第二章晶体中的缺陷
第二章 晶体缺陷1
如果位错b是位错 b1、b2之和 并且: b1 a u1v1w1 b2 a u 2 v2 w2 n n a a a 则: b b1 b2 u1v1w1 u2 v2 w2 u1 u2 v1 v2 w1 w2 n n n
●
同一晶体中,柏氏矢量越大,该位错的点阵畸变越严重,其能量越高。 能量较高的位错趋于分解为多个能量较低的位错: 如果 b → b1 + b2; 则 ∣b∣2> ∣b1∣2 +∣b2∣2
Chapter 2 Imperfections of crystalline solids
§2.1 点缺陷(point defects) 它是在结点上或邻近的微观区域内偏离晶体结构的正常排列的一种缺陷; 其特征是在三维空间的各个方向上尺寸都很小; 包括空位(vacancies)、间隙原子(self-interstitials)、杂质或溶质原子 (impurities---substitutional and interstitial impurity atoms)等
● 刃型位错的割阶部分仍为刃型位错,而扭折部分则为螺型位错; ● 螺型位错的割阶和扭折部分均为刃型位错;
● 位错的攀移可以理解为割阶沿位错线逐步推移。
Chapter 2 Imperfections of crystalline solids
例:两根互相垂直的刃型位错的交割
● 柏氏矢量互相垂直 ● 柏氏矢量互相平行
Chapter 2 Imperfections of crystalline solids
2.1.1 点缺陷的形成 热平衡缺陷(thermal equilibrium defects): 晶体中点阵结点上的原子以其平衡位置 为中心作热振动,当振动能足够大时, 将克服周围原子的制约,跳离原来的位 置,形成点缺陷,造成点阵畸变 肖脱基空位(Schottky vacancies) 弗兰克尔缺陷(Frenkel defects) 间隙原子(self-interstitials) 过饱和点缺陷(supersaturated point defects): 淬火、冷变形、高能粒子使晶体中的 点缺陷数量超过其平衡浓度
电子材料物理第二章晶体中的缺陷与扩散
2.2.2扩散的宏观规律
菲克第一定律说明了与杂质扩散有关的因素,下面结合硅 器件平面工艺的实际,在得出菲克第二定律的基础上,推 导杂质在不同初始条件和边界条件下浓度分布.在硅器件 平面工艺中,由于杂质扩散浓度一般不深,它所形成的pn 结看成是平行平面,故可把扩散流近似看做沿垂直于这一 平面方向(x方向)进行,于是式(2.1)简化为
由菲克第二定律:
C t
D
2C
2
用分离变量法求得方程的通解为
c X (x)T (c) [ Asin x B cos x]exp( 2 Dt )
为方程特征值,A和B为待定常数
其边界初始条件为:
① c=0,0<x<h (h为样品厚度)
② c= c0,x=0 , h,t>0 扩散开始的瞬间 ③ c= c,0 t=0
有限表面源扩散是指在扩散过程中杂质源限
定于扩散前淀积于硅片表面极薄层内的杂质 总量Q没有补充或减少,依靠这些有限的杂质 向硅片内进行的扩散。
N D 2 N (x)
t
x 2
0,在x ,t 0
(扩散方程)
初始条件:N
(x,0)
Q
Ns, 在0
x
,t
0
2)点缺陷的准化学反应和质量作用定律
以某种化学反应式的形式描述晶格中点缺陷的形成过程-----准 化学反应.
