠B =35°. 23.解:(1)105°(2)∵OD 平分∠MON ,∴∠DON =12∠MON =12×90°=45°,∴∠DON =∠D =45°,∴CD ∥AB∴∠CEN =180°-∠MNO =180°-30°=150°.(3)设直线MO 与CD 相交于点F 如图①,当CD 在AB 上方时(第23题)∵CD∥MN,∴∠OFD=∠M=60°在△ODF中,∠MOD=180°-∠D-∠OFD=180°-45°-60°=75°,∴旋转角为75°;如图②,当CD在AB的下方时∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°-∠D-∠DFO=180°-45°-60°=75°∴旋转角为75°+180°=255°.综上所述,旋转的角度为75°或255°时,边CD恰好与边MN平行.24.解:(1)∵CA平分∠DCE,∴∠ACE =12∠DCE=15°∴t=15°÷5°=3.(第24题)(2)∠ECB-∠DCA=15°.理由如下:如图①,由旋转得∠ACE=5°t,∴∠DCA=30°-5°t,∠ECB=45°-5°t,∴∠ECB-∠DCA=(45°-5°t)-(30°-5°t)=15°.(3)分四种情况:①当AB∥DE时,如图②,∠ACE=∠ACB+∠DCE=45°+30°=75°,∴t=75°÷5°=15;(第24题)②当AB∥CE时,如图③,则∠BCE=∠B=90°∴∠ACE=∠BCE+∠ACB=90°+45°=135°第11 页共12 页∴t=135°÷5°=27;③当AB∥CD时,如图④,则∠DCB=∠B=90°∴∠ACE=∠DCE+∠DCB+∠ACB=30°+90°+45°=165°,∴t=165°÷5°=33;(第24题)④当AC∥DE时,如图⑤,则∠ACD=∠D=90°∴∠ACE=∠ACD+∠DCE=90°+30°=120°∴t=120°÷5°=24.综上所述,t的值是15,24,27或33.第12 页共12 页。
精品试卷华东师大版七年级数学下册第10章轴对称、平移与旋转同步训练试题(含详解)
七年级数学下册第10章轴对称、平移与旋转同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明将图案绕某点连续旋转若干次,每次旋转相同角度α,设计出一个外轮廓为正六边形的图案(如图),则α可以为()A.30°B.60°C.90°D.120°2、下列四个图形中,是中心对称图形的是()A.B.C .D .3、如图的4×4的正方形网格中,有A 、B 两点,在直线a 上求一点P ,使PA +PB 最短,则点P 应选在( )A .C 点B .D 点C .E 点D .F 点4、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中可以画出与△ABC 成轴对称的格点三角形的个数为( )A .2个B .3个C .4个D .5个5、如图,三角形ABC 中,90ACB ∠=︒,40ABC ∠=︒.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CBA '∠的度数是( )A .80︒B .50︒C .40︒D .20︒6、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=7、甲骨文是中国的一种古代文字,是汉字的早期形式,有时候也被认为是汉字的书体之一,也是现存中国王朝时期最古老的一种成熟文字。
下图为甲骨文对照表中的部分文字,若把它们抽象为几何图形,其中最接近轴对称图形的甲骨文对应的汉字是()A.时B.康C.黄D.奚8、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.56°9、下列图形中,不一定...是轴对称图形的是()A.直角三角形B.等腰三角形C.等边三角形D.正方形10、如图,下列图形中,轴对称图形的个数是()A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一张长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点'D 落在∠BAC 的内部,若∠CAE =2∠'BAD ,且∠'CAD =15°,则∠DAE 的度数为____________.2、如图,△ABC 中,∠ACB =90°,∠A =28°,若以点C 为旋转中心,将△ABC 逆时针旋转到△DEC 的位置,点B 在边DE 上,则旋转角的度数是_______.3、已知点A 的坐标为(),a b ,O 为坐标原点,连结OA ,将线段OA 绕点О顺时针旋转90°得到线段1OA ,则点1A 的坐标为______.4、如图所示的四角风车至少旋转__________°就可以与原图形重合.5、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是_________三、解答题(5小题,每小题10分,共计50分)A B C都是格点.1、如图,方格图中每个小正方形的边长都是1,点,,A BC;(1)画出ABC关于直线BM对称的11AA的长度.(2)写出12、经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.3、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).4、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).5、阅读下面材料:活动1利用折纸作角平分线①画图:在透明纸片上画出PQR ∠(如图1-①);②折纸:让PQR ∠的两边QP 与QR 重合,得到折痕QH (如图1-②);③获得结论:展开纸片,QH 就是PQR ∠的平分线(如图1-③).活动2利用折纸求角如图2,纸片上的长方形ABCD ,直线EF 与边AB ,CD 分别相交于点E ,F .将AEF ∠对折,点A 落在直线EF 上的点A '处,折痕EN 与AD 的交点为N ;将BEF ∠对折,点B 落在直线EF 上的点B '处,折痕EM 与BC 的交点为M .