5-磁性材料测量
磁粉检测5-10章课程重点讲义
第五章、磁粉探伤器材⒌1、磁粉磁粉---显示和记录缺陷的材料。
⒌⒈1磁粉的种类(1)按使用方法分类:A、干式磁粉。
B、湿式磁粉。
(2)按磁粉表面颜色分类:A、非荧光磁粉Fe304黑色γ-Fe203红褐色白色、灰色。
B、荧光磁粉以磁性氧化铁粉、工业纯铁粉、羰基铁粉为核心,外面包覆上一层荧光染料而制成。
在紫外线照射下发出波长为510—550nm,黄绿色或桔红色的荧光。
(3)特殊条件下使用的磁粉A、空心球形磁粉——是铁、铬、铝的复合氧化物,由液化成型工艺而制成。
颗粒直径为10—130μm,在300—400℃高温使用不氧化,不变色。
⒌⒈3磁粉的性能(1)磁性A、高磁导率,μ↑B、低矫顽力, Hc↓C、低剩磁。
Br↓磁粉的磁性可用磁滞回线表示——形状狭长磁滞回线,JB4730-94,取消磁性>7g值,经过试验,磁性值大的灵敏度不一定高。
磁性值<7g时,灵敏度反而高。
国外的磁粉,磁性值小于4g,而灵敏度高。
(2)粒度磁粉的粒度——即磁粉颗粒的大小。
粒度的影响:①漏磁场对磁粉的吸附。
②悬浮性选择粒度时应考虑的因素:A、缺陷位置表面缺陷——细颗粒,近表面缺陷——粗颗粒。
B、缺陷大小缺陷大——粗颗粒,缺陷小——细颗粒。
C、不同检验方法湿法——细颗粒,干法——粗颗粒,荧光法——细颗粒。
所以,磁粉的粒度应有一定的范围:非荧光磁粉干法10—50μm最大粒度≧150μm湿法5—10μm 最大粒度≧50μm 荧光磁粉5--25μm(3)形状球形、条形、椭圆形、空心、不规则形状。
A、条形磁粉优点:易磁化、易形成磁痕。
缺点:易产生聚集、流动性差。
B、球形磁粉优点:流动性好。
缺点:不易被漏磁场磁化。
理想的磁粉是几种形状磁粉混合使用。
(4)流动性流动性有关因素:A、磁化电流种类,(AC、DC、HBC)B、工件表面状态,C、磁粉形状有关,D、湿法检测与载液有关。
(5)密度湿法—4.5g/cm3干法—8g/cm3空心球形—0.71-2.3g/cm3(6)识别度是指磁粉的光学性能,识别度: A、磁粉颜色或荧光亮度B、磁粉—工件表面,对比度。
磁性材料基础知识
(2) 毕奥—萨伐尔定律:
表述:电流元
粉纹法演示磁力线分布
磁极之间同性相斥、异性相吸 磁铁不论大小,都有唯一的N
极和S极。
2.1 磁性来源
磁偶极子和磁矩
+m
如果一个小磁体能够用无限小的电流回路
来表示,我们就称为磁偶极子。用磁偶极矩jm表
i
示:
jm=ml
-m
l
与磁偶极子等效的平面回路的电流和回路 面积的乘积定义为磁矩——表征磁性物体磁性 大小的物理量,用µm表示:
µm=i·A
磁偶极矩和磁矩具有相同的物理意义,存在关系:
jm=µ0µm ,µo=4π×10-7H·m-1 ,真空磁导率
2.1 磁性来源
磁化强度M
单位体积磁体内磁偶极子的磁偶极矩矢量和称为磁极化强度Jm ;
J m
jm V
WWbb·mm-22
单位体积磁体磁体内磁偶极子的磁矩矢量和称为磁化强度M
磁性材料按磁性分类:
根据固体中电子与外部磁场之间交互作用 的性质与强度,将磁性材料分为5类:
与外部无响应(基本):
抗磁性
顺磁性
X≤ 1
反铁磁性
与外部磁场有强烈的相互作用:
铁磁性
X≥1
亚铁磁性
物质内部原子磁矩的排列 a:顺磁性 b:铁磁性 c:反铁磁性 d:亚铁磁性
2.3 磁性材料分类
按 软磁材料
Hc<100A/m(1.25 Oe)
矫
顽 力 分
半硬磁材料
Hc :100~1000A/m (1.25~12.5Oe)
类 硬(永)磁材料 Hc>1000A/m(12.5Oe)
按化学组成分类: 金属(合金);无机(氧化物);有机化合物
5-磁性器件-PPT课件
电力电子技术研究室
第三章 开关电源中磁性器件设计
② 含较大直流分量,为使磁芯不饱和,必须加适当的 气隙。 ③ 此类磁芯希望其最大储能大,要求最大磁感应强度 大。
三 常用磁性材料
* 按磁滞回线宽窄,把磁性材料分为软磁性材料和硬磁性材 料两大类。 * 如果磁滞回线很宽,即Hc 很高,需要很大的磁场强度才能 将磁材料磁化到饱和,同时需要很大的反向磁场强度才能将材料 中磁感应强度下降到零,我们称这类材料为硬磁材料。 * 如铝镍钴,钐钴,钕铁硼合金等永久磁铁,常用于电机激 磁和仪表产生恒定磁场。这类材料磁化曲线宽,矫顽磁力高。
(3)材料性能
① 电阻率(ρ ) 锰锌铁氧体0.1~20Ωm、镍锌铁氧 体为104~106Ωm。 电阻率还与温度和测量频率有关。 ② 磁化曲线 右图是某型号铁氧体的低频磁滞回线
电力电子技术研究室
第三章 开关电源中磁性器件设计
由于在铁氧体中存在粘结剂,与磁粉芯类似的原因,饱和过 程是缓慢的。 磁化曲线与温度的关系,在100℃时,饱和磁感应强度由常 温(25℃)的0.42T 下降到0.34T。因此,在选择磁芯时应考虑 这一因素。 ③ 损耗 磁芯损耗和工作频率与磁感应强度变化范围有关,可参 考赵修科《开关电源中磁性元器件》。
② 磁性比较弱(饱和磁感应强度大约为1T以下);
电力电子技术研究室
第三章 开关电源中磁性器件设计
③ 价格较贵,但磁导率比较高,可以代替硅钢片或 者坡莫合金,用作高要求的中低频变压器铁芯; ④ 例如漏电开关、互感器。 * 钴基非晶合金: ① 由钴和硅、硼等组成,有时为了获得某些特殊的 性能还添加其它元素; ② 由于含钴,价格很贵,磁性较弱(饱和磁感应强 度一般在1T以下),但磁导率极高; ③ 一般用在要求严格的军工电源中的变压器、电感 等,替代坡莫合金和铁氧体。 * 铁基纳米晶合金(超微晶合金): ① 它们由铁、硅、硼和少量的铜、钼、铌等组成, 其中铜和铌是获得纳米晶结构必不可少的元素;
《磁性材料》基本要求12
《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。
(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI 单位为A/m 。
CGS 单位:emu/cm 3。
换算关系:1 ×103 A/m = emu/cm 3。
(3) 磁极化强度 (J m ): 定义为单位体积内磁偶极矩矢量和。
其单位是:Wb ﹒m -2 (和磁感应强度 B 单位 T 一致)(4) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。
SI 单位是A ·m -1。
CGS 单位是奥斯特(Oe)。
换算关系:1 A/m =4π/ 103 Oe 。
(5) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。
(6) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。
(7) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。
该磁场被称为退磁场。
退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。
(8) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。
SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。
换算关系:1 T = 104 G 。
(9) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1).(10) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。
H B H i 00lim 1→=μμ (11) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(12) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。
磁性材料 第5章 磁畴理论 2
一. 畴壁及畴壁分类
理论和实验都证明,在两个相邻磁畴之间原子层的自 旋取向由于交换作用的缘故,不可能发生突变,而是逐渐 的变化,从而形成一个有一定厚度的过渡层,称为畴壁。
按畴壁两边磁化矢量的夹角来分类,可以把畴壁分成 180壁和90壁两种类型。在具有单轴各向异性的理想晶体 中,只有180壁。在 K1>0 的理想立方晶体中有180壁和 90壁两种类型。在 K1<0 的理想立方晶体中除去180壁外, 还可能有109和71壁,实际晶体中,由于不均匀性,情况 要复杂得多,但理论上仍常以180和90壁为例进行讨论。
E 0 d
量更低,但此时必须考虑自发磁化引起的形变产生的磁弹性能的影响。
立方晶系封闭畴形式能量的计算:在立方晶系K>0的情况下,应
力方向单位体积的磁弹性能是:
F
1 2
100
1 2
C2 100 11
样品表面单位面积下方柱体的总能量为:
E
E
Eml
L d
d 2
1 2
C 2 11 100
第五章 磁畴理论
铁磁性物质的基本特征是物质内部存在自发磁化与磁 畴结构。
1907年Weiss在分子场理论的假设中,最早提出磁畴的 假说;而磁畴结构的理论是Landon—Lifshits在1935年考虑 了静磁能的相互作用后而首先提出的。
磁畴理论已成为现代磁化理论的主要理论基础。
5.1 磁畴的起源
一、磁畴形成的根本原因 铁磁体内有五种相互作用能:FH、Fd、Fex、Fk、F 。
