最新北师大版数学七年级下北师大版4.1游戏公平吗 15分钟练习题

合集下载

最新北师大版七年级下册数学第六章同步过关检测试卷及答案

最新北师大版七年级下册数学第六章同步过关检测试卷及答案

单元质量达标(六)(第六章)一、选择题1.(2021·福州仓山区期末)一个袋子中装有只有标号不同的五张卡片,标号分别为1,2,3,4,5,随机抽出1张,必然事件是(A)A.标号小于6 B.标号大于6 C.标号是奇数 D.标号是3 2.(2021·德阳中考)下列说法正确的是(B)A.为了解人造卫星的设备零件的质量情况,应选择抽样调查B.了解九年级(1)班同学的视力情况,应选择全面调查C.购买一张体育彩票中奖是不可能事件D.抛掷一枚质地均匀的硬币刚好正面朝上是必然事件3.(2021·泰州中考)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则(C)A.P=0 B.0<P<1 C.P=1 D.P>14.在一个不透明的袋子里装有若干个白球和6个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有(A)A.2个 B.4个C.14个 D.18个5.(2021·漳州期末)木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有(D)A.18张 B.16张 C.14张 D.12张6.(2021·泉州模拟)在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是(A)A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢7.(2021·朝阳中考)一个不透明的口袋中有4个红球,6个绿球,这些球除颜色外无其他差别,从口袋中随机摸出1个球,则摸到绿球的概率是(D)A.110 B.12C.25D.358.一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有5个,若从袋中任意取出一个球,取到黄色球的概率为15,则黑色球个数为(C)A.5 B .6 C.7 D.89.(2021·厦门思明区期末)从-6,-3,0,3,6五个数中任选一个数作为m的值,能使得x 2-2mx +9是关于x 的完全平方式的概率是(B )A .15B .25C .35D .4510.如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为(C )A .35B .25C .15D .110二、填空题11.(2021·朝阳中考)如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是__13 __. 12.(2021·南平质检)有两个不透明的袋子,第一个袋子里装有3个红球和4个黑球,第二个袋子里装有4个红球和3个黑球,这些球除颜色外其他都相同,分别从袋子中摸出一个球,从第__一__个袋子里摸出黑球的可能性大.13.小红通过一个设有红绿灯的十字路口时遇到红灯,这是__随机__事件(填“随机”或“确定”).14.(2021·宁德模拟)在一个不透明的袋子中有3个红球和m 个黑球,它们除颜色外其他均相同.从中任意摸出一个球,若摸出黑球的概率是47,则m 的值是__4__.15.(2021·三明期末)袋中装有9个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为0.6”,则这个袋中白球大约有__6__个.16.(2021·福州台江区模拟)如图所示的转盘中,红、黄、蓝三色扇形的圆心角度数分别为60°,90°,210°,自由转动转盘,当转盘停止后,指针落在黄色区域的概率是__14 __.三、解答题17.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12. 【解析】(1)指针落在阴影部分的概率是620 =310; (2)当转盘停止时,指针落在阴影部分的概率变为12, 如图所示:18.为弘扬中华传统文化,某学校决定开设民族器乐选修课,为了更适合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,给出以下未完成的统计图.(1)这次抽样调查中,共调查________名学生,请补全条形统计图.(2)扇形统计图(图2),“古筝”部分所对应的圆心角为______度,“二胡”部分所对应的圆心角为______度.(3)如果从选择“琵琶”选项的学生中,随机抽取15名学生参加“琵琶”乐器选修课,请求出被选中的学生的可能性大小.【解析】见全解全析19.如图,现有一个圆形转盘被平均分成6等份,分别标有2,3,4,5,6,7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字,求:(1)转到数字1是________;(从“随机事件”“必然事件”“不可能事件”选一个填入)(2)转动转盘一次,转出的数字大于3的概率是多少?(3)现有两张分别写有2和3的卡片,随机转动转盘一次,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度(长度单位均是厘米).这三条线段能构成三角形的概率是多少?【解析】(1)由题意可得,转到数字1是不可能事件.答案:不可能事件(2)转动转盘,转出的数字大于3的是4,5,6,7四种可能性,一共有六种可能性,故转动转盘,转出的数字大于3的概率是46 =23; (3)由题意可得,可以构成三角形的三条线段是:2,3,2或2,3,3或2,3,4三种可能性,出现的可能性一共6种,故这三条线段能构成三角形的概率是36 =12, 即这三条线段能构成三角形的概率是12. 20.如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”.如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由.【解析】(1)共有10种等可能出现的结果数,其中“是奇数”的有5种,“是偶数”的也有5种,因此“是奇数”“是偶数”的可能性都是50%,(2)共有10种等可能出现的结果数,其中“是3的倍数”的有3种,“不是3的倍数”的有7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,(3)共有10种等可能出现的结果数,其中“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,因此,猜数者选择“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.21.小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下方式决定谁去参加活动:将一个转盘九等分,分别标上1至9九个数字.(1)任意转动一次转盘,转到的数字是2的倍数的概率是多少?(2)若转到的数字是2的倍数(6除外),小亮参加活动;若转到的数字是3的倍数(6除外),小芳去参加活动.若转到的数字是6或其它数字,则重新转动转盘.你认为这个游戏公平吗?请说明理由.【解析】(1)∵共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=49;(2)游戏不公平,理由如下:共有9种等可能的结果,其中3的倍数有3,6,9共3种可能,2的倍数有2,4,6,8共4种可能,由于转到6时需要重新转转盘,故6舍去,∴小亮去参加活动的概率为39 =13, 小芳去参加活动的概率为29, ∵13 >29,∴游戏不公平. 22.某儿童用品商店在“六一”儿童节设置了一个购物摸球游戏:在一不透明的箱子里装了50个小球,这些球分别标有50元,8元,2元,0元的金额,其中标有50元的小球有4个,标有0元小球有5个,标有2元小球的个数比标有8元小球的个数的2倍少1,这些小球除数字外都相同,并规定:凡购买指定商品,可以摸球一次,如果摸到标有50元,8元,2元的小球,则可以得到等价值的奖品一个.已知小明购买了指定商品,根据以上信息回答下列问题:(1)小明获得奖品的概率是________,获得8元奖品的概率是________.(2)为吸引顾客,儿童用品店现将8元奖品的获奖概率提高到25,在保持小球总数不变的情况下,需要把几个标有2元的小球改为8元的小球.【解析】(1)设标有“8元”的小球有x 个,则标有“2元”的小球有(2x -1)个, 由题意得,x +2x -1+4+5=50,解得x =14,2x -1=27,即标有“8元”的小球有14个,则标有“2元”的小球有27个,所以“获奖”的概率为50-550 =910, 共有50个小球,标有“8元”的有14个,因此获得“8元”的概率为1450 =725. 答案:910 725(2)设需要y 个标有“2元”的小球改为“8元”,由题意得,y +1450 =25,解得y =6,因为原来有27个标有“2元”的小球,所以需要将6个标有“2元”的小球改为标为“8元”的小球.。

北师大版七年级数学下册第六章专题复习试题及答案全套.doc

北师大版七年级数学下册第六章专题复习试题及答案全套.doc

最新北师大版七年级数学下册第六章专题复习试题及答案全套专训1事件的认识名师点金:判断一个事件的类型的方法:判断一个事件是不可能事件、必然事件还是随机事件,其标准在于结果是否在试验前预先确定,与这个试验是否进行无关,一般来说,描述已被确定的真理或客观存在的事实的事件是必然事件,描述违背已被确定的真理或客观存在的事实的事件是不可能事件,否则是随机事件•随机事件乂分为等可能事件和非等可能事件.湖飨龟度上确定事件题型丄不可能事件1.下列事件中,属于不可能事件的是()A.某投篮高手投篮一次就进球8.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在「个标准大气压下,90 °C的水会沸腾2.下列事件中,不可能事件有____________ (填序号).①度量三角形的内角和,结果是360°;②随意翻一本书的某页,这页的页码是奇数;③一个袋子里装有红、白、黄三种颜色的小球,从中摸出黑球;④如果|a| = |b|,那么a = b;⑤测量某天的最低气温,结果为一180 °C.题型2必然事件3.(2015-怀化)下列事件中是必然事件的是()4•地球绕着太阳转8.抛一枚硬币,正面朝上C.明天会下雨D.打开电视机,正在播放新闻4.下列成语所描述的事件是必然事件的是()&・瓮中捉鳖 B.拔苗助长C.守株待兔D.水中捞月5.指岀下列事件屮,哪些是必然事件,哪些是不可能事件.这些事件是确定事件吗?①两条平行线被第三条直线所截,同位角相等;②367人中至少有2人的生口相同;③没有水分,种子也会发芽;④某运动员百米赛跑的成绩是5秒;⑤同种电荷相互排斥;⑥通常情况下,高铁比普通列车快;⑦用长度分别为3 cm, 5 cm, 8 cm的三条线段能围成三角形.洌朕龟度迓随机事件6.下列事件是随机事件的是()4太阳从东边升起B.长为3 cm, 5 cm, 9 cm的三条线段能围成一个三角形C.明天会下雨D.两直线相交,对顶角相等7.“任意打开一木200页的数学书,正好是第50页”,这是_________________ 事件(填“随机”或“必然”).8.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球侮个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;②掷一枚均匀的骰子,朝上一面的点数分别为1, 2, 3, 4, 5, 6;③从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;④掷一枚图钉,钉尖着地与钉尖朝上.专训2不可预测事件的概率名师点金:不可预测事件的概率一般都通过事件发生的频率去估计.用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察当试验次数很人吋各数值主要集中在哪个数附近,这个常数就是所求概率的估计值.諮怫倉度1频率的稳定性1.从某批玉米种子里抽取6次,在同一条件下进行发芽试验,有关数据如下表:种子发芽数发芽频率根据以上数据可以估计:该批玉米种子发芽的概率为_________________ ・(结果精确到0.1)2. 一名运动员在练习投篮时,命中的结果如下表:⑴填表;(结果精确到0.001)⑵根据表格求这名运动员投篮命屮的频率稳定在哪个常数附近.(结果精确到0.1)洌無磁近利用不可预测事件的概率解决实际问题(数形结合思想)3.一个木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小组做了棋子下掷试验,试验数据如下表:⑴请将数据表补充完整.⑵在下图中画出“兵”字面朝上的频率分布折线图.⑶如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?(4)小明和小丽想利用这一试验进行比赛,为了使比赛结果对双方公平,请你为他们制定比赛的规则.频率 70 65 60 5550 45 40 3520 40 60 80 100 120 140 160(第3专训3可预测事件的概率名师点金:可预测事件的概率一般都可以利用公式P (A )=^计算,在具体运用时要先计算出所有 可能的结果数,再计算出所求事件发生可能出现的结果数.期处角度1简单事件的概率1. 一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色外其他完全相同,则从袋子中随机摸出的一个球是黄球的概率为(2. 小明制作了十张卡片,上面分别标有1-10这十个数,从这十张卡片中随机抽取一张,上面所标数恰好能被4整除的概率是()12 138-5 C 5 ° 五諮怫角厦2利用图形的面积求概率3. (中考•凉山州)如图,有三个同心圆,由里向外的半径依次是2 cm, 4 cm, 6 cm,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是 ______________________ .(第3题)0.75 0. 0 0 0 0 0 0 00.30 1 1 A 才8-4. 如图,A, B 是边长为1的小正方形组成的网格的两个格点,在格点上任意放置点C,恰好能使A ABC 的面积为1的概率是 _____________ •5. 如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12 个有理数,求转出的数是:(1)正数的概率;(2)负数的概率;⑶绝对值小于6的数的概率;(4) 相反数大于或等于8的数的概率.IUy(第5题)6. 如图是一个被等分成6份的转盘,你能否在转盘上涂上颜色,使得自由转动的转盘满 足以下条件:⑴转盘停止后,指针落在红色和黄色区域的概率相等;⑵转盘停止后,指针落在蓝色区域的概率大于落在红色区域的概率•请你设计方案满足上述两个条件.洌旌食度丄探究生活中实际问题的概率例举法)7. 小丽准备通过爱心热线捐款,她只记得号码的前5位,后三位由5, 2, 0这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是(1 1C 6D -8训处负度3 一与转 i 有关的概率(第6题)8. 合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B, C, D随机坐到其他三个座位上,则学生B 坐在2号座位上的概率是9. 如图是小明从自己家到姨妈家再到外公家的乘车方式图.问小明从自己家到姨妈家再到外公家始终乘坐同一种交通工具的概率是多少?名师点金:本章的主要内容是感受生活中的随机现象,掌握事件的分类及其发生的可能性,并进一 步体会不确定事件发生的可能性大小;通过试验感受不确定事件发生的频率的稳定性,理解 概率的意义;能求一些简单不确定事件发生的概率.本章内容是以后进一步学习统计与概率 的基础.本章考点可概括为:一个判断,两个计算,两个应用.文盘点丄一个判断一一事件类型的判断1. 下列事件屮,哪些是必然发生的?哪些是可能发生的?哪些是不可能发生的? (1) 早上的太阳从东方升起;(2) 掷一枚六个面分别刻有1〜6的数字的均匀正方体骰子,向上一面的点数是4; (3) 熟透的苹果自然飞上天; (4) 打开电视机,正在播放少儿节目.专训4 全章热门考点整合应用(第9题)濱磁两个计算计算1用频率估计概率2・口袋里有14个球,除颜色外都相同,其中1个红球,4个黄球,9个绿球.从口袋里随意摸出1球,将摸到红球,黄球,不是红球,不是黄球的可能性按从小到大的顺序排列.计算2简单事件概率的计算3.如图,转盘被等分成六个扇形,并在上面依次写上数字1, 2, 3, 4, 5, 6. ⑴若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?⑵求指针指向的数字能被3整除的概率.::考点3两个应用应用1判断游戏是否公平4.小樱和小贝一起做游戏.在一个不透明的袋子屮放有4个红球和3个蓝球(这些球除颜色外均相同),从袋子中随机摸出1个球,摸到红球小樱获胜,摸到蓝球小贝获胜.这个游戏对双方公平吗?为什么?5.在如图的图案中,黑白两色的直角三角形全等.游戏规则是在一定距离处向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?(第5题)应用2概率模型的设计6.如图是两个可以自由转动的转盘,转盘被等分成若干个扇形•请你利用这两个转盘设(第6题)计如下游戏:1 1⑴使概率等于刁(2)使概率等于二;⑶利用一个转盘设计最大概率的游戏.答案专训11.D 2•①③⑤ 3.A445.解:必然事件:①②⑤⑥;不可能事件:③④⑦,这些事件都是确定事件.6. C 7•随机8.解:等可能事件:①②③;非等可能事件:④.专训21. 0.8点拨:观察题屮表格可以发现,随着试验屮抽取种子粒数的不断增加,该批玉 米种子的发芽频率逐渐稳定在0.8附近.2. 解:(1)表中依次填:0.900, 0.750, 0.867, 0.787, 0.805, 0.797, 0.803.(2) 根据表格可以看出,随着练习次数的增加,这名运动员投篮命中的频率稳定在0.8附 近. 3・解:⑴所填数字为:18; 0.55(2)画出折线图如图:⑶根据表中数据,频率为 0.70, 0.45, 0.63, 0.59, 0.52, 0.55, 0.56, 0.55,稳定在 0.55 左右,故估计概率的大小为0.55.⑷根据⑶可知,“兵”字岀现的概率为0.55,小明和小丽想利用这一游戏进行比赛,为 了使比赛结果对双方公平,可制定比赛的规则为:出现“兵”小明得4.5分,否则小丽得5.5 分,投掷10次,得分高者获胜. 点拨:(4)题答案不唯一.专训31・B2. C 点拨:在十张卡片上面所标数中,恰好能被4整除的有标有4, 8的卡片,共21张,共有10张卡片,则随机抽一张,上面所标数恰能被4整除的概率为2^10=-,故选C.13.3点拨:题图中整个圆盘的面积为7i-62 = 367i (cm 2),阴影圆环的而积为71-42-71-22 =12n (cm 2)・所以飞镖落在阴影圆环内的概率P=^=i(第3题)50505050507766554433••1••••••••OOOOOOOOOO(第4题)24.g点拨:根据三角形的面积公式可知,欲使AABC的面积为1 ,且顶点C也在网格格点上,那么此三角形的底边、高的值应该分别为2, 1或1, 2,结合题目所给图形,可以找到全部符合条件的点.如图,图形中有36个格点,其中有8个格点可以使AABC的面积为1,o 2所以P(AABC的面积为嘉=彳此题容易漏解或者选取了不在网格格点上的点作为点C造成错解.6 ]5.解:(1)P(正数)=2*(2)P(负数)=寻・⑶P(绝对值小于6)=器2 1(4)P(相反数大于或等于8)=—=g.点拨:依据各类数所占的份数确定概率.6.解:要满足P(指针落在红色区域)=P(指针落在黄色区域),P(指针落在蓝色区域)>P(指针落在红色区域),则只要使转盘中红色区域和黄色区域的份数相同,同时蓝色区域的份数大于红色区域的份数即可,所以应为1份红色区域,1份黄色区域,4份蓝色区域.7.C点拨:此题用到了列举法.因为5, 2, 0这三个数字排列共有520, 502, 025, 052, 205, 250六种情况,符合的只有一种,所以第一次就拨对电话的概率是吉18•亍点拨:因为学生B, C, D坐到1, 2, 3号座位上共有6种情况:B, C, D; B, D, C; C, B, D; C, D, B;D, B, C; D, C, B.其中有2 种情况(C, B, D; D, B, C)B 坐在2 号2 1座位上,所以B坐在2号座位上的概率是石=亍・9.解:小明从自己家到姨妈家再到外公家乘坐交通工具的组合有:(火车、汽车)、(火车、火车)、(火车、飞机)、(汽车、汽车)、(汽车、飞机)、(汽车、火车)、(轮船、汽车)、(轮船、火车)、(轮船、飞机)、(飞机、汽车)、(飞机、火车)、(飞机、飞机),共12种方式,始终乘坐同一种交通工具的情况有3种,所以他始终乘坐同一种交通工具的概率为迈=才・专训41.解:(1)早上的太阳从东方升起这一事件是必然发生的.(2)如果掷一枚六个面分别刻有1〜6的数字的均匀正方体骰子,可能会出现向上一而的点数是4,故该事件是可能发生的.(3)熟透的苹果应自然落下地,而不可能飞上天,故熟透的苹果自然飞上天这一事件是不可能发生的.(4)打开电视机,可能正在播放少儿节目,也可能在播放其他节目,故该事件是可能发生的.2.解:因为袋子中总球数固定,红球个数是1,不是红球的个数是13,黄球的个数是4, 不是黄球的个数是10,所以摸到的球是红球的可能性<摸到的球是黄球的可能性<摸到的球不是黄球的可能性v摸到的球不是红球的可能性.方法总结:在一个I古I定数量物品的整体中,判断事件发生的可能性大小时,某种物品的数量越多,则摸到或选中该种物品的可能性就越大,即可能性大小主要看这个事件中出现这个结果的机会的大小.3 13.解:(1)P(指针指向奇数) = 5 = 2-2 1(2)P(指针指向的数字能被3整除) = g = 3-4.解:不公平•理由如下:4 3因为袋子中放有4个红球和3个蓝球,即7个球,所以P(小樱获胜)=刁P(小贝获胜)=》4 3又因为待,所以游戏对双方不公平.点拨:判断游戏是否公平,关键是看双方在游戏屮所关注的事件发生的概率是否相同.15.解:游戏公平•理由:在一定距离处向盘中投镖一次扎在黑、白区域的概率都是刁故游戏公平.点拨:若双方获胜的概率相同,则游戏规则对双方公平.6.解:(1)转动题图中的甲转盘,停止后,指针落在红色部分的概率为扌.1(2)转动题图中的甲转盘,停止后,指针落在蓝色部分(或黄色部分)的概率为才(3)转动题图中的乙转盘,停止后,指针落在白色区域的概率为|・点拨:根据所设计的内容正确找到所有可能出现的结果是解决此类问题的关键.。