书写准化学反应式的规则(以MO为例) 1)MO晶体中子晶格M的格点数等于子晶格O的格点数. 2)反应过程中,MO两种晶格的格点数同增/同减. 3)反应式两边质量守恒(空格点质量为0) 4)如果晶体中存在填隙原子,应在反应式中引入填隙空格点 5)电中性规则(正负电荷相等)
第二章晶体结构缺陷
既然存在阳离子的空位,Ca2+一般 因此第一个反应最为合理。 就会首先填充空位,而不是挤到间 隙位置去使得晶体的不稳定因素增 15 加
固溶体式子的写法: 固溶体式子的写法:
CaCl CaCl CaCl
2 2 2
′ KCl → Ca • + V K + 2 Cl Cl K → Ca
1)离子空位:正常结点位没有质点,VM” ,VX‥ 离子空位:正常结点位没有质点,V 2)间隙离子: Mi‥ , Xi” 间隙离子: 3)错位(反结构): MX,XM 错位(反结构): 4)取代离子: 取代离子: 外来杂质CaCl进入KCl晶体中,若取代则Ca 外来杂质CaCl进入KCl晶体中,若取代则CaK. 外来杂质CaO进入ZrO 晶体中,若取代则Ca 外来杂质CaO进入ZrO2晶体中,若取代则CaZr 5)电荷缺陷: 电荷缺陷: 自由电子 e’表示有效负电荷(无特定位置) e’表示有效负电荷(无特定位置) 电子空穴 h· 表示有效正电荷 6)缔合中心:空位堆,间隙堆 缔合中心:
特点: 特点:1)气氛引起的电子缺陷,具有半导体性能,晶体带色; 2)缺陷浓度与气氛的性质、大小有关,也与温度有关 (k~T) k~T)
22
四、线缺陷
1 概念: 概念: 位错:由于应力作用使晶体内部质点排列变形、原子 位错:由于应力作用使晶体内部质点排列变形、原子 行列间发生滑移所形成的线状缺陷。 行列间发生滑移所形成的线状缺陷。 1934年由泰勒提出,1950年证实。 1934年由泰勒提出,1950年证实。 位错线:滑移面和未滑移面的交界线EF。 位错线:滑移面和未滑移面的交界线EF。 位错特点:具有伯格斯矢量。 方向——滑移方向; 大小——滑移距离 方向——滑移方向; 大小——滑移距离
第二章 缺陷与位错
螺型位错的形成及其几何特征 如图2-8 (螺位错形 .spl演示) 。 演示) 如图 螺位错形 演示
图2-8 螺位错形成示意图
EF就是线缺陷 螺型位错。割开面 就是线缺陷--螺型位错 割开面ABCD就是滑移面, 就是滑移面, 就是线缺陷 螺型位错。 就是滑移面 滑移矢量为d,其方向为-z轴 平行。 周围的原 滑移矢量为 ,其方向为 轴,与EF平行。EF周围的原 平行 子面形成以EF为轴线的螺卷面 为轴线的螺卷面。 子面形成以 为轴线的螺卷面。
图2-4 电子显微镜下观察到的位错线
二、位错的基本类型 从位错的几何结构来看,可将它们分为两种基本类型, 从位错的几何结构来看,可将它们分为两种基本类型, 即刃型位错和螺型位错。 即刃型位错和螺型位错。 从滑移角度看, 从滑移角度看,位错是滑移面上已滑移和未滑移部分 的交界。 的交界。
刃型位错的形成及其几何特征 示意了晶体中形成刃型位错的过程。 ) 图2-5示意了晶体中形成刃型位错的过程。 (a.spl) 示意了晶体中形成刃型位错的过程
图2-6 刃型位错包含半原子面
刃型位错的几何特征: 刃型位错的几何特征: (1) 有多余半原子面。 有多余半原子面。 习惯上, 习惯上,把多余半原子面在滑移面以上的位错称为正 刃型位错,用符号“ 表示,反之为负刃型位错, 刃型位错,用符号“┻”表示,反之为负刃型位错,用 表示。 “┳”表示。 刃型位错周围的点阵畸变关于半原子面左右对称。 刃型位错周围的点阵畸变关于半原子面左右对称。
所谓局部滑移就是原子面间的滑移不是整体进行, 所谓局部滑移就是原子面间的滑移不是整体进行 , 而是发生在滑移面的局部区域, 而是发生在滑移面的局部区域, 其他区域的原子仍然保 持滑移面上下相对位置的不变。 持滑移面上下相对位置的不变。
第二章晶体结构缺陷
2FeFe 2h
Oo 2h
3OO
VF''e
VF''e
从中可见,铁离子空位本身带负电,为了保持电中性;
两个电子空穴被吸引到这空位的周围,形成一种V一色心。
根据质量作用定律
K
[OO ][h ]2[VFe ''] P 1/ 2
O2
[OO●]≈1 [h●]=2[VFe’’] 由此可得: [h●]∝PO21/6
1
[e]
P6 O2
如果Zn离子化程度不足,可以有 -2.1 Zn(g) Zni. e
-2.3
[Zni.