Bloch180壁的结 构:为保证自发 磁化强度在畴壁 法线方向的分量 连续,畴壁应取 如图方式。
Bloch180畴壁中原子层电子自旋方向的转变形式:
电工材料 第5章—磁性材料
5.1 磁性材料的基本特性
三、磁性材料的特性曲线
2、磁滞回线
➢ 从整个过程看,B的变化总是落后于H 的变化,这种现象称为磁滞现象。磁 性材料经过一个循环的反复磁化(即 磁场强度从正最大值Hm到负最大值一 Hm 再 到 Hm) 而 得 到 与 原 点 对 称 的 闭 合 曲线(如abcdefa),称为磁滞回线。
➢ 当H单调地减至零时,B值却不等于零,仍保持一个相当的值B,这 个值叫做剩磁感应强度(Br),简称剩磁。
➢ 为了消除剩磁,必须外加反方向的磁场。随着反方向H单调地增大, 磁性材料逐渐退磁。当反方向H增大到一定值时,B值由Br逐渐变 小,直至为零,这一过程称为去磁过程(bc段曲线叫退磁曲线)。
5.1 磁性材料的基本特性
➢ 工程计算所用的磁化曲线就是这种曲线,所以基本磁化曲线是一 种实用的磁化曲线,它是软磁材料确定工作点的依据。
➢ 由于影响磁性能的因素很多,即使是同一种牌号的材料,实验测 得的基本磁化曲线也是有差异的。
5.1 磁性材料的基本特性
三、磁性材料的特性曲线
4、退磁曲线
➢ 退磁曲线是指极限磁滞回线在第二象限 的部分,如右图中的BrHc这段曲线,它 是说明硬磁材料特性的曲线,是鉴定硬 磁材料品质优劣的一项重要依据。
材料的这种特性称为磁饱和,Bs为饱和磁感应强度。
5.1 磁性材料的基本特性
三、磁性材料的特性曲线
1、起始磁化曲线
➢ 起始磁化曲线表明了磁性材料的B 和H是非线性关系,也表明了磁性 材料的磁导率μ(等于B/H)不是常 数。
➢ 由于磁化曲线上任一点的B与H之比 就是相应的磁导率,因而根据B-H 曲线就可绘出μ一H曲线。
5.2 软磁材料
一、软磁材料的性能指标和主要性能要求
磁粉检测作业指导书
磁粉检测作业指导书目录1 目的2 适用范围3引用标准4 检测准备工艺准备检测作业人员检测设备与器材作业条件5 检测实施检测控制流程图作业条件检测准备检测操作焊接对接接头磁粉检测焊接角接及T型接头的磁粉检测管材磁粉检测6 质量检查质量检查要求和方法质量检验标准质量控制点质量记录应注意的质量问题7 职业健康安全和环境管理磁粉检测作业指导书1 目的本作业指导书是为了准确地检出铁磁性材料的表面和近表面的裂纹及其它缺陷,以及对缺陷的大小、性质进行等级评定而编制;为了规范磁粉检测工作,保证磁粉检测的工作质量,特制定本作业指导书;2适用范围本作业指导书包括了铁磁性材料的磁粉检测这些规定被扩大运用于工件表面或近表面裂缝和其他缺陷检测;本作业指导书适用于铁磁性材料制船舶、管道的原材料和焊接接头的磁粉检测;铁磁性材料结构件及其他设备的磁粉检测可参照本工作业指导书进行;本作业指导书与有关标准、规范、施工技术文件有抵触时,应以有关标准、规范、施工技术文件为准;3 引用标准承压设备无损检测标准磁粉检测JB/T 6061-2007无损检测焊缝磁粉检测2008 无损检测人员资格鉴定与认证规范4 检测准备工艺准备4.1.1 检测方案大型检测项目或客户有特殊要求的检测项目应单独编制磁粉检测方案或包含在无损检测方案中;磁粉检测方案由MT-Ⅱ级以上人员编制,无损检测工程师审核,项目技术负责人批准后执行;4.1.2 检测工艺卡检测前应编制磁粉检测工艺卡;检测工艺卡由MT-Ⅱ级人员编制,无损检测工程师审核,现场无损检测技术负责人批准;4.2检测作业人员4.2.1 磁粉检测工作应由规定的NDT人员资格认证的程序认可的人员实施;经考核合格,并取得磁粉检测Ⅰ级或Ⅰ级以上资格证书的检测人员担任;4.2.2 Ⅰ级人员应在Ⅱ级或Ⅲ级人员的指导下进行检测操作和记录;Ⅱ级或Ⅲ级人员有权对检测结果进行评定,签发检测报告;4.2.3 磁粉检测人员未经矫正或经矫正的近距视力和远距视力应不低于小数记录值为;并一年检查一次,不得有色盲;检测设备与器材4.3.1 磁粉探伤机1. 磁粉探伤机应能对试件完成连续磁化,施加磁粉,提供观察条件以及退磁等四道工序;如无必要可不带退磁装置;2. 磁粉探伤机应能适应试件的形状、尺寸、材质、表面状态以满足对缺陷检测的要求,能有效而安全地进行探伤;3. 对接焊接接头磁粉检测一般使用磁轭式或交叉磁轭式磁粉探伤机,角接焊接接头磁粉检测时可使用磁轭式或触头式磁粉探伤机,口径较小的管子对接焊缝也可采用带有磁化线圈的磁粉检测设备,管材或管件磁粉检测应使用磁化电流1000A以上的磁粉探伤机;4. 磁粉检测设备的电流表至少半年校验一次;5. 当使用磁偶轭间距200mm时,每个交流电磁轭至少应有44N提升力;直流电磁轭交叉磁轭至少应有177N的提升力磁极与试件表面间隙为;4.3.2 黑光辐照度及波长当采用荧光磁粉检测时,使用的黑光灯在工件表面的黑光辐照度应大于或等于1000μW/cm2,黑光的波长应为320nm~400nm,中心波长约为365nm;4.3.3 照度计和黑光辐照计照度计用于测量可见光的照度,黑光辐射计用于测量黑光的辐照度;照度计和黑光辐照计应至少每年校验一次;4.3.4 标准试块标准试片与磁场指示器1. A型标准试片a. A型标准试片用来检查探伤装置、磁粉、磁悬液的综合性能,以及连续法中试件表面有效磁场的强度和方向,有效探伤范围,探伤操作是否正确等;这种试片必须经过权威机关检定;b. A型标准试片分高、中、低三种灵敏度,其型号的分数小,则要求能显示磁痕的有效磁场强度越高;此灵敏度不代表实际能检测缺陷的大小;应根据对探伤灵敏度的要求,选用相应的A型标准试片;当需要更有强的有效磁场时,可用标准试片型号的倍数来表示;例如:A-30/100×2表示进行探伤的磁化电流值的2倍;c. 使用A型标准试片时,应将没有人工槽的面置于外侧,并用适当的粘胶纸将试片紧帖在探伤面上,注意粘胶纸不能盖住人工槽对应的部位;A型标准试片中有圆形和十字人工槽,其几何尺寸如图3所示;A型标准试片型号、相对槽深与材料如表1所示;d. 对A型标准试片施加磁粉时应采用连续法;e. A型标准试片的形状、尺寸发生变化后不得继续使用;f. 一般应选用A1-30/100型标准试块.2. C型标准试片:当检测焊接接头坡口等狭小部位,由于尺寸关系,A1型标准试片使用不便时,一般可选用C-15/50型标准试片;型标准试片:为了更准确地推断出被检工件表面的磁化状态,当用3. D型或M1户需要或技术文件有规定时,可选用D型或M型标14.3.5. 磁场指示器图2 磁场指示器a. 图2所示的磁场指示器可方便地粗略测出零件的磁化程度及方向,但不能作为磁场强度及其分布的定量指示器,只能反映被检件表面或局部的磁场强度和方向;必须在被检工件产生足够的磁场,以使指示器能清晰地显示出检验图形;b. 在使用磁场指示器时,应在产生磁场的同时施加磁粉;当指示器铜片表面呈现交叉、清晰的磁痕时,则表明此时具有适当的磁力或磁场强度,如果没有形成清晰的磁痕或没有在所要求的方向形成磁痕,则应改变或调整磁化方向;4. 辅助材料:a. 磁悬液喷壶: 磁悬液喷罐应能雾状均匀地将磁悬液喷洒于被检工件表面,压力不宜过大;b. 手把灯或手电筒: 试件表面应具有检测人员确定的合适灯光,一般灯光的强度不得低于500LX;c. 2-10倍放大镜等4.3.6 磁悬液的配制1. 磁粉: 磁粉磁悬液和反差剂磁粉磁悬液应具有高磁导率、低矫顽力和低剩磁,易于磁化和发现缺陷,并应与被检工件表面颜色有较高的对比度;白色反差增强剂具有较强的对比度;使用的磁悬液、白色反差增强剂均采用喷灌;也可选用磁膏;2. 磁悬液交叉磁轭一般用水磁悬液或油磁悬液,配制水磁悬液时,应加入适当的防锈剂和表面活性剂,必要时添加消泡剂;非荧光磁粉的配制浓度为10-25g/L,沉淀浓度为 mL;荧光磁粉的配制浓度为L,沉淀浓度为 mL;5 检测实施面温度并做好记录;如果采用湿式磁粉探伤,探伤工件的表面温度应不超过550C;在环境温度低于零下10度时,不能进行磁芬探伤;5.2.2 检验的时间1. 通常焊缝的磁粉检测应安排在焊接工序完成后进行;对于有延迟裂纹倾向的材料,磁粉检测因应安排在焊后24小时进行;除另有要求外,对于紧固件和锻件的磁粉检测应安排在最终热处理之后进行;2. 通常应在加工及处理后进行探伤,因表面处理工艺会给缺陷检测带来困难时,则可在表面处理前进行探伤;3. 业主要求变更检验时间时,应按照业主要求进行;5.2.3 工件表面准备:1. 探伤范围应向母材方向扩大30mm,清理的范围必须大于探伤范围;2. 应清除检测范围内的飞溅、焊疤、焊渣、氧化皮、油污等;试件上的油脂或其它附着物必须把它们清除掉,并清理干净;3. 工件表面的不规则状态不得影响检测结果的正确性和完整性,否则,应进行适当的修理;如进行打磨修理,则打磨后的表面粗糙度Ra不得大于μm;4. 处理后的试件表面,可均匀喷涂反差增强剂,反差增强剂涂层厚度不得大于50μm喷涂一层的厚度约为20μm,同一部位不得喷涂三层,喷涂要由探伤人员MT II操作;5.2.4 委托检测要求:被检工件表面质量应由委托单位的质量检查人员检验合格并在检测委托单上签字认可;检测人员操作前应对工件的表面质量进行复核,当表面质量不符合检测要求时,应在委托单上注明原因,退回委托单位进行表面修整,直至符合检测要求;5.2.5 设施与环境1. 容器内作业时,应采取有效通风设施,保证通风良好;2 夜间现场检测或容器内检测操作时,应有足够的照明设施,保证良好的照明条件;3. 非荧光磁粉检测时,通常工件被检表面可见光照度应大于等于1000lx;当现场采用便携式设备检测,由于条件所限无法满足时,可见光照度可以适当降低,但不得低于500lx;4. 