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值
21、(本题8分)若 =2005, =2006, =2007,求 的值。
22、(本题8分).说明代数式 的值,与 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
C.50°、130°
D.60°、120°
11、下列语句正确的是( )
A.一个角小于它的补角
B.相等的角是对顶角
C.同位角互补,两直线平行
D.同旁内角互补,两直线平行
12、图中与∠1是内错角的角的个数是( )
A.2个
B.3个
C.4个
D.5个
13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )
(a-b)2+______=(a+b)2
18.若x2-3x+a是完全平方式,则a=_______.
19.多项式5x2-7x-3是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5与0.4x3y2n+1是同类项,则m+n=______.
A.89°
B.101°
C.79°
D.110°
14、如图,∠1和∠2是对顶角的图形的个数有( )
A.1个
B.2个
C.3个
D.0个
15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )
33.(ab+1)2-(ab-1)2

北师大版七年级下册数学《资源与评价》答案

北师大版七年级下册数学《资源与评价》答案

义务教育课程标准实验教科书数学 七年级 下册 北京师范大学出版社练习册答案第一章整式的乘除1.1 整式1.(1)C 、D 、F ;(2)A 、B 、G 、H ;(3)A 、B ;(4)G ;(5)E 、I ;2.125r π;3.3343R a π-; 4.四,四,-13ab 2c,-13,25 ;5.1,2;6.13a 3b 2c ;7.3x 3-2x 2-x ;8.11209,10200a a ;9.D ;10.A ; 11.•B ;12.D ;13.C ;14.12222VV V V +;15.a=27;16.n=32;四.-1. 1.2 整式的加减1.-xy+2x 2y 2; 2.2x 2+2x 2y; 3.3; 4.a 2-a+6; 5.99c-99a; 6.6x 2y+3x 2y 2-14y 3; 7.39π-+; 8.3217210n n n n aa a a +++--+-; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B; 16.D; 17.C ;18.解:原式=126ax +,当a=-2,x=3时, 原式=1. 19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)-32a b -]=13922a b -,当a=10,b=8时,上车乘客是29人.21. 解:由3xyx y=+,得xy=3(x+y),原式=87-.22. 解:(1)1,5,9,即后一个比前一个多4正方形.(2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,所以(2)中的用绳最短,(3)中的用绳最长.1.3 同底数幂的乘法1.10m n+,96;2.2x 5,(x+y)7;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ; 9.D ;10.D ; 11.B ;12.(1)-(x-y)10;(2)-(a-b-c)6;(3)2x 5;(4)-x m13.解:9.6×106×1.3×108≈1.2×1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=. (2)①x+3=2x+1,x=2 ②x+6=2x,x=6. 15.-8x 7y 8;16.15x=-9,x=-35-. 四.105.1.4 幂的乘方与积的乘方1.24219a b c ,23n a +;2.2923(),4p q a b + ;3.4 ;4.628a ;5.331n n x y +-; 6.1,-1;7.6,108; 8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m nb a 4412-;(3)0.18.(1)241 (2).10042575325431002521.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+, 另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5,∴原式的末位数字为15-7=8. 四.400.1.5 同底数幂的除法1.-x 3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7.13;8.2;9.3,2,2; 10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A;17.(1)9;(2)9;(3)1;(4)61()n x y --+ ;18.x=0,y=5;19.0;20.(1)201; (2)41.21.22122()22x x x x m --+=+-=-; 四.0、2、-2.1.6 整式的乘法 1.18x 4y 3z 2;2.30(a+b)10;3.-2x 3y+3x 2y 2-4xy 3;4.a 3+3a;5.-36;•6.•a 4-16;7.-3x 3-x+17;8.2,39.n na b -;10.C;11.C;12.C;13.D;14.D;15.D;16.B ;17.A ; 18.(1)x=218;(2)0; 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩;20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=0,21.由题意得35a+33b+3c-3=5,∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关. 23.∵21222532332n n n n n +++⨯⨯-⋅⋅,=212125321232n n n n ++⨯⨯-⋅⋅,=211332n n +⋅⋅.∴能被13整除. 四.125121710252⨯=⨯=N ,有14位正整数.1.7 平方差公式(1)1.36-x 2,x 2-14; 2.-2a 2+5b;3.x+1;4.b+c,b+c;5.a-c,b+d,a-c,b+d ;6.3239981,;7.D;8.C;9.D;10.16a -1;11.5050 ;12.(1)52020423+--x x x ,-39 ; (2)x=4;13.原式=200101;14.原式=1615112(1)222-+=.15.这两个整数为65和63.四.略.1.7 平方差公式(2)1.b 2-9a 2;2.-a-1;3.n-m;4.a+b ,1;5.130+2 ,130-2 ,16896;6. 3x-y 2;7.-24 ;8.-15;9.B;10.D;11.C;12.A;13.C;14.B.15.解:原式=4216194n m -. 16.解:原式=16y 4-81x 4;17.解:原式=10x 2-10y 2. 当x=-2,y=3时,原式=-50. 18.解:6x=-9,∴x=23-. 19.解:这块菜地的面积为:(2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2),20.解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b),=16a 4-81b 4(米3).21.解:原式=-6xy+18y 2,当x=-3,y=-2时, 原式=36. 一变:解:由题得:M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)=(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2)=16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy. 四.2n+1.1.8 完全平方公式(1) 1.19x 2+2xy+9y 2,12y-1 ;2.3a-4b,24ab,25,5 ;3.a 2+b 2+c 2+2ab-2ac-2bc;4.4ab,-2,1x;5.±6;6.x 2-y 2+2yz-z 2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A;14.∵x+1x =5 ∴(x+1x )2=25,即x 2+2+21x=25 ∴x 2+21x =23 ∴(x 2+21x )2=232 即4x +2+41x =529,即441x x+=527.15.[(a+1) (a+4)] [(a+2) (a+3)]=(a 2+5a+4) (a 2+5a+6)= (a 2+5a)2+10(a 2+5a)+24=43210355024a a a a ++++. 16.原式=32a 2b 3-ab 4+2b. 当a=2,b=-1时,原式=-10. 17.∵a 2+b 2+c 2-ab-bc-ca=0∴2(a 2+b 2+c 2-ab-bc-ca)=0∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(a 2-2ac+c 2)=0即(a-b)2+(b-c)2+(a-c)2=0 ∴a-b=0,b-c=0,a-c=0 ∴a=b=c.18.左边=[(a+c)2-b 2](a 2-b 2+c 2)=(a 2+b 2+c 2)(a 2-b 2+c 2) =(a 2+c 2)2-b 4=44a c ++2a 2c 2-b 4=444a b c ++.四.ab+bc+ac=-21.1.8 完全平方公式(2) 1.5y;2.500;2;+2000+4;.3.2;4.3a;6ab;b 2;5.-6;6.4;7.2xy;2xy;8.2641,81x x ,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B; 15.解:原式 =2a 4-18a 2.16.解:原式 =8x 3-2x 4+32.当x=-21时,原式=8732.17.解:设m=,则=m-1,=m+1,则A=(m-1)(m+1)=m 2-1,B=m 2.显然m 2-1<m 2,所以A<B.18.解:-(x 2-2)2>(2x)2-(x 2)2+4x,-(x 4-4x 2+4)>4x 2-x 4+4x,-x 4+4x 2-4>4x 2-x 4+4x, -4>4x,∴x<-1. 19.解:由①得:x 2+6x+9+y 2-4y+4=49-14y+y 2+x 2-16-12, 6x-4y+14y=49-28-9-4, 6x+10y=8,即3x+5y=4,③由③-②×③得:2y=7,∴y=3.5, 把y=3.5代入②得:x=-3.5-1=-4.5,∴ 4.53.5x y =-⎧⎨=⎩20.解:由b+c=8得c=8-b,代入bc=a 2-12a+52得,b(8-b)=a 2-12a+52,8b-b2=a 2-12a+52,(a-b)2+(b-4)2=0,所以a-6=0且b-4=0,即a=6,b=4, 把b=4代入c=8-b 得c=8-4=4.∴c=b=4,因此△ABC 是等腰三角形.四.(1)20012+(2001×2002)2+20022=(2001×2002+1)2.(2) n 2+[n(n+1)]2+(n+1)2=[n(n+1)]2.1.9 整式的除法 1.33m a b -; 2.4b; 3.273x -2x+1; 4.3213222x y x y --; 5.-10×1010; 6.-2yz,x(答案不惟一); 7.3310258z y x -; 8.3; 9.x 2+2; 10.C; 11.B; 12.D; 13.A; 14.C; 15.D; 16.(1)5xy 2-2x 2y-4x-4y ; (2)1 (3)2x 2y 2-4x 2-6; 17.由5171m m n +-=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩;∴2139nm--==. 18.a=-1,b=5,c=-15, ∴原式=25187111(15)[15()]15555⨯⨯÷-⨯⨯-=÷=.19. 13b a =⎧⎨=⎩;20.设除数为P,余数为r,则依题意有:80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P 、a 、b 、c 、•d 为正整数,r ≠0 ②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7 故P=7或P=1,当P=7时,有80÷7=11…3 得r=3而当P=1时,80÷1=80余0,与余数不为0矛盾,故P ≠1∴除数为7,余数为3. 四.略.单元综合测试1.332311,0.1;(),26x y z a a a b x+--+, 2.3,2; 3.1.23×510-,-1.49×710;4.6;4;332222;0.533x y x y y x --++-; 5.-2 6.单项式或五次幂等,字母a 等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;19.由a+b=0,cd=1,│m │=2 得x=a+b+cd-12│m │=0 原式=27716244x x --, 当x=0时,原式=14-. 20.令111111,1232002232003a b +++=++++=, ∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.21.∵222222222222121211221221(5)(5)2555x x y y x y x y x y x y ++=+++=2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-= ∴22125y y +=35. 22.1234567162536496481100x x x x x x x ++++++ =(3)3(2)3(1)1⨯-⨯+⨯=123×3-12×3+1=334.第二章 平行线与相交线2.1余角与补角1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE 、∠BOC ,∠AOE 、∠BOC ,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立;四.405°.2.2探索直线平行的条件(1)1.D;2.D;3.A;4.A;5.D;6.64°;7.AD 、BC ,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE ∥DF (答案不唯一);10.AB ∥CD ∥EF;11.略;12.FB ∥AC ,证明略. 四.a ∥b,m ∥n ∥l.2.2探索直线平行的条件(2)1.CE 、BD ,同位角;BC 、AC ,同旁内角;CE 、AC ,内错角;2.BC ∥DE (答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED ,同位角相等,两直线平行;(2)∠DFC ,内错角相等,两直线平行;(3)∠AFD ,同旁内角互补,两直线平行;(4)∠AED ,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC 到H ); 四.平行,提示:过E 作AB 的平行线.2.3平行线的特征1.110°;2.60°;3.55°;4.∠CGF ,同位角相等,两直线平行,∠F ,内错角相等,两直线平行,∠F ,两直线平行,同旁内角互补;5.平行;6.①②⇒④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略;四.平行,提示:过C 作DE 的平行线,110°.2.4用尺规作线段和角(1)1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略; 四.(1)略(2)略(3)①A ②61. 4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略; 四.略.单元综合测试1.143°;2.对顶角相等;3.∠ACD 、∠B ;∠BDC 、∠ACB ;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD 、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章 生活中的数据 3.1 认识百万分之一 1,1.73×104- ;2,0. ; 3,4×107-; 4,9×103- ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1×108-; (2)7×105- ;(3)1.239×103- ;11,6101=106- ;106个. 3.2 近似数和有效数字1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B;11.有可能,因为近似数1.8×102cm 是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm ,而另一个是1.84cm ,所以有可能相差9cm. 12.13×3.14×0.252×6=0.3925mm 3≈4.0×10-10m 313.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3×1033.3 世界新生儿图1,(1)24% ;(2)200m 以下 ;(3)8.2%; 2,(1)59×2.0=118(万盒); (2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒; (3)50 1.059 2.080 1.53⨯+⨯+⨯=96(万盒);答案:这三年中该地区每年平均销售盒饭96万盒.3.(1)王先生 2001年一月到六月每月的收入和支出统计图(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)6.(1)大约扩大了:6000-500=5500(km)26000÷500=12.(2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢.(3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等).7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间(2)可获得各年税收情况等(3)只要合理即可.单元综合测试1. 10-9;2. 106;3.333×103;3. 0.;4. 170, 6 ;5.百 , 3.3×104;6. 1.4×108, 1.40×108;7.0.36 0.4;8.1.346×105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B19. 0.24与0.240的数值相等,在近似数问题上有区别,近似数位不同:0.24近似到百分位(0.01);0.240近似到千分位(0.001).有效数字不同:0.24有两个有效数字2、4;0.240有三个有效数字2、4、0.20. (1)精确到0.0001,有四位有效数字3、0、1、0;(2)精确到千位,有三位有效数字4、2、3;(3)精确到个位,有三位有效数字3、1、4. 21. 82kg=82000 g,∴100000082000=8.2×10-2(g).22. 1000104005⨯=6104=4×10-6(kg).答:1 粒芝麻约重 4×10-6kg. 23. 西部地区的面积为32×960=640万 km 2=6.40×106 km 2,精确到万位. 24. 可用条形统计图:28届答:该飞机需用 2.53×102 h 才能飞过光 1 s 所经过的距离. 26. (1)树高表示植树亩数,从图中可看出植树面积逐年增加.(2)2000年植树约 50 万亩; 2001年植树约75 万亩; 2002年植树约110 万亩; 2003年植树约155 万亩; 2004年植树约175 万亩; 2005年将植树约225 万亩. (3)2000年需人数约 5 万; 2001年需人数约 7.5 万; 2002年需人数约 11 万; 2003年需人数约 15.5 万; 2004年需人数约 17.5 万; 2005年需人数约 22.5 万.第四章 概率 4.1 游戏公平吗 1.1或100% , 0; 2.61;3.相同;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A;11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1;(4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13;(3)P=23;(4)P=23.18.∵P(甲获胜)=310,P(乙获胜)=25.∴这项游戏对甲、乙二人不公平,若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等. 19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个 21.P 1P 2; 四.(1)321; (2) 161 ; (3)摊主至少赚187.5元; 4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110; 四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有: (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), …… (5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种, 其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种, 故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5.2 ① ② ③1;6.= ; 7;32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C; 17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21.两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨. 明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91.22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ; 15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系. 四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°; 9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°. 16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE,△EOD,△AOD,△ABD,△ACD,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF ≌△DEC ,△ABC ≌△DEF ,△BCF•≌△EFC . 证明:∵AB ∥DE ,∴∠A=∠D .在△ABF 和△DEC 中,,,,AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DEC (SAS ).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE, (2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC , ∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD (或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE, ∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离 1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求; 5.共6个,如图所示:....3.55A 2B 2C 2C 1B 1A 136︒53.53 6.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长. 9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行. 10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′. 11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF , 又因为AE=CF , 所以AC-AE=AC-CF , 所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可 四.(1)FE=FD; (2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE 及FC 为公共边. 可证△CFG ≌△CFD , 所以FG=FD ,所以FE=FD .5.7 探索直角三角形全等的条件(HL )1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS 或ASA ; (2)AAS ; (3)SAS 或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE .理由是∠ACD=∠AED=90°,∠CAD=•∠EAD , 所以∠ADC=∠ADE (直角三角形两锐角互余).8.C 9.△ADE ≌△CBF ,△DEG ≌△BFG ,△ADG ≌△CBG 10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE ≌△ACD ,△ADF ≌△AEF ,•△BDF ≌△CEF ,根据的方法分别为AAS ,HL ,HL 或SAS 或AAS 或ASA 或SSS .13.解:因为△ABD ≌△CBD ,所以∠ADB=∠CDB .又因为PM ⊥AD ,PN ⊥CD ,所以PM=•PN . 14.提示:先说明△ADC ≌△BDF ,所以∠DBE=∠DAC ,所以∠ADB=∠AEF=90°,• 所以BE ⊥AC .15.△ABF ≌△DEA ,理由略.16.先证Rt △ACE ≌Rt △BDF ,再证△ACF ≌△BDE; 17. 需证Rt △ADC ≌Rt △AEC四.(1)由于△ABC 与△DEF 是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC ≌△DEF ,所以∠A =∠D ,在△ANP 和△DNC 中,因为∠ANP =∠DNC ,所以∠APN =∠DCN ,又∠DCN =90°,所以∠APN =90°,故AB ⊥ED .(2)答案不唯一,如△ABC ≌△DBP ;△PEM ≌△FBM ;△ANP ≌△DNC 等等.以△ABC ≌△DBP 为例证明如下:在△ABC 与△DBP 中,因为∠A =∠D ,∠B =∠B ,PB =BC ,所以△ABC ≌△DBP .单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C . 21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE =BF =CD ,AF =BD =CE ,事实上,因为△ABC 与△DEF 都是等边三角形,所以∠A =∠B =∠C =60°,∠EDF =∠DEF =∠EFD =60°,DE =EF =FD ,又因为∠CED +∠AEF =120°,∠CDE +∠CED =120°,所以∠AEF =∠CDE ,同理,得∠CDE =∠BFD ,所以△AEF ≌△BFD ≌△CDE (AAS ),所以AE =BF =CD ,AF =BD =CE ,(2)线段AE ,BF ,CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF ,BD ,CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠; (2)118022180-2x y ∠=︒-=︒,∠; (3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系 6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm; 12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量; (2)(3)略 14.(1)(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形 1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36; (2)(3)当x 每增加1时,y 增加3;(4)y=36,表示三角形; 13.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个; 14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化 1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D; 9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元;55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。