]
P1/ 2 Zn
(此为另一1 种模型)
[e]
P4 O2
logσ
上述-2.反5实应测进Zn行O的电同导时率,与进氧行分氧压化的反关应系:支持了
单电荷间隙的模型1 ,即后一种是正确的。
把这种经过辐照而变色的晶体加热,能使缺陷扩散掉, 使辐照破坏得到修复,晶体失去颜色。
举例
现象:白色的 Y2O3 在真空中煅烧,变成黑色,再退火,又变成白
色。
原因:晶体中存在缺陷,阴离子空位能捕获自由电子,阳离子空位能 捕
获电子空穴,被捕获的电子或空穴处在某一激发态能级上,易受激而发出 一定频率的光,从而宏观上显示特定的颜色。
缺陷反应方程式应如下:
2TiO2
-
1 2
O2
2Ti' Ti
VO
2OO
2TiTi
4OO
2Ti' Ti
VO
3Oo
第二章-晶体结构与晶体中的缺陷
• 层内力远远大于层间力,容易形成片状解理。
• ⑷ 蒙脱石结构
• 单元层间:范德华力,弱。 • [SiO4]4-中的Si4+被Al3+取代(
同晶取代)为平衡电价,吸 附低价正离子,易解吸,使 颗粒荷电,因此使陶瓷制品 因带某些离子具有放射性。 • 性质: • 加水体积膨胀,泥料可塑性 好。
因子看,A位离子越大, B位离子才能较大。
理想立方钙钛矿结构中离子的位置
§2.2 硅酸盐晶体结构
一、硅酸盐结构特点与分类 硅酸盐是数量极大的一类无机物。硅酸盐晶体可以 按硅(铝)氧骨干的形式分成岛状结构、组群状结 构、链状结构、层状结构和架状结构。它们都具有 下列结构特点: 1)结构中Si4+之间没有直接的键,而是通过O2-连接 起来的 2)结构是以硅氧四面体为结构的基础 3)每一个O2-只能连接2个硅氧四面体 4)硅氧四面体间只能共顶连接,而不能共棱和共面 连接
陶瓷材料如MgO,CaO, NiO,
CoO,MnO和PbO等都形成
该结构。岩盐型结构还是若干
复杂层状化合物结构的一部分。
根据鲍林静电价规则,
S=Z/n NaCl: 每一个Na+静电键强度是 1/6。正负离子的配位数相等, 都是6。因此键强度总和达到氯 离子的价电荷数(6x(1/6)=1) MgO: 阳离子Mg2+的静电键强 度是2/6 ,键强度总和等于氧离子 O2-的电价6x(2/6)=2
缺陷的含义:通常把晶体点阵结构中周期 性势场的畸变称为晶体的结构缺陷。 理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完 整性。
晶体结构缺陷的类型
材料科学基础--第2章晶体缺陷PPT课件
12
2.1.5点缺陷与材料行为
Or, there should be 2.00 – 1.9971 = 0.0029 vacancies per unit cell. The number of vacancies per cm3 is:
17
Other Point Defects
Interstitialcy - A point defect caused when a ‘‘normal’’ atom occupies an interstitial site in the crystal.
11
2.1.4 过饱和点缺陷
晶体中的点缺陷浓度可能高于平衡浓度,称为过饱和点 缺陷,或非平衡点缺陷。获得的方法:
高温淬火:将晶体加热到高温,然后迅速冷却(淬火 ),则高温时形成的空位来不及扩散消失,使晶体在低 温状态仍然保留高温状态的空位浓度,即过饱和空位。
冷加工:金属在室温下进行冷加工塑性变形也会产生 大量的过饱和空位,其原因是由于位错交割所形成的割 阶发生攀移。
6
2.1.1 分类
3.置换原子(Substitutional atom) 异类原子代换了原有晶体中的原子,而处于晶体点阵的结 点位置,称为置换原子,亦称代位原子。 各种点缺陷,都破坏了原有晶体的完整性。它们从电学
和力学这两个方面,使近邻原子失去了平衡。空位和直 径较小的置换原子,使周围原子向点缺陷的方向松弛, 间隙原子及直径较大的置换原子,把周围原子挤开一定 位置。因而在点缺陷的周围,就出现了一定范围的点阵 畸变区,或称弹性应变区。距点缺陷越远,其影响越小 。因而在每个点缺陷的周围,都会产生一个弹性应力场 。
第二章晶体缺陷
(2d)2=a2+a2 2a2=4d2
a=√2d
晶胞体积a3,晶胞内的原子数4
体积L3中的空位数=1/8×8=1,单位体积内的空位数为 1/L3=nv, L3=1/nv
四、过饱和空位
过饱和空位:晶体中数量超过了其平 衡浓度的空位。
过饱和空位将对晶体的性能产生影响。 产生过饱和空位的方法: 高温淬火 冷加工 辐照
C
n N
exp(SV
/ k) exp(EV
/ kT)
Ae的物理及力学性能有明显影响
5、空位对材料的高温蠕变、沉淀、回复、表面氧化、 烧结有重要影响
面心立方晶胞