荧光磁粉检测时,所用黑光灯在工件表面的辐照度大于或等于1000μW/cm2,黑光波长应在320nm~400nm的范围内,磁痕显示的评定应在暗室或暗处进行,暗室或暗处可见光照度应不大于20lx;检测操作5.3.1 凡须磁粉检验的部位,必须在完工打磨后,经外观检验合格,才能进行探伤操作;探伤操作包括:磁化、施加磁粉、磁痕的观察、记录、退磁等各项操作;5.3.2 探伤的方法磁粉探伤的方法采用湿式连续法;5.3.3 磁化A. 磁场方向应尽量与预计的缺陷方向垂直;B. 磁场方向应尽量与探伤表面垂直;C. 应减少逆磁场;D. 再不允许烧伤探伤面时,应选择不直接对试件通电的磁化方向;E. 各区域至少应分别进行两次检验,第二次检验时,磁力线应与第一次检验时所用的方向尽量垂直;F. 通电时间有关注意事项:使用连续法磁化时,通电时间的确定必须保证磁粉能在通电状态下施加完毕,一般为1-3秒;为保证磁化效果应至少反复磁化两次,停施磁悬液至少1秒后才可停止磁化.G. 采用电磁铁装置在磁间距离为75-150mm时,用交流磁化,提升力应大于44N,直流电磁轭的提升力应大于177N,用磁轭检验的有效探伤范围在磁极两侧各为磁极间距的1/4,磁轭每次移动的覆盖区应不少于25mm;H. 提升力应在工作前、工作后分别测定,并做好记录;5.3.4 施加磁粉1. 在连续法探伤时,应在磁化过程中完成施加磁粉;此时必须注意磁化结束后形成的磁痕不要被流动着的分散剂所破坏;2. 采用湿法时,应确认整个探伤面能被磁悬液良好地润湿后再把磁悬液喷洒在探伤面上,注意不使探伤面上磁悬液的流速过快.3. 使用的磁悬液、白色反差增强剂均采用喷灌;5.3.5 磁痕的观察1. 磁痕的观察必须在磁痕形成后立即进行;2. 必须在能清楚识别磁痕的自然光或灯光下进行观察;3. 正确区分可能出现的几种伪磁痕,必要时应重复检验;伪磁痕形成原因如下:A. 磁写:采用剩磁法时,由于试件相互接触或接触了其它强磁性体时形成漏磁场,由此而形成较为模糊的磁痕;B. 断面突变显示:因试件形状的差别,在试件磁回路截面机突变部位产生漏磁场,形成较为模糊的磁痕;C. 电流显示:通有强电流的电线接触探伤面时,引起局部磁化,使该部位出现较粗而模糊的磁痕;D. 电极显示:采用触头法时,因电极附近电流密度高引起漏磁场所形成的磁痕,这种磁痕大多数呈辐射状;E. 磁极显示:采用磁轭法时,由于接触部位及其附近局部产生的高密度漏磁场形成的磁痕;F. 表面粗糙度显示:由细小的凹凸部分产生的漏磁场形成的磁痕磁粉存留在凹处而产生的磁痕;G. 材料边界显示:因磁导率不同的材质或金属组织的边界产生的漏磁场所形成的磁痕;H. 缺陷磁痕应作好记录,需要时也可用透明清漆将其固定在探伤面上.5.3.6 退磁1. 在下列情况下试件必须进行退磁:A. 当连续进行探伤时,上一次磁化将会给下一次磁化带来不良影响;B. 试件的剩磁会对以后的机械加工产生不良影响;C. 试件的剩磁会对测试装置等产生不良影响;D. 用于摩擦部位或接近于摩擦部位的试件,因磁粉吸附在摩擦部位会增大摩擦损耗;E. 其它必要的场合.2. 退磁磁场强度必须从大于磁化时的电流值或试件的饱和磁场强度开始,使施加的磁场方向交替变换,并逐渐减小到零.退磁后有时需对试件进行剩磁检查.5.3.7 实施探伤时的注意事项:1. 当整个探伤面不能用一次连续的探伤操作完成时,应规定每一次探伤的有效范围,根据需要进行多次探伤操作,此时相邻探伤范围的边缘部分必须有一定的重叠.2. 在检测各个方向上缺陷时,需对试件同意位置至少施加两个以上不同方向的磁场,并使用连续法进行探伤.3. 用剩磁法探伤时,在磁化后观察磁痕前,探伤面不得与其它试件或强磁体接触.4. 对已经发生的磁痕若难以判断其真伪时,应进行退磁;必要时应变更表面状态再进行复验,以确定其真伪.是否伪磁痕可按下列方法鉴定:A.若时磁泻,经退磁后复验,磁痕即消失.B. 因强电流致使磁粉聚集而产生的伪磁痕,可减小电流或采用剩磁法复验, 磁痕即消失.C. 因探伤面粗糙而形成的磁痕,可将探伤面磨光后再进行复验, 磁痕即消失.D. 对出现在磁导率突变部位的磁痕,可由宏观检验、放大镜检验等磁粉探伤以外的检验方法来辨认.所有被认为时伪磁痕的显示应在被检工件表面清理后作进一步检测,如复探仍出现磁痕显示,则表示该磁痕为缺陷磁痕.5.3.8探伤范围及验收标准所有焊缝的检验和评估都要依照国内或国际标准或按业主要求执行.焊接对接接头磁粉检测5.4.1 适用范围: 本节适用于铁磁性材料焊接对接接头及热影响区表面和近表面缺陷的检测;5.4.2 工艺参数1. 磁化方法:通常采用磁轭法或交叉磁轭法;2. 磁化方向:磁轭法纵向磁化;3. 磁化电流类型:一般选用交流,如欲检出近表面缺陷也可选用直流;4. 磁化通电方式:连续法5. 磁化强度磁轭法的磁场强度应根据提升力和灵敏度试片来确定,当提升力符合要求、灵敏度试片显示清晰时,即认为磁场强度是适宜的;5.4.3 系统灵敏度的校验每个班次开始工作前,应进行系统灵敏度的校验;校验时,用透明胶布将标准试片贴在工件被检范围的一端,刻槽的一面朝向工件;用与工件探伤相同的磁化规范进行磁化,当试片人工刻槽磁痕显示清晰时,则认为系统灵敏度合格;5.4.4 检测操作1. 垂直焊缝分段检测时,应在每一段检测过程中按自上而下的方向探伤;2. 使用磁轭法磁化时,应使磁轭与工件接触良好;用连续法进行探伤,即磁悬液必须在通电时间内施加完毕;磁轭的磁极间距应控制在75mm~200mm之间,检测的有效区域为两极连线两侧各50mm的范围内,磁化区域每次应有不少于15mm的重叠;磁化通电时间为1-3秒,间隔1秒;同一部位至少磁化两次;每一被检区进行两次独立的磁化检验,两次磁化检验的磁力线应大致相互垂直;3. 使用交叉磁轭磁化时,四个磁极端面与检测面之间应尽量贴合,最大间隙不应超过;连续拖动检测时,检测速度应尽量均匀,一般不应大于4m/min;4. 施加磁悬液⑴在对工件磁化的同时,用喷壶对工件施加磁悬液;停施磁悬液至少1秒后才能停止磁化;⑵用磁轭检测焊缝时,磁悬液应喷洒在磁轭行走方向的前方;⑶用交叉磁轭检测垂直焊缝时,磁悬液应喷洒在磁轭行走方向的前方;用交叉磁轭检测水平焊缝时,磁悬液应喷洒在交叉磁轭行走方向的前上方;5.4.5 磁痕观察1. 在进行磁化的同时,对形成的磁痕进行观察;2. 非荧光磁粉检测时,磁痕的评定应在可见光下进行,通常工件被检表面可见光照度应大于等于1000lx;当现场采用便携式设备检测,由于条件所限无法满足时,可见光照度可以适当降低,但不得低于500lx;3. 荧光磁粉检测时,所用黑光灯在工件表面的辐照度大于或等于1000μW/cm2,黑光波长应在320nm~400nm的范围内,磁痕显示的评定应在暗室或暗处进行,暗室或暗处可见光照度应不大于20lx;4. 荧光磁粉检测时,检测人员进入暗区至少经过3min的黑暗适应后,才能进行荧光磁粉检测;观察荧光磁粉检测显示时,检测人员不准戴对检测有影响的眼镜;5. 除能确认磁痕是由于工件材料局部磁性不均或操作不当造成的之外,其他磁痕显示均应作为缺陷处理;当辨认细小磁痕时,应用2倍~10倍放大镜进行观察;5.4.6 缺陷的记录:发现磁痕后,应不少于2次反复磁化,当确认为相关显示后,用记号笔在工件上标出,用草图在探伤记录上标注;必要时可采用照相、录相和可剥性塑料薄膜等方式记录;5.4.7 缺陷评定: 除非设计文件另有规定或用户另有要求,缺陷评定应按JB/T 6061-2007无损检测焊缝磁粉检测标准执行;5.4.8 后处理:必要时,应清除检测部位的磁悬液、磁粉;焊接角接及T型接头的磁粉检测5.5.1 适用范围: 本节适用于铁磁性材料焊接的角接接头和T型接头及其热影响区表面和近表面缺陷的检测;5.5.2 工艺参数1. 磁化方法:通常采用磁轭法或触头法;2. 磁化方向:磁轭法纵向磁化或触头法周向磁化;3. 磁化电流类型:一般选用交流,如欲检出近表面缺陷也可选用直流;4. 磁化通电方式:连续法5. 磁化强度⑴磁轭法的磁场强度应根据提升力和灵敏度试片来确定,当提升力符合要求、灵敏度试片显示清晰时,即认为磁场强度是适宜的;⑵触头法的磁化电流值可按下表的规定选用,检测时磁化电流应根据标准试5.5.3 ;校验时,用透明胶布将标准试片贴在工件被检范围的一端,刻槽的一面朝向工件;用与工件探伤相同的磁化规范进行磁化,当试片人工刻槽磁痕显示清晰时,则认为系统灵敏度合格;5.5.4 检测操作1. 磁轭法的磁化操作⑴ 用磁轭法磁化时,应使用带有活动关节的磁轭探伤机;操作时,先将磁轭垂直焊缝放置,调节活动关节使磁轭与工件接触良好;用连续法对纵向缺陷进行检测;⑵ 再将磁轭沿焊缝方向放置,使磁轭与工件接触良好;用连续法对横向缺陷进行检测;⑶ 磁轭的磁极间距应控制在75mm ~200mm 之间,检测的有效区域为两极连线两侧各50mm 的范围内,磁化区域每次应有不少于15mm 的重叠;通电时间为1-3秒,间隔1秒;⑷ 磁轭法检测角接接头和T 型接头的典型磁化方法如下图所示:L 1≥75 mm L 2≥75 mm b 1≤L 1/2 b 2≤L 2-505. 采用触头法时,电极间距应控制在75mm ~200mm 之间;磁场的有效宽度为触头中心线两侧1/4极距,通电时间不应太长,电极与工件之间应保持良好的接触,以免烧伤工件;两次磁化区域间应有不小于10%的磁化重叠区;其典型磁化方法如下图所示:L ≥75 mm b ≤L/26. 