2017-2018学年中考数学专题题型复习05:解直角三角形的实际应用
2018中考数学解直角三角形(在实际问题中的运用-含答案)
DABCEF解直角三角形在实际问题中的运用要点一:锐角三角函数的基本概念1。
(·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0。
5 m 的速度下降, 则经过多长时间才能将水排干?2。
(綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.3、(宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.OECD4、(肇庆中考)在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值。
5、(·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题 1.(·钦州中考)sin30°的值为( )A 3B 2C .12D 3 2.(长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,B 的坐标为( )A .(21),B .2),C .211),D .(121),3。
(定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米 4.宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80 5。
中考总复习--解直角三角形的实际应用
中考总复习解直角三角形的实际应用【复习要点】解直角三角形在中考中一宜占有一左比例,有关题型亮相也比较新颖,着重考查学生的基础知识和基本能力•中考要求及命题趋势:1.理解锐角三角形的三角函数值的槪念:2.会由已知锐角求它的三角函数,由已知三角函数值求它对应的锐角:3.会运用三角函数解决与直角三角形有关的简单实际问题.应试对策1•要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值:2掌握根据已知条件解直角三角形的方法,运用解直角三角形的知识解决实际问题具体做到:①了解某些实际问题中的仰角、俯角、坡度等概念;②将实际问题转化为数学问题,建立数学模型;③涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题.【复习流程】一•自我检测激活旧知1.回忆表格,求AB的长.BA.12B.4^3XC.5馅米D.6馅米二.归纳整理形成网络1. 仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.2. 俯角:视线在水平线下方的角叫做俯角.3. 坡度:坡面的铅直高度h和水平宽度1的比叫做坡面的坡度(或坡比),记作1= _____________ .4. 坡角:坡面与水平面的夹角叫做坡角,记作a・i = tana ,坡度越大,ci角越大,坡面越陡.5. 方位角:指北或指南方向线与U标方向线所成的小于90°的角叫做方位角. 注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45。
方向.我们一般画图的方位为上北下南,左西右东・三.明确考纲了解中考C等级近儿年都以解答题为主,预测2017年中考,也会延续近五年的趋势,考一个解答题四•讲练结合感受方法1.(2010安徽)如图,若河岸的两边平行,河宽为900m, 一只船山河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5m/s,求船从A处到B 处约需时间儿分(参考数据:)分归解决题的关键是求岀A啲长何过昨河对岸的垂些,在构犀的言角三角形中,很书河岸的竞度即嗣与河岸的夹角’通过解直角三角形求出AB的长r进而根押捐二路程•頤得出结果■ 解答:"•〜〜卜牛•八. 严解:如图「囲B作BC垂亘于河岸f垂足为C .C A在RaACB中r有:_ BC 930 r-A吐拓万正=600^ ••讥=^^=2乐玄4(分).閲船从A处到B处约需3,4分・点谱.•应用问题尽管题型千变万化’但关键是设法化归为解直甬三角形问题”必要时应添加辅助线,构造出直角三角形•3. (2008-安徽)如图,小明站在A处放风筝,风筝飞到C处时的线长为20米, 这时测得ZCBD二60°,若牵引底端B离地面米,求此时风筝离地面高度.(计算分析:山题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.解答:解:在RtABCD 中,CD二BCXsin60° =20X =10乂 DE二AB二,・•・ CE 二CD+DE 二CD+AB 二10+~答:此时风筝离地面的高度约是米.点评:本题考查直角三角形知识在解决实际问题中的应用.5类型二构造双直角三角形1 •辅助线在三角形外(母子型)3.如图,河的两岸11与12相互平行,A、B是11上的两点,C、D是12上的两点,某人在点A处测得ZCAB二90° , ZDAB二30°,再沿AB方向前进20米到达点 E (点E在线段AB±),测得ZDEB二60°,求C、D两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE二AE二20,进而求出EF的长, 再得出四边形ACDF为矩形,则CD二AF二AE+EF求出答案.【解答】解:过点D作11的垂线,垂足为F,TZDEB二60° , ZDAB二30° ,・•・ ZADE二ZDEB ・ ZDAB二30° ,•••△ADE为等腰三角形,・・・DE二AE二20,在RtADEF 中,EF=DE*cos60° =20X =10 (m)VDF±AF,・・・ZDFB二90° ,・・・AC〃DF,由已知11/712,ACD/7AF,・•・四边形ACDF为矩形,CD二AF二AE+EF二30, 答:C、D两点间的距离为30m・4. (2016临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P南偏西45方向上的B处(参考数据:结果精确到)22. 过点 P 作 PCI AB.交 AB 的SicftTAC龙中.ZXCPS904, ZXPCwfitr, M=20.PC JC • c«6O°^2O^-«IO. ... ........ ......... . BB”C ■刃• sin60%20况・ ............. 4 分(f.Rl^BCP 屮 ZBC? = 90\ ZW-4$G............ZUB s AC ・BC M K)J5・IO*IOX|.?32-IO*73.ft :轮給向东啟行约7.3 WIH 达位下灯圻P mte?5用方向上的B 处7 i5. (2013安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD 〃BC, a 二60° , 汛期来临前对其进行了加固,改造后的背水面坡角B 二45。
中考数学专题复习题型五 解直角三角的实际应用课件
【分析】利用三角函数关系求出AN的长,再由AB=AN+NB求出塔高AB即可.
x≈33.9, 故AN=33.9×1+1.5≈60.2(m), 答:古塔AB的高度约为60.2 m.
≈0.82,解得:AB=18.2≈18(米).
答:旗杆AB的高度约为18米.