这时NEM ∠的度数可知,而且图中存在互余或者互补的角.解答问题:(1)求NEM ∠的度数;(2)①图2中,用数字所表示的角,哪些与A EN '∠互为余角?②写出A EN '∠的一个补角.解:(1)利用活动1可知,EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,所以12A EN '∠=∠ ,12B EM '∠=∠ .由题意可知,AEB ∠是平角.所以12NEM A EN B EM ''∠=∠+∠=(∠ +∠ )= °. (2)①图2中,用数字所表示的角,所有与A EN '∠互余的角是: ;②A EN '∠的一个补角是 .-参考答案-一、单选题1、B【解析】【分析】由题意依据每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度α 360660︒=÷=.故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.2、B【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意;故选:B.【点睛】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【详解】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故选:A.【点睛】此题考查了最短路径问题,成轴对称图形的性质.解题的关键是作出其中一点关于直线a的对称点,对称点与另一点的连线和直线a的交点就是所要找的点.4、D【解析】【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.5、A【解析】【分析】根据旋转的性质,可得ABC A BC ''∠=∠ ,即可求解.【详解】解:根据题意得:∠ABC =∠A'BC'∵40ABC ∠=︒.∴=404080ABC A BC CBA ''+∠︒+'=︒=∠∠︒.故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等,对应边相等是解题的关键.6、C【解析】【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A 、是中心对称图形,故A 选项不合题意;B 、是中心对称图形,故B 选项不合题意;C 、不是中心对称图形,故C 选项符合题意;D 、是中心对称图形,故D 选项不合题意;故选:C .【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.7、C【解析】【分析】根据图形的特点及轴对称图形的定义即可辨别求解.【详解】由图可得最接近轴对称图形的甲骨文对应的汉字是黄故选C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.8、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.9、A【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.10、B【解析】【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.二、填空题1、39︒【解析】【分析】由折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,再根据长方形的性质可知90DAE D AE BAD ''∠++∠=︒,结合题意整理即可求出BAD '∠的大小,从而即可求出DAE ∠的大小.【详解】根据折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,由长方形的性质可知90DAB ∠=︒,即90DAE D AE BAD ''∠++∠=︒,∵2CAE BAD '∠=∠,'15CAD ∠=︒,∴215DAE D AE BAD ''∠=∠=∠+︒,∴22151590BAD BAD BAD '''+︒++∠︒+∠=∠︒,∴12BAD '∠=︒,∴2152121539DAE BAD '∠=∠+︒=⨯︒+︒=︒.故答案为:39︒【点睛】本题考查矩形的性质,折叠的性质.利用数形结合的思想是解答本题的关键.2、56°【解析】【分析】直接利用旋转的性质得出EC =BC ,进而利用三角形内角和定理得出∠E =∠ABC =62°,即可得出∠ECB 的度数,得出答案即可.【详解】解:∵以点C为旋转中心,将△ABC旋转到△DEC的位置,点B在边DE上,∴EC=BC,∵∠ACB=90°,∠A=28°,∴∠E=∠ABC=62°,∴∠EBC=62°,∴∠ECB=180°-62°-62°=56°,∴则旋转角的度数是56°.故答案为:56°.【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出∠E=∠ABC的度数是解题关键.3、(b,-a)【解析】【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.【详解】解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.∵A(a,b),∴OB=a,AB=b,∴A1B1=AB=b,OB1=OB=a,因为A1在第四象限,所以A1(b,﹣a),A在其它象限结论也成立.故答案为:(b,﹣a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键.4、90【解析】【分析】如图所示,∠AOB即为所求,由题意得∠AOB=90°,由此即可得到答案.【详解】解:如图所示,∠AOB即为所求,由题意得,∠AOB=90°,∴四角风车至少旋转90°就可以与原图形重合,故答案为:90.【点睛】本题主要考查了图形的旋转,解题的关键在于能够熟练掌握旋转的意义.5、乙【解析】【分析】观察图形,中间相当于一个圆心角被平分为8份,用一周角度数除以8,得45°,故旋转45°的整数倍,即可与自身重合【详解】圆被平分成八部分,则360845︒÷=︒则旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故答案为:乙【点睛】本题考查了旋转对称性,求得每一份的角度是解题的关键.