施加磁悬液⑴ 在对工件磁化的同时,用喷壶对工件施加磁悬液;停施磁悬液至少1秒后才能停止磁化;⑵ 用磁轭检测焊缝时,磁悬液应喷洒在磁轭行走方向的前方;⑶ 用触头法检测时,磁悬液应喷洒在两触头之间的检测部位;5.5.5 磁痕观察1. 在进行磁化的同时,对形成的磁痕进行观察;2. 非荧光磁粉检测时,磁痕的评定应在可见光下进行,工件表面可见光的照度应大于等于1000lx ;当现场采用便携式设备检测,由于条件所限无法满足时,可见光照度可以适当降低,但不得低于500lx;3. 荧光磁粉检测时,所用黑光灯在工件表面的辐照度大于或等于1000μW/cm 2,黑光波长应在320nm ~400nm 的范围内,磁痕显示的评定应在暗室或暗处进行,暗室或暗处可见光照度应不大于20lx;4. 荧光磁粉检测时,检测人员进入暗区至少经过3min 的黑暗适应后,才能进行荧光磁粉检测;观察荧光磁粉检测显示时,检测人员不准戴对检测有影响的眼镜;5. 除能确认磁痕是由于工件材料局部磁性不均或操作不当造成的之外,其他磁痕显示均应作为缺陷处理;当辨认细小磁痕时,应用2倍~10倍放大镜进行观察;5.5.6 缺陷的记录发现磁痕后,应不少于2次反复磁化,当确认为相关显示后,用记号笔在工件上标出,用草图在探伤记录上标注;必要时可采用照相、录相和可剥性塑料薄膜等方式记录;5.5.7 缺陷评定除非设计文件另有规定或用户另有要求,缺陷评定应按JB/T 6061-2007无损检测焊缝磁粉检测标准执行;5.3.8 后处理:必要时,应清除检测部位的磁悬液、磁粉;管材磁粉检测5.6.1 适用范围: 本节适用于铁磁性材料管材的表面和近表面缺陷检测;5.6.2 工艺参数1. 磁化方法: 轴向通电法2. 磁化方向: 周向磁化;3. 磁化电流类型: 一般选用交流;若要检测近表面缺陷可使用半波整流或全波整流;4. 磁化通电方式: 连续法;5. 磁化电流选择:直流整流电I=12-32D交流 I=8-15D式中:I--电流值A;D--为工件截面上最大尺寸mm;5.6.3 系统灵敏度的校验每个班次开始工作前,应进行系统灵敏度的校验;校验时,用透明胶布将标准试片贴在工件被检范围的一端,刻槽的一面朝向工件;用与工件探伤相同的磁化规范进行磁化,当试片人工刻槽磁痕显示清晰时,则认为系统灵敏度合格;5.6.4 检测操作1. 使管子或管件与电缆接触良好,必要时加铅垫,防止管子或管件烧伤;2. 用连续法进行探伤,即磁悬液必须在通电时间内施加完毕;通电时间为1-3秒,间隔1秒;3. 在对工件磁化的同时,用喷壶对工件施加磁悬液;停施磁悬液至少1秒后才能停止磁化;5.6.5 磁痕观察1. 在进行磁化的同时,对形成的磁痕进行观察;2. 非荧光磁粉检测时,磁痕的评定应在可见光下进行,工件表面可见光的照度应大于等于1000lx;当现场采用便携式设备检测,由于条件所限无法满足时,可见光照度可以适当降低,但不得低于500lx;3. 荧光磁粉检测时,所用黑光灯在工件表面的辐照度大于或等于1000μW/cm2,黑光波长应在320nm~400nm的范围内,磁痕显示的评定应在暗室或暗处进行,暗室或暗处可见光照度应不大于20lx;4. 荧光磁粉检测时,检测人员进入暗区至少经过3min的黑暗适应后,才能进行荧光磁粉检测;观察荧光磁粉检测显示时,检测人员不准戴对检测有影响的眼镜;5. 除能确认磁痕是由于工件材料局部磁性不均或操作不当造成的之外,其他磁痕显示均应作为缺陷处理;当辨认细小磁痕时,应用2倍~10倍放大镜进行观察;5.6.6 缺陷的记录发现磁痕后,应不少于2次反复磁化,当确认为相关显示后,用记号笔在工件上标出,用草图在探伤记录上标注;必要时可采用照相、录相和可剥性塑料薄膜等方式记录;5.6.7 缺陷评定除非设计文件另有规定或用户另有要求,缺陷评定应按JB/T 6061-2007无损检测焊缝磁粉检测标准执行;5.6.8 后处理:必要时,应清除检测部位的磁悬液、磁粉;5.6.9 管材缺陷消除:1. 管子或管件磁粉探伤发现裂纹缺陷后,应及时用角向砂轮进行打磨消除,打磨方向应垂直于裂纹方向;2. 第一次打磨的深度为管子或管件负公差的50%,然后用原探伤工艺参数复探,如不再出现缺陷显示,则认为管件修磨合格;如再次出现缺陷显示,应进行第二次打磨;3. 第二次打磨的深度为管子或管件负公差的30%,然后用原探伤工艺参数复探,如不再出现缺陷显示,则认为管件修磨合格;如再次出现缺陷显示,应进行第三次打磨;4. 第三次打磨的深度为管子或管件负公差的20%,然后用原探伤工艺参数复探,如不再出现缺陷显示,则认为管件修磨合格;如再次出现缺陷显示,则该管件应判为报废;6 质量检查质量检查要求和方法6.1.1 质量检查要求检查系统灵敏度,缺陷评定准确性;6.1.2 质量检查方法1. 复验:当出现下列情况之一时,需要复验:⑴检测结束时,用标准试片验证检测灵敏度不符合要求时;⑵发现检测过程中操作方法有误或技术条件改变时;⑶用户有要求或认为有必要时;2. 检查缺陷记录,必要时进行复验;质量检验标准6.2.1 试片人工刻槽磁痕显示清晰;6.2.2 缺陷定量、定位及质量等级评定准确;6.2.3 磁粉检测报告字迹清晰、数据准确,无涂改现象,签字手续齐全;。
磁性材料有哪些
磁性材料有哪些磁性材料是一类具有磁性的材料,其主要特点是在外加磁场的作用下能够产生磁化现象。
磁性材料被广泛应用于电子、通讯、医疗、能源等领域,具有重要的科学研究和工程应用价值。
那么,磁性材料究竟有哪些呢?接下来,我们将对磁性材料进行介绍。
首先,我们来介绍铁、钴、镍等金属元素。
这些金属元素在常温下都具有一定的磁性,是常见的磁性材料。
它们在外加磁场下会产生明显的磁化现象,具有良好的磁导性和磁导率,被广泛应用于电机、变压器、传感器等领域。
其次,氧化铁、氧化镍、氧化钴等氧化物也是重要的磁性材料。
这些氧化物具有良好的磁性能,且具有较好的化学稳定性和耐磨性,被广泛应用于磁记录材料、磁性传感器、磁性存储介质等领域。
除了金属元素和氧化物,合金材料也是重要的磁性材料之一。
例如,铁-镍合金、铁-铝合金、钕铁硼合金等都具有优良的磁性能,且具有较高的磁能积和矫顽力,被广泛应用于电磁设备、磁性材料制备等领域。
此外,软磁材料和硬磁材料也是磁性材料中重要的分类。
软磁材料具有良好的磁导性和低磁滞回线特性,适合用于变压器、电感器等领域;而硬磁材料具有较高的矫顽力和矫顽力,适合用于制备永磁体、磁记录材料等领域。
总的来说,磁性材料种类繁多,应用广泛。
金属元素、氧化物、合金材料、软磁材料和硬磁材料都是重要的磁性材料。
它们在电子、通讯、医疗、能源等领域发挥着重要作用,对于推动科学技术的发展和社会经济的进步起着重要的作用。
综上所述,磁性材料种类繁多,具有重要的科学研究和工程应用价值。
随着科学技术的不断发展,磁性材料的研究和应用将会更加广泛,为人类社会的进步做出更大的贡献。
希望本文对磁性材料有哪些有所帮助,谢谢阅读!。
实验5动态磁滞回线
实验5 动态磁滞回线一、实验目的1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。
2、学会用示波法测绘基本磁化曲线和磁滞回线。
3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。
4、研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度Bs、剩磁Br和矫顽力Hc数值。
5、改变不同的磁性材料,比较磁滞回线形状的变化。
二、实验仪器动态磁滞回线测试仪及示波器。
动态磁滞回线测试仪由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。
三、实验原理1、磁化曲线如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。
铁磁物质内部的磁场强度H与磁感应强度B有如下的关系:B=μH对于铁磁物质而言,磁导率μ并非常数,而是随H的变化而改变的物理量,即μ=ƒ(H),为非线性函数。
所以如图1所示,B与H也是非线性关系。
铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H与磁感应强度B也随之变大,其B-H 变化曲线如图1所示。
但当H增加到一定值(Hs)后,B几乎不再随H的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。
如图1中的OS端曲线所示。
图1 磁化曲线和μ~H曲线2、磁滞回线当铁磁材料的磁化达到饱和之后,如果将磁化场减少,则铁磁材料内部的B和H也随之减少,但其减少的过程并不沿着磁化时的OS段退回。
从图2可知当磁化场撤消,H=0时,磁感应强度仍然保持一定数值B=Br称为剩磁(剩余磁感应强度)。
若要使被磁化的铁磁材料的磁感应强度B减少到0,必须加上一个反向磁场并逐步增大。
当铁磁材料内部反向磁场强度增加到H=Hc时(图2上的c点),磁感应强度B才是0,达到退磁。
磁学在磁性材料磁滞回线测量中的应用技术分析
磁学在磁性材料磁滞回线测量中的应用技术分析引言:磁性材料磁滞回线测量是磁学研究中的重要实验手段之一。
通过测量材料在外加磁场作用下的磁化过程,可以获得材料的磁性能参数,如饱和磁感应强度、剩余磁感应强度等。
本文将从不同角度分析磁学在磁性材料磁滞回线测量中的应用技术。
一、磁滞回线测量原理磁滞回线测量是通过改变外加磁场的大小和方向,观察材料的磁化状态变化,从而获得磁滞回线。
磁滞回线可以反映材料的磁化特性,包括饱和磁感应强度、剩余磁感应强度、矫顽力等参数。