七年级数学下册-《第四章-概率》综合检测题(一)(新版)北师大版

七年级数学下册-《第四章-概率》综合检测题(一)(新版)北师大版

七年级(下)4。

1游戏公平吗4。

2摸到红球的概率4.3停留在黑砖上的概率水平测试跟踪反馈 挑战自我一、相信你的选择!(每小题3分,共24分) 1. 下列说法错误的是【 】(A )抛一枚硬币,出现正面的概率是0.5 (B)掷一颗骰子,点数一定不大于6的概率是1(C )某事件的概率很小,则说明这个事件不可能发生(D) “明天的降水概率为80%”,表示明天下雨的可能性是80%2。

在2a □ab 2□2b 的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是【 】(A )1 (B )21 (C )31 (D )41 3。

已知数据13、2-、0.618、125、34-,从中任取一个数是负数的概率为【 】(A )20% (B)40% (C )60% (D )80%4. 在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是【 】 (A)21 (B ) 31 (C )61(D)815。

“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数"的概率是【 】 (A )21(B )52 (C )53 (D )187 6。

在不同时间段里有3场比赛,其中2场是乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是【 】 (A )41 (B )31 (C )21 (D)32 7. “赵爽弦图"是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是3和4,斜边长为5,则针扎到小正方形(阴影)区域的概率是【 】(A )31 (B )41 (C )51(D )251 8。

如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是【 】(A )254(B )255(C )625(D )925二、试试你的身手!(每小题3分,共24分)9。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

一、选择题(共10题)1.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件是必然事件的是( )A.掷一次骰子,朝上的一面的点数大于0B.掷一次骰子,朝上的一面的点数为7C.掷一次骰子,朝上的一面的点数为4D.掷两次骰子,朝上的一面的点数都是32.下列事件中必然事件的是A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100∘C时水会沸腾C.三角形的内角和是360∘D.打开电视机,正在播动画片3.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.45B.35C.25D.154.下列调查工作中,需采用普查方式的是( )A.军工厂对该厂生产的一批炮弹爆炸范围的调查B.环保部门对淮河某段水域的水污染情况的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行尺寸大小的调查5.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是A.标号小于6B.标号大于6C.标号是奇数D.标号是36.下列成语描述的事件为随机事件的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7.有一个质地均匀的骰子,6个面上分别标有1∼6这6个整数,投掷这个骰子一次,朝上一面的数字出现“3”的概率是( )A.16B.14C.13D.128.一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是( )A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件9.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )A.12B.13C.14D.1610.掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数为奇数的概率是( )A.16B.13C.12D.23二、填空题(共7题)11.一个不透明的袋子中装有8个大小、形状、都一样的小球,其中有3个红球与5个黄球,从这8个球中任取一个球是红球的概率是.12.小莉家附近有一公共汽车站,大约每隔30分钟准有一趟车经过.那么“小莉在到达该车站后10分钟内可坐上车”这一事件的概率是.13.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1到6的点数,掷得面朝上的点数为偶数的概率为.16.不透明袋子中装有6个球,其中有1个红球,2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.17.一个不透明的袋子中装有4个红球,3个白球,2个黄球,这些小球除颜色不同外,其它都相同,从袋子中随机摸出1个小球,则摸出红球的概率是.三、解答题(共8题)18.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题.(1) ④事件发生的可能性大小是.(2) 多次实验,指针指向绿色的频率的估计值是.(3) 将这些事件的序号按发生的可能性从小到大的排序排列为:<<<.19.一袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出一球,请问:(1) “摸出的球是白球”是什么事件?它的概率是多少?(2) “摸出的球是黄球”是什么事件?它的概率是多少?(3) “摸出的球是红球或黄球”是什么事件?它的概率是多少?20.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布前10000张奖奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1) 求“紫气东来”奖券出现的频率.(2) 请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.21.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1) 他遇到红灯的概率大还是遇到绿灯的概率大?(2) 他遇到绿灯的概率是多少?22.在一个不透明的布袋中装有2个红球和若干个白球,它们除颜色外,其余都相同,若从中随意摸出一个球,摸到白球的机会是4,求布袋中白球的个数.523.小明和小杰想观看篮球比赛,但只有一张门票,小杰提议用如下方法决定到底谁去看比赛:小杰拿来三张扑克牌:黑桃2,,黑桃3,黑桃4,背面朝上洗匀后,任意抽出两张,若两张牌数字之和为偶数,小杰去;若两张牌数字之和为奇数,小明去.你认为这个游戏公平吗?如果你是小明,请你设计一个公平的游戏.24.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘.(1) 转盘转到2的倍数的概率是多少?(2) 你认为这个游戏公平吗?请说明理由.25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1) 转动转盘中奖的概率是多少?(2) 元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?答案一、选择题(共10题)1. 【答案】A【知识点】事件的分类2. 【答案】B【解析】A、是随机事件,可能发生也可能不发生,故选项错误;B、必然事件,故选项正确;C、是不可能发生的事件,故选项错误;D、是随机事件,可能发生也可能不发生,故选项错误.【知识点】事件的分类3. 【答案】C【知识点】公式求概率4. 【答案】D【知识点】事件的分类5. 【答案】A【知识点】事件的分类6. 【答案】B【知识点】事件的分类7. 【答案】A【解析】∵在1∼6这6个整数中,“3”这个数字只有1个,∴朝上一面的数字出现“3”的概率是:1.6【知识点】公式求概率8. 【答案】C【解析】∵一个不透明的盒子中装有9个白球和1个黑球,∴从中任意摸出一球,可能摸到白球也可能摸到黑球,∴“摸到白球”和“摸到黑球”都是随机事件.故选:C.【知识点】事件的分类9. 【答案】C【解析】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E,F,G,H四个,所以小球从E出口落出的概率是:14;故选:C.【知识点】公式求概率10. 【答案】C【解析】由题意可得,点数为奇数的概率是:36=12.【知识点】公式求概率二、填空题(共7题)11. 【答案】38【解析】在口袋中放有3个红球与5个黄球,共8个,这两种球除颜色外完全相同,随机从口袋中任取一个球,从这8个球中任取一个球是红球的概率是38.【知识点】公式求概率12. 【答案】13【知识点】公式求概率13. 【答案】49【解析】盒子中共有4+3+2=9个球,摸到白球概率为49.【知识点】公式求概率14. 【答案】25【知识点】公式求概率15. 【答案】12【知识点】公式求概率16. 【答案】13【解析】摸出的球是绿球的概率P=26=13.【知识点】公式求概率17. 【答案】49【解析】∵不透明的袋子中装有4个红球,3个白球,2个黄球,共有9个球,∴摸出红球的概率是49.【知识点】公式求概率三、解答题(共8题)18. 【答案】(1) 23(2) 16(3) ②;③;①;④【解析】(1) 由题意得P(指向黄色)=26=13,∴P(不指向黄色)=1−13=23.(2) 由题意得P(指向绿色)=16,∴指向绿色的频率估计值是16.(3) P(①)=36=12,P(②)=16,P(③)=26=13,P(④)=46=23.∴② <③ <① <④.【知识点】公式求概率19. 【答案】(1) 不可能事件,P(摸出的球是白球)=0.(2) 随机事件,P(摸出的球是黄球)=25.(3) 必然事件,P(摸出的球是红球或黄球)=1.【知识点】随机事件、公式求概率、必然事件、不可能事件20. 【答案】(1) 120(2) 抽奖合算.【知识点】公式求概率21. 【答案】(1) ∵红灯40s、绿灯60s、黄灯3s,∴他遇到绿灯的概率大.(2) 遇到绿灯的概率6040+60+3=60103,故遇到绿灯的概率是60103.【知识点】公式求概率、概率的概念及意义22. 【答案】设布袋中有n个白球,根据题意,得n2+n =45,解得n=8.经检验,n=8是所列方程的解,并且符合实际问题的意义.所以布袋中有8个白球.【知识点】公式求概率23. 【答案】不公平(p奇=23,p偶=13);设计方法不唯一,合理均可.【知识点】公式求概率24. 【答案】(1) ∵共有9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=49.(2) 游戏不公平.理由如下:∵共有9种等可能的结果,其中3的倍数有3个,∴P(转到3的倍数)=39=13.∵49>13,∴游戏不公平.【知识点】公式求概率25. 【答案】(1) 指针指向1,2,3,5,6,8都获奖,∴获奖概率P=68=34.(2) 获得一等奖的概率为18,1000×18=125(人),∴获得一等奖的人数可能是125人.【知识点】用样本估算总体、公式求概率。

七年级数学《游戏公平吗?》教案

七年级数学《游戏公平吗?》教案

说课教案游戏公平吗在以学生发展为本的教育理念的指导下,为提高学生的学习兴趣及效率,提高教学质量,结合新课程标准的要求,对七年级下册第四章第一节作如下设计:一、说教材1、地位和作用游戏公平吗是北师大版七年级下册第四章第一节内容。

在七年级上册中,学生已经接触了不确定事件,初步体会了不确定事件的特点及事件发生的可能性的意义,在本单元中,学生将在“猜测----试验并收集试验数据-----分析试验结果”的活动中进一步了解不确定现象的特点,通过具体情境体会概率,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,通过这一课的学习,为八年级进一步学习概率打下基础,从而要求学生达到灵活运用数学知识解决实际问题的最终目的。

2、教学目标:由于本课是第一课时,主要使学生了解必然事件、不可能事件、不确定事件发生的可能性大小关系,并运用这些关系解决与之相关的实际问题。

所以三维目标的知识与技能目标主要体现在:(1)知识与技能目标由于在七年级上册中,学生已初步接触了随机观念,对不确定事件有了一定的了解,加之我班孩子理解能力弱,善于模仿,对前边的知识容易形成负迁移,为了尽量减少负迁移对本课学习的影响,我确定了以下知识与技能目标。