三、解答题1、 (1)见解析(2)10【解析】【分析】(1)找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)根据格点的特点,即可求得1AA 的长度.(1)如图所示,找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)1AA 的长度为10【点睛】本题考查了画轴对称图形,掌握轴对称的性质是解题的关键.2、见解析【解析】【详解】3、(1)见详解;(2)①见详解;②2,0.【解析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A(1,1),B'(4,-2),∴可设直线AB'为y=kx+b,则124k bk b=+⎧⎨-=+⎩,解得:12kb=-⎧⎨=⎩,∴y=-x+2,当y=0时,-x+2=0,此时点Q 的坐标为(2,0).故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短.4、(1)30;(2)1902FEG α∠=︒+;(3)1902FEG α∠=︒-【解析】【分析】(1)由折叠的性质,得到A EF AEF '∠=∠,D EG DEG '∠=∠,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒-,然后求出∠FEG 的度数即可;(3)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒+,然后求出∠FEG 的度数即可.【详解】解:(1)将∠AEF 沿折痕EF 翻折,点A 落在点A '处;将∠DEG 沿折痕EG 翻折,点D 落在点D '处, ∴40A EF AEF '∠=∠=︒,35D EG DEG '∠=∠=︒,∴1804040353530A ED ''∠=︒-︒-︒-︒-︒=︒;(2)根据题意,则A EF AEF '∠=∠,D EG DEG '∠=∠,∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒-, ∴1(180)2AEF DEG α∠+∠=︒-,∴11180(180)9022FEG αα∠=︒-︒-=︒+;(3)根据题意,A EF AEF '∠=∠,D EG DEG '∠=∠, ∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒+, ∴1(180)2AEF DEG α∠+∠=︒+, ∴11180(180)9022FEG αα∠=︒-︒+=︒-;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到A EF AEF '∠=∠,D EG DEG '∠=∠.5、(1)AEA ',BEB ',AEA BEB '',,90;(2)①∠1、∠2;②∠CME 或∠NEB .【解析】【分析】()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒ 【详解】解:(1)∵折叠∴EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,∴∠NEA =∠NEA ′=12AEA '∠,∠BEM =∠B′EM=12BEB '∠, ∵AEB ∠是平角.∴∠NEM =∠NEA ′+∠B′EM==12AEA '∠+()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒,故答案为:AEA ',BEB ',AEA BEB '',,90;(2)①∵∠1=∠2,∠A′EN =∠3,∠NEM =90°,∴∠A′EN +∠1=∠NEM =90°,∴A EN '∠互为余角为∠1和∠2,故答案为:∠1、∠2;②∵∠A′EN =∠3,∠3+∠NEB =180°,∴∠A′EN 的补角为∠NEB .∵∠B =90°,∴∠2+∠EMB =90°,∴∠3=∠EMB ,∵∠CME +∠EMB =180°,∴∠3+∠CME =180°,∴∠A′EN 的补角为∠CME ,∴∠A′EN 的补角为∠CME 或∠NEB .故答案为∠CME 或∠NEB .【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.。
最新华东师大版七年级数学下册第十章轴对称、平移与旋转 章末测验 含答案
第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.答案选择题1-5:DCDBA6-10:CBBAC填空题11. (1)(2)(3)(4)(5)(7) (1)(3)(4)(5)(7)12. 3013. 614. 108015 旋转、BE=DF、BE⊥DF16. ①与⑨,②与③,④与⑧,⑪与⑫17. 解:(1)画图略(2)交点在直线m上(3)∠A1=91°,B1C1=16 cm18. 解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示,△ECD为所求作19. 解:(1)画图略(2)△A2B2C2与△A3B3C3成轴对称,画图略(3)△A1B1C1与△A 3B3C3成中心对称,对称中心点P为A1A3的垂直平分线与B1B3的垂直平分线的交点20. 解:DE⊥AC.理由:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠E=∠C=50°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∴∠CAE=40°,∴∠AFE =180°-∠CAE-∠E=90°21. 解:(1)都是中心对称图形;都是轴对称图形;面积都是4 (2)画图略22. 解:(1)本题是开放题,答案不唯一,图中给出了两个满足条件的三角形,其他解答只要正确即可(2)D点如图所示,AD是由AB绕A点逆时针旋转90°而得到的,或AD是由AB绕A点顺时针旋转270°而得到的23. 解:根据图形旋转的特征可以得到:(1)图中△DEC是绕旋转中心点D顺时针旋转90°后到达△DGA的位置(2)图中DE与DG,DC与DA,EC与GA是对应线段,∠CDE与∠ADG,∠C与∠DAG,∠DEC与∠G是对应角(3)相等线段有DG =DE,GA=EC,相等的角有∠G=∠DEC,∠GDA=∠EDC,∠DAG=∠C,能够完全重合的三角形是△DCE与△DAG (4)∵△DCE绕D点旋转90°到△DAG的位置,此时DG⊥DE,而∠FDE=45°,∴∠GDF=45°。