二、传统磁滞回线测量方法1.霍尔效应法霍尔效应法是一种常见的磁滞回线测量方法。
通过在材料表面施加磁场,利用霍尔效应测量材料的磁场强度,从而得到磁滞回线。
这种方法简单易行,但需要对材料进行表面处理,且测量精度有限。
2.电感法电感法是另一种常用的磁滞回线测量方法。
通过在材料周围绕线圈产生交变磁场,测量线圈中感应电势的变化,从而得到材料的磁滞回线。
这种方法不需要对材料进行表面处理,但需要精确控制线圈的电流和频率,以及进行复杂的数据处理。
三、新兴磁滞回线测量技术1.磁力显微镜磁力显微镜是一种基于磁力显微镜原理的磁滞回线测量技术。
通过在材料表面扫描探针,测量探针受到的磁力变化,从而得到磁滞回线。
这种方法具有高分辨率和非接触性的特点,可以对微小尺寸的材料进行磁滞回线测量。
2.磁光法磁光法是一种基于磁光效应的磁滞回线测量技术。
通过在材料表面照射偏振光,测量透射或反射光的偏振状态的变化,从而得到材料的磁滞回线。
这种方法不需要对材料进行表面处理,且可以实现实时监测。
3.磁阻法磁阻法是一种基于磁阻效应的磁滞回线测量技术。
通过在材料中引入磁阻元件,测量磁阻元件的电阻变化,从而得到磁滞回线。
这种方法简单易行,且可以实现快速测量。
四、磁滞回线测量技术的应用磁滞回线测量技术在磁性材料研究中具有广泛的应用。
例如,在磁存储器、磁传感器等领域,磁滞回线测量可以用于评估材料的磁性能,优化器件结构和工艺,提高器件性能。
磁学基础知识
磁学基础知识一、磁性材料1.磁性:物体吸引铁、镍、钴等物质的性质。
2.磁体:具有磁性的物体。
3.磁极:磁体上磁性最强的部分,分为南极和北极。
4.磁性材料:具有磁性的物质,如铁、镍、钴及其合金。
5.硬磁材料:一经磁化,磁性不易消失的材料,如铁磁性材料。
6.软磁材料:磁化后,磁性容易消失的材料,如软铁、硅钢等。
7.磁场:磁体周围存在的一种特殊的物质,它影响着磁体和铁磁性物质。
8.磁场线:用来描述磁场分布的假想线条,从磁南极指向磁北极。
9.磁感线:用来表示磁场强度和方向的线条,从磁南极出发,回到磁北极。
10.磁通量:磁场穿过某一面积的总量,用Φ表示,单位为韦伯(Wb)。
11.磁通密度:单位面积上磁通量的大小,用B表示,单位为特斯拉(T)。
三、磁场强度1.磁场强度:磁场对单位长度导线所产生的力,用H表示,单位为安培/米(A/m)。
2.磁感应强度:磁场对放入其中的导线所产生的磁力,用B表示,单位为特斯拉(T)。
3.磁化强度:磁性材料内部磁畴的磁化程度,用M表示,单位为安培/米(A/m)。
4.磁化:磁性材料在外磁场作用下,内部磁畴的排列发生变化,产生磁性的过程。
5.顺磁性:磁化后,磁畴的排列与外磁场方向相同的现象。
6.抗磁性:磁化后,磁畴的排列与外磁场方向相反的现象。
7.铁磁性:磁化后,磁畴的排列在外磁场作用下,相互一致的现象。
8.磁路:磁场从磁体出发,经过空气或其他磁性材料,到达另一磁体的路径。
9.磁阻:磁场在传播过程中遇到的阻力,类似于电学中的电阻。
10.磁导率:材料对磁场的导磁能力,用μ表示,单位为亨利/米(H/m)。
11.磁芯:具有高磁导率的材料,用于集中和引导磁场。
六、磁现象的应用1.电动机:利用电流在磁场中受力的原理,将电能转化为机械能。
2.发电机:利用磁场的变化在导体中产生电流的原理,将机械能转化为电能。
3.变压器:利用电磁感应原理,改变交流电压。
4.磁记录:利用磁性材料记录和存储信息,如硬盘、磁带等。
第五-恒定磁场【共42张PPT】
B0 J
此式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空 磁导率的乘积。
另外,由高斯定理获知
SBdSVBdV
那么,根据磁通连续性原理求得
VBdV0
由于此式处处成立,因此被积函数应为零,即
B0 此式表明,真空中恒定磁场的磁感应强度的散度处处为零。
综上所述,求得真空中恒定磁场方程的微分形式为
可见,无源区中磁感应强度B 是无旋的。
无
考虑到
,求得
关。为了计算方便起见,令所求的场 对于大多数媒质,磁化强度 M 与磁场强度 H 成正比,即
a 为物理无限小体积。
r - r' y 可见,矢量磁位 A 满足矢量泊松方程。
r' 当两者垂直时,受到的力矩最大。
e 点位于xz 平面,即 ' 在设小外电加流磁环场为四的根作长用度下为,l 的除电了流引元围起成电的子平进面方动框以,外电,流磁方' 向偶如极左子下的图示磁。矩方向朝着外加磁场方向转动。
例1 计算无限长的,电流为I 的线电流产生的磁感应强度。
z
dl
r′ r - r′
o
y
r e
x
I
解 取圆柱坐标系,如图示。令 z 轴沿电 流方向。 dl(rr)的方向为B 的方向。那 么,由图可见,这个叉积方向为圆柱坐标 中的 e 方向。因此,磁感应强度 B 的方 向为 e 方向,即
B Be
此式表明,磁场线是以 z 轴为圆心的一系列的同心圆。显然,此时磁场分布以 z 轴 对称,且与 无关。又因线电流为无限长,因此,场量一定与变量 z 无关,所 以,以线电流为圆心的磁场线上各点磁感应强度相等。因此,沿半径为r 的磁场线上 磁感应强度的环量为
铁磁材料居里点的测定
实验5-8 铁磁材料居里点的测定铁磁材料的居里温度特性在工程技术、家用电器上的应用比较广泛。
测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法,来测量感应电动势值随温度变化的规律,从而得到居里点T C 。
【实验目的】l .通过对磁性材料感应电动势随温度升高而下降的现象的观察,初步熟悉铁磁性材料在居里点时由铁磁性变为顺磁性的过程,从而了解磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的εeff(B)~T 曲线,并求出其居里点。
【实验原理】l .基本物理原理根据磁化的效果,磁介质可划分为三类(1)顺磁质,这类磁介质磁化后,在介质内的磁场稍有增强,表明磁化后具有微弱的附加磁场,并与外磁场同方向。
(2)抗磁质,这类磁介质磁化后,在介质内磁场稍有削弱,表明磁化后具有微弱的附加磁场但与外磁场方向相反。
(3)铁磁质,这类磁介质磁化后,在介质内的磁场显著增强,即磁化后具有很强的与外磁场同方向的附加磁场。
铁、镍、钴、钆、镝及其合金和一些非金属的铁氧体都属于这一类。
铁磁质有广泛的用途,所以它是最重要的一类磁介质。
本实验将对铁磁质的磁化规律及其微观机制进行研究。
在弱磁化场及室温的条件下,顺磁质显示弱磁性。
然而,铁磁质在相同条件下却表现强磁性。
铁磁质的特性不能用一般顺磁质的磁化理论来解释。
因为铁磁性元素的单个原子并不具有任何特殊的磁性。
例如铁原子与铬原子的结构大致相同,但铁是典型的铁磁质,而铬是普通的顺磁质,甚至还可用非铁磁性物质来制成铁磁性的合金。
另一方面,还应注意到铁磁质总是固相的。
这些事实说明了铁磁性与固体的结构状态有关。
铁磁质特殊磁性的现代理论是:在铁磁质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。
自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017~1021个原子)内,这些区域叫做磁畴。
《幼儿园物理教案磁性材料的识别》
《幼儿园物理教案磁性材料的识别》教案主要内容:一、教学目标:1.学习磁性材料的基本特征,如吸铁、有磁性等。
2.培养幼儿的观察、观察和分类的能力。
3.培养幼儿的实验探究兴趣和能力。
二、教学重点:1.理解磁性材料的定义和特征。
2.学会使用吸铁物体进行识别。
三、教学准备:1.吸铁物体:磁铁、钉子、铁制器具等。
2.一些非磁性材料:纸张、塑料、木材等。
3.实验磁板、磁性玩具等。
四、教学过程:Step 1:导入新课1.师生对话,引入物性变化的观察与描述。
2.学生观察周围的物体,例如识别有刺激性的气味、颜色等。
Step 2:引入磁性材料1.教师出示一个磁铁,询问学生是否知道这是什么。
2.学生回答后,教师解释磁铁的作用和特点。
3.鼓励学生提出他们所认为的磁铁特点和用途。
Step 3:磁性与非磁性材料的识别1.教师准备一些磁性材料和非磁性材料。
2.将这些材料分别放在一张实验磁板上,观察材料的行为。
3.进行整理性观察,向学生提问,引导他们判断材料是否具有磁性。
Step 4:实际探究1.分发磁性玩具给学生,让他们在教师的指导下进行自主操作。
2.要求学生使用磁性玩具进行探究,找出具有磁性的材料。
3.学生在小组中合作讨论,分享他们的发现和观察结果。
五、教学反馈:1.教师与学生共同回顾实验,并总结判断材料是否具有磁性的方法。
2.学生互相展示他们所发现的磁性材料,并解释他们的观察结果。
3.教师评价学生的实际探究和观察结果,给予鼓励和反馈。
六、教学延伸:1.引导学生探究磁性材料的实际应用,如吸铁石的使用。
2.鼓励学生在日常生活中观察和识别磁性材料,培养实际应用能力。
七、课后作业:1.学生通过在家中观察,写出他们所发现的磁性物品。
2.学生绘制一张画,展示他们对磁性材料的理解和应用。
3.教师要求学生将复习和总结的内容写到学习笔记中,以便复习和巩固知识。
温馨提示:教师在教学过程中要引导学生通过实际观察、实验等方式来认识和理解磁性材料的特点。
磁粉探伤检验方法
磁粉探伤检验方法1适用范围1.1本方法规定了铁磁性材料和零件磁粉检验时工艺的一般要求和详细要求。