A、经历“猜测-----试验并收集试验数据----分析试验结果”的活动过程;B、了解必然事件、不可能事件和不确定事件的可能性的大小;C、体验游戏规则的公平性。

(2)能力目标:A、发展学生动手操作的能力、分析问题的能力;B、体会事件发生的不确定性,初步建立随机观念。

(3)情感目标进一步体会“数学就在我们的身边”,发展“用数学”的意识和能力,感受学习数学的兴趣,培养学生公平、公正的态度。

(4)过程与方法目标:作为一名数学教师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想,数学意识,所以在过程与目标上,体现在让学生学会将千变万化的实际问题转化为数学问题来解决的能力。

利用实验-----探究法,经历“参与游戏活动----编题互测互评------反思体验”的过程,了解必然事件、不可能事件和不确定事件发生的可能性大小,了解游戏规则的公平性,培养学生用数学的意识。

北师大版七年级数学下册第六章学情评估附答案

北师大版七年级数学下册第六章学情评估附答案

北师大版七年级数学下册第六章学情评估一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列事件中,是必然事件的为()A.阴天会下雨B.班里的五名同学的考试成绩一样C.三角形内角和为180°D.打开电视机,它正在播广告2.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的试验次数分别为20次、50次、150次、200次.其中哪位同学的试验相对科学()A.小明B.小亮C.小颖D.小静3.老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是()A.15 B.14 C.13 D.344.下列说法正确的是()A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上5.四大名著知识竞赛成绩统计结果如下表:成绩在91~100分的为优胜者,则优胜者的频率是()A.35% B.30% C.20% D.10% 6.一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为()A.0.4 B.0.5C.0.6 D.0.77.如图是一个可以自由转动的转盘,转盘分成A、B、C三个扇形区域,其中A、B区域扇形圆心角都是90°,则转动转盘一次指针落在B区域的概率为()(第7题)A.14 B.34C.12 D.568.在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,再从下面条件中随机抽取一个:①AC=A′C′,②BC=B′C′,③∠B=∠B′,④∠C=∠C′.抽到的条件恰好能保证△ABC≌△A′B′C′的概率是()A.14 B.13 C.12 D.34二、填空题(共5小题,每小题3分,计15分)9.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是____________.(填“必然事件”“不可能事件”或“随机事件”)10.如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.(第10题)(第12题)(第13题)11.某篮球运动员在同一条件下进行投篮训练,结果如下表:投篮总次数n 102050100200500 1 000投中次数m 8184286169424854根据上表,该运动员投中的概率大约是____________(结果精确到0.01).12.某超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个如图的圆形转盘,被分成16等份,指针分别指向红色、黄色、蓝色区域,依次可获一、二、三等奖,则购物满300元者获得二等奖的概率是________.13.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)列举一些生活中的随机事件、不可能事件和必然事件的例子.15.(5分)口袋里有14个球,除颜色外都相同,其中有1个红球、4个黄球、9个绿球,从口袋里随意摸出1个球,将摸到红球,摸到黄球,摸到的不是红球,摸到的不是黄球的可能性按从小到大的顺序排列.16.(5分)事件发生的可能性有大有小,请你把下列事件按发生可能性由小到大的顺序排列起来.①书包里有12本不同科目(包含数学)的教科书,随手摸出一本,恰好是数学书;②花2元买了一张彩票,就中了500万元大奖;③我抛了两次硬币,都是正面向上;④若a+b=0,则a和b互为相反数.17.(5分)对某羽毛球的质量进行随机抽查,结果如下表所示:(1)表中a的值为__________;(2)根据上表,从这批羽毛球中任取一个,为优等品的概率约为____________(精确到0.1);(3)小明认为,从这批羽毛球中抽取10个,优等品的数量至少为8个,他的说法正确吗?为什么?18.(5分)一只昆虫自由自在地在空中飞行,然后随意落在图中某个方格中(每个方格除颜色外完全一样),分别计算昆虫停在白色方格中的概率.(第18题)19.(5分)刘老师将1个红球和若干个黄球放入一个不透明的口袋中搅匀,这些球除颜色不同外其余都相同.他让若干学生进行摸球试验,每次摸出一个球,记下颜色后,放回搅匀,经过多次试验发现,从袋中摸出一个球是红球的频率稳定在0.25附近.试估算袋中黄球的个数.20.(5分)如图是一块三角形纸板,其中AD=DF,BE=ED,EF=FC,一只蚂蚁在这张纸上爬行,求蚂蚁踩到阴影部分的概率.(第20题)21.(6分)“国以民为本,民以食为天”,食品安全直接关系着人民群众的生活,影响我们每一个人的健康,更关系着民族的兴旺昌盛,因此,食品安全问题不容忽视!某食品安全检测部门分别派甲、乙、丙、丁四个检测小组依次随机选择A、B、C、D四个品牌中的一个进行质量检测.(品牌不能被重复选择)(1)已知甲组第一个选择,求甲组选择C品牌的概率;(2)已知甲组选择了B品牌,乙组第二个选择,求乙组选择A品牌的概率.22.(7分)某商人制成了一个如图所示的游戏转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向A,则收费2元,若指针指向B,则奖3元;若指针指向C,则奖1元.一天,某人转动转盘80次,你认为该商人盈利的可能性大还是亏损的可能性大?为什么?(第22题)23.(7分)在一个口袋中装有4个红球和8个白球,它们除颜色外完全相同.(1)求从口袋中随机摸出一个球是红球的概率;(2)现从口袋中取走若干个白球,并放入相同数量的红球,充分摇匀后,从口袋中随机摸出一个球是红球的概率是56,取走了多少个白球?24.(8分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:如图,将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数(不包括6),小亮去参加活动;若转到3的倍数(不包括6),小芳去参加活动;转到其他号码则重新转动转盘.(第24题)(1)转盘转到2的倍数(不包括6)的概率是多少?(2)你认为这个游戏公平吗?请说明理由.25.(8分)密码锁有三个转轮,每个转轮上有0~9十个数字.小黄同学是9月份中旬出生的(中旬为某月中的11日到20日),用生日“月份+日期”设置密码9××,小张同学要破解其密码.(1)第二个转轮设置的数字可能是____________.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生的,请你推算用小张生日设置的密码的所有可能个数.26.(10分)问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为1 4.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.(第26题)答案一、1.C 2.D 3.B 4.B 5.C 6.C7.A8.D二、9.不可能事件10.311.0.8512.1 813.47三、14.解:答案不唯一,合理即可.随机事件:打开电视,它正在播放广告.不可能事件:在一个装着白球和黑球的袋中摸球,摸出红球.必然事件:抛掷一石头,石头终将落地.15.解:摸到红球的可能性<摸到黄球的可能性<摸到不是黄球的可能性<摸到不是红球的可能性.16.解:①书包里有12本不同科目(包含数学)的教科书,随手摸出一本,恰好是数学书的概率是1 12;②花2元买了一张彩票,就中了500万元大奖,概率接近0;③我抛了两次硬币,都是正面向上,发生的概率是1 4;④若a+b=0,则a和b互为相反数,发生的概率是1,故事件按发生可能性由小到大的顺序排列为②①③④.17.解:(1)0.9(2)0.9(3)小明的说法不正确.理由如下:因为由题目中表格的数据可以推出优等品出现的概率,也就是可能性大小,从这批羽毛球中抽取10个,可能都是优等品,也可能都不是优等品,故小明的说法错误.18.解:图①中共有3个方格,白色方格有1个,则昆虫停在白色方格中的概率是1 3;图②中共有5个方格,白色方格有2个,则昆虫停在白色方格中的概率是2 5.19.解:由题意可知从袋中摸出一个球是红球的频率稳定在0.25,故黄球的个数大约为1÷0.25-1=3(个).答:口袋中黄球的个数大约为3个.20.解:连接AE ,BF ,CD ,因为AD =DF ,BE =ED ,EF =FC ,利用三角形中线的性质可得S △ADC =S △CDF ,S △AED =S △ABE ,S △BEF =S △EFD ,S △EBF =S △BFC ,S △ABD =S △BDF ,S △AEF =S △AFC ,所以△ABC 被分为7个面积相同的三角形,中间阴影部分的三角形的面积是△ABC 面积的17,所以蚂蚁踩到阴影部分的概率是17.21.解:(1)因为甲组第一个选择,所以甲组从A ,B ,C ,D 四个品牌中随机选择一个,所以甲组选择C 品牌的概率为14.(2)因为甲组选择了B 品牌,乙组第二个选择,所以乙组从A ,C ,D 三个品牌中随机选择一个,所以乙组选择A 品牌的概率为13. 22.解:商人盈利的可能性大.理由如下:由图可知,指针指向A 、B 、C 的概率分别为P (A )=48=12,P (B )=18,P (C )=38,当转盘转动80次时,理论上来说商人盈利80×12×2=80(元),亏损80×18×3+80×38×1=60(元). 因为80>60,所以商人盈利的可能性大.23.解:(1)因为口袋中装有4个红球和8个白球,共有12个球,所以从口袋中随机摸出一个球是红球的概率是412=13.(2)设取走了x 个白球,根据题意得4+x 12=56,解得x =6.答:取走了6个白球.24.解:(1)因为共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中2的倍数(不包括6)有3个,所以P[转到2的倍数(不包括6)]=1 3;(2)游戏不公平,小亮去参加活动的概率为1 3,小芳去参加活动的概率为2 9,因为29≠13,所以游戏不公平.25.解:(1)1或2(2)所有可能的密码是911,912,913,914,915,916,917,918,919,920,能被3整除的有912,915,918.密码数能被3整除的概率为3 10.(3)小张同学是6月份出生的,6月份有30天,有30个不同的数,所以设置的密码的所有可能个数为30个.26.解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(第26题)(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

2022-2023学年北师大版七年级数学下册期末提高综合测试题

2022-2023学年北师大版七年级数学下册期末提高综合测试题

2022-2023学年北师大版七年级数学下册期末提高综合测试题一.单选题(共10题;共30分)1、下面有4个汽车标志图案,其中••是不轴对称图形的是( )2、下列运算正确的是( )A 、532a a a =⋅B 、1836a a a =⋅C 、()523a a =D 、1055a a a =+3、如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A. B. C.D.4、如果一个三角形的两边长分别为5,12,则第三边的长可以是( )A.18B.13C.7D.55、若3,3x y a b ==,则23x y +的值为 ( ) A .ab B .2a b C .2ab D .23a b6、投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。

将上述事件按可能性的大小从大到小排列为( )A. ①②③④B. ①③②④ C. ④①③② D. ②①③④7、如图,已知B 、E 、C 、F 在同一直线上,BE=CF ,AB ∥DE ,则下列条件中,••能不判断△ABC≌△DEF 是的( )A 、AB=DEB 、∠A=∠DC 、AC ∥DFD 、AC=DF8、小强每天从家到学校上学行走的路程为900m ,某天他从家去上学时以每分30m 的速度行走了450m ,为了不迟到他加快了速度,以每分45m 的速度行走完剩下的路程,那么小强离学校的路程s (m )与他行走的时间t (min )之间的数量关系 用图象表示正确的是 ( )9、下列各题中正确的个数有( )个。

(1).两个角和其中一角的对边对应相等的两个三角形全等;( 2 ).两条边和其中一边的对角对应相等的两个三角形全等;( 3 ).三个角对应相等的两个三角形全等;( 4 ).成轴对称的两个图形全等;( 5 )三角形的最大角不小于60度.A 、1B 、2C 、3D 、410、如图,△ABC 中,D 、E 分别为AB 、AC 上两点,将△ABC 沿直线DE 折叠,使得点A 落在△ABC 右侧的点1A 处,则∠A 、∠1、∠2之间满足的关系式是( )A .∠A=∠1-∠2B .∠A=21∠1-∠2 C .∠A=∠1-2∠2 D .2∠A=∠1-∠2二.填空题(共6题;共18分)11、有5张纸签,分别标有数字-1, 0, -0.5, 1, 2,从中随机的抽取一张,则抽到标有的数字为正数的纸签的概率是____________.12、某人购进一批苹果,到市场零售,已知卖出苹果数量x (千克)与售价y (元)的关系如下表: 数量x (千克)2 3 4 5 售价y (元) 16.2 24.3 32.4 40.5用x 表示y 的关系式可表示为____________________。

北师大版七年级下册数学同步练习课件-第6章 3 第2课时游戏的公平性

北师大版七年级下册数学同步练习课件-第6章 3 第2课时游戏的公平性
▪ (1)当x=3时,谁获胜的可能性大? ▪ (2解)当:(1x)为当 x何=值3 时时,,甲同游学戏获胜对可双能方性为是13公6,平乙同的学?获胜可能性为16-136-6=176,
因为136<176,所以当 x=3 时,乙同学获胜可能性大. (2)游戏对双方公平必须有:1x6=16-163x,解得 x=4,即当 x=4 时,游戏对双方
▪ 5.小明和小红用摸球游戏决定谁去看电影,不透明袋中有2 个不公红平球和1个白球(除颜色外都相同),摸到红球小明去看,摸 到白球小红去看,游戏对双方是__________(填“公平”或 “不公平”)的.
7
▪ 6.一个不透明的布袋里装有16个只有颜色不同的球,其中 红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随 机摸出一个球,若是红球,则甲同学胜,若为黄球,则乙同 学胜.
第六章 概率初步
3 等可能事件的概率 第二课时 游戏的公平性
名师点睛
▪ 知识点1 游戏对双方公平的含义 ▪ 游戏公平指双方获胜的概率相等,如果甲、乙双方参加的游
戏按规则求得甲获胜的概率大于乙获胜的概率,或乙获胜的 概率大于甲获胜的概率,那么这个游戏对甲、乙双方都是不 公平的.
注意:游戏对双方公平,并不是指双方获胜的概率都是12,而是只要获胜的概率 相等即可.
同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平. 答案:公平
4
课时即练
▪ 1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的
场地与首先发球者,其主要原因是
()
C
▪ A.让比赛更富有情趣 B.让比赛更具有神秘色彩
▪ C.体现比赛的公平性 D.让比赛更有挑战性
5
▪ 2.小明和小亮玩一种游戏:三张大小、质地都相同的卡片 上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中