初中数学华师大版七年级下学期第10章 轴对称、平移与旋转测试卷(含解析)
第10章轴对称、平移与旋转一、单选题1.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.2.如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形3.如图,两个直角三角形重叠在一起,将沿AB方向平移得到,,,下列结论:① ;② ;③ :④ ;⑤阴影部分的面积为.其中正确的是()A. ①②③④B. ②③④⑤C. ①②③⑤D. ①②④⑤4.如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1,则其旋转中心可以是()5.下列银行标志是中心对称图形的是()A. B. C. D.6.如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A. 11B. 10C. 9D. 87.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )A. BE=4B. ∠F=30°C. AB∥DED. DF=58.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A. 3cmB. 5cmC. 8cmD. 13cm9.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.()A. B. C. D.10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A. ①②B. ②③C. ③④D. ②③④11.如图,将(其中,),绕点按顺时针方向旋转到的位置,使得点,,在同一直线上,则旋转角的度数为( )A. B. C. D.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为( )A. 3B. 4C. 5D. 613.图中的两个梯形成中心对称,点P的对称点是()A. 点AB. 点BC. 点CD. 点D14.如图,已知图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点15.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形.A. 1个B. 2个C. 3个D. 4个二、填空题16.如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=________.17.如图,将周长为12的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________18.如图,在正方形ABCD中,,点E在CD边上,且,将绕点A顺时针旋转90°,得到,连接,则线段的长为________.19.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对.20.如图,△DEF是由△ABC沿BC方向向右平移2cm后得到,若△ABC的周长为10cm,则四边形ABFD的周长等于________ cm。
华师大版数学七年级下册第10章轴对称、平移与旋转 达标测试卷(含答案)
第10章轴对称、平移与旋转达标测试卷一、选择题(每题3分,共24分)1.下列古代的吉祥图案中,不是轴对称图形的是()2.如图,将△OAB绕点O逆时针旋转55°得到△OCD,若∠AOB=20°,则∠BOC 的度数是()A.25°B.30°C.35°D.75°(第2题)(第3题)(第4题)(第6题)3.如图,△ADE与△CDB关于点D成中心对称,连结AB,以下结论错误的是() A.AD=CD B.∠C=∠E C.AE=CB D.S△ADE=S△ADB 4.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB 与△ADE关于直线AD对称,点B的对称点是点E,则∠CAE的度数为() A.10°B.20°C.30°D.40°5.下列图形:①两个正方形;②底边相等的两个等腰三角形;③每边都是2 cm 的两个三角形;④半径都是1.5 cm的两个圆.其中是一对全等图形的有() A.1个B.2个C.3个D.4个6.如图,在△ABC中,边BC在直线MN上,且BC=9 cm.将△ABC沿直线MN 平移得到△DEF,点B的对应点为E.若平移的距离为2 cm,则CE的长为() A.2 cm B.7 cm C.2 cm或9 cm D.7 cm或11 cm 7.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()(第7题)8.如图是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3=() A.90°B.120°C.135°D.115°(第8题)(第10题)(第11题)(第12题)二、填空题(每题3分,共18分)9.请写出一个轴对称的大写英文字母:________.10.如图,△ABC与△DEC关于点C成中心对称,若AB=2,则DE=________.11.如图,把△ABC绕点C逆时针旋转90°得到△EDC,若∠A=35°,则∠CDE 的度数为________.12.如图,△DEF是由△ABC沿直线BC向右平移得到的,若BC=10,当点E 刚好移动到BC的中点时,则CF=________.13.如图,图中由实线围成的图形与①是全等形的有________.