4. (2018· 成都)由我国完全自主设计、自主建造的首艘国产航母于2018 年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到 达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海 里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方 向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距 离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34, tan70°≈ 2.75,sin37°≈0.60,cos37°≈0.80, tan37°≈0.75)
∴AB=10.02×FD=10.02×1.8=18.036≈18(米). 答:旗杆AB的高度约为18米;
解法二: 如解图,作FG⊥AB于点G,AG=AB-GB=AB-FD=AB-1.8, 由题意知:△ABE和△FDE均为等腰直角三角形, ∴AB=BE,DE=FD=1.8, ∴FG=DB=DE+BE=AB+1.8. 在Rt△AFG中, 即 AG =tan∠AFG=tan39.3°, FG
题型五 解直角三角的实际应用
例 (兰州模拟)如图,小刚为测量一古塔AB的高度, 他先在点D处用高1.5 m的测角仪CD测得∠ACF= 35°,然后沿DE方向前行50 m到达点E处,在点E处 用高1.5米的测角仪EF测得∠AFG=60°,请求古塔 AB的高度?(结果精确到0.1 m)(参考数据: sin35°≈0.574,cos35°≈0.819,tan35°≈0.732)
九江市中考数学专题题型复习05:解直角三角形的实际应用
九江市中考数学专题题型复习05:解直角三角形的实际应用姓名:________ 班级:________ 成绩:________一、解答题 (共13题;共70分)1. (5分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)2. (5分)(2017·全椒模拟) 要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD 的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)3. (5分)如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB 的高度.(坡度为铅直高度与水平宽度的比)4. (5分)(2016·福田模拟) 2016年2月18日韩国海军海警在朝鲜半岛东部海域实施联合演习,在返回济州岛军事基地途中,韩国海军UH﹣60直升机在距海平面垂直高度为300米的点C处测得济州一小岛的西端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了3500米,在点D测得这小岛的东端点B的俯角为45°,求这个济州小岛东西两端BA的距离(结果精确到1米,参考数据:≈1.732,≈1.414)5. (10分)(2017·临沭模拟) 热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.6. (5分)(2017·鄞州模拟) 如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果保留根号)7. (5分)(2016·张家界模拟) 如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的倾斜角∠ACB为30°,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).8. (5分)(2018·金华模拟) 如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.( , , , ,结果精确到0.1m)9. (5分)(2019·鄂尔多斯模拟) 如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA =45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).10. (5分)一段路基的横断面是直角梯形,如图1所示,已知原来坡面的坡角α的正弦值为0.6.(1)求DC的长.(2)现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如图2所示的技术要求,试求出改造后坡面的坡角是多少?(精确到0.1度)11. (5分)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)12. (5分)(2016·河南模拟) 如图所示,某教学活动小组选定测量山顶铁塔AE的高,他们在30m高的楼CD的底部点D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.若小山高BE=62m,楼的底部D 与山脚在同一水平面上,求铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)13. (5分)(2017·天山模拟) 从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)二、综合题 (共5题;共50分)14. (10分)(2019·花都模拟) 如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°,已知原传送带AB长为3 米(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2.5米的通道,请判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(参考数据:≈1.4,≈1.7.)15. (10分)(2017·靖江模拟) 政府为开发“江心岛O”,从仓储D处调集物资,计划先用汽车运到与D在同一直线上的C,B,A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°,CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,(1)求B、C两个码头之间的距离;(2)这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).16. (10分)(2018·遵义模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥C G,问建筑物GH高为多少米?17. (10分) (2018九上·惠山期中) 阅读下面材料,完成后面题目.0°-360°间的角的三角函数在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC,∠A是锐角,那么sinA= ,cosA= ,tanA= ,cotA=为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:设有一个角α,我们以它的顶点作为原点,以它的始边作为x轴的正半轴ox,建立直角坐标系(图2),在角α的终边上任取一点P,它的横坐标是x,纵坐标是y,点P和原点(0,0)的距离为r= (r总是正的),然后把角α的三角函数规定为:sinα= ,cosα= ,tanα= ,cotα=我们知道,图1的四个比值的大小与角A的大小有关,而与直角三角形的大小无关,同样图2中四个比值的大小也仅与角α的大小有关,而与点P在角α的终边位置无关.比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题.(1)若90°<α<180°,则角α的三角函数值sinα、cosα、tanα、cotα,其中取正值的是哪几个?(2)若角α的终边与直线y=2x重合,求sinα+cosα的值.(3)若角α是钝角,其终边上一点P(x,),且cosα= x,求tanα的值.(4)若0°≤α≤90°,求sinα+cosα的取值范围.18. (10分) (2016九上·广饶期中) 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60°.(1)求小山的高度;(2)求铁架的高度.(≈1.73,精确到0.1米)参考答案一、解答题 (共13题;共70分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、综合题 (共5题;共50分) 14-1、14-2、15-1、15-2、16-1、16-2、17-1、17-2、17-3、17-4、18-1、18-2、第21 页共21 页。