最新北师大版七年级数学下册各章经典练习题汇总

最新北师大版七年级数学下册各章经典练习题汇总

北师大版七年级数学下册各章经典练习题汇总第一章 整式的乘除1.下列计算错误的是( B ) A .(-b )3·(-b )5=b 8B .(-a )4·(-a )=a 5C .(a -b )3·(b -a )2=(a -b )5D .(-m )5·(-m 2)=m 72.计算(2a 2)3的结果是( C ) A .2a 6B .6a 6C .8a 6D .8a 53.计算(x -2y )4÷(x -2y )2÷(2y -x )的结果是( D ) A .x -2y B .-x -2y C .x +2yD .-x +2y4.若x m=9,x n=6,x k=4,则x m -2n +2k的值为( C )A .0B .1C .4D .85.将⎝ ⎛⎭⎪⎫16-1,(-2 019)0,(-3)2按从小到大的顺序排列: (-2 019)0<⎝ ⎛⎭⎪⎫16-1<(-3)2.6.已知两个单项式13a m +2n b 与-2a 4b k 是同类项,则2m ×22n ×23k的值是 128 .7.计算:(1)[(x +y )2]6= (x +y )12. (2)a 8+(a 2)4= 2a 8. 8.计算:(1)(-a 3b 6)2-(-a 2b 4)3; (2)2(a n b n )2+(a 2b 2)n.解:(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=2a 6b 12. (2)原式=2a 2n b 2n+a 2n b 2n=3a 2n b 2n.9.一种微粒的半径是0.000 04米,这个数据用科学记数法表示为( C ) A .4×106B .4×10-6C .4×10-5D .4×10510.将5.18×10-4化为小数是( A ) A .0.000 518 B .0.005 18 C .0.051 8D .0.51811.下列计算中,错误的有( C ) ①(3a +4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 4-b 2;③(x +3)(3-x )=x 2-9;④(-x +y )(x +y )=-(x -y )(x +y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个12.已知a +b =3,则a 2-b 2+6b 的值为( B ) A .6 B .9 C .12 D .1513.方程(4x +5)2-(4x +5)(4x -5)=0的解是( A ) A .x =-54B .x =-45C .x =-1D .x =114.为了运用乘法公式计算(x +3y -z )(x -3y +z ),下列变形正确的是( C ) A .[x -(3y +z )]2B .[(x -3y )+z ][(x -3y )-z ]C .[x -(3y -z )][x +(3y -z )]D .[(x +3y )-z ][(x +3y )+z ]15.若⎝ ⎛⎭⎪⎫x +1x 2=9,则⎝ ⎛⎭⎪⎫x -1x 2的值为 5 . 16.观察下列各式,探索发现规律: 1×3=1=22-1;3×5=15=42-1; 5×7=35=62-1;7×9=63=82-1; 9×11=99=102-1;….用含正整数n 的等式表示你所发现的规律为 (2n -1)(2n +1)=(2n )2-1 . 17.计算:(1)⎝ ⎛⎭⎪⎫-2x 2+14⎝ ⎛⎭⎪⎫-2x 2-14;(2)⎝ ⎛⎭⎪⎫13a -b ⎝⎛⎭⎪⎫-b -13a ;(3)⎝ ⎛⎭⎪⎫-xy 4+y ⎝ ⎛⎭⎪⎫xy4+y ;(4)(2a -b )(2a +b )(4a 2+b 2); (5)(a +3)(a -3)+a (4-a ).解:(1)原式=(-2x 2)2-⎝ ⎛⎭⎪⎫142=4x 4-116.(2)原式=⎝ ⎛⎭⎪⎫-b +13a ⎝ ⎛⎭⎪⎫-b -13a =(-b )-19a 2.(3)原式=⎝ ⎛⎭⎪⎫y +14xy ⎝ ⎛⎭⎪⎫y -14xy =y 2-⎝ ⎛⎭⎪⎫14xy 2=y 2-116x 2y 2.(4)原式=(4a 2-b 2)(4a 2+b 2)=16a 4-b 4. (5)原式=a 2-9+4a -a 2=4a -9.18.如果(2m +3n +1)(2m +3n -1)=48,求2m +3n 的值. 解:因为(2m +3n +1)(2m +3n -1)=48, 所以[(2m +3n )+1][(2m +3n )-1]=48, 所以(2m +3n )2-1=48, 所以(2m +3n )2=49, 所以2m +3n =±7.19.下列计算正确的是( B ) A .3x 3·2x 2y =6x 5 B .2a 2·3a 3=6a 5C .(2x )3·(-5x 2y )=-10x 5y D .(-2xy )·(-3x 2y )=6x 3y20.当m =25时,代数式m 2(m +4)+2m (m 2-1)-3m ·(m 2+m -1)的值为 1425 .21.要使多项式(x 2+px +2)(x -q )不含关于x 的二次项,则p 与q 的关系是 p =q . 22.计算:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3;(2)(-2a 2)(3ab 2-5ab 3); (3)xy (-x 2y +xy 5-x 3y 2). 解:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=4x 4y 2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=⎣⎢⎡⎦⎥⎤4×⎝ ⎛⎭⎪⎫-12×35(x 4·x ·x 3)(y 2·y )(z ·z 3) =-65x 8y 3z 4.(2)(-2a 2)(3ab 2-5ab 3)=(-2a 2)·3ab 2+(-2a 2)·(-5ab 3) =-6a 3b 2+10a 3b 3.(3)xy (-x 2y +xy 5-x 3y 2)=xy ·(-x 2y )+xy ·xy 5+xy ·(-x 3y 2) =-x 3y 2+x 2y 6-x 4y 3.23.化简求值:[4(xy -1)2-(xy +2)(2-xy )]÷14xy ,其中x =-2,y =15.解:原式=[4(x 2y 2-2xy +1)-(4-x 2y 2)]÷14xy=(4x 2y 2-8xy +4-4+x 2y 2)÷14xy=(5x 2y 2-8xy )÷14xy =20xy -32.把x =-2,y =15代入上式,得原式=20×(-2)×15-32=-40.24.若a ,b ,k 均为整数且满足等式(x +a )(x +b )=x 2+kx +36,写出符合条件的k 的值. 解:因为(x +a )(x +b )=x 2+kx +36, 所以x 2+(a +b )x +ab =x 2+kx +36,根据等式的对应项的系数相等,得⎩⎪⎨⎪⎧k =a +b ,ab =36.又因为a ,b ,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(-1)×(-36)=(-2)×(-18)=(-3)×(-12)=(-4)×(-9)=(-6)×(-6),所以a ,b 对应的值共有10对,从而求出a +b 的值,即k 的值有10个,分别为±37,±20,±15,±13,±12.第二章 相交线与平行线1.(2018·湖南益阳中考)如图,直线AB ,CD 相交于点O ,EO ⊥CD .下列说法错误的是( C )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°2.(2019 ·湖南株洲荷塘区期末)如图,在三角形ABC 中,∠ACB =90°,AB =5 cm ,AC =4 cm ,BC =3 cm ,则点C 到AB 的距离为( C )A .4 cmB .3 cmC .2.4 cmD .2.5 cm3.如图所示,直线AB ,CD ,EF 两两相交,若∠1=30°,∠2=60°,则∠3= 30° ,∠4= 60° ,∠5= 150° ,∠6= 120° . 4.(2019·广东二模)若∠1与∠2是对顶角,∠2的邻补角(有一条公共边且互补的角)是∠3,∠3=45°,则∠1的度数为 135° .5.(2019·江苏泰州月考)若∠A 和∠B 的两边分别垂直,且∠A 比∠B 的两倍少30°,则∠B 的度数是 30°或70° .6.(2019·辽宁大连甘井子区期中)如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD =50°,求∠DOP 的度数.解:因为∠AOD =∠BOC ,∠AOD =50°,所以∠BOC =50°.因为OP 平分∠BOC ,所以∠POB =∠POC =12∠BOC =12×50°=25°,所以∠DOP =180°-∠POC =180°-25°=155°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD ∶∠BOD =2∶1.(1)求∠DOE 的度数; (2)求∠AOF 的度数.解:(1)因为∠AOD ∶∠BOD =2∶1,∠AOD +∠BOD =180°,所以∠BOD =13×180°=60°.因为OE 平分∠BOD ,所以∠DOE =12∠BOD =12×60°=30°.(2)∠COE =180°-∠DOE =180°-30°=150°.因为OF 平分∠COE ,所以∠COF =12∠COE =12×150°=75°.因为∠AOC =∠BOD =60°,所以∠AOF =∠AOC +∠COF =60°+75°=135°.8.如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且OC 平分∠AOF . (1)若∠AOE =40°,求∠BOD 的度数;(2)若∠AOE =α,求∠BOD 的度数;(用含α的式子表示) (3)从(1)(2)的结果中能看出∠AOE 和∠BOD 有何关系?解:(1)因为∠AOE +∠AOF =180°,∠AOE =40°,所以∠AOF =140°. 又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =70°.所以∠EOD =∠FOC =70°(对顶角相等). 又∠BOE =∠AOB -∠AOE =50°, 所以∠BOD =∠EOD -∠BOE =20°.(2)因为∠AOE +∠AOF =180°,∠AOE =α, 所以∠AOF =180°-α.又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =90°-12α.所以∠EOD =∠FOC =90°-12α(对顶角相等).又∠BOE =∠AOB -∠AOE =90°-α, 所以∠BOD =∠EOD -∠BOE =12α.(3)从(1)(2)的结果中能看出∠AOE =2∠BOD .9.(2019·陕西中考)如图,OC 是∠AOB 的平分线,l ∥OB ,若∠1=52°,则∠2的度数为( C )A.52° B.54° C.64° D.69°10.(2019·贵州安顺中考)如图,三角尺的直角顶点落在长方形纸片的一边上.若∠1=35°,则∠2的度数是( C )A.35° B.45° C.55° D.65°11.(2019·山东菏泽中考)如图,AD∥CE,∠ABC=100°,则∠2-∠1的度数是80° .12.(2019·广东惠州惠阳区期末)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.解:(1)因为EF∥AD,EF∥BC,所以AD∥BC,所以∠ACB+∠DAC=180°.因为∠DAC=120°,所以∠ACB=60°.(2)因为∠ACF=20°,所以∠BCF=∠ACB-∠ACF=40°.因为CE平分∠BCF,所以∠BCE=20°.因为EF∥BC,所以∠FEC=∠BCE=20°.13.(2019 ·广西贵港覃塘区期末)如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.解:(1)因为BE 平分∠ABC ,所以∠ABE =12∠ABC .又因为∠ABC =2∠E ,所以∠E =12∠ABC ,所以∠E =∠ABE ,所以AB ∥EF .(2)结论:AF ⊥BE .理由如下:因为∠ADE +∠ADF =180°,∠ADE +∠BCF =180°, 所以∠ADF =∠BCF ,所以AD ∥BC , 所以∠DAB +∠CBA =180°. 因为AF 平分∠BAD ,BE 平分∠ABC , 所以∠OAB =12∠DAB ,∠OBA =12∠CBA ,所以∠OAB +∠OBA =90°,所以∠AOB =90°, 所以AF ⊥BE .14.(2019·四川成都郫都区期中)如图,直线a ∥b ,直线c 和直线a ,b 分别交于点C 和D ,在C ,D 之间有一点P .(1)判断图中∠PAC ,∠APB ,∠PBD 之间有什么关系,并说明理由;(2)如果点P 在C ,D 之间运动,∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化?(3)若点P 在直线c 上C ,D 两点的外侧运动(点P 与点C ,D 不重合),试探究∠PAC ,∠APB ,∠PBD 之间的关系又是如何?分别画出图形并说明理由. 解:(1)∠APB =∠PAC +∠PBD .理由如下:如图1,过点P 作PE ∥a .因为a ∥b ,所以PE ∥b ∥a , 所以∠PAC =∠1,∠PBD =∠2, 所以∠APB =∠1+∠2=∠PAC +∠PBD .(2)当点P在C,D之间运动时,仍为∠APB=∠PAC+∠PBD.(3)如图2,当点P在C,D两点的外侧运动,且在直线a的上方时,∠PBD=∠PAC+∠APB.理由如下:因为a∥b,所以∠PEC=∠PBD.因为∠PEC+∠PEA=180°,∠PAC+∠APB+∠PEA=180°,所以∠PEC=∠PAE+∠APB,所以∠PBD=∠PAC+∠APB.如图3,当点P在C,D两点的外侧运动,且在直线b的下方时,∠PAC=∠PBD+∠APB.理由如下:因为a∥b,所以∠PED=∠PAC.因为∠PED+∠BEP=180°,∠EBP+∠BPA+∠BEP=180°,所以∠PED=∠PBD+∠APB,所以∠PAC=∠PBD+∠APB.第三章变量之间的关系1.圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( B )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量2.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中销售量是自变量,销售收入是因变量.3.某公司产品的销售收入与销售量的关系如下表:销售量/吨1234…万元时,销售量为 5 吨.4.(2019·四川成都期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 音速 随 气温 变化的情况;(2)请直接写出y 与x 的关系式: y =0.6x +331 ;(3)当气温为22 ℃时,某人看到烟花燃放5 s 后才听到声响,求此人与烟花燃放所在地的距离.解:(3)因为当x =22时,y =0.6×22+331=344.2, 所以距离为344.2×5=1 721(m), 即此人与烟花燃放所在地的距离为1 721 m.5.设W =当月的500克猪肉价格当月的500克玉米价格.如果W <6,则下个月要采取措施防止“猪贱伤农”.已知2~5月玉米、猪肉价格统计表如下:(1)若33月的猪肉价格m ;(2)若6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测6月是否要采取措施防止“猪贱伤农”. 解:(1)由题意,得7.5-m 7.5=6.25-66.25,解得m =7.2.(2)从2~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元,所以6月玉米的价格是1.1元/500克.因为5月猪肉价格的下降率为6.25-66.25=125,所以6月的猪肉价格为6×⎝ ⎛⎭⎪⎫1-125=5.76(元/500克). 所以W =5.761.1≈5.24<6,要采取措施防止“猪贱伤农”.6.变量x 与y 之间的关系式是y =12x 2-1,当自变量x =2时,因变量y 的值是( C )A .-2B .-1C .1D .27.(2019·四川宜宾期末)如图,在长方形ABCD 中,AB =4,BC =2,P 为BC 上的一点,设BP =x (0<x <2),则三角形APC 的面积S 与x 之间的关系式是( D )A .S =12x 2B .S =2xC .S =2(x -2)D .S =2(2-x )8.某厂2019年1月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂2019年3月份新产品的研发资金y (元)关于x 的关系式为y = a (1+x )2 .9.“十一”黄金周期间,欢欢一家随团到某风景区旅游,集体门票的收费标准是20人以内(含20人),每人25元;超过20人的,超过的部分每人10元. (1)写出应收门票费y (元)与游览人数x (人)(x ≥20)之间的关系式;(2)利用(1)中的关系式计算:若欢欢一家所在的旅游团共54人,那么他们为购门票花了多少钱?解:(1)由题意,得y =25×20+10(x -20)=10x +300(x 为整数,且x ≥20). (2)当x =54时,y =10×54+300=840,即他们为购门票花了840元.10.正常人的体温一般在37 ℃左右,但一天中的不同时刻不尽相同.下图反映了一天(24小时)内小明体温的变化情况,下列说法错误的是( D )A .清晨5时体温最低B .下午5时体温最高C .这一天中小明体温的范围是36.5≤T ≤37.5D .从5时至24时,小明体温一直是升高的11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末学习计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的大致图象是( B )12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道的长度为750米.其中正确的结论是②③ .(把你认为正确结论的序号都填上)13.2019年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降.某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图如图所示,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万米?(2)当水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问:持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?解:(1)当t=0时,V=1 000,所以水库原蓄水量为1 000万立方米;当t=10时,V=800,所以持续干旱10天后蓄水量为800万立方米.(2)当V=400时,t=30,所以持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库蓄水量下降了800-400=400(万立方米),一天下降40030-10=20(万立方米),根据此规律可求出30+40020=50(天),故持续干旱50天水库将干涸.三角形1.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( C )A .120° B.180° C.240° D.300°2.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E .F 为AB 上的一点,CF ⊥AD 于点H .下列判断正确的有( A )(1)AD 是△ABE 的角平分线. (2)BE 是△ABD 边AD 上的中线. (3)CH 为△ACD 边AD 上的高. A .1个 B .2个 C .3个 D .0个3.如图,图中有 5 个三角形,把它们用符号分别表示为 △ABD ,△CED ,△BCD ,△ABC ,△EBC .4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 30° .5.如图,在△ABC 中,∠B =60°,∠C =20°,AD 为△ABC 的高,AE 为△ABC 的角平分线. (1)求∠EAD 的度数;(2)试确定∠DAE 与∠B ,∠C 的关系并说明理由.解:(1)因为AD 为△ABC 的高,所以∠ADB =∠ADC =90°.因为∠B =60°,所以∠BAD =30°.在△ABC 中,∠CAB +∠B +∠C =180°,所以∠CAB =100°.又因为AE 是△ABC 的角平分线,所以∠BAE =∠CAE =12∠CAB =50°,所以∠DAE =∠BAE -∠BAD =20°.(2)由(1)得∠DAE =∠BAE -∠BAD =12∠BAC -(90°-∠B )=12(180°-∠B -∠C )-(90°-∠B )=90°-12∠B -12∠C -90°+∠B =12∠B -12∠C ,所以2∠DAE =∠B -∠C .6.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( C ) A .1种 B .2种 C .3种D .4种7.△ABC 的边长均为整数,且最大边的边长为7,那么这样的三角形共有 16 个. 8.一个等腰三角形的周长为30 cm ,它有一条边长是另一条边长的一半,它的底边长为 6 cm ,一腰长为 12 cm.9.如图所示,△ABC ≌△CDA ,并且AB =CD ,小胡同学写了四个结论,其中有一个不正确,这个结论是( D )A .∠1=∠2B .AD ∥BC C .∠D =∠BD .AC =BC10.如图,△ADF ≌△BDF ,△BDE ≌△CDE ,AC =10 cm ,那么AD =( D )A.2 cm B.3 cmC.4 cm D.5 cm11.已知△ABC≌△DEF,且△ABC的周长为12,AB=5,BC=4,则DF= 3 .12.△ABC与△A′B′C′是一对全等的三角形,其中△ABC中,AB=6,AB边上的高为5,则△A′B′C′的面积为 15 .13.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确结论的个数是( D )A.0 B.1C.2 D.314.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC(答案不唯一) ,使△ABC≌△DBE.(只需添加一个即可)15.如图所示,赵刚站在楼顶B处看一烟囱,当看到烟囱顶A时,视线与水平方向成的角是45°;当看到烟囱底部D时,视线与水平方向成的角也是45°.如果楼高15米,那么烟囱大约高 30 米.16.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O 为卡钳两柄交点,且有OA =OB =OC =OD ,如果圆形工件恰好通过卡钳AB ,则此工件的外径必是CD 的长,你能说明其中的道理吗?解:由OA =OD ,OB =OC ,∠AOB =∠DOC ,可知△AOB ≌△DOC ,从而AB =CD .17.(2019·辽宁鞍山月考)在△ABC 中,D 是AB 的中点,E 是CD 的中点.过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .试说明DB =CF .解:因为E 为 CD 的中点,所以CE =DE .因为∠AED 和∠CEF 是对顶角,所以∠AED =∠CEF . 因为CF ∥AB ,所以∠EDA =∠ECF . 在△EDA 和△ECF 中,⎩⎪⎨⎪⎧∠EDA =∠ECF ,ED =EC ,∠AED =∠CEF ,所以△EDA ≌△ECF (ASA),所以AD =FC . 因为D 为AB 的中点,所以AD =BD .所以DB =CF .18.如图,AB =DC ,∠A =∠D ,点M 和点N 分别是BC ,AD 的中点.试说明∠ABC =∠DCB .解:点M 和点N 分别是BC ,AD 的中点,所以AN =DN ,BM =CM .在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,所以△ABN ≌△DCN (SAS),所以BN =CN ,∠ABN =∠DCN .在△BMN 和△CMN 中,⎩⎪⎨⎪⎧BN =CN ,MN =MN ,BM =CM ,所以△BMN ≌△CMN (SSS), 所以∠MBN =∠MCN ,所以∠ABN +∠MBN =∠DCN +∠MCN , 即∠ABC =∠DCB .19.如图,在Rt△ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)试说明△BCD ≌△FCE ; (2)若EF ∥CD ,求∠BDC 的度数.解:(1)因为CD 绕点C 顺时针方向旋转90°得CE ,所以CD =CE ,∠DCE =90°.因为∠ACB =90°,所以∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,所以△BCD ≌△FCE .(2)由△BCD ≌△FCE 得∠BDC =∠E . 因为EF ∥CD ,所以∠E =180°-∠DCE =90°.所以∠BDC =90°.20.在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .试说明PB =PC ,并直接写出图中其他相等的线段.解:在△ABF 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,所以△ABF ≌△ACE (SAS),所以∠ABF =∠ACE (全等三角形的对应角相等), 所以BF =CE (全等三角形的对应边相等). 因为AB =AC ,AE =AF ,所以BE =CF . 在△BEP 和△CFP 中,⎩⎪⎨⎪⎧∠BPE =∠CPF ,∠PBE =∠PCF ,BE =CF ,所以△BEP ≌△CFP (AAS),所以PB =PC . 因为BF =CE ,所以PE =PF .所以图中其他相等的线段为PE =PF ,BE =CF ,BF =CE .21.如图,小勇要测量家门前河中浅滩B 到对岸A 的距离,他先在岸边定出C 点,使C ,A ,B 在同一直线上,再沿AC 的垂直方向在岸边画线段CD ,取它的中点O ,又画DF ⊥CD ,观测到E ,O ,B 在同一直线上,F ,O ,A 也在同一直线上,那么EF 的长就是浅滩B 到对岸A 的距离,你能说出这是为什么吗?解:因为DF ⊥CD ,AC ⊥CD ,所以∠D =∠C =90°. 又因为OC =OD ,∠COA =∠DOF , 所以△AOC ≌△FOD (ASA), 所以∠A =∠F ,OA =OF . 又因为∠AOB =∠FOE , 所以△AOB ≌△FOE (ASA),所以AB =EF ,所以EF 的长就是浅滩B 到对岸A 的距离.22.如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数; (2)若CN ⊥AM ,垂足为N ,试说明△ACN ≌△MCN .解:(1)因为AB ∥CD ,所以∠ACD +∠CAB =180°.又因为∠ACD =114°,所以∠CAB =66°.由作法,知AM 是∠CAB 的平分线,所以∠MAB =12∠CAB =33°.(2)因为AM 平分∠CAB ,所以∠CAM =∠MAB . 因为AB ∥CD ,所以∠MAB =∠CMA , 所以∠CAM =∠CMA .又因为CN ⊥AM ,所以∠ANC =∠MNC .在△ACN 和△MCN 中,因为∠ANC =∠MNC ,∠CAM =∠CMA ,CN =CN ,所以△ACN ≌△MCN . 23.已知线段a ,b ,∠α,如图所示.求作:△ABC ,使其有一个内角等于∠α,且∠α的对边等于a ,另一边等于b .解:作法:(1)作∠MBH =∠α. (2)在边BM 上截取AB =b .(3)以点A 为圆心,a 的长为半径作弧,交BC 于点C (或C ′). (4)连接AC (或AC ′).则△ABC 或△ABC ′就是所求作的三角形,如图所示.生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO =∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A.30° B.40° C.45° D.60°10.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B= 72 度.11.如图,在△ABC中,AB=AC,BC=BD,AD=DE=BE,求∠A的度数.解:因为AB=AC,所以∠ABC=∠C.因为BC=BD,所以∠BDC=∠C.所以∠ABC=∠BDC=∠C.又因为AD=DE=BE,所以∠A=∠DEA,∠EBD=∠EDB.设∠EBD=∠EDB=x,则∠A=∠DEA=2x,∠ABC=∠BDC=∠C=3x.在△ABC中,∠A+∠ABC +∠C=180°,即2x+3x+3x=180°,解得x=22.5°.所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG .所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DF ⊥BD ,且BD =CD ,那么BE 与CF 相等吗?说明理由.解:相等.理由如下:因为AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC , 所以DE =DF ,∠DEB =∠DFC =90°. 因为DF ⊥BD ,所以∠BDE +∠FDC =90°. 又因为∠BDE +∠DBE =90°, 所以∠FDC =∠DBE .又因为BD =CD ,所以△BED ≌△DFC , 所以BE =CF .19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.第六章概率初步1.下列事件中,是不可能事件的是( D )A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是( B )A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是 ①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( D ) A .3个 B .不足3个 C .4个D .5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”. 你认为可能性最大的是 ① ,最小的是 ④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( C )8.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)(2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.1513.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小皮球停留在黑色方砖上的概率是59,停留在白色方砖上的概率是49.(2)因为59>49,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可将任意一块黑色方砖改为白色方砖.。