(填序号)(第13题)(第14题)14.如图,在△ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连结AE、AF.根据图中标示的角度,可知∠EAF=________°.三、解答题(共58分)15.(8分)如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D =70°.求∠B的度数及BC、AD的长.(第15题)16.(9分)如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.(第16题)17.(9分)如图,在网格中作图.3(1)作出△ABC关于O点对称的△A1B1C1;(2)作出△ABC以A为旋转中心沿顺时针方向旋转90°后的△A2B2C2.(第17题)18.(9分)如图,△EFG≌△NMH,∠F和∠M是对应角.在△NMH中,MH是最长边.在△EFG中,FG是最长边,EF=2.1 cm,EH=1.2 cm,NH=4.4 cm.(第18题)(1)写出其他对应边及对应角;(2)求线段NM及线段HG的长.19.(11分)如图,△ABC沿直线l向右平移4 cm得到△FDE,且BC=6 cm,∠ABC=45°.(第19题)(1)求BE的长.(2)求∠FDB的度数.(3)写出图中互相平行的线段(不另添加线段).20.(12分)如图,已知点O是∠APB内的一点,M、N分别是点O关于P A、PB 的对称点,OM交P A于点C,ON交PB于点D,连结MN,与P A、PB分别相交于点E、F,MN=6 cm.5(第20题)(1)求△OEF的周长;(2)当∠APB=30°时,求∠COD的度数.答案一、1.C 2.C 3.B 4.A 5.B 6.D7.A8.C二、9.O(答案不唯一)10.211.55°12.513.②③14.106点拨:如图,连结AD .(第14题)∵以AB、AC为对称轴,点D的对称点分别为点E、F,∴∠EAB=∠BAD,∠F AC=∠CAD.∴∠EAF=∠EAD+∠F AD=2∠BAD+2∠CAD=2∠BAC.∵∠B=55°,∠C =72°,∴∠BAC=180°-55°-72°=53°.∴∠EAF=2∠BAC=106°.三、15.解:∵△ABC和△ADE关于直线l对称,∴AB=AD,BC=DE,∠B=∠D.又∵AB=15,DE=10,∠D=70°.∴∠B=70°,BC=10,AD=15.16.解:如图所示.(第16题)17.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(第17题)718.解:(1)EF和NM,EG和NH,FG和MH是对应边;∠E和∠N,∠EGF和∠NHM是对应角.(2)∵△EFG≌△NMH,EF=2.1 cm,∴MN=EF=2.1 cm,EG=NH.∵EG=NH,EH+HG=EG,EH=1.2 cm,NH=4.4 cm,∴HG=EG-EH=HN-EH=3.2 cm.19.解:(1)由平移知,BD=CE=4 cm.∵BC=6 cm,∴BE=BC+CE=6+4=10(cm).(2)由平移知,∠FDE=∠ABC=45°,∴∠FDB=180°-∠FDE=180°-45°=135°.(3)图中互相平行的线段有AB∥DF,AC∥FE.20.解:(1)∵点M、N分别是点O关于P A、PB的对称点,∴ME=EO,FN=FO.∴△OEF的周长=OE+EF+OF=ME+EF+FN=MN=6 cm.(2)∵点M、N分别是点O关于P A、PB的对称点,∴P A⊥OM,PB⊥ON,∴∠PCO=∠PDO=90°.∵∠APB+∠PDO+∠COD+∠PCO=360°,∴∠COD=360°-∠APB-∠PDO-∠PCO=360°-30°-90°-90°=150°.。
华师大版七年级下册数学第10章 轴对称、平移与旋转含答案(综合考察)
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,连结ED.若∠B =70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°2、数轴上一点A表示﹣3,若将A点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是()A.﹣1B.﹣2C.﹣3.D.13、如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=22°,则∠B的度数是()A.67°B.62°C.82°D.72°4、将一张矩形纸片对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 ( )A.三角形B.矩形C.菱形D.梯形5、观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.6、请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.7、如图正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE 的长为()A. B. C. D.8、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为().A.(1,2).B.(2,1).C.(2,2).D.(3,1).9、下列不是图形的旋转、平移、轴对称的共同特征的是()A.对应角的大小不变B.图形的大小不变C.图形的形状不变D.对应线段平行10、下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.11、下面的每组图形中,左面的图形平移后可以得到右面图形的是()A. B. C. D.12、自新冠肺炎疫情发生以来,全国人民共同抗疫,十堰市张湾区积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D.13、将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是( )A. B. C. D.14、下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个15、七巧板是一种传统智力游戏,是中国古代劳动人民的发明,用七块板可拼出许多有趣的图形.在下面这些用七巧板拼成的图形中,可以看作轴对称图形的(不考虑拼接线)有()A.5个B.4个C.3个D.2个二、填空题(共10题,共计30分)16、如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是________.17、如图中,,,中,,,点D在线段AC上,点E在段BC的延长线上,将绕点C旋转得到,则________.18、如图,已知△ABC的面积为16,BC的长为8,现将△ABC沿BC向右平移m 个单位到△A′B′C′的位置。