1.2本方法适用于铁磁性材料及其成品、半成品零件的磁粉探伤检验。
不适用于非铁磁性材料的检验,也不适用于母材为铁磁材料但用奥氏体焊条焊接的焊缝的检验。
2定义磁悬液磁粉和载液(磁粉分散剂)按一定比例混合而成的悬浮液叫磁悬液。
连续法在工件磁化的同时浇洒磁粉或磁悬液的检验方法叫连续法。
剩磁法先将工件进行磁化,然后在工件上浇浸磁悬液的检验方法叫剩磁法。
3检验人员3.1检验人员必须取得相关部门颁发的无损检测人员技术资格证书(磁粉专业)。
签发检验报告的人员必须持有【I级或【I级以上磁粉检验技术资格证书。
编制磁粉检验工艺(或工艺图表)的人员必须持有磁粉检验II级或II级以上技术资格证书,且应山磁粉检验III级人员或主管工程师审核。
各级人员只能从事与自己技术资格等级相适应的工作。
3.2色盲、近距离矫正视力在5.0以下者,不得参与磁粉检验结果评定。
3.3为防止强电及紫外线的危害,必须配备有关防护用品:同时,必须遵守有关安全操作规程。
4设备和仪器4.1检验设备检验设备应能满足受检材料和零部件磁粉检验要求,并能满足安全操作的要求。
4. 1. 1检验设备有便携式、移动式、固定式和专用设备,设备应具备对工件完成磁化、施加磁粉或磁悬液、提供观察条件及退磁等功能,有必要时,退磁装置亦可另外单独配置;检验设备应按零件形状、尺寸和技术要求配备,同时满足相应技术及安全操作的要求。
4.1.2磁化装置应有足够的磁化电流或提升力,能满足零件磁粉检验的要求;其他辅助装置(如指示仪表、夹头、搅拌喷淋器等)均应能适应检验的实际需要。
4. 1. 3当采用剩磁法检验时,交流探伤机应配备断电相位控制器。
直流和三相全波整流探伤机应配备通电时间控制继电器。
4. 1.4半自动化磁粉检验装置应配备检验工件是否磁化的控制装置及报警装置。
4. 1. 5当采用荧光磁粉检验时,应有能产生波长在320nm〜400nm范围内,中心波长为365nm的紫外线照射装置。
磁性材料BH特性测量讲义
近代物理实验讲义BH特性测量南京理工大学物理实验中心2009.1.20BH特性测量引言磁性材料是我们广泛使用的一类材料,它与我们的生产生活紧密相关。
许多生产设备上都安装有由磁性材料制成的部件,比如发电机中的永磁体、电动机中的转子、各类电磁铁中的铁芯、用于密封润滑的磁性液体,还有磁性液体选矿。
近年来兴起的纳米技术更是使磁性材料研究和应用达到了新的高度。
纳米磁性材料由于具有单畴结构导致的高矫顽力或者尺度小于磁畴而导致的超顺磁状态而在高密度磁存储和生物医学方面展现出了诱人的应用前景。
我们使用的磁性材料根据其矫顽力的大小可以分成三类,即硬磁材料、半硬磁材料、软磁材料。
其中硬磁材料具有很高的矫顽力,适合用于需要永久磁场的场合,比如电机定子中的磁瓦、扬声器中的永磁体等等。
磁性参数的测试是评价一种磁性材料应用潜力的一个重要手段,因此我们有必对各种磁性材料的次性能进行测量。
一、实验目的A 掌握磁化曲线和磁滞回线中涉及的各类物理量的物理含义,及其对于应用的参考价值;B掌握HT610 B-H硬磁材料测量系统的结构和测量原理;C 掌握利用该系统研究硬磁材料(AlNiCo合金)的退磁曲线、磁滞回线;研究被测材料的磁特性,即B r(剩磁)、H c(矫顽力)、(BH)max(最大磁能积)、Rs(矩形比)等几项基本磁性能参数的方法。
二、实验设备HT610 B-H硬磁材料磁特性测量仪,计算机,待测的硬磁样品(AlNiCo 合金)三、实验原理在铁磁性材料中由于磁矩之间的交换作用,它们会自发的沿平行方向进行排列。
由于磁体本身具有一定的几何尺寸,当所有原子的磁矩都同向排列时将会导致磁体表面产生表面磁极。
表面磁极会在磁体内部产生退磁场,磁体内的原子磁矩与退磁场相互作用,具有退磁场能。
为了降低退磁场能磁体会由单畴结构转变为多畴结构,即由整个磁体内部所有原子磁矩一致取向转变为由一系列小的区域构成,在每个小的区域内部原子磁矩取向基本相同,但是不同区域内部的原子磁矩取向具有随机性。
5 材料的磁学性能
外磁场。
顺磁体的原子或离子是有磁矩的(称为原子固有磁矩,它是电子 的轨道磁矩和自旋磁矩的矢量和),其源于原子内未填满的电子 壳层(如过渡元素的d层,稀土金属的f层),或源于具有奇数个电
子的原子。但无外磁场时,由于热振动的影响,其原子磁矩的取 向是无序的,故总磁矩为零。
当有外磁场作用,则原子磁矩便排向外磁场的方向,总磁矩便大
材料名称 氧化铝 铜 金 水银 硅 银
当有介质时,介质被磁化后,其产生的磁场强度M和源
磁场强度H对运动电荷共同产生作用,此时磁感应强度
和B磁场强度H有何关系?
B 0 ( H M )
令 则
0 (1 ) H 0 (1 ) B H
式中的μ为介质的磁导率,单位为H/m,是磁性材料 最重要的物理量之一,其也反映了介质磁化的能力。
亚铁磁性物质由磁矩大小不同的两种离子(或原子)组成,
矩,这就是亚铁磁性(ferrimagnetism)。
尼尔点是反铁磁性转变为顺磁性的温度(有时也称为反铁磁 物质的居里点Tc) 。
尼尔点
图5-14 三种磁化状态示意图
5.3.3 磁畴 铁磁性(ferromagnetism)材料所以能使磁化 强度显著增大(即使在很弱的外磁场作用下, 也能显示出强弱性),这是由于物质内部存在 着自发磁化的小区域——磁畴(magnetic domain)的缘故。
外磁场除去后仍保持相当大的永久磁性, 这种磁性称为铁磁性。
过渡金属铁、钴、镍和某些稀土金属如钆、 钇、钐、铕等都具有铁磁性。 此材料的磁化率可高达103,M>>H
5.2 抗磁性与顺磁性
任何物质都是由原子组成的,而原子又是由带正
电荷的原子核(简称核子)和带负电荷的电子所构
2019-2020学年人教版物理选修1-1同步配套讲义:第二章 5 第五节 磁性材料 Word版含答案
第五节磁性材料1.了解磁化和退磁的概念.2.了解磁性材料及其应用.(重点),[学生用书P35])一、磁化与退磁1.磁化和退磁一些物体,与磁铁接触后就会显示出磁性,这种现象叫做磁化.原来有磁性的物体,失去磁性的现象叫做退磁.2.磁性材料(1)铁、钴、镍以及它们的合金,还有一些氧化物,磁化后的磁性比其他物质强得多,这些物质叫做铁磁性物质,也叫强磁性物质.(2)磁性材料按磁化后去磁的难易可分为硬磁性材料和软磁性材料.有些铁磁性材料磁化后撤去外磁场,仍具有很强的剩磁,这种材料叫做硬磁性材料.有的铁磁性材料磁化后撤去外磁场,物体没有明显的剩磁,这样的材料叫做软磁性材料.电磁铁是用硬磁性材料还是软磁性材料制成的,为什么?提示:软磁性材料.硬磁性材料当外界撤去磁场时,仍有很强的磁性,而电磁铁需要通电时有磁性,断电时没有磁性,所以要用软磁性材料制成.二、磁性材料的发展铁氧体是一种新型的磁性材料,其主要成分是Fe3O4.铁氧体又称磁性瓷,其用途十分广泛.三、磁记录磁记录是信息存储技术发展中的一个里程碑,也是目前信息记录的重要方式之一.四、地球磁场留下的记录地磁场会对含有磁性材料的岩石起作用,这些岩石的极性和磁化的强度,随形成的年代呈周期性变化.磁畴磁化与退磁[学生用书P36]1.磁畴:铁磁性物质内已经被磁化的小区域叫磁畴,磁畴的大小约10-4~10-7 m.2.磁化与退磁:磁化前,各个磁畴的磁化方向不同,杂乱无章地混在一起,各个磁畴的作用在宏观上互相抵消、物体对外不显磁性.磁化时,由于外磁场影响,磁畴的磁化方向有规律地排列起来,使得磁场大大加强.外磁场撤去以后,硬磁性物质内的各磁畴方向仍能很好地保持一致,物体具有很强的剩磁,而对软磁性物质而言,外磁场撤去以后,磁畴的磁化方向又变得杂乱,物体没有明显的剩磁.高温下,剧烈震动时,磁畴的排列会被打乱,这些情况下材料都会产生退磁现象.铁磁性物质的结构和其他物质的不同在于,铁磁性物质本身是由很多小的磁畴组成的,所以铁磁性物质能够被磁化,而一般物质不能够被磁化.一根软铁棒放在磁铁附近被磁化,这是因为在外磁场的作用下() A.软铁棒中产生了磁畴B.软铁棒中磁畴消失C.软铁棒中的磁畴取向变得杂乱无章D.软铁棒中的磁畴取向变得大致相同[关键提醒] 铁磁性物质本身由许多已经磁化的磁畴组成,当各磁畴的磁化方向有规律的排列起来时,对外显磁性.[解析]软铁棒未被磁化时,内部各磁畴的取向是杂乱无章的,它们的磁场相互抵消,对外不显磁性,当软铁棒受到外磁场作用时,各磁畴的取向变得大致相同,软铁棒被磁化,两端对外显示出较强的磁性.原子结构理论证实磁畴是存在的,不因为被磁化而产生或消失.正确选项为D.[答案] D银行、医院、公交等机构发行的磁卡,都是利用磁性材料记录信息的.关于磁卡的使用和保存,下列做法不合适的是()A.用软纸轻擦磁卡B.用磁卡拍打桌面C.使磁卡远离热源D.使磁卡远离磁体解析:选B.磁体在高温或猛烈敲击下,即在剧烈的热运动或机械运动影响下,磁性会消失,所以不能用磁卡拍打桌面.磁记录[学生用书P36]1.磁记录:磁能记录声音、动作、文字等,而且还可以用记忆棒、光盘等载体传递信息.2.原理:通过把声音、图像或其他信息转变为变化的磁场,使磁带、磁卡磁条上的磁粉层磁化,于是就在磁带或磁卡上记录下与声音、图像或其他信息相应的磁信号.3.地球磁场留下的记录(1)岩石中记录了岩石形成时地球磁场的信息.(2)地球磁场的强度和方向随时间的推移在不断改变.(3)大约每过100万年左右,地磁场的南北极就会完全颠倒一次.磁性材料在外界磁场作用下,能够被磁化,这就使我们可以利用磁性材料记录外界磁场的信息,同时其他磁场也能磁化并改变已经记录的信息,因此有时要利用磁化,有时又要防止磁化.关于地球磁场的强度与方向,下列说法中正确的是( )A .从来就没有发生过变化B .