Z
c
a
X
b
Y
晶格常数:a=b=c; ===90
晶胞原子数:
18 16 4 82
原子半径:(4r)2 a2 a2 r 2a 4
配位数:12 致密度:0.74
( E'V S'V
e kT k
)
A'e(
E'v kT
)(2-2)
ne、ne′— 平衡空位和平衡间隙原子的数目; N — 阵点总数; k — 玻尔兹曼常数。
△EV、△EV′— 空位形成能和间隙原子形成能; △Sv、 △Sv′— 相应的振动熵变化。
A、A′— 由振动熵决定的系数,其值约在1~10之间, 方便计算时可取A=1;
虽然晶体中存在缺陷,但从总体上看, 还是较完整的。
偏离平衡位置的原子,排列并不是杂乱 无章的,仍按一定的规律产生、发展、运动 和交互作用。
晶体缺陷对晶体的许多性能有很大的影 响,特别是对塑性、强度、扩散等有着决定 作用。
第一节 点缺陷
第二章-晶体缺陷
第二章晶体缺陷P2问题空位形成应该遵循物质守恒,即内部原子跑到表面上。
空位形成整体是膨胀过程,但具体机制较复杂。
一方面,缺少了原子会造成整体收缩;另一方面,跑到表面的原子使体积增加,综合效果是形成一个空位导致半个原子体积的增加。
相关问题有:1.如果测量产生空位的晶体,其点阵常数是增大还是缩小?2.将点阵常数测量结果与晶体整体膨胀的事实做对比,能够发现什么与空位浓度相关的规律?提示:由简到繁是惯用的方法,故可以考虑一维晶体。
答:①增大②随着晶体整体膨胀的增加,空位浓度增加。
-——详见潘金生《材料科学基础》P213空位的测量问题溶质原子尽管造成局部的排列偏离,但并不把它算为点缺陷,为什么?答:由对“置换原子”与“空位”的比较及“间隙溶质”与“自间隙原子”的比较可知,溶质原子的加入所产生的对于标准态的偏离比较小,因此不把它算为点缺陷。
问题图2-2中的置换原子(黑色)的尺寸画得有些随意。
假定(b)图中黑原子半径比白的小5%,而(c)图中大5%,问那种情况下基体内的应变能更大些?为什么?答:(b)图中应变能更大。
①(a)图中,周围白原子点阵常数变大,呈现拉伸状态。
(b)图中,周围白原子点阵常数变小,呈现压缩状态。
②由右结合能的图像可知,在平衡位置r0左右,曲线并非对称。
产生相同的形变,压缩引起的应变能更大。
所以(b)图中应变能更大。
P4问题Al2O3溶入MgO(具有NaCl结构)中,形成的非禀性点缺陷在正离子的位置,还是相反?答:Al 2O 3溶入MgO 晶体,由于Al 离子是+3价,,而Mg 离子是+2价,所以当两个铝离子取代两个镁离子的位置后,附近的一个镁离子必须空出,形成的非禀性点缺陷在正离子的位置。
问题 图2-3(a)的画法有些问题。
更好的画法是将图中的大小方块画在一起,即正负离子空位成对出现(参见余永宁“材料科学基础”图6-5)。
为什么成对的画法更好些?答:因为①正、负电中心成对出现的时候,可以抵消一点局部电中性的无法满足。
第二章 晶体结构与晶体中的缺陷
等。鲍林第一规则强调的是正离子周围负离子多面
体类型,并把它看成是离子晶体结构基本单元,在
稳定的结构中,这种基本单元在三维空间规则排列。
注意:把离子晶体看成了刚性球体,实际中,如果
正离子电荷数大,负离子半径大,还要考虑极化变
形问题,往往有例外,如AgI,r+/r-, =0.577,Z=6,
实际上,Z=4。
子成六方环状排列(图2-2).每个碳原子与三个相邻
的碳原子之间的距离相等,都为0.142nm。但层与
层之间碳原子的距离为0.335nm。石墨的这种结构,
表现为同一层内的碳原子之间是共价键,而层之间
的碳原子则以分子键相连。
► C原子的四个外层电子,在层内形成三个共价键,
多余的一个电子可以在层内移动,类似于金属中的 自由电子。
(共棱),还是三个顶点(共面)。
► 对于一个配位多面体,正离子居中,负离子占据
顶角,当两个配位体由共顶→共棱→共面,两个 正离子间距离不断缩短 。
举 例
►
如两个四面体共用一个顶点,中心距离设为1,共用两个,
三个顶点,距离为0.58、0.33,而两个八面体中心距共顶
(1),共棱(0.71),共面(0.58)。
构的层与层之间则依靠分子间力(范德华力)结合起来,形 成石墨晶体。石墨有金属光泽,在层平面方向有很好的导
电性质。由于层间的分子间作用力弱,因此石墨晶体的层
与层间容易滑动,工业上用石墨作固体润滑剂。
石墨结构
应 用
►
石墨硬度低,易加工,熔点高,有润滑感,导电性
能良好。可以用于制作高温坩埚、发热体和电极, 机械工业上可做润滑剂等。人工合成的六方氮化硼
离由它们的半径之和决定,而Si4+的配位数是4,是 由rSi4+/ro2-=0.293(在0.225~0.414之间,配位数是4) 值决定。(rSi4+=0.41Å ro2-=1.40Å)
第二章晶体结构与晶体中的缺陷