初中数学华师大版第10章 轴对称、平移与旋转模拟考题考试卷考点.doc
初中数学华师大版第10章轴对称、平移与旋转模拟考题考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、选择题评卷人得分6.不等式组的解集为A.-2<x<4B.x<4或x≥-2C.-2≤x<4D.-2<x≤46.若则()A.B.C.D.8.把图绕虚线旋转一周形成一个几何体,与它相似的物体是().A.课桌B.灯泡C.篮球D.水桶10.如图,O是边长为的正方形ABCD的中心,将一块半径足够长,圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O旋转,求正方形ABCD的边被纸板覆盖部分的面积为()A.B.C.D.4.方程组的解也是方程的解,则k的值() A 2 B 3 C 4 D 511.下列不等式中,一定成立的是()A.4a>3aB.-a>-2aC.3-a<4-aD.10.若方程组中的x是y的2倍,则a等于()A、-9B、8C、-7D、-62.如果a>b ,下列各式中不正确的是()A.a-3>b-3B.-2a<-2bC.>D.<2.用方程表示“的减去3等于-1”的数量关系是().4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.20.解方程组:.20.(1)解方程:x2﹣4x+2=0(2)解不等式组:.17.解不等式组:21.解不等式组或方程:【小题1】求不等式组的整数解;【小题2】解一元二次方程:(配方法)16.解方程组:26.如图,原来是重叠的两个直角三角形,将其中一个三角形沿BC方向平移BE的距离,就得到此图形,求阴影部分面积(单位:厘米).23.如果是关于的一元一次方程,①求出的值及该方程的解②求出代数式的值20.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A逆时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点B1关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接在下面的横线上写出x的取值范围.(提醒:每个小正方形边长为1个单位长度)______________.11.已知是方程的一个解,那么的值是______________.16.如图,在正方形纸片ABCD中,E为BC的中点.将纸片折叠,使点A与点E重合,点D落在点D’处,MN为折痕.若梯形ADMN的面积为S1,梯形BCMN的面积为S2,则的值为______________.11.不等式组的解集是______________.14.点(,)关于轴对称的点的坐标为___________________.18.有一轮船由东向西航行,在A处测得西偏北15º有一灯塔P.继续航行10海里后到B处,又测得灯塔P在西偏北30º.如果轮船航向不变,则灯塔与船之间的最近距离是______________。
华师大版七年级下册数学第10章 轴对称、平移与旋转含答案
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.2、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.3、下列四个图形中,即是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形5、如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.156、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.7、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是()A.4个B.3个C.2个D.1个8、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B. C.3 D.9、如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑n个小正三角形,使它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,则的最小值为( )A.3B.4C.5D.610、下列各图均是重庆网红打卡地,其中是中心对称图形的是()A. B. C. D.11、下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.12、如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系。