专题训练 解直角三角形的实际应用
题型专项(六)解直角三角形的实际应用历年来解直角三角形的实际应用在云南各地的中考中都有考查,几乎都以解答题的形式出现.解题的一般步骤为:画出平面图形,将实际问题转化为解直角三角形的数学问题,即根据条件特征,选用勾股定理或适当的三角函数解直角三角形,得出数学问题的答案,然后作答(回归实际问题).模型1 单一直角三角形1.(2019·昆明西山区二模)如图是云梯升降车示意图,其点A 位置固定,AC 可伸缩且可绕点A 转动,已知点A 距离地面BD 的高度AH 为3.4米.当AC 长度为9米,张角∠HAC 为119°时,求云梯升降车最高点C 距离地面的高度.(结果保留一位小数,参考数据:sin29°≈0.48,cos29°≈0.87,tan29°≈0.55)解:过点C 作CE ⊥BD 于点E ,过点A 作AF ⊥CE 于点F ,易得四边形AHEF 为矩形.∴EF =AH =3.4 m ,∠HAF =90°.∴∠CAF =∠CAH -∠HAF =119°-90°=29°.在Rt △ACF 中,∵sin ∠CAF =CF AC, ∴CF =9×sin29°≈9×0.48=4.32.∴CE =CF +EF =4.32+3.4≈7.7(m ).答:云梯升降车最高点C 距离地面的高度约为7.7 m.模型2 背靠背型及其变式2.(2019·十堰)如图,拦水坝的横断面为梯形ABCD ,AD =3 m ,坝高AE =DF =6 m ,坡角α=45°,β=30°,求BC 的长.解:由题意知四边形AEFD 是矩形.∴AD =EF =3.∵α=45°,β=30°,∴BE =AE =6,CF =3DF =6 3.∴BC =BE +EF +CF =6+3+63=9+6 3.答:BC 的长为(9+63)m.3.(2019·昆明官渡区二模)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需经B 地绕行,已知B 地位于A 地北偏东67°方向,距A 地390 km ,C 地位于B 地南偏东30°方向.若打通穿山隧道,建成两地直达公路,求公路AC 的长(结果保留整数).(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,3≈1.73)解:过点B 作BD ⊥AC 于点D.在Rt △ABD 中,∠ABD =67°,AB =390 km ,∴AD =AB ·sin67°≈390×1213=360(km ), BD =AB ·cos67°≈390×513=150(km ). 在Rt △BDC 中,∠CBD =30°,∴CD =BD ·tan30°=150×33=503(km ). ∴AC =AD +CD =360+503≈447(km ).答:公路AC 的长约为447 km.4.(2019·新疆)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处.(1)求海轮从A 处到B 处的途中与灯塔P 之间的最短距离(结果保留根号);(2)若海轮以每小时30海里的速度从A 处到B 处,试判断海轮能否在5小时内到达B 处?并说明理由.(参考数据:2≈1.41,3≈1.73,6≈2.45)解:(1)过点P作PC⊥AB,垂足为C.由题意,得∠APC=45°,AP=80.在Rt△APC中,PC=AP·cos45°=40 2.∴海轮从A处到B处的途中与灯塔P之间的最短距离为402海里.(2)由题意得,∠CPB=60°.在Rt△PCB中,BC=PC·tan60°=40 6.在Rt△APC中,AC=AP·sin45°=40 2.∴AB=AC+BC=402+406≈154.4.∵154.430≈5.15>5,∴海轮不能在5小时内到达B处.模型3 母子型及其变式5.(2019·昆明五华区模拟)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:2≈1.414,3≈1.732)解:过点C作CD⊥AB于点D.根据题意,得∠CAD=30°,∠CBD=45°.在Rt △ACD 中,AD =CD tan30°=3CD. 在Rt △BCD 中,BD =CD tan45°=CD. ∵AB =AD -BD ,∴3CD -CD =2,解得CD =3+1≈2.732>2.5.答:渔船继续追赶鱼群没有触礁危险.6.(2019·昆明十县区一模)如图,线段AB ,DC 分别表示甲、乙两建筑物的高,AB ⊥BC 于点B ,DC ⊥BC 于点C ,从点C 测得A 点的仰角α为60°,从D 点测得A 点的仰角β为30°,已知乙建筑物高DC =30 m ,求甲建筑物的高AB.解:过点D 作DE ⊥AB 于点E.由题意得,∠ACB =60°,∠ADE =30°,DE =BC ,BE =DC =30.在Rt △ACB 中,tan ∠ACB =AB BC,则AB =BC ·tan ∠ACB =3BC. 同理,AE =BC ·tan ∠ADE =33BC. 则3BC -33BC =30, 解得BC =15 3.∴AB =3BC =45.答:甲建筑物的高AB 为45 m.7.(2019·昆明五华区二模)如图,AB 是长为10 m ,倾斜角为30°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数,参考数据:sin65°≈0.91,tan65°≈2.14)解:过点B作BF⊥AE于点F,则BF=DE.在Rt△ABF中,sin∠BAF=BFAB,则BF=AB·sin∠BAF=10×12=5(m).在Rt△CDB中,tan∠CBD=CDBD,则CD=BD·tan65°≈10×2.14≈21(m).∴CE=DE+CD=BF+CD=5+21=26(m).答:大楼CE的高度大约是26 m.。
数学人教版九年级下册中考专项复习《解直角三角形的实际应用》
课题:中考专项复习《解直角三角形的实际应用》
一、学情分析:
知识点分析:解直角三角形的实际应用在中考中是重点内容,而且是必拿分的内容,占据十分重要的地位。
学生分析:学生此时处于中考总复习的阶段,对知识点的掌握比较熟练,因此此时的重点是方法的总结。
二、教学目标:
1、使学生了解解直角三角形实际应用的意义,并掌握解决问题的能力;
2、是学生熟练掌握将实际问题转化为解直角三角形问题的方法;
3、体验数学思想(方程思想和数形结合思想)在解直角三角形中的魅力。
三.教学的重点与难点:
教学重点:将实际问题转化为解直角三角形问题。
教学难点:将实际问题中的数量关系如何转化为直角三角形中元素间关系进行解题的思想方法。
四、教学方法:自主探究法
五、教学辅助:多媒体
六.教学过程:
E
在实际测量高度、宽度、距离等问题中,常结合相关知1.