第二章晶体结构与晶体中的缺陷内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构,用以掌握与本专业有关的各种晶体结构类型。
介绍了实际晶体中点缺陷分类;缺陷符号和反应平衡。
固熔体分类和各类固熔体、非化学计量化学化合物的形成条件。
简述了刃位错和螺位错。
硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。
这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。
硅离子是高点价低配位的阳离子。
因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。
表2-1列出硅酸盐晶体结构类型及实例表2-1 硅酸盐晶体的结构类型真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。
晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。
点缺陷根据产生缺陷的原因分类,可分为下列三类:(1)热缺陷(又称本征缺陷)热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。
弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。
肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(2)杂质缺陷(非本征缺陷)(3)非化学计量化学化合物为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。
表2-2 Kroger-Vink 缺陷符号(以MTX2-为例)缺陷反应方程式书写规则:(1)位置关系。
(2)质量平衡。
(3)电荷守恒。
热缺陷平衡浓度n/N :n/N二exp(- : G t/2kT)其中n——TK时形成n个孤立空位;G t――热缺陷形成自由焓;h――波儿兹曼常数。
晶体缺陷【材料科学基础】
5
6
3.点缺陷的形成
晶体点阵中的原子以其平衡结点为中心不停地进 行热振动。随温度升高,振幅增大,振动频率也 增大。 晶体内原子的热振动能量不相同,存在能量起伏。 某些原子振动的能量高到足以克服周围原子的束 缚时,它们将有可能脱离原来的平衡位置,迁移 到一个新的位置,在原来的平衡位置上留下空位。 温度越高,原子脱位的几率越大。
7
离位原子的去处: ¾ 离位原子迁移至表面或晶界时形成的空位— —肖脱基空位; ¾ 离位原子迁移至点阵间隙处所形成的空位— —弗兰克空位; ¾ 离位原子迁移其它空位中,使空位发生移 位,不增加空位数目。
8
4.点缺陷导致一定范围内弹性畸变和能量增加
9
5.空位和间隙原子的形成与温度密切相关: 随温度升高,点缺陷数目增加,称为热缺陷。 6.高温淬火、冷变形加工、高能粒子轰击也可 产生点缺陷 (点缺陷并非都通过原子的热 振动产生)。
第二章 晶体缺陷
1
引言: 完整晶体:原子规则地存在于应在的位置上。 晶体缺陷:实际晶体中偏离理想结构的区域。
2
晶体缺陷分类(按几何特征分):
点缺陷(零维缺陷),在三维空间的各个方向上尺 寸都很小的缺陷。如:空位、间隙原子、杂质、溶 质原子等。 线缺陷(一维缺陷),在一个方向上尺寸较大,另 两个方向上尺寸较小。如:位错。 面缺陷(二维缺陷),在两个方向上尺寸较大,在 另一个方向上尺寸较小。如:晶体表面、晶界、相 界、孪晶界、堆垛层错等。
位错的观察
18
早期对位错观察的例子:
位错的电子显微镜观察 的例子:
氟化锂表面浸蚀出的位错露头 的浸蚀坑
锗晶体中位错的电子显微镜图象
19
GaN晶体中刃位错的高分辨电子显微像
材料科学基础第二章晶体缺陷
金属 Al Ag Cu
α-Fe
Mg
理论切应力
3830 3980 6480 11000 2630
实验值
0.786 0.372 0.490 2.75 0.393
切变模量 24400 25000 40700 68950 16400
21
dislocation
一 般 金 属 的 G=104~105MPa, 理论剪切强 度应为103~104MPa,实际只有1~10MPa 理论强度比实测值大1000倍以上!! 1934年Taylor, Polanyi和Orowan几乎同 时提出晶体中存在易动的缺陷-位错, 借助于位错运动实现塑性变形。
12
设在温度T时,含有N个结点的晶体中形成n个空位, 与无空位晶体相比:
ΔF=n·ΔEV-T·ΔS
ΔS=ΔSC+n·ΔSV
n个空位引入,可能的原子排列方式:Wc
(N
N! n)!n!