北师大版数学七年级下册 利用概率判断游戏的公平性 教案

北师大版数学七年级下册 利用概率判断游戏的公平性 教案

第3课时 利用概率判断游戏的公平性●情景导入 活动内容: 出示一个不透明的盒子,里面装有3个红球和2个白球,每个球除颜色外完全相同,任意摸出一个球. 提出问题:摸到白球的概率是多少?最有可能摸到什么颜色的球?一定会摸到白球吗?学生活动:以小组为单位开始活动,每人摸10次球,并记下摸出球的颜色,讨论摸到白球的概率. 【教学与建议】教学:通过游戏,让学生在亲身体会中理解概率的计算公式.引导学生用列举法把所有可能结果一一列举,再求概率.建议:先思考提出的问题后再通过试验得出结果,最后通过计算得出结论.●置疑导入 一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?【教学与建议】教学:通过问题的创设,激发了学生的好奇心和求知欲,让他们体会探索的过程.建议:学生各抒己见后,教师提出我们这节课继续探讨等可能事件的概率,同时板书课题.●命题角度1 判断游戏是否公平游戏是否公平只要计算出各方获胜的概率,然后进行比较就可以做出判断. 【例1】在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球. (1)小明从中任意摸出一个小球,摸到白球的概率是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么?解:(1)P(摸到白球)=16;(2)该游戏对双方是公平的.理由如下:由题意,得P(小明获胜)=36=12,P(小亮获胜)=1+26=12.因为他们获胜的概率相等,所以游戏对双方是公平的.●命题角度2 根据要求设计游戏按要求设计游戏,就是通过一定的游戏规则使得获胜的概率达到相应的要求.【例2】用8个除颜色外其他均相同的球设计一个游戏,使摸到白球与摸不到白球的可能性一样大,摸到红球的可能性比摸到黄球的可能性大,则游戏设计中白、红、黄球的个数可能是(C)A .4,2,2B .3,2,3C .4,3,1D .5,2,1 【例3】小颖和小明做游戏:一个不透明的袋子中装有6个完全一样的球,每个球上分别标有1,2,2,3,4,5,从袋子中任意摸出一个球,然后放回.规定:若摸到的球上所标数字大于3,则小颖赢,否则小明赢.你认为这个游戏公平吗?为什么?如果不公平,请修改游戏规则,使游戏公平.解:游戏不公平.理由如下:因为摸到的球上所标数字大于3的概率是26=13,摸到的球上所标数字不大于3的概率是46=23,所以小明赢的概率大,故游戏不公平. 修改规则如下:方法一:若摸到的球上所标数字小于3,则小颖赢,否则小明赢. 方法二:若摸到的球上所标数字是偶数,则小颖赢,否则小明赢. ●命题角度3 根据概率求袋中的球的数量根据概率来求袋中球的数量实际就是将求概率的过程逆向运用.【例4】已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是红球的概率为15,则a 等于(D)A .2B .3C .4D .5【例5】在一个不透明的口袋中,装有20个红球和若干个白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到红球的概率是58,如果再往口袋中放入4个白球,求这时任意摸出一个球,摸到红球的概率.解:口袋中原来球的总数为20÷58=32(个).再往口袋中放入4个白球,任意摸出一个球,摸到红球的概率为2032+4=59.高效课堂 教学设计1.会根据概率判断游戏的公平性.2.通过一定的游戏规则使得获胜的概率达到相应要求.▲重点根据已知概率设计游戏方案. ▲难点利用概率判断游戏的规则是否公平.◆活动1 创设情境 导入新课(课件)1.想一想,填一填.任意掷一枚质地均匀的骰子.(1)掷出的点数不大于4的概率是__23__,理由是__不大于4的点数有1,2,3,4,P(不大于4点数)=46=23__;(2)掷出的点数是奇数的概率是__12__,理由是__点数是奇数有1,3,5,P(掷出的点数是奇数)=36=12__. 2.学校举行演讲比赛,王强和李明都想去,可是参加比赛的名额只有一个,于是两个用掷骰子游戏决定谁去参加比赛.若朝上的点数是6,则王强参加;若朝上的点数不是6,则李明参加.你认为这个游戏规则对王强、李明公平吗?说出理由.不公平,理由是王强参加的概率是16,李明参加的概率是56,朝上的点数不是6,则有1,2,3,4,5,所以李明参加的概率是=56.◆活动2 实践探究 交流新知 【探究1】游戏的公平性(1)一个袋中装有2个红球和3个白球,每个球除颜色外都相同,任意摸出一个球,摸到红球的概率是多少?讨论分析:答案1:P(摸到红球)=12,理由是:摸到的球只有两种颜色,不是红球就是白球;答案2:P(摸到红球)=25,理由是:把每个球都是编上号,1号球(红色),2号球(红色),3号球(白色),4号球(白色),5号球(白色),摸出每个球的可能性相同,共有5种等可能结果.摸到可能出现的结果有:1号球或2号球.共有2种等可能的结果.画图分析:① ② ③ ④ ⑤有5种等可能结果,其中红色球有2种,所以P(摸到红球)=25.答案1错误.(2)小明和小凡做游戏,在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球.摸到红球的话小明获胜,摸到白球小凡获胜,这个游戏公平吗?在一个双人游戏中,你怎么理解双方公平的?不公平,总共有5个球,也就是有5种等可能结果,P(摸到红球)=25,P(摸到白球)=35,因此小明和小凡获胜的概率不一样,不公平;在双人游戏中,两人获胜的概率必须一样才是公平的.【探究2】根据要求设计游戏利用一个口袋和4个除颜色外完全相同的球设计一个摸球游戏.(1)使摸到白球的概率为12,摸到红球的概率也是12;(2)使摸到红球的概率为12,摸到白球和黄球的概率都是14.分析:(1)共有4个球,使摸到红球的概率是12,摸到白球的概率为12,那么红球的个数为:__4×12=2(个),白球的个数为__4×12=2(个)__.所以需要红球和白球各__2__个;(2)共有4个球,使摸到红球的概率是12,红球的个数为__4×12=2(个)__,摸到白球和黄球的概率都是14,白球的个数为__4×14=1(个)__,黄球的个数为__4×14=1(个)__.所以需要红球__2__个,白球__1__个,黄球__1__个.想一想:1.你能用8个除颜色外完全相同的球分别设计满足如上条件的游戏吗? 解:4个红球,4个白球和4个红球,2个白球,2个黄球.2.你能用7个除颜色外完全相同的球分别设计满足如上条件的游戏吗? 解:不行.◆活动3 开放训练 应用举例【例1】在一个不透明的袋中有6个除颜色其他都相同的小球,其中3个红球,2个黄球,1个白球. (1)小明从中任意摸一个小球,摸到的白球机会是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否岀小亮胜,问该游戏对双方是否公平?为什么?【方法指导】(1)由题意可得共有6种等可能的结果,其中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可.解:(1)因为在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,所以P(摸出一个白球)=16;(2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)=36=12,P (小亮获胜)=1+26=12,所以他们获胜的概率相等,即游戏是公平的.【例2】选取6个除颜色外完全相同的球,设计一个游戏,使得参与游戏的小明和小颖获胜的概率相同.【方法指导】获胜的概率相同不一定都是12,都是13也可以,比如:2个红球,2个白球,2个黑球,摸到红球小明获胜,摸到白球小颖获胜.解:只要使得两人获胜的概率相同即可.比如:3个红球,3个白球,摸到红球小明获胜,摸到白球小颖获胜.◆活动4 随堂练习1.在一个不透明的袋子中装有若干个除颜色外形状和大小完全相同的球,如果其中有4个白球,且摸出白球的概率是13,那么袋子中共有球__12__个.2.选取15个除颜色外完全相同的球设计一个摸球游戏,使得摸到红球的概率为15,摸到白球和黄球的概率都是25.解:红球3个,白球6个,黄球6个. 3.课本P 150随堂练习T 1. 4.课本P 150随堂练习T 2. ◆活动5 课堂小结与作业【学生活动】你这节课有哪些收获,还有哪些困惑?【教学说明】梳理本节课的重要方法和知识,加深对知识的理解.【作业】课本P150习题6.5中的T1、T2、T4、T5.本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题.。