2.如图,从热气球
角分别为30°,45°
E
D
D 4、
构造直角三角形,解直角三角形。
中考数学专题复习——解直角三角形的实际应用的基本类型课件
) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a
中考数学专题复习之 解直角三角形及其应用 课件
3.(2020·怀化)如图,某数学兴趣小组为测量一 棵古树的高度,在 A 点处测得古树顶端 D 的仰角为 30°,然后向古树底端 C 步行 20 米到达点 B 处,测 得古树顶端 D 的仰角为 45°,且点 A、B、C 在同 一直线上,求古树 CD 的高度.(已知: 2≈1.414,
3≈1.732,结果保留整数)
解:过点 C 作 CD⊥AB,垂足为 D.如图所示:
根据题意可知∠BAC=90°-60°=30°, ∠DBC=90°-30°=60°, ∵∠DBC=∠ACB+∠BAC, ∴∠BAC=30°=∠ACB,∴BC=AB=60 km,
∵在 Rt△BCD 中,∠CDB=90°,∠DBC=
60°,
sin ∠DBC=CBDC,∴sin 60°=C6D0 ,
解:由题意可知,AB=20 米,∠DAB=30°, ∠C=90°,∠DBC=45°,
∵△BCD 是等腰直角三角形,∴CB=CD, 设 CD=x,则 BC=x,AC=20+x, 在 Rt△ACD 中, tan 30°=CCDA=ABC+DCB=20x+x= 33,
解 得 x = 10 3 + 10≈10×1.732 + 10 = 27.32≈27,
即 CD=27 米,
答:古树 CD 的高度为 27 米.
4.(2020·德州)如图,无人机在离地面 60 米的 C 处,观测楼房顶部 B 的俯角为 30°,观测楼房底部 A 的俯角为 60°,求楼房的高度.
解:过 B 作 BE⊥CD 交 CD 于 E,
由题意得∠CBE=30°,∠CAD=60°, ∵在 Rt△ACD 中,
∴ CD = 60×sin
60 ° = 60×
3 2
=
30
3
(km)>47 km,
【中考数学】2018题型专项(五) 解直角三角形的实际应用
题型专项(五) 解直角三角形的实际应用解直角三角形的实际应用历年来在云南各地的中考中都有考查,几乎都以解答题的形式出现,主要有两种类型:一是利用视角测量长度(高度),二是利用方向角测量距离.解题的一般步骤为:画出平面图形,将实际问题转化为解直角三角形的数学问题,即根据条件特征,选用勾股定理或适当的三角函数解直角三角形,得出数学问题的答案,然后作答(回归实际问题).预计2018年仍会有考查,复习时应加强训练.类型1 利用视角测量长度(高度) 1.(2017·普洱市思茅三中一模)如图所示,某中学九年级数学兴趣小组测量校内旗杆AB 的高度,在C 点测得旗杆顶端A 的仰角∠BCA =30°,向前走了20米到达D 点,在D 点测得旗杆顶端A 的仰角∠BDA =60°,求旗杆AB 的高度.(结果精确到0.1,参考数据:2≈1.414,3≈1.732)解:∵∠C =30°,∠ADB =60°,∴∠DAC =30°. ∴AD =CD.∵CD =20米,∴AD =20米. 在Rt △ADB 中, sin ∠ADB =AB AD, 则AB =20×32=103≈17.3(米). 答:旗杆AB 的高度约为17.3米.2.(2017·曲靖市罗平县三模)如图,小颖在教学楼四楼上,每层楼高均为3米,测得目高1.5米,看到校园里的圆形花园最近点的俯角为60°,最远点的俯角为30°,请你帮小颖算出圆形花园的面积是多少平方米?(结果保留1位小数,参考数据:3≈1.7,2≈1.4,π≈3.14)解:∵每层楼高均为3米,测得目高1.5米, ∴CD =3×3+1.5 =10.5(米).∵最远点的俯角为30°,∴∠CAD =30°. ∴tan 30°=CD AD .∴AD =33CD =3CD. ∵∠CBD =60°,∴tan 60°=CDBD .∴BD =13CD =33CD.∴AB =AD -BD =(3-33)×10.5=73(米).∴S =(732)2π≈115.4(平方米).答:圆形花园的面积是115.4平方米.3.(2017·昆明市官渡区二模)如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面所成的角∠CED =60°,在离电线杆6米的B 处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长.(结果精确到0.1米,参考数据:2≈1.414,3≈1.732)解:过点A 作AH ⊥CD ,垂足为H.由题意可知四边形ABDH 为矩形,∠CAH =30°, ∴DH =AB =1.5,AH =BD =6. 在Rt △ACH 中,tan ∠CAH =CH AH, ∴CH =AH·tan ∠CAH =6tan 30°=6×33=2 3. ∵DH =1.5,∴CD =23+1.5.在Rt △CDE 中,∵∠CED =60°,sin ∠CED =CD CE ,∴CE =CDsin 60°=4+3≈5.7(米).答:拉线CE 的长约为5.7米.类型2 方位角问题 4.(2017·云南考试说明)如图,A ,B 两城市相距100 km ,现计划在这两座城市之间修建一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°,在B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内.请问计划修建的这条高速公路会不会穿越保护区?为什么?(参考数据:3≈1.732,2≈1.414)解:过点P 作PC ⊥AB ,C 为垂足, 则∠APC =30°,∠BPC =45°. ∴AC =PC·tan 30°,BC =PC·tan 45°. ∵AC +BC =AB ,∴PC ·tan 30°+PC ·tan 45°=100. ∴(33+1)PC =100. ∴PC =50(3-3)≈63.4>50.∴森林保护区的中心与直线AB 的距离大于保护区的半径,因此计划修建的这条高速公路不会穿越保护区.5.(2017·乌鲁木齐)一艘渔船位于港口A 的北偏东60°方向,距离港口20海里B 处,它沿北偏西37°方向航行至C 处突然出现故障,在C 处等待救援,B ,C 之间的距离为10海里,救援艇从港口A 出发20分钟到达C 处,求救援艇的航行速度.(sin 37°≈0.6,cos 37°≈0.8,3≈1.732,结果取整数)解:作BD ⊥AD ,BE ⊥CE ,CF ⊥AF , 由题意知,∠FAB =60°,∠CBE =37°, ∴∠BAD =30°. 在Rt △ABD 中, ∵AB =20海里, ∴BD =10海里.∴AD =AB 2-BD 2=103≈17.32(海里).在Rt △BCE 中,sin 37°=CEBC ,∴CE =BC·sin 37°≈0.6×10=6(海里). ∵cos 37°=EBBC, ∴EB =BC·cos 37°≈0.8×10=8(海里). ∴EF =AD =17.32海里.∴FC =EF -CE =11.32海里, AF =ED =EB +BD =18海里. 