利用玻尔兹曼关系SC=k·lnWC,并利用Stiring公式
令: (F ) 0
n T
13.00
12.75
12.50
12.25
Fe的 电 阻 率 随 淬 火 温 度 的 变 化
12.00
200
400
600
800 1000 1200 1400 1600
Tem perature / oC
17
2.2位错的基本概念 (1)位错理论产生强化材料的重要手段,但是对于变形的微观过 程、加工硬化等尚不能解释。 滑移带现象。当时,普遍认为金属塑性变形是 晶体刚性滑移的结果,滑移面两侧的晶体借助 于刚性滑动实现变形。 1926年弗兰克尔从刚性模型出发,估计了晶 体的理论强度。
第二章 晶体缺陷(Defect of the crystals
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) ) 2.1 点缺陷
2.1.1 点缺陷的类型及形成 1. 空位
热力学使平衡原子跳至三个去处: 热力学使平衡原子跳至三个去处: 外表面 ①跳至 跳至 晶体表面 →肖脱基空位 肖脱基空位 晶界 ②跳至晶格间隙中形成间隙 原子→弗兰克尔空位 原子 弗兰克尔空位 跳至其它空位处→不产生多余空位 ③跳至其它空位处 不产生多余空位 空位处: 空位处:晶格负畸变
长度达几百—几万个原子间距, 长度达几百 几万个原子间距,宽度 几万个原子间距 线缺陷。 为几个原子间距 —— 线缺陷。
它是极其重要的晶体缺陷。 它是极其重要的晶体缺陷。影响 材料强度 塑性变形、 固态相变。 塑性变形、断裂扩散 、固态相变。
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) ) 2.2线缺陷(位错) 线缺陷(位错)
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) ) 2.1 点缺陷
2.1.1 点缺陷的类型及形成
3. 置换原子 占据晶格结点的异类原子, 中溶有Mn、 、 占据晶格结点的异类原子,如:Fe中溶有 、Si、Cr… 中溶有 正畸变 晶格 负畸变
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) ) 2.1 点缺陷
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) )
实际金属是多晶体,晶体内部存在晶格缺陷。 实际金属是多晶体,晶体内部存在晶格缺陷。 点缺陷 点缺陷 线缺陷 线缺陷 面缺陷 面缺陷
这些缺陷影响材料性能。 这些缺陷影响材料性能。
晶体缺陷( 第二章 晶体缺陷(Defect of the crystals) ) 2.1efect of the crystals) ) 2.2线缺陷(位错) 2.2.1位错的基本理论 线缺陷(位错)
晶体结构与缺陷
• 影响因素:—— 与晶体结构有很大关系 • NaCl型晶体中间隙较小,不易产生弗仑 克尔缺陷;
• 萤石型结构中存在很大间隙位置,相对 而言比较容易生成填隙离子。
• (2)肖特基缺陷: • 如果正常格点上的 • 质点,在热起伏过程中 • 获得能量离开平衡位置迁移到晶体的表面, 而在晶体内部正常格点上留下空位
晶体中的柏格斯氏矢量 (方向表示滑移、大小为原子间距)
.柏氏矢量
(1)柏氏矢量的确定方法 先确定位错线的方向(一般规定位错线垂直纸面时, 由纸面向外为正向),按右手法则做柏氏回路,右 手大拇指指位错线正向,回路方向按右手螺旋方向 确定。 从实际晶体中任一原子出发,避开位错附近的严重 畸变区作一闭合回路,回路每一步连接相邻原子。 按同样方法在完整晶体中做同样回路,步数、方向 与上述回路一致,这时终点和起点不重合,由终点 到起点引一矢量即为柏氏矢量b。
• 2.点缺陷的形成 • 原子相互作用的两种作用力:(1)原子间的吸 引力;(2)原子间的斥力 • 点缺陷形成最重要的环节是原子的振动 • 原子的热振动 (以一定的频率和振幅作振动) • 原子被束缚在它的平衡位置上,但原子却在做 着挣脱束缚的努力 • 点缺陷形成的驱动力:温度、离子轰击、冷加 工 • 在外界驱动力作用下,哪个原子能够挣脱束缚, 脱离平衡位置是不确定的,宏观上说这是一种 几率分布
Cl Mg
• 特点: • (2)从形成缺陷的能量来分析—— Schttky缺陷形成的能量小于Frankel 缺陷形成的能量因此对于大多数晶体来 说,Schttky 缺陷是主要的。
• 产生 动平衡 • 复合 • 浓度是温度的函数 • 随着温度升高,缺陷浓度呈指数上升,对 于某一特定材料,在—定温度下,热缺陷浓 度是恒定的。
• 2.5.2 热缺陷的浓度计算
第二章 晶体的缺陷
1. 小角度晶界
对称倾侧晶界是最简单的小角度晶界
当q很小时,晶界中位错间距D≈b/q,
当接近 10o 时,得到的位错密度太大,
模型不适用 同号位错垂直排列,刃位错的压应力场
和拉应力场抵消,能量很低
2. 大角度晶界
晶界中原子过于密集的区域为压应力区,原子过于松散的区域为拉应力区 大角度晶界晶界能较高,在 0.5-0.6J/m2,与相邻位向无关
由于晶界具有较高能量,固态相变时优先在母相晶界上形核
精品课件!