2022-2023学年北师大版七年级下学期期末数学复习题5(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题5(含答案)

2022-2023学年北师大版七年级下学期期末数学复习题5一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.2.(3分)下列计算正确的是( )A.x2•x5=x10B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.﹣m(m﹣2n+1)=﹣m2+2mn﹣1D.(a n+b)(a n﹣b)=a2n﹣b23.(3分)科学家发现,大部分病毒的直径在50纳米和100纳米之间,新冠病毒是病毒家族中的“大个子”,它的直径为100纳米,1纳米=0.000 000 001m,新冠病毒的直径用科学记数法可以表示为( )m.A.1×10﹣9B.1×10﹣8C.1×10﹣7D.1×10﹣64.(3分)下列事件中,随机事件是( )A.两直线平行,同位角相等B.掷一枚硬币,国徽的一面朝上C.任意掷一枚质地均匀的骰子,掷出的点数是7D.早上的太阳从西方升起5.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD∥BC C.DF∥BE D.DF=BE6.(3分)分析给出的汽车行驶速度(千米/分)与时间(分)的关系图,下列说法不正确的为( )A.汽车行驶时间为40分钟B.AB表示汽车匀速行驶C.第40分钟时,汽车停下了D.在第30分钟时,汽车行驶的路程为80千米7.(3分)如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )A.30°B.36°C.45°D.70°8.(3分)如图,在边长为2a的正方形中央剪去一边长为a+2的小正方形(a>2),将剩余部分剪开拼成一个平行四边形,则该平行四边形的面积为( )A.3a2﹣4a﹣4B.4a2﹣a﹣2C.a2+2D.2a2+4a9.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若∠CAB=2∠B,△ACD 的面积为3,则Rt△ABC的面积为( )A.6B.9C.12D.1510.(3分)如图,在边长为1个单位长度的正方形网格中,在格点中找一点C,使△ABC是直角三角形,这样的点C有( )个.A.2B.4C.5D.6二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知2m•2m•8=211,则m= .12.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 .13.(2分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= .14.(3分)若a+b=﹣2,ab=﹣1,则(2a﹣1)(2b﹣1)的值为 .15.(3分)如图,在一个等边三角形纸片中取三边中点M、N、P,以虚线为折痕折叠纸片,一只小蜜蜂飞来,停在纸片上,它停留在阴影部分的概率是 .16.(3分)等腰三角形的三边长分别为x+1,9,2x+3,则该三角形的周长为 .17.(3分)如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,若AE=6cm,则△ABD的周长为 .18.(3分)如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,AD =8,CE 平分∠ACB ,交AD 于E ,AE =3ED ,M 是AB 边上的动点,则EM 的最小值是 .三、解答题.(本大题共7小题,共66分)19.(20分)计算:(1)(﹣a 2b )2÷(―12ab 2);(2)(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2;(3)(﹣2x +y )2﹣4(x ﹣y )(x +2y );(4)利用乘法公式计算202×198+0.25100×(﹣4)100.20.(8分)完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知AB ∥CD ,MC ⊥CN ,∠1+∠2=90°;求证:AB ∥EF .证明:∵AB ∥CD ,∴∠2= ( )∵MC ⊥CN ,∴∠MCN = ,即:∠3+∠4=90°,∴ +∠4=90°,∵∠1+∠2=90°,∴∠1= ,∴CD ∥ ( ),∴AB ∥EF .21.(6分)请用你所学的知识解决下列问题:小区A,小区B位于街道m同侧,在街道m上设立一个快递投送站Q,使得快递投送站Q与两个小区的距离相等,请在图中作出点Q的位置.22.(8分)如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC.请判断△ABD的形状,并说明理由.23.(7分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘分成9个面积相等的扇形,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,你认为这个游戏公平吗?请说明理由.24.(8分)如图,AB=3,P是线段AB上的一点,分别以AP,BP为边做正方形.(1)设AP=x,求出两个正方形的面积之和S与x之间的函数关系式,并写出自变量x 的取值范围.(2)当x=32时,求S的值.25.(10分)如图所示,AD∥BC,BE平分∠ABC,交CD于E,AE平分∠BAD,交BC的延长线于点F.(1)试判断BE与AF的位置关系,并说明理由.(2)试判断AD,AB,BC之间的数量关系,并说明理由.2019-2020学年陕西省宝鸡市金台区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.2.(3分)下列计算正确的是( )A.x2•x5=x10B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.﹣m(m﹣2n+1)=﹣m2+2mn﹣1D.(a n+b)(a n﹣b)=a2n﹣b2【解答】解:A、原式=x7,故A不符合题意.B、原式=(﹣bc)2=b2c2,故B不符合题意.C、原式=﹣m2+2mn﹣m,故C不符合题意.D、原式=a2n﹣b2,故D符合题意.故选:D.3.(3分)科学家发现,大部分病毒的直径在50纳米和100纳米之间,新冠病毒是病毒家族中的“大个子”,它的直径为100纳米,1纳米=0.000 000 001m,新冠病毒的直径用科学记数法可以表示为( )m.A.1×10﹣9B.1×10﹣8C.1×10﹣7D.1×10﹣6【解答】解:100纳米=0.0000001m=1×10﹣7m.故选:C.4.(3分)下列事件中,随机事件是( )A.两直线平行,同位角相等B.掷一枚硬币,国徽的一面朝上C.任意掷一枚质地均匀的骰子,掷出的点数是7D.早上的太阳从西方升起【解答】解:A、两直线平行,同位角相等,是必然事件,不符合题意;B、掷一枚硬币,国徽的一面朝上,是随机事件,符合题意;C、任意掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,不符合题意;D、早上的太阳从西方升起,是不可能事件,不符合题意;故选:B.5.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD∥BC C.DF∥BE D.DF=BE【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、在△ADF和△CBE中,∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA),故A不符合题意;B、∵AD∥BC,∴∠A=∠C,∴△ADF≌△CBE(ASA),故B不符合题意;C、∵DF∥BE,∴∠AFD=∠CEB,在△ADF和△CBE中,AF=CE,∠AFD=∠CEB,∴△ADF与△CBE不一定全等,故C符合题意;D、在△ADF和△CBE中,AF=CE,∠AFD=∠CEB,DF=BE,∴△ADF≌△CBE(SAS),故D不符合题意.故选:C.6.(3分)分析给出的汽车行驶速度(千米/分)与时间(分)的关系图,下列说法不正确的为( )A.汽车行驶时间为40分钟B.AB表示汽车匀速行驶C.第40分钟时,汽车停下了D.在第30分钟时,汽车行驶的路程为80千米【解答】解:读图可得,汽车行驶时间为40分钟,故A正确,不符合题意;AB段,汽车行驶的速度相等,故速度不变,汽车匀速行驶,故B正确,不符合题意;在时间为40时,速度为0,故C正确,不符合题意;在第30分钟时,汽车的速度是80千米/时,故D不正确,符合题意.故选:D.7.(3分)如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )A.30°B.36°C.45°D.70°【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°―x2,可得2x=180°―x2,解得:x=36°,则∠A=36°,故选:B.8.(3分)如图,在边长为2a的正方形中央剪去一边长为a+2的小正方形(a>2),将剩余部分剪开拼成一个平行四边形,则该平行四边形的面积为( )A.3a2﹣4a﹣4B.4a2﹣a﹣2C.a2+2D.2a2+4a【解答】解:方法一:平行四边形的面积=大正方形的面积﹣小正方形的面积=(2a)2﹣(a+2)2=(2a+a+2)(2a﹣a﹣2)=(3a+2)(a﹣2)=3a2﹣4a﹣4.方法二:平行四边形的底边=2a+(a+2)=3a+2,底边上的高=2a﹣(a+2)=2a﹣a﹣2=a﹣2,∴平行四边形的面积=(3a+2)(a﹣2)=3a2﹣4a﹣4.故选:A.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若∠CAB=2∠B,△ACD 的面积为3,则Rt△ABC的面积为( )A.6B.9C.12D.15【解答】解:过D点作DE⊥AB于E,如图,∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE,∵∠ACB=90°,∠CAB=2∠B,∴∠B=30°,∴AB=2AC,∴S△ABD=2S△ACD=2×3=6,∴S△ABC=3+6=9.故选:B.10.(3分)如图,在边长为1个单位长度的正方形网格中,在格点中找一点C,使△ABC 是直角三角形,这样的点C有( )个.A.2B.4C.5D.6【解答】解:如图所示:AC1=2,BC1=2,AB=22+22=22,A C21=4,B C21=4,AB2=8,A C21+B C21=AB2,∴△ABC1为直角三角形,同理可证:△ABC2,△ABC3,△ABC4,△ABC5均为直角三角形,∴这样的点C有5个.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知2m•2m•8=211,则m= 4 .【解答】解:2m•2m•8,=2m•2m•23,=2m+m+3,∵2m•2m•8=211,∴m+m+3=11,解得m=4.12.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 75° .【解答】解:如图,∠1=30°,所以,∠α=∠1+45°=30°+45°=75°.故答案为:75°.13.(2分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= 20米 .【解答】解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,AC=DC∠ACB=∠DCEBC=EC,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.14.(3分)若a+b=﹣2,ab=﹣1,则(2a﹣1)(2b﹣1)的值为 1 .【解答】解:原式=4ab﹣2a﹣2b+1=4ab﹣2(a+b)+1,∵a+b=﹣2,ab=﹣1,∴原式=﹣4﹣2×(﹣2)+1=1.故答案为:1.15.(3分)如图,在一个等边三角形纸片中取三边中点M、N、P,以虚线为折痕折叠纸片,一只小蜜蜂飞来,停在纸片上,它停留在阴影部分的概率是 38 .【解答】解:由对称性可得:阴影部分的面积=四边形OECF的面积,∵D、E、F为△ACB三边的中点,∴DE∥CB,∴△ADE∽△ABC,∴S△ADE=14S△ACB,设S△ADE=a,则S△ACB=4a,∴阴影面积=四边形OECF面积=12(4a﹣a)=32a,∴阴影部分的面积是整个图形面积的:32a4a=38,∴它停留在阴影部分的概率是3 8.故答案为:3 8.16.(3分)等腰三角形的三边长分别为x+1,9,2x+3,则该三角形的周长为 22 .【解答】解:①当x+1=2x+3时,解得x=﹣2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形.所以等腰三角形的周长为:4+9+9=22.故答案为:22.17.(3分)如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,若AE=6cm,则△ABD的周长为 18cm .【解答】解:∵把△ABC的边AC对折,使顶点C和点A重合,AE=6cm,∴AE=EC=6cm,AD=CD,∴AC=AE+EC=6+6=12(cm),∵△ABC的周长为30cm,∴AB+BC=30﹣12=18(cm),∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=18cm,故答案为:18cm.18.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D,AD=8,CE平分∠ACB,交AD于E,AE=3ED,M是AB边上的动点,则EM的最小值是 2 .【解答】解:如图,作EN⊥AC于点N,∵AD=8,AE=3ED,∴ED=14AD=2,∵CE平分∠ACB,ED⊥BC,∴EN=ED=2,∵AB=AC,AD⊥BC,∴AD平分∠CAB,∵当EM⊥AB时EM最小,∴EM=EN=2,∴EM的最小值是2.故答案为:2.三、解答题.(本大题共7小题,共66分)19.(20分)计算:(1)(﹣a2b)2÷(―12ab2);(2)(﹣x)3•x2n﹣1+x2n•(﹣x)2;(3)(﹣2x+y)2﹣4(x﹣y)(x+2y);(4)利用乘法公式计算202×198+0.25100×(﹣4)100.【解答】解:(1)原式=a4b2÷(―12ab2)=﹣2a3.(2)原式=﹣x3•x2n﹣1+x2n•x2;=﹣x2n+2+x2n+2=0.(3)原式=4x2﹣4xy+y2﹣4(x2+xy﹣2y2)=4x2﹣4xy+y2﹣4x2﹣4xy+8y2=﹣8xy+9y2.(4)原式=(200+2)×(200﹣2)+(14)100×(﹣4)100=2002﹣4+(―14×4)100=40000﹣4+1=39997.20.(8分)完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知AB∥CD,MC⊥CN,∠1+∠2=90°;求证:AB∥EF.证明:∵AB∥CD,∴∠2= ∠3 ( 两直线平行,内错角相等 )∵MC⊥CN,∴∠MCN= 90° ,即:∠3+∠4=90°,∴ ∠2 +∠4=90°,∵∠1+∠2=90°,∴∠1= ∠4 ,∴CD∥ EF ( 内错角相等,两直线平行 ),∴AB∥EF.【解答】证明:∵AB∥CD,∴∠2=∠3(两直线平行,内错角相等),∵MC⊥CN,∴∠MCN=90°,即:∠3+∠4=90°,∴∠2+∠4=90°,∵∠1+∠2=90°,∴∠1=∠4,∴CD∥EF(内错角相等,两直线平行),∴AB∥EF.故答案为:∠3;两直线平行,内错角相等;90°;∠2;∠4;EF;内错角相等,两直线平行.21.(6分)请用你所学的知识解决下列问题:小区A,小区B位于街道m同侧,在街道m上设立一个快递投送站Q,使得快递投送站Q与两个小区的距离相等,请在图中作出点Q的位置.【解答】解:如图,点Q即为所求.22.(8分)如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC.请判断△ABD的形状,并说明理由.【解答】解:△ABD 为等腰三角形.理由如下:在△ABD 中,∠1+∠ABD =∠ADC =∠ADE +∠3,∵∠1=∠3,∴∠ABD =∠ADE ,在△ABC 和△ADE 中,∠ABC =∠ADE∠C =∠E AC =AE,∴△ABC ≌△ADE △(AAS ),∴AB =AD ,∴△ABD 为等腰三角形.23.(7分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘分成9个面积相等的扇形,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,你认为这个游戏公平吗?请说明理由.【解答】解:游戏不公平,理由如下:共有9种等可能的结果,其中3的倍数有3、6、9共3种可能,2的倍数有2,4,6,8共4种可能,∴小亮去参加活动的概率为49,小芳去参加活动的概率为39=13,∵49>13,∴游戏不公平.24.(8分)如图,AB=3,P是线段AB上的一点,分别以AP,BP为边做正方形.(1)设AP=x,求出两个正方形的面积之和S与x之间的函数关系式,并写出自变量x 的取值范围.(2)当x=32时,求S的值.【解答】解:(1)∵AP=x,AB=3,∴BP=AB﹣AP=3﹣x,∴S=x2+(3﹣x)2=x2+9﹣6x+x2=2x2﹣6x+9,∴S=2x2﹣6x+9(0<x<3);(2)当x=32时,原式=2×(32)2﹣6×32+9=2×94―9+9=9 2.25.(10分)如图所示,AD∥BC,BE平分∠ABC,交CD于E,AE平分∠BAD,交BC的延长线于点F.(1)试判断BE与AF的位置关系,并说明理由.(2)试判断AD,AB,BC之间的数量关系,并说明理由.【解答】解:(1)BE⊥AF,理由如下:∵AD∥BC,∴∠DAE=∠CFE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠CFE,∴BA=BF,∵BE平分∠ABC.∴BE⊥AF;(2)BC+AD=AB,理由如下:∵BA=BF,BE⊥AF,∴AE=EF,在△ADE与△FCE中,∠DAE=∠CFEAE=EF,∠AED=∠FEC∴△ADE≌△FCE(ASA),∴AD=FC,∴BA=BF=BC+CF=BC+AD,∴BC+AD=AB,。