在Rt △AFC 中,AC =AF 2+FC 2=182+11.322≈21.26(海里). ∴21.26×3≈64(海里/小时).(或21.26÷20≈1海里/分钟). 答:救援艇的航行速度是64海里1小时(1海里1分钟).类型3 其他实际问题 6.(2017·楚雄州永仁县一模)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD =60°,坡长AB =20 3 m ,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡角∠F =45°,求AF 的长度.(结果精确到1 m ,参考数据:2≈1.414,3≈1.732)解:过B 作BE ⊥DF 于E.Rt △ABE 中,AB =20 3 m ,∠BAE =60°, ∴BE =AB·sin 60°=203×32=30(m ),AE =AB·cos 60°=203×12=103(m ).在Rt △BEF 中,BE =30,∠F =45°, ∴EF =BE =30 m .∴AF =EF -AE =30-103≈13 m . 答:AF 的长约为13(m ).7.(2017·昆明市官渡区一模)如图,垂直于地面的灯柱AB 被一钢缆CD 固定,CD 与地面成45°夹角(∠CDB =45°);为了使灯柱更牢固,在C 点上方2米处再新加固另一条钢线ED ,ED 与地面成53°夹角(∠EDB =53°),求线段ED 的长.(结果精确到0.1米,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)解:设BD =x 米,则BC =x 米,BE =(x +2)米. 在Rt △BDE 中,tan ∠EDB =BE DB =x +2x, 即x +2x≈1.33,解得x ≈6.06. ∴BE =8.06. ∵sin ∠EDB =BE ED, ∴0.8=8.06ED ,解得ED ≈10.1.答:钢线ED 的长度约为10.1米.。
中考专题--解直角三角形的实际应用
解直角三角形的实际应用----锐角三角函数
考情分析:
解直角三角形的实际应用为河南中考的热点,重点,近十年的考试连续出现此种题型,2015年、2018年出现在第20题位置,2020年出现在第18题位置,其他年份出现在第19题,分值为9分,属于中档题型,为考生必须掌握且容易掌握题型。
必备知识:
一、解直角三角形的概念
二、特殊角的锐角三角函数值
三、根据三角函数名记忆三角函数的定义
四、审题重点及解题的思维逻辑
两种模型:
一、并列式
二、包含式
直面真题:
模型一
例题1.(2018年中考9分)
例题1.(2017年19题9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°
≈,tan53°≈,≈1.41)
练习1.(2014年19题9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B 测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)
练习2.(2015年20题9分)。
解直角三角形的实际应用(复习)
解直角三角形的实际应用【中考地位】解直角三角形及其应用在中考中主要考查直角三角形的边角函数关系进行有关计算;了解测量中的概念,并能灵活应用相关知识解决某些实际问题,而在将实际问题转化为直角三角形问题时,怎样合理构造直角三角形以及如何正确选用直角三角形的边角函数关系是本节难点,也是中考的热点。
近几年出现在黄石中考数学试题第22题,分值8分,难度中等。
复习目标:1、理解直角三角形的边角函数关系,并正确运用其进行有关计算。
2、正确地建立解直角三角形的数学模型以及熟悉测量,航海,航空,•工程等实际问题中的常用概念是解决这类问题的关键。
注意:(1)准确理解几个概念:①仰角,俯角;②坡角;③坡度;④方位角.(2)将实际问题抽象为数学问题的关键是画出符合题意的图形.(3)在一些问题中要根据需要添加辅助线,构造出直角三角形.重难点:1、根据实际问题构建直角三角形,分析边角关系。
2、正确利用直角三角形的边角函数关系式解决实际问题。
复习过程:一,回顾热身如图,一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A处测得小岛C在船北偏东60°的方向上;40min后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上,已知以小岛C为中心,12海里为半径的范围内是多暗礁的危险区.这艘渔船如果继续向东追赶鱼群,有没有进入危险区的可能?二、例题选讲如图,一艘渔船正以30海里/时的速度由北偏东30o方向追赶鱼群,在A处测得小岛C在船北偏东45°的方向上;40min 后,渔船行驶到B处,此时小岛C在船北偏东60°的方向上,同时鱼群在B处改向正东方向游走。
已知以小岛C为中心,12海里为半径的范围内是多暗礁的危险区.这艘渔船如果此时向东追赶鱼群,有没有进入危险区的可能?三、巩固练习如图、小明学完“解直角三角形的应用”后,欲测量教学楼前一棵小树的高度。
在台阶D处测得小树顶端A的仰角为30o,走下台阶至E处测得小树顶端的仰角为60o,已知台阶的高DC=1m,台阶DE的坡度为1:3(即DC:CE=1:3),求树AB 的高度。
中考专题复习拓展题型解直角三角形的实际应用
中考专题复习拓展题型解直角三角形的实际应用例1小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.例2钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)例3一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)例4.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD 的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).例5.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)例6.如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)例7海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)例8为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)拓展练习:1.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为( )A .50 B .51 C .50+1 D .1011题图 2题图 4题图2.如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC=1200m ,从飞机上看地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( )A .1200mB .1200mC .1200mD .2400m3.