地球磁场的强度与方向随时间的推移不断变化,专家推测大约过100万年,地磁场的南北两极就会完全颠倒一次C .只有强度发生变化,方向不变D .只有方向发生变化,强度不变[解析] 地球磁场的强度与方向并非不发生变化,大约每过100万年,地磁场的南北两极就会完全颠倒一次.[答案] B磁性的判断[学生用书P37]判断两根钢条甲和乙是否有磁性,可将它们的一端靠近小磁针的N 极或S 极.当钢条甲靠近时,小磁针自动的远离,当钢条乙靠近时小磁针自动靠近,则 ( )A .两根钢条均有磁性B .两根钢条均无磁性C .钢条甲一定有磁性,钢条乙一定无磁性D .钢条甲一定有磁性,钢条乙可能有磁性[关键提醒] 解答本题的关键是注意区分磁体之间和磁体与铁磁性物质间的相互作用的不同.[解析] (1)当钢条甲靠近小磁针时 小磁针远离钢条甲――――――――――→磁体间同名磁极相互排斥钢条甲是磁体具有磁性(2)当钢条乙靠近小磁针时故钢条甲一定是磁性物质,而钢条乙可能是磁性物质,也可能是铁磁性物质.[答案] D(1)与磁体相互排斥的物体,一定是磁体,且是磁体的同名磁极在相互作用,如题中的钢条甲.(2)与磁体相互吸引,可能是磁体的异名磁极在相互吸引,也可能是被磁体磁化而被吸引的铁磁性物质,如题中的钢条乙.[随堂检测] [学生用书P37]1.下图中的设备,没有应用磁性材料的是()解析:选D.指南针是应用磁性材料制成的磁针,是利用磁体的指向性工作的,选项A 不符合题意;磁悬浮列车是利用磁极间的相互作用原理工作的,所以主要利用软磁性材料制成,选项B不符合题意;电话机的听筒和扬声器是利用电流的磁效应工作的,所以它的构造中有磁体,应用了磁性材料,选项C不符合题意;光盘是利用了光头读取碟片上刻录的信息信号工作的,故D符合题意.2.下列说法正确的是()A.只有铁和铁的合金可以被磁铁吸引B.只要是铁磁性材料总是有磁性的C.制造永久磁铁应当用硬磁性材料D.录音机磁头线圈的铁芯应当用硬磁性材料解析:选 C.磁性材料都可以被磁铁吸引,A错;铁磁性材料只有磁化后才有磁性,B 错;永久磁铁需要有很强的剩磁,要用硬磁性材料,而录音机的磁头需要反复磁化,要用软磁性材料.3.(多选)硬磁性材料适用于制造()A.电磁铁的铁芯B.永久磁铁C.变压器铁芯D.发电机铁芯解析:选BD.凡外磁场消失后,磁性仍然要保持的,都需要用硬磁性材料来制造,如永久磁铁、发电机铁芯等.所以A、C错误,B、D正确.4.将小钢条的一端A靠近磁针N极时,互相吸引,将小钢条的另一端B靠近磁针N 极时,也互相吸引,下面哪种说法正确()A.小钢条具有磁性,A端是北极B.小钢条具有磁性,A端是南极C.小钢条没有磁性D.以上说法都不对解析:选C.小钢条没有磁性,磁场的基本性质就是对放入其中的铁性物质产生吸引力.5.为了保护磁卡或带有磁条的存折上的信息,你认为应该怎样做?解析:应避免强磁场和高温的环境;还应注意不要破坏磁条上的保护膜,以免损坏磁记录介质.答案:见解析[课时作业] [学生用书P91(单独成册)]一、单项选择题1.实验表明:磁体能吸引一元硬币,对这种现象解释正确的是()A.硬币一定是铁做的,因为磁体能吸引铁B.硬币一定是铝做的,因为磁体能吸引铝C.磁体的磁性越强,能吸引的物质种类越多D.硬币中含有磁性材料,磁化后能被吸引解析:选D.一元硬币为钢芯镀镍,钢和镍都是磁性材料,放在磁体的磁场中能够被磁化获得磁性,因而能够被磁体吸引.2.下列物品中必须用到磁性材料的是()A.DVD碟片B.计算机上的磁盘C.电话卡D.喝水用的陶瓷杯子解析:选B.DVD光盘是塑料做成的,电话卡内部是集成电路,喝水用的杯子可以用非磁性材料,只有计算机的磁盘是利用磁性材料来记录信息的,选项B正确.3.铁磁性物质磁化后有很强的磁性,其机理是()A.铁磁性物质的磁畴的磁性很强B.磁化前,各个磁畴的磁化方向有规律地排列起来C.磁化后,各个磁畴的磁化方向有规律地排列起来D.磁化后,各个磁畴的磁化方向不同,杂乱无章地混在一起解析:选C.磁化过程是各磁畴的磁化方向由杂乱无章到有规律地排列起来的过程.4.电磁铁用软铁做铁芯,这是因为软铁()A.能保持磁性B.可能被其他磁体吸引C.退磁迅速D.能导电解析:选C.软铁属于软磁性材料,磁化和退磁都很迅速,适合做铁芯.5.把录音机的音乐磁带拉出一段后,用强磁铁的一端在磁带上擦上几下后,再放音时,这一段会出现()A.原声加强了B.原声的声音变小了C.原声消失了D.不好确定解析:选C.磁带被磁铁的一端擦过后,磁带上的磁性颗粒重新被强磁铁磁化,原来录制的声音信号被破坏了,因此原声也就消失了.故选C.6.如图所示,将一根条形磁铁从上方靠近软铁棒(并不接触铁棒),这时铁棒吸引铁屑.把条形磁铁移开后()A.铁棒和铁屑磁性消失,铁屑落下B.铁棒和铁屑已成为一体,永远不会分离C.铁棒和铁屑相互吸引,铁屑不落下D.铁棒和铁屑相互排斥,铁屑落下解析:选A.软铁棒是软磁性材料,磁铁移走后,没有明显的剩磁,磁性很快消失,故铁屑很快落下,A选项正确.7.关于铁磁性材料,下列说法正确的是()A.磁化后的磁性比其他物质强得多,叫做铁磁性物质B.铁磁性材料被磁化后,磁性永不消失C.铁磁性材料一定是永磁体D.半导体收音机中的磁棒天线是铁磁性材料解析:选A.铁、钴、镍以及它们的合金,还有一些氧化物,磁化后的磁性比其他物质强得多,这些物质叫做铁磁性物质,包括硬磁性材料和软磁性材料.所以A项对;铁磁性材料被磁化后,有的磁性不消失,有的立即消失,所以B项错;永磁体是用硬磁性材料制造的,所以C项错;半导体收音机中的磁棒天线是弱磁性材料,故D项错.二、多项选择题8.关于磁化和退磁,以下说法正确的是()A.铁磁性物质是由已经磁化的小区域组成,这些小区域叫做磁畴B.当各个磁畴的磁化方向杂乱无章时,物体对外不显磁性,当排列方向有序时,对外显磁性C.磁化的过程是使各个磁畴的磁化方向取向趋于一致的过程D.退磁是各个磁畴的磁性消失的过程解析:选ABC.退磁是磁畴的磁化方向的排列从有规律变得杂乱无章的过程,不是每个磁畴的磁性都消失的过程.9.如图所示,把条形磁铁的N极靠近铁棒时,发现小磁针S极被铁棒吸引过来,这是由于()A.铁棒在磁铁的磁场中被磁化了B.铁棒两端有感应电荷C.铁棒内的磁畴取向变得杂乱无章D.铁棒内的磁畴取向变得大致相同解析:选AD.把条形磁铁的N极靠近铁棒,铁棒中的磁畴在外磁场的作用下,有规律地排列起来,使铁棒对外表现磁性,左侧为S极,右侧为N极,从而把小磁针的S极吸引过来.10.下列电器设备所用到的磁性材料中,哪些是软磁性材料制成的()A.电表中的磁铁B.扬声器中的磁铁C.变压器中的铁芯D.镇流器中的铁芯解析:选CD.对于电表中的磁铁和扬声器中的磁铁所需要的都是永久磁铁,因此需要硬磁性材料,所以A、B错误;对于变压器中的铁芯和镇流器中的铁芯不能有剩磁,否则会有电能的损失,所以应用软磁性材料,故选项C、D正确.三、非选择题11.磁性减退的磁铁,需要充磁,充磁的方式有两种,如图甲、乙所示.甲是将条形磁铁穿在通电螺线管中,乙是将条形磁铁夹在电磁铁之间.a、b和c、d接直流电源,正确的接线方式是a接________极,b接________极;c接________极,d接________极.解析:要想充磁应使甲图线圈中内部磁感线从右端指向左端,根据安培定则,电流应从b端流入a端流出,故a端接负极,b端接正极;乙图由安培定则可以判断c端是正极,d 端是负极.答案:负正正负12.实验室中有许多条形磁铁,平时不用时为了不减弱磁性,应该是同名磁极都置于一端捆成一团还是异名磁极首尾相连成一条直线?且为什么N极在北方放置?解析:条形磁铁不用时如果随便放置,会使得磁性减弱,正确的放置方法就是异名磁极首尾相连成一条直线,且N极在北方,异名磁极首尾相连能使条形磁铁的磁感线形成磁路闭合,N极在北方还可以使磁铁的磁场与地球磁场的磁场平行,这样可以使磁性不易减弱.答案:见解析。
实验讲义-用VSM测量磁性测量磁性能(吉林大学)
实验讲义用振动样品磁强计测量 铁氧体永磁磁性能吉林大学物理实验中心第一节 预备知识一 物质磁性磁性是在自然界所有物质中广泛存在的一种物理性质。
任何物质放在磁场H 中,都会或多或少地被磁化。
通常用磁极化强度J 或磁化强度M (J 、M 为单位体积内的磁矩,M J 0µ=)表示磁化状态,即磁化的方向和磁化程度的大小。
H M χ=,χ为磁化率。
磁感应强度H J B 0µ+=或)(0H M B +=µ。
依据χ的正负和大小,物质磁性体可以分为抗磁性,顺磁性,铁磁性,反铁磁性,亚铁磁性和磁性玻璃等。
1.抗磁性抗磁性物质没有固有的原子磁矩,磁矩是被磁场感应出来的,所以磁矩方向与磁场方向相反,即磁化率χ是负的。
抗磁性物质磁化率χ的数值很小,约为10-6。
在一般实验室条件下,χ与H 和温度T 无关。
在超导体内,0)(0=+=M H B µ,因此1−=χ。
这个现象称为Meissner 效应。
2.顺磁性顺磁性物质中原子或离子具有固有磁矩,磁矩间相互作用很弱,没有外磁场时,磁矩在热扰动作用下混乱排列,宏观磁化强度为零。
在磁场中,磁矩受到力矩的作用向磁场方向转动,在磁场方向显现出宏观的磁化强度,所以顺磁性磁化率为正。
然而由于磁矩在外磁场中的位能远比热能小,磁化很弱,χ大小约为5610~10−−。
在一般实验室的磁场中,χ与H 无关,但与温度满足Curie 定律T C =χ 或Curie-Weiss 定律C T C θχ−=,C 和C θ分别为Curie 常数和顺磁Curie 温度。
3. 铁磁性铁磁性物质具有固有磁矩,并且磁矩之间存在较强的相互作用,虽然不存在外磁场,所有的磁矩也都沿着同一方向排列,形成自发磁化。