精品课件!
(a)
10 m
(b) Si Ge
2 m 0.25 m
Si substrate
•如:Cu: 1300K, C =10-4; 室温, C =10-19 间隙平衡浓度 C′ 与上式相似,间隙原子的形成能是空位形成能的 3-4 倍,故 同一温度下间隙原子的平衡 浓度低很多--一般晶体中的点缺陷是空位,产生 弗仑克尔空位的几率极小:Cu: 1300K, C′ =10-15
3 点缺陷对性能的影响 点缺陷使运动电子散射--电阻增大 点缺陷 ( 空位 ) 增加--密度减小 过饱和点缺陷--提高金属的屈服强度
非共格界面界面能最高,半共格界面界面能居中
共格界面
半共格界面
非共格界面
Байду номын сангаас
5. 晶界特性
当晶体中存在能降低界面能的异类原子时,这些原子将向晶界偏聚--内吸附; 晶界上原子具有较高的能量,且存在较多的晶体缺陷,使原子的扩散速度比晶 粒内部快得多; 常温下,晶界对位错运动起阻碍作用,故金属材料的晶粒越细,则单位体积晶 界面积越多,其强度,硬度越高 ; 晶界比晶内更易氧化和优先腐蚀 ; 大角度晶界界面能最高,故其晶界迁移速率最大。晶粒的长大及晶界平直化可 减少晶界总面积,使晶界 能总量下降,故 晶粒长大是能量降低过程 ,由于晶界 迁移靠原子扩散,故只有在较高温度下才能进行;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章空位与位错
本章的主要内容:
晶体中的缺陷,晶体缺陷的分类
晶体缺陷的形成
点缺陷:点缺陷的种类,点缺陷的形成,点缺陷的运动,点缺陷的平衡浓度,点缺陷对材料性能的影响
位错:位错理论的起源:
位错基本类型及特征:刃型位错,螺型位错,混合位错
柏氏矢量:确定方法,柏氏矢量的模,实际晶体中的柏氏矢量,柏氏矢量的特性,位错密度外力场中作用在位错线上的力
位错运动:滑移,攀移,派一纳力
位错的弹性性质:直螺错的应力场,直刃错的应力场,混合直位错的应力场
位错的应变能
位错间的交互作用:两根平行螺位错的交互作用,两根平行刃位错的交互作用,
位错的塞积、位错的增殖
实际晶体中的位错:单位位错,堆垛层错,不全位错:肖克莱,弗兰克不全位错
位错反应
1 填空
1、在某温度下,晶体中的空位数与点阵数的比值称为__________________。
2、ξ为位错线单位矢量,b为柏氏矢量,则bξ=0时为_______位错,bξ=b时为________________位错,bξ =-b时为______________位错。
3 三根右螺型位错线的正向都指向位错结点,则它们的柏氏矢量之和等于______。
4 设位错运动时引起晶体体积的变化为ϖV,则ϖV=0时为___________运动,ϖV≠0时为______________运动。
5 单位体积中位错线总长度称为________________。
6、螺型位错的应力场只有两个相等的_______应力分量,
7、简单立方晶体、fcc晶体、bcc晶体和hcp晶体中单位位错的柏氏矢量依次是_____________、_______________________、______________________。
8 对含刃位错的晶体施加垂直于多余半原子面的压应力有利于______攀移,施加拉应力有助于______攀移。
9 作用在位错线上的力F d=_________________________,这个力F d与位错____________方向。
10、位错可定义为_____________________________________________________。
11在外加应力作用下,当位错在晶体中滑动时,刃型位错的运动方向与b_____________与 ________________________,与位错线_________________________________。
12、位错运动的基本形式有( ) 和( )
13、空位形成中如果离位原子迁移到晶体的外表面或内界面,这种空位称为( ),如果原子跳入点阵的间隙中,则形成的空位称为( )
14、平行的刃位错间发生交互作用时,同号位错间( )。
异号位错间( )。
15、位错间产生位错反应需满足的条件有( )和( ),其中( )条件可用来位错反应的可能性,( )条件可确定位错反应进行的方向。
16、相界面按照界面上原子排列情况可分为( )、( )和( ) 2 选择
1 在fcc 晶体中,位错反应_______________能进行。