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( ) A . B . C . D .4.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器).5.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN 限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)6.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 出测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,DA=6.求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)7.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC ,椅面宽为BE ,椅脚高为ED ,且AC ⊥BE ,AC ⊥CD ,AC ∥ED .从点A 测得点D 、E 的俯角分别为64°和53°.已知ED=35cm ,求椅子高AC 约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)8.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).9.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米(结果精确到1米,参考数据≈1.4,到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.≈1.7)10.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.11.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)。
【中考数学】解直角三角形的应用
解直角三角形的实际应用,“盘它”解直角三角形的实际应用是历年中考的热点,其中大多会利用直角三角形解决和高度(或宽度)、航行、坡度及实物情景有关的问题,考查数学抽象、数学建模,落地核心素养.小伙伴们只要掌握了其中解题的技巧,这个分,咱们拿定了!“七嘴八舌”说考情陕西:我们10年考了4次,都是在第20题解答题,考锐角三角函数的实际应用,涉及方位角、俯仰角,均为一个特殊角、一个非特殊角,结果要精确.2019年根据中考说明变化,会考查两个特殊角,结果保留根号.河南:我们近10年仅2010年未考查,均在解答题的19题或20题考查,考查的模型有:背对背型,母子型,涉及的角度为一个特殊角和一个非特殊角,两个角都为特殊角和非特殊角,一个非特殊角.云南:我们是昆明必考题型,省卷近3年未考查,题型为解答题,背景涉及仰俯角、方向角、坡度坡角,设问为1问,多是求高度,长度,宽度,距离,涉及的角度有:两个特殊角,一个特殊角和一个非特殊角.安徽:我们是必考题型,题型为解答题,背景涉及仰俯角、夹角、坡角,设问为1问,多是求高度,长度,距离等,涉及的角度有:两个特殊角,一个特殊角和一个非特殊角.山西:我们在选填中考查了3次,解题时均需构造一个直角三角形来解决问题,解答题中需作一条或两条高线,构造出三个三角形或两个三角形和一个矩形,求得线段长,再利用线段和差进行求解.江西:我们把这类题叫做几何应用题,是江西近10年的必考题型,考查背景均与生活实际紧密相关,以从实物中抽象几何模型为主,涉及到的几何图形背景有直角三角形、特殊平行四边形、圆等,解题过程除用到锐角三角函数知识外,2012、2016年均可用相似知识解题,2010年考查的为相似的实际应用.说来说去还得练聚焦类型一利用直角三角形解决高度问题(建筑物或树高等)1.如图,在一个坡角为20°的斜坡上有一棵树,高为AB,当太阳光线与水平线成52°角时,测得该树在斜坡上的树影BC的长为10m,求树高AB(精确到0.1m).(已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280)第1题图解:如解图,过点C作CD⊥AB,交AB的延长线于点D,在Rt△BCD中,BC=10m,∠BCD=20°,∴CD=BC•cos20°≈10×0.940=9.40m,BD=BC•sin20°≈10×0.342=3.42m;在Rt△ACD中,CD≈9.40m,∠ACD=52°,∴AD=CD•tan52°≈9.40×1.280=12.032m,∴AB=AD-BD=12.032-3.42≈8.6m,答:树高约8.6米.第1题解图2.如图,亮亮在教学楼距水平地面5米高的窗口C处测得正前方旗杆顶部A点的仰角为45°,旗杆底部B点的俯角为30°,升旗时国旗上端悬挂在距地面2米处,若国旗随国歌冉冉升起,并在国歌播放45秒结束时到达旗杆顶端.(1)求旗杆AB的高度;(参考数据:2≈1.41,3≈1.73,精确到0.1米)(2)国旗应以多少米/秒的速度匀速上升?第2题图确作辅助线,构造直角三角形来进行求解.这就是典型的“背靠背型”.解:(1)如解图,过点C作CH⊥AB于点H.第2题解图在Rt △BCH 中,∵∠BCH =30°,BH =5米,∴CH =3BH =53(米),在Rt △ACH 中,∵∠ACH =45°,∴AH =HC =53(米),∴AB =AH +BH =5+53≈13.7(米).答:旗杆AB 的高度约为13.7米;(2)国旗上升的速度=452-7.13≈0.26(米/秒).答:国旗应以0.26米/秒的速度匀速上升.3.如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住.每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米.求居民楼的高度(精确到0.1米.参考数据:3≈1.73).第3题图解:设每层楼高为x 米,由题意得:MC ′=MC -CC ′=2.5-1.5=1米,∴DC ′=5x +1,EC ′=4x +1,在Rt △DC ′A ′中,∠DA′C ′=60°,这个图形,我们可以看出两个直角三角形中,两条直角边有公共部分,据此我们通过线段之间的和差关系解决问题.这就是典型的“拥抱型”.在Rt△EC′B′中,∠EB′C′=30°,∴C′B′='tan30EC°=3(4x+1),∵A′B′=C′B′-C′A′=AB,∴3(4x+1)-33(5x+1)=14,解得x≈3.18,则居民楼高约为5×3.18+2.5=18.4米.∴居民楼高度约为18.4米.4.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD =60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)第4题图解:如解图,过点D作DF⊥BC于点F,延长DE交AC于点G,则GC=DF,DG=FC,在Rt△BDF中,DF=BD·sinα=BD·sin32°≈60×0.53=31.8(米),BF=BD·cosα=BD·cos32°≈60×0.85=51(米),∴FC=BC-BF≈110-51=59(米),EG=DG-DE=FC-DE≈59-9=50(米).