为了降低退磁场能,铁磁体内部分成多个磁畴。
在磁畴内,所有磁矩平行排列,自发磁化到饱和值s J 。
不同磁畴的磁化方向不同,没有磁化的样品总体磁化强度为零。
磁畴之间存在畴壁,在畴壁内沿着厚度方向磁矩从一个磁畴的磁化方向逐步过渡到近邻磁畴的磁化方向。
磁强仪JCZ-5 磁强计
磁强仪JCZ-5
设备名称:JCZ系列磁强仪
产品型号:JCZ-5;JCZ-10;JCZ-20;JCZ-30;JCZ-50
厂商:南京米厘特仪器公司
资料来源:
一、概述:
JCZ-5磁强仪用于铁磁性材料和零部件在加工使用过程中,直接测量被磁化的量,也用于经过磁粉探伤后,退磁处理的测量工件剩余磁场的指示。
二、本仪器能在-10~50℃和相对湿度80%正常使用。
三、使用方法
在测量时应将本磁强仪标有箭头处贴附被测工件上,并以仪表两侧方向移动,移动时所测得的最大值即为被测物的剩磁量。
四、注意事项
因本磁强仪灵敏度较高,会受到磁场的感应,所以一般磁强仪应沿东西方向位置测量。
实际使用受到条件限制,若不在东西方向测量时,测量值应考虑减去地磁场的影响量。
除被测物外,其周围环境不应有磁场存在,以免增加测量误差。
磁测量单位换算公式:
1高斯=1×10-1豪特=1×10-4特斯拉
磁强仪共有JCZ-5,JCZ-10,JCZ-20,JCZ-30,JCZ-50五款型号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁感应强度:
B
C 2NS
m
磁场强度:
H
C
20 NS
m
测量C的电路如图 5.2.3所示。
返回
上一页
下一页
测量磁通冲击常数:
图5.2.3 测量磁通冲击常数的电路
测量前,开关K1、K3闭合,K2 投向任一侧(如1),K4投向1 侧,调节电阻RP,改变互感器 的初级电流,使其达到一个合
磁性材料的静态特性包括以下三方面:磁化曲线及其非 线性,磁滞现象与静态磁化曲线,磁导率 (1)磁化曲线及其非线性:
磁性材料在外磁场H的作用下,将 产生磁通密度B。
返回
上一页
下一页
图5.1.1 磁化曲线的非线性
(2)磁滞现象与静态磁化曲线:
磁通密度B与磁场强度H之间为非单值函数。即B的值 不仅与相应的H有关,还与材料以前的磁化状态有关。 主要是因为磁性材料具有滞后效应和粘滞性。
测量脉冲感应电动势的方法有冲击法和磁通表法 两种。
返回
上一页
下一页
用冲击法测量直流磁通:
G为冲击检流计,N为测量线圈匝数。
图5.2.2 用冲击法测量直流磁通
改变穿过测量线圈磁通方法: (1)如果被测的直流磁场是由通电 线圈产生的,切断线圈电流或者突 然改变线圈电流的方向,使线圈磁 通变化 或2 (2)如果被测磁通是永久磁铁或地 磁场产生的,可以把测量线圈从磁 场中迅速移到磁场为零的地方;或 者把线圈原地转动180°
返回
上一页
下一页
J
d 2 dt 2
P0
d dt
0i
把上式代入式 内积分得:
i e L di R R dt
并在时间 t1 ~ t2
J
t2 t1
d 2 dt 2
dt
P0
t2 t1
ddt dt
0 R
t2 (e L di )dt 0
t1
dt
R
t2 (N d L di )dt
指工作在工频以上交变磁场中的磁性材料的B-H曲线。
(2)动态磁滞回线
当磁性材料处于交变磁场中,除磁滞损耗外,还产生 涡流损耗,其动态磁滞回线较静态磁滞回线要宽。
(3)动态磁导率
对于不同的磁化条件,可以有不同的磁导率定义。
对于交流幅值磁导率定义为:
返回
上一页
下一页
m
Bm Hm
~
复数磁导率 :
返回
上一页
下一页
在实际应用中,为了使B与UH间有线性关系,电流I由恒 流源供电。
适的值I。
调整好电流后,打开开关K3 ,准备测量,测量操作是迅速
把K2由1投向2侧,互感器中初 级电流由I变为-I。
返回
上一页
下一页
感应电势使冲击检流计偏转:
在互感线圈中:
d M di 2IM
dt
dt
又因
Cm
所以
C
2M
m
I
返回
上一页
下一页
注意:此方法回路电阻为:R Rg Rh' Rn ,回路电阻值
t1
dt
dt
返回
上一页
下一页
式中, e N(d / dt)
把初始条件代入积分式得:
J
d t2 dt t1
P0
t2 t1
0 R
t2
N
t1
0 R
t2
it
t1
P0 ( 2
1)
0 R
N ( 2
1)
0 N 1 N
P0 R
C
返回
上一页
磁滞回线所包容的面
积代表一个激磁循环
所产生的磁滞损耗。 各环与B正向轴的交 点称为剩磁,与H负 向轴的交点称为矫顽 力。
软磁材料的剩磁和矫
顽力较小,回线很窄 ,磁滞损耗小。
返回
上一页
图5.1.2 磁性材料的磁化特性曲线 (a)软磁材料的磁滞回线族和基本磁化曲线
(b)硬磁材料的磁滞回线及次环
下一页
软磁材料以不同的最大磁场强度H1max,H2max,…对它反复 磁化,可获得一簇大小不等的稳定磁滞回线,连接各个 回路第一象限顶点所得的曲线称为基本磁化曲线,与前 述的磁化曲线接近。对一般直流磁器件设计,大多以基 本磁化曲线为依据。
当轴向直流磁场H0=0时,两部分的磁通在任何时刻都合 成为零。
当H0≠0时,上述磁通含有偶次谐波分量。任一时刻,交 流励磁磁场和待测磁场在两部分的铁心中,一为同向, 一为反向,故两部分的磁通的偶次谐波是叠加的,在检 测线圈的两端有相应的感应电动势输出。
返回
上一页
下一页
磁通门磁强计原理电路方框图:
下一页
(3)磁导率:
定义: B ,或 B
H
H
对于图5.1.2(a)中基本磁化曲线在接近H=0处的磁导率为:
i
lim
H 0
B H
称为初始磁导率。
返回
上一页
图5.1.3 软磁材料的磁导率曲线
下一页
5.1.2 磁性材料的动态特性
磁性材料的动态特性包括以下几个方面:
(1)动态磁化曲线
在图(b)中三角波励磁磁场H作用下,铁心中磁感应强度是 对称的梯形波(如图c),对称的梯形波上升沿或下降沿在 测量线圈中感应电动势es是对称的方波(如图d),图中 T1=T2,进行谐波分析只有奇次谐波,没有偶次谐波。
如把探头放入待测的直流磁场H0中,铁心中除有交流磁场 外,还有直流磁场H0,合成励磁磁场为H’(如图b)。
表5.1.1 磁学量的度量单位
返回
上一页
下一页
5.2 空间磁场、磁通的测量
5.2.1 基于电磁感应原理的测量方法 5.2.2 用磁通门磁强计测量磁场 5.2.3 用霍尔效应测量磁场 5.2.4 用核磁共振法测量磁场
返回
上一页
下一页
5.2.1 基于电磁感应原理的测量方法
穿过测量线圈的磁通: m sin t
霍尔效应:是指运动着的电荷在磁场中受力的一种效应。
用霍尔效应测量磁场:
返回
上一页
下一页
图5.2.9 用霍尔效应测量磁场
半导体内载流子的速度v为: v I
Nqab
载流子在磁场内所受的电磁力为:
F Bqv
电场力为: Bqv Eq
呈现出电压:
B U H Ea Nqb
返回
上一页
下一页
图5.2.6 磁通门磁强计探头的工作原理图
返回
上一页
下一页
图5.2.5探头测量线圈中感应电动势既有奇次谐波, 也有偶次谐波,基波幅值远大于二次谐波幅值,从较 大的基波中检测出二次谐波困难,单铁心探头使用价 值不大。 实用的是图5.2.7双铁心结构的探头。
图5.2.7 磁通门磁强计的传感器 (a)双心式 (b)环心式
~
B1
H1
B1 H1
e j
1
j2
其中,
弹性磁导率: 1 B1 cos / H1
B1
B e jB1 1
H1 B1 粘性磁导率: 2 B1 sin / H1
H1 H1e jH1
返回
上一页
下一页
5.1.3 磁学量的度量单位
绝对电磁单位制,国际单位制 两种单位制中的单位名称、符号和换算关系:
在交流磁场与直流磁场相同的半周内,铁心提前进入饱和 区,滞后退出饱和区;在交流磁场与直流磁场相反的半周 内,铁心滞后进入饱和区,提前退出饱和区;铁心中磁感 应强度B’是不对称的梯形波(如图e)。在测量线圈中的 感应电动势也是不对称的方波(如图f),则T1<T2
返回
上一页
下一页
如果直流磁场为-H0,则T1>T2 。进行谐波分析既有奇次 谐波,也有偶次谐波。偶次谐波的大小和相位分别反映 了直流磁场的幅值和方向,测量出测量线圈中的偶次谐 波的大小和相位,即可测得直流磁场的大小和方向。
改变,冲击常数值也发生变化。测量时回路总电阻值不要
变化。
开关投向位置2 时:
R Rg Rh Rn
阻尼因数: P0 /(2 JW )
感应电势和电路参数有如下关系:
N d e iR L di
dt
dt
其中 i e L di R R dt
磁通表的运动方程为:
下一页
磁通常数: C P0 R / 0
被测的磁通 值为:
1 N
C
被测磁场的磁感应强度为:
B
S
1 NS
C
被测磁场的磁场强度为:
H B 0
返回
上一页
下一页
C 值由仪表给出,不需要测 量,其值与回路电阻有关,因此 ,磁通表对回路的电阻值有要求 ,要求测量线圈的内阻不大于8欧 姆,这就限制了测量线圈的匝数 和线径。
常数
am为冲击检流计第1次最大偏转角。
磁通变化量为:
2
1
Cq R N
m
返回
上一页
下一页
C 为磁通冲击常数为:
C RCq
磁感应强度B为: 磁场强度H为:
B S
H B 0 0S
返回
上一页
下一页
把测量线圈原地转动180度时,则测量线圈中磁通 改变2△¢
第5章 磁性电测仪表
5.1 若干基础知识 5.2 空间磁场、磁通的测量 5.3 磁性材料的测量