A a/6[112]+a/6[110] a/3[111]
B a/2[10-1] a/6[2-1-1]+a/6[11-2]
2 肖克莱位错具有螺型、刃型和混合型三种,它们能够_______________。
A 攀移
B 交滑移
C 沿滑移面滑移
3 晶体中点缺陷的存在,使电阻________。
A 增大
B 减小
C 不变
4 把一根右螺型位错线的正方向反向,则此位错_______。
A 变为左螺型位错
B 仍为右螺型位错
5 三个位错及其柏氏矢量如图所示,则b2与b31之和_________。
A 大于b1 B:小于b1 C 等于b1
6 位错的应变能与其柏氏矢量__________成正比。
A b
B b 2
C b 3
7 fcc 晶体的(111)面按ABCBABCABC ···顺序堆垛时,其中含有________。
A 一片抽出型层错
B 一片插入型层错
C 一片抽出型和插入型层错 8 Shockley 位错__________。
A 只能滑移
B 只能攀移
C 既能滑移又能攀移
9 fcc 晶体中,有根位错线的方向为[-110],b=a/2[110],则此位错_________。
A 不能滑移
B 能滑移
C 能交滑移
10 两根具有反向柏氏矢量的刃型位错,分别处于两个平行滑移面上(两滑移面相隔一个原子间距)相向运动后,在相遇处( )
A 相互抵消
B 形成一排空位
C 形成一排间隙原子
11 在一块晶体中有一根刃型位错P 和一根相同长度的螺型位错Q ,比较两者能量有( )
b2 b3
b1
A Ep>Ee
B Ep<Ee
C Ep=Ee
12 位错线受力方向处处垂直于位错线,在运动过程中是可变的,晶体做相对滑移的方向()
A随位错线运动方向而改变 B 始终同柏氏矢量方向一致C始终同外力方向一致。
13 材料在进行冷加工变形时位错()
A大量消失 B 增殖 C 重排
14、如果柏氏矢量的模小于该晶向上原子的间距,则该位错称为
A、单位位错
B、全位错
C、不全位错
15、在无外力的情况下,位错线总有自发变为()的倾向
A、直线
B、曲线
C、位错环
3 判断
1、一个位错环不可能处处都是螺位错,也不可能都是刃位错。
()
2、柏氏矢量(b)的方向表示它与位错线的取向和位错的性质(),b的模量∣b∣表示位错线周围点阵畸变程度,即位错的强度();实际晶体中的b都是点阵矢量(),把b=单位点阵矢量的位错称为单位位错();b越大,位错的稳定性越高()。
3 外力场作用在单位长度位错线上的力F=τ b(),此力垂直于位错线(),使位错产生滑移()。
4刃型位错与螺型位错均可产生交滑移。
()
5 一条位错线,不管形状如何,均具有唯一的柏氏矢量。
()
6两平行位错的柏氏矢量垂直,则它们之间一定没有交互作用。
()
7 螺型位错同刃型位错一样都存在多余半原子面。
()
8 纯金属在热力学上实际上是不稳定的。
()
9 位错受力方向都是晶体滑移方向。
()
10 金属的强度和塑性都受位错运动的控制。
()
11、位错的柏氏矢量与其柏氏回路的选择路径无关()
12、螺位错既可以滑移运动又可以攀移运动()
4 名词
空位的平衡浓度,位错,螺旋位错,混合位错,柏氏回路,位错密度,位错反应,,不全位错,层错------层错能,位错增殖-------位错塞积,堆垛层错,弗兰克-瑞德位错源,
共格界面、半共格界面、非共格界面亚晶界、
5 问答
1、在Al(铝,fcc)单晶体中,若(111)面上有一位错b=a/2[1,0,-1],与(1,1,-1)
面上的位错b=a/2[0,11]发生反应时:
1 写出位错反应方程式,判断位错反应方向。
2 说明新位错的性质,是否可动。
2、简述位错密度与材料性能间的关系
3、用位错模型解释晶体中小角度晶界的形成
4、晶体中的位错环ABCD 如图1所示
(1)指出各段位错线是什么性质的位错
(2)它们在外应力т作用下将如何运动
5、在图2所示的立方系晶体中,ABCD 滑移面上
有一位错环,其柏氏矢量b 平行于AC
(1) 指出位错环各部分的位错类型
(2) 指出使位错环向外运动所需施加的切应力
的方向
(3)位错环运动出晶体后晶体的外形如何变化。
6、在Fe 中形成1mol 空位的能量为104.675KJ ,试计算从20℃升温至850℃时空位数目增加多少倍?
7、在面心立方晶体的(111)面上有一位错环,其柏氏矢量为[111]方向,判断其类型,并说明其可能的运动方式。
图1
图2。