在Rt△AEG中,AG=EG·tanβ=EG·tan68°≈50×2.48=124(米),∴AC=AG+GC=AG+DF≈124+31.8=155.8(米).答:AC 的高度约为155.8米.第4题解图聚焦类型二利用直角三角形解决航行问题5.如图所示,某船向正东航行,在B 处望见某岛A 在北偏东60°,前进6海里到达C 处,测得该岛在北偏东30°.已知在该岛周围6海里内有暗礁,问该船继续向东航行,有无触礁的危险?请说明理由.第5题图解:如解图,过点A 作AD ⊥BC ,交BC 的延长线于点D .在Rt △ACD 中,CD =AD ·tan30°=33AD ,在Rt △ABD 中,BD =AD ·tan60°=3AD ,∵BD -CD =6海里,∴3AD -33AD =6,解得AD =33海里.∵33<6,在该船沿BC 向正东航行过程中,离点A 的最近距离是否大于6海里是解题关键,所以需要正确作出辅助线.这就是典型的“母子型”.∴该船继续向东航行有触礁的危险.第5题解图6.为了保证端午龙舟赛在某市一段水域顺利举办,某部门工作人员乘快艇到该水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB 由西向东行驶.在A 处测得岸边一建筑物P 在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P 在北偏西60°方向上,如图所示,求建筑物P 到赛道AB 的距离(结果保留根号).第6题图解:如解图,过点P 作PC ⊥AB 于点C ,由题意知∠PAC =60°,∠PBC =30°.在Rt △PAC 中,AC =33PC .在Rt △PBC 中,BC =3PC .∴AB =AC +BC =33PC +3PC =10×40=400,∴PC =1003,∴建筑物P 到赛道AB 的距离为1003米.要求点P 到赛道AB 的距离,即过点P 作垂线,其中已知线段AB 是关键.这就是典型的“背靠背型”.第6题解图聚焦类型三利用直角三角形解决坡度问题7.如图,水库大坝的横断面是梯形ABCD,其中AB∥CD,坝高20米,坡角α=45°,汛期来临前对其进行了加固,改造后的背水面坡度为1∶3,坝顶面加宽1米,求加固后坝底增加的宽度AF的长.(3≈1.732)第7题图解:如解图,过点D作DG⊥AB于G,过点E作EH⊥AB于H,在Rt△ADG中,∠DAG=45°,DG=20,∴AG=20,∵背水面EF的坡度为1∶3,EH=20,∴FH=203,∴AF=FH+HG-AG=203+1-20≈15.64,∴加固后坝底增加的宽度AF的长约为15.64米.第7题解图聚焦类型四利用直角三角形解决实物情景题8.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=43cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度;(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)第8题图解:(1)如解图,过点D作DH⊥BE于点H.在Rt△BDH中,∵∠DHB=90°,BD=43cm,∠ABC=30°,1BD=23cm,BH=3DH=6cm,∴DH=2∵AB=CB=20cm,AE=2cm,∴EH=20-2-6=12cm,∴在Rt△DEH中,由勾股定理得DE=239cm.第8题解图(2)在Rt △BDE 中,∵DE =239,BD =43,∠DBE =90°,∴BE =217cm ,∴这个过程中,点E 滑动的距离为(18-23)cm .专家密招赶紧看1.解题依据如图,在Rt △ABC 中,三边之间的关系:a 2+b 2=c 2(勾股定理)锐角之间的关系:∠A +∠B =90°边角之间的关系(锐角三角函数):sin A =c a ,cos A =c b ,tan A =b a2.基本图形(1)母子型图形分析:已知三角形中的两角(∠1和∠2)及其中一边,在三角形外作高BC ,构造两个直角三角形求解,公共边BC 是解题的关键.(2)背靠背型在基本图形的基础上,通过恰当地作高,构造直角三角形,而一个三角形有三条高,所以基本图形大都是直角三角形或直角三角形结合特殊四边形.图形分析:已知三角形中的两角(∠A 和∠B )及一边(AC 或BC ),在三角形内作高CD ,构造两个直角三角形求解,公共边CD是解题的关键.(3)拥抱型图形分析:单独解每个三角形,再利用线段的和差.(4)三角形+矩形模型图形分析:过较短的底AB作直角梯形的高BE ,构造矩形和直角三角形,先解直角三角形再利用线段和差求解.图形分析:过较短的底AD 作梯形的两条高AE 和DF ,构造一个矩形和两个直角三角形,先分别解两个直角三角形再利用线段和差求解.(5)实物情景模型此类问题需要构造直角三角形模型(特点类似前面几个类型),结合相关的几何知识进行求解.小编说:这些基本图形的都有一个共同之处,小伙伴发现了没?3.解题一般步骤注:解题完毕后,可能会存在一些较为特殊的数据,例如含有复杂的小数等,因此,要特别注意所求数据是否符合实际意义,同时还要注意题目中对结果的精确度有无要求.4.解题小贴士小编解析一下咯:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可以由已知数据又可用由中间数据求解时,则用已知数据,尽量避免用中间数据.角的关系有互余,边的关系有勾股;有斜边用正余弦,没有斜边用正切;选用乘法毋用除,采取原始避中间.。
景德镇市中考数学专题题型复习05:解直角三角形的实际应用
景德镇市中考数学专题题型复习05:解直角三角形的实际应用姓名:________ 班级:________ 成绩:________一、解答题 (共13题;共70分)1. (5分) (2020九下·合肥月考) 如图,直升飞机在隧道BD上方A点处测得B、D两点的俯角分别为45°和31°。
若飞机此时飞行高度AC为1208m,且点C、B、D在同一条直线上,求隧道BD的长(精确到1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)2. (5分)(2019·驻马店模拟) 某公司为了庆祝开业一周年,准备从公司大楼的楼顶处向下斜挂一些条幅,小张将高为 1.5米的桩杆竖立在楼前处(条幅的下端钉在桩杆顶端),在桩杆端处观测到,为了多留出一些活动场地,小张沿方向前进5米到达处,测得,已知、、三点在同一水平线上,,求大楼的高度及条幅的长度.(参考数据:,,,,结果精确到0.1米).3. (5分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).4. (5分)(2019·沙雅模拟) 小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)5. (10分)钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A处)测得钓鱼岛(B处)距离为20海里,海监船继续向东航行,在C处测得钓鱼岛在北偏东45°的方向上,距离为10海里,求AC的距离.