将矩形OABC绕点O逆时针旋转30°,得到矩形ODEF,若当点A的坐标为(-,0)时,反比例函数的图象恰好经过B、F两点,则此时k的值为().A. B.-6 C. D.-313、如图,轴对称图形有()A.1个B.2个C.3个D.4个14、下列“表情图”中,属于轴对称图形的是()A. B. C. D.15、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上面的爱心,将留下的纸片展开,得到的图形是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,BC=4,现将点A,C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=________.17、点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转________°后能与原来的图案互相重合.18、如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为________.19、如图,F是矩形ABCD内一点,,连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG对称,若,则AB的长为________.20、一次函数y=﹣x+5是由正比例函数________向________平移________个单位得到的.21、如图,△A′B′C′是由△ABC沿BC方向平移3个单位长度得到的,则点A与点A′的距离等于________个单位长度.22、如图,在△ACB中,∠BAC=50°,AC=4,AB=6.现将△ACB绕点A逆时针旋转50°得到△AC1B1则阴影部分的面积为________.23、如图,已知等边以C为旋转中心,按逆时针方向旋转,得到,若,等边三角形边长为1,则点A 的运动路径长为________.24、如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于________.25、如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB =8,则AE的长为________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、在下面的正方形网格中,每个小正方形的边长为1.(1)直接写出图①共有多少条对称轴;(2)图②中的阴影图案可以看成是由某个基本图形绕着一个点依次旋转一定的角度后得到的.请在图中标出这个点;(3)利用图③的方格,设计一个新图案,要求与图①②的图案都不相同,但面积相同,且能沿某条直线分割后两旁的图形完全相同.(在图④中把你画的图案涂成阴影并画出分割线)28、在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C (1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.29、如图,长方形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B落在点B'处.当△CEB'为直角三角形时,求BE的长?30、如图,在△ABC中,∠A=60°,点D是AC边上一点,连接BD,将△ABD沿DB折叠至△EBD,连接EC,且BE=AC+CE.(1)如图1,求证:∠BEC=∠DEC;(2)如图2,当AD=4EC=4时,在BE上取一点M使MD=MC,求BM的长.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、A7、B8、A9、C10、D11、B12、A13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学华师大版第10章轴对称、平移与旋转课后练习考试卷考点
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题解答题判断题计算题附加题总分
得分
一、解答题
评卷人得分
17.解不等式:(1) 8x+1<6x-3 (2)解不等式:5x-9<3(x+1)
(3)(4)
13.已知多项式x-3x2ym+1+x3y-3x4-1是五次四项式,单项式3x3ny4-mz与多项式的次数相同,求m,n的值.
23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
甲
乙
进价(元/件)
15
35
售价(元/件)
20
45
若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
21.某人型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠;小美第第一次购物用了94.5元,第二次购物用了282.8元.
(1)小美第一次购物的原价为多少?
(2)小美第二次购物的原价为多少元?
12.若2a+6是非负数,则a的取值范围是_______________
12.不等式组的解集是 ______________.
20.若方程2x2m+3+3y5n-9=4是关于x,y的二元一次方程,则m2+n2的值为__________.
17.关于x的方程3(x+2)=k+2的解是正数,则k的取值范围______________
20.等腰三角形的对称轴有()条
7.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是lC.11
D.12
2.小明在镜中看到身后的时钟如图,你认为实际时间最接近八点的是……………………()
7.在平面直角坐标系中,将(,1)先向右平移3个单位,再向下平移2个单位得到的坐标为()
A.(1,)
B.(,)
C.(1,3)
D.(,3)
11..关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是……………………………………………………………………………()
A.y=2x+3
B.y=2x-3
C.y=2x+1
D.y=-2x+1
8.不等式组的解在数轴上可表示为:…………………………()
7.不等式组的所有整数解之和是
A.9
B.12
C.13
D.15
7.不等式组的解是( )
A.
B.
C.
D.无解
1.2014年11月1日河北省18座大型水库共蓄水22.06亿立方米,比10月1日多蓄水0.97亿立方米,则10月1日这18座大型水库共蓄水()
A.23.03亿立方米
B.21.19亿立方米
C.21.11亿立方米
D.21.09亿立方米
16.计算:
(2)
22.解下列方程组
17..
18.解方程:3(2y-1)-6=2(5y-7)。