北师大版小学四年级下册数学第六单元《游戏公平》单元测试3(附答案)

北师大版小学四年级下册数学第六单元《游戏公平》单元测试3(附答案)

北师大版小学四年级下册数学第六单元《游戏公平》单元测试3(附解答)一、填一填。

(28分)1.掷出一枚硬币,会出现( )种结果,正面朝上和反面朝上的可能性( )。

2.在一个口袋里有5个红球和3个绿球,摸到红球有( )种可能,摸到绿球有( )种可能。

3.在一个均匀的正方体骰子上面标有数字1~6各数,任意掷一次,点数大于4有( )种可能,点数小于4有( )种可能,点数不小于4有( )种可能。

二、选一选。

(16分)1.甲、乙两人用转转盘的方式决定谁先走第一步(他们在下象棋),若转到A甲先走,若转到B乙先走,用下面转盘( )来决定比较合适。

A.①B.②C.③2.转动转盘,指针停在红色区域与蓝色区域的可能性( ),如果用这个转盘来决定游戏的开始,对双方( )。

A.相等B.不相等C.公平D.不公平三、连一连。

(12分)小华与小芳有一张电影票,她们用摸球的方式决定谁去看电影。

规定,若摸到红球,小华去,若摸到黄球,小芳去。

她们在三个盒子中放入不同数量的球试判断一下,用哪一个公平,用哪一个不公平。

公平不公平四、桌子上摆着写有1~7各数的卡片共七张,姐弟两人玩摸卡片游戏,如果摸到双数姐姐赢,摸到单数弟弟赢。

(14分)1.你认为这个游戏公平吗?说明理由。

2.弟弟一定会赢吗?五、请你来解析。

(30分)1.李木和小方两人做游戏,用摸球来决定得分情况。

口袋里放3个红球,4个黄球。

摸到红球,李木得1分,摸到黄球,小方得1分。

你认为这样公平吗?为什么?2.小丁和小甲做游戏,用摸棋子来决定得分情况。

盒子里放4个黄棋子,6个红棋子。

摸到黄棋子小丁得l分,摸到红棋子小甲得1分。

①你认为这个游戏规则公平吗?②你能修改游戏规则吗?使游戏对双方公平。

3.小明和小刚玩扑克牌,谁先出牌呢?他们决定用转盘来确定谁先出牌。

请你利用上图为他们制订一个公平的游戏规则。

附加题。

(10分)在一副扑克牌中选出牌面数为4,5的扑克牌各两张,反扣在桌面上,和你的同桌一起做下面的游戏。

数学:4.1《游戏公平吗?》课件(北师大版七年级下)(2019年11月)

数学:4.1《游戏公平吗?》课件(北师大版七年级下)(2019年11月)

(2)当两枚骰子的点数之积为奇数 时,小刚得1分,否则小明得1分.这个 游戏对双方公平吗?为什么?
这个游戏对小刚不利,因为小刚获 胜的概率为 9 1 ,小明获胜的概率为
36 4 27 3 . 36 4
;月子中心 / 月子中心

国公 加光禄大夫 仍统本兵 化及意甚忌之 后数日 化及署诸将 分配士卒 乃以德戡为礼部尚书 外示美迁 实夺其兵也 由是怀怨 所获赏物皆赂于智及 智及为之言 行至徐州 舍舟登陆 令德戡将后军 乃与赵行枢 李孝本 尹正卿 宇文导师等谋袭化及 遣人使于孟海公 结为外助 迁延未发 以待使报 许 弘仁 张恺知之 以告化及 因遣其弟士及阳为游猎 至于后军 德戡不知事露 出营参谒 因命执之 并其党与 化及责之曰 "与公戮力共定海内 出于万死 今始事成 愿得同守富贵 公又何为反也?"德戡曰 "本杀昏主 苦其毒害 立足下而又甚之 逼于物情 不获已也 "化及不对 命送至幕下 缢而杀之 裴虔 通 河东人 初 炀帝为晋王 以亲信从 稍迁至监门校尉 帝即位 擢旧左右 授宣惠尉 累从征役 至通议大夫 与司马德戡同谋作乱 先开宫门 骑至成象殿 杀将军独孤盛 执帝于西閤 化及以虔通为光禄大夫 莒国公 化及引兵之北也 令镇徐州 化及败后 归于大唐 即授徐州总管 转辰州刺史 封长蛇男 寻 以隋朝弑逆之罪 除名 徙于岭表而死 王世充 字行满 本西域胡人也 祖支颓褥 徙居新丰 颓褥死 其妻少寡 与仪同王粲野合 生子曰琼 粲遂纳之以为小妻 其父收幼孤 随母嫁粲 粲爱而养焉 因姓王氏 官至怀 汴二州长史 世充卷发豺声 沉猜多诡诈 颇窥书传 尤好兵法 晓龟策推步盈虚 然未尝为人言 也 开皇中 为左翊卫 后以军功拜仪同 授兵部员外郎 善敷奏 明习法律 而舞弄文墨 高下在心 或有驳难之者 世充利口饰非 辞义锋起 从虽知其否而莫能屈 称为明辩 炀帝世 累迁至江都郡丞 时帝数幸江都 世充善候人主颜色 阿谀顺旨 每入言事 帝善之 又以郡丞领江都宫监 乃雕饰池台 阴奏远方 珍物 以媚于帝 由是益昵之 大业八年 隋始乱 世充内怀徼幸 卑身礼士 阴结豪俊 多收众心 江淮间人素轻薄 又属贼盗群起 人多犯法 有系狱抵罪者 世充枉法出之 以树私恩 及杨玄感反 吴人朱燮 晋陵人管崇起兵江南以应之 自称将军 拥众十余万 帝遣将军吐万绪 鱼俱罗讨之 不能克 世充募江都 万余人 击频破之 每有克捷 必归功于下 所获军实 皆推与士卒 身无所取 由此人争为用 功最居多 十年 齐郡贼帅孟让自长白山寇掠诸郡 至盱眙 有众十余万 世充以兵拒之 而羸师示弱 保都梁山为五栅 相持不战 后因其懈驰 出兵奋击 大破之 乘胜尽灭诸贼 让以数十骑遁去 斩首万人 六畜军资 莫 不尽获 帝以世充有将帅才略 始遣领兵 讨诸小盗 所向破之 然性多矫伪 诈为善 能自勤苦 以求声誉 十一年 突厥围帝于雁门 世充尽发江都人往赴难 在军中 垢面悲泣 晓夜不解甲 藉草而坐 帝闻之 以为爱己 益信任之 十二年 迁为江都通守 时厌次人格谦为盗数年 兵十余万 在豆子〈卤亢〉中 世 充破斩之 威振群贼 又击卢明月 破之于南阳 后还江都 帝大悦 自执杯酒以赐之 时世充又知帝好内 乃言江淮良家多有 愿备后庭 无由自进 帝愈喜 因密令世充阅观诸女 资质端丽合法相者 取正库及应入京物以聘纳之 所用不可胜计 帐上所司云敕别用 不显其实 有合意者 则厚赏世充 或不中者 又 以赉之 后令以船送东京 而道路贼起 使者苦役 于淮泗中沉船溺杀之者 前后十数 或有发露 世充为秘之 又遽简阅以供进 是后益见亲昵 遇李密攻陷兴洛仓 进逼东都 官军数败 光禄大夫裴仁基以武牢降于密 帝恶之 大发兵 将讨焉 特发中诏遣世充为将 军于洛口以拒密 前后百余战 互有胜负 世充 乃引军度洛水 逼仓城 李密与战 世充败绩 赴水溺死者万余人 时天寒 大雨雪 兵既度水 衣皆沾湿 在道冻死者又数万人 比至河阳 才以千数 世充自系狱请罪 越王侗遣使赦之 召令还都 收合亡散 屯于含嘉城中 不敢复出 宇文化及杀帝于江都 世充与太府卿元文都 将军皇甫无逸 右司郎卢楚奉侗为 主 侗以世充为吏部尚书 封郑国公 及侗用元文都 卢楚之谋 拜李密为太尉 尚书令 密遂称臣 复以兵拒化及于黎阳 遣使献捷 众皆悦 世充独谓其麾下诸将曰 "文都之辈 刀笔吏耳 吾观其势 必为李密所禽 且吾军人马每与密战 杀其父兄子弟 前后已多 一旦为之下 吾属无类矣 "出此言以激怒其众 文 都知而大惧 与楚等谋 将因世充入内 伏甲而杀之 期有日矣 将军段达遣女婿张志以楚等谋告之 世充夜勒兵围宫城 将军费曜 田世阇等与战于东太阳门外 曜军败 世充遂攻门而入 无逸以单骑遁走 获楚 杀之 时宫门尚闭 世充遣人扣门言于侗曰 "元文都等欲执皇帝降于李密 段达知而以告臣 臣非敢 反 诛反者耳 "文都闻变 入奉侗于乾阳殿 陈兵卫之 令将帅乘城以拒难 兵败 侗命开门以纳世充 世充悉遣人代宿卫者 明日入谒 顿首流涕而言曰 "文都等无状 谋相屠害 事急为此 不敢背国 "侗与之盟 世充寻遣韦节等讽侗 命拜为尚书左仆射 总督内外诸军事 又授其兄惲为内史令 入居禁中 未几 李密破化及还 其劲兵良马多战死 士卒皆倦 世充欲乘其弊而击之 恐人心不一 乃假托鬼神 言梦见周公 乃立祠于洛水之上 遣巫宣言周公欲令仆射急讨李密 当有大功 不则兵皆疫死 世充兵多楚人 俗信妖妄 故出此言以惑之 众皆请战 世充简练精勇得二万余人 马千余匹 营洛水南 密军偃师北山上 时密新得志于化及 有轻世充之心 不设壁垒 世充遣二百余骑 潜入北山 伏溪谷中 令军秣马蓐食 既而宵济 人马奔驰 比明而薄密 密出兵应之 阵未成列而两军合战 其伏兵蔽山而上 潜登北原 乘高而下 压密营 营中乱 无能拒者 即入纵火 密军大惊而溃 降其将张童儿 陈智略 进下偃师 初 世充兄伟 及子玄应隋化及至东郡 密得而囚之于城中 至是 尽获之 又执密长史邴元真妻子 司马郑虔象之母及诸将子弟 皆抚慰之 各令潜呼其父兄 兵次洛口 元真 郑虔象等举仓城以应之 密以数十骑遁逸 世充收其众而还 东尽于海 南至于江 悉来归附 世充又令韦节讽侗 拜己为太尉 置署官属 以尚书省为其 府 寻自称郑王 遣其将高略帅师攻寿安 不利而旋 又帅师攻围谷州 三日而退 明年 自称相国 受九锡 备法物 是后不朝侗矣 有道士桓法嗣者 自言解图谶 世充昵之 法嗣乃上《孔子闭房记》 画作丈夫持一干以驱羊 法嗣云 "杨 隋姓也 干一者 王字也 王居杨后 明相国代隋为帝也 "又取《庄子人间 世》 《德充符》二篇上之 法嗣释曰 "上篇言世 下篇言充 此则相国名矣 当德被人间 而应符命为天子也 "世充大悦曰 "此天命也 "再拜受之 即以法嗣为谏议大夫 世充又罗取杂鸟 书帛系其颈 自言符命而散之于空 或有弹射得鸟而来献者 亦拜官爵 既而废侗 阴杀之 僣即皇帝位 建元曰开明 国号 郑 大唐太宗帅师围之 世充频出兵 战辄不利 诸城相继降款 世充窘迫 遣使请救于窦建德 建德率兵援之 至武牢 太宗破之 禽建德以诣城下 世充将溃围而出 诸将莫有应之者 于是出降 至长安 为仇家所杀 段达 武威姑臧人 父岩 周朔州刺史 达在周 年始三岁 袭爵襄坦县公 及长 身长八尺 美须髯 便弓马 隋文帝为丞相 以为大都督 领亲信兵 常置左右 及践祚 为左直斋 迁车骑将军 督晋王府军事 以击高智慧功 授上仪同 又破汪文进等 加开府 仁寿初 为太子左卫副率 大业初 以藩邸之旧 拜左翊卫将军 从征吐谷浑 进位金紫光禄大夫 帝征辽东 平原郝孝德 清河张金称等并起为盗 帝令达击 之 数为金称等所挫 诸贼轻之 号为段姥 后用鄃令杨善会谋 更与贼战 方致克捷 还京师 以公事坐免 明年 帝征辽东 使达留守涿郡 俄复拜左翊卫将军 高阳魏刀儿聚众 自号历山飞 寇掠燕 赵 达率涿郡通守郭绚击败之 时盗贼既多 达不能因机决胜 唯持重自守 时人皆谓之为怯懦 十二年 帝幸江都 宫 诏达与太府卿元文都等留守东都 李密纵兵侵掠城下 达与监门郎将庞玉 武牙郎将霍世举御之 以功迁左骁卫大将军 王世充之败也 密进据北芒 来薄上春门 达与判户部尚书韦津拒之 达见贼 不阵而走 军大溃 津没于密 及帝崩于江都 达与文都等推越王侗为主 署开府仪同三司 兼纳言 陈国公 元 文都等之谋诛王世充 达预焉 既而阴告世充 达为之内应 及事发 迫越王送文都于世充 世充甚德于达 既破李密 讽越王禅让 世充僣号 以达为司徒 及东都平 坐斩 妻子籍没 论曰 宇文述便辟足恭 柔颜取悦 君所谓可 亦曰可焉 君所谓不 亦曰不焉 无所是非 不能轻重 默默苟容 偷安高位 甘素餐之 责 受彼己之讥 此固君子所不为 亦丘明之深耻 化及以此下才 负恩累叶 时逢崩拆 不能竭命 乃因利乘便 先图干纪 率群不逞 职为乱阶 扰本塞源 裂冠毁冕 衅深指鹿 事切食蹯 天地所不容 人神所同愤矣 世充头筲小器 遭逢时幸 与蒙奖擢 礼越旧臣 而躬为戎首 亲行鸠毒 竟而蛇豕丑类 继踵诛夷 枭獍凶魁 相寻菹戮 垂炯戒于来叶 快忠义于当年 为人臣者 可无殷鉴哉 《北史》 唐·李延寿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章概率
1.游戏公平吗
一、根据下列事件发生的可能性,把A、B、C、D、E填入事件后的括号里.
1.3个人下棋,必定有一个是旁观者.( )
2.任意一张扑克牌,一定是红桃.( )
3.白天一定能见到太阳.( )
4.你能举起300公斤的重物.( )
5.任意抓一把围棋子,个数是奇数.( )
A.不可能发生
B.发生的可能性小于50%
C.发生的可能性大于50%
D.必然发生100%
E.发生的可能性等于50%
二、小新和小丁想利用做一道数字题来决定谁去看球赛,他们叫老师给他们出一道题,若小新先做出来小新就去,若小丁先做出小丁就去.这个游戏对双方公平吗?
三、初一(一)班班长重新选举,小梁和小栋都想被当选,于是全班55人进行投票选举,谁的选票多谁当选.这对双方公平吗?
四、小璐和小丽都想去参加一项重要的比赛,但只有一个名额.于是他们决定抓阄,一张写着ye s,一张写着no,抓住ye s的就去,抓住no的就不去.这对双方公平吗?
五、选做题
小阳和小鸣掷一对骰子,如果小阳掷出的骰子点数之和为6,则加1分,否则不得分;如果小鸣掷出的点数之和为7,则加1分;否则不得分.他们各掷20次,记录每次得分,20次累计分高的为胜,这个游戏对小阳和小鸣双方公平吗?说明你的理由,和同桌交流.
参考答案
1.游戏公平吗
一、1.D 2.B 3.C 4.A 5.E
二、不一定公平
三、不一定公平
四、公平
五、不公平,理由略。

相关文档
最新文档