(结果保留根号)6. (5分) (2018·焦作模拟) 如图,某校教学楼AB的后面有一建筑物CD,在距离CD的正后方30米的观测点P处,以22°的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD上距离地面3米高的E处,测得教学楼的顶端A的仰角为45°,求教学楼AB的高度.(参考数据:sin22°≈ ,cos22°≈ ,tan22°≈ )7. (5分)(2017·和平模拟) 如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为39°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高.(结果保留小数后一位)参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si39°≈0.63,cos39°≈0.78,tan39°≈0.81.8. (5分)如图,某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B 点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6 m,小明身高(AB)1.5 m,小军身高(CD)1.75 m,求旗杆的高EF.(结果精确到0.1 m,参考数据: ≈1.41,≈1.73)9. (5分)(2016·北仑模拟) 如图,从热气球C处测得地面A,B两点的俯角分别为30°,45°,此时热气球C处所在位置到地面上点A的距离为400米.求地面上A,B两点间的距离.10. (5分)(2018·南海模拟) 滨河小区为缓解我县“停车难”问题,拟建造地下停车库,下图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18o , AB=10m,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.为标明限高,请你根据该图计算CE 的高度.(结果精确到0.1m)11. (5分)(2017·盘锦模拟) 如图,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.)12. (5分)(2018·镇江) 如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.13. (5分)如图,小明在楼上点A处测量大树的高,在A处测得大树顶部B的仰角为25°,测得大树底部C 的俯角为45°.已知点A距地面的高度AD为12m,求大树的高度BC.(最后结果精确到0.1)二、综合题 (共5题;共50分)14. (10分) (2019九上·长葛期末) 如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)15. (10分)(2017·天津模拟) 如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)16. (10分)如图,在一坡长AB为,坡度i1=1:2的山顶B处修建一座铁塔BC,小李在其对面山坡沿坡面AD向上走了25米到D处测得塔顶C的仰角为37°,已知山坡AD的坡度i2=1:0.75(1)求点D距水平面AE的高度DH;(2)求BC的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)17. (10分)(2017·莱芜) 某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A 距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)18. (10分)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.参考答案一、解答题 (共13题;共70分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、综合题 (共5题;共50分)14-1、14-2、15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、。
中考专题复习解直角三角形的应用
AG=AB•sinB=41.5•sin37°=41.50.6=
C FG
E
37
A
°B
24.9 25(cm),
即EF25cm.
答:球的直径约为25cm.
例5 (2002年黑龙江省哈尔滨市中考题)为了申办2010年冬
奥会,须改变哈尔滨市的交通状况。在大直街拓宽工程中,
要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB
⑵设货轮从出发点D到两船相遇处E共航行了x海里。 过D作DF⊥CB于F,连结DE,则DE=x,AB+BE=2x。
AE
CE
AE=CE• tan60º= 3 3
60° C 30° E
D
B
AB=AE+EB= 4 36.92(米) 8(米)
距离 B点8米远的保护物不在危险区.
解:(1)设DE=x(海里),则客轮从A 点出发到相遇之处E点的距离为2x海里。 若2x<200,则x<100,即DE<AB,而从点 D出发,货轮到相遇点E处的最短距离是 100海里,所以x≥100,即2x≥200。故相 遇处E点应在CB上,选(B)。
例3 (2002年福州市中考题)某市在“旧城改造”中计划在市 内一块如图所示的三角形空地上种植某种草皮以美化环境,已
知这种草皮每平方米售价a元,则购买这种草皮至少需要( )
A、450a元
B、225a元 C、150a元 D
A
h 20米 150°
D、300a元
30米
B
C
解:如图所示,作出此三角形的高h。
等长的圆形危险区。现在某工人站在离B点3米远的D处测得
树的顶端A点的仰角为60°,树的底部B点的俯角为30°。问
全国中考数学真题分类汇编滚动小专题八解直角三角形的实际应用1
解直角三角形的实际应用类型1 仰角、俯角问题类型2 方向角问题类型3 坡角、坡度(比)问题类型4 与实际生活相关的问题类型1 仰角、俯角问题(2018·娄底)(2018·铜仁)(2018·昆明)(2018·张家界)2017年9月8日—10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图,某选手从离水平地面1000米高的A 点出发(AB=1000米),沿俯角为︒30的方向直线飞行1400米到达D 点,然后打开降落伞沿俯角为︒60的方向降落到地面上的C 点,求该选手飞行的水平距离BC .解:过点D 作AB DE ⊥于E BC DF ⊥于点F 由题意知 ………1分 在 中.30=∠ADE 30=∠CDF DAE Rt ∆70014002121=⨯==AD AE ……………………2分 ADDE ADE COS =∠ ……………………3分 3700231400=⨯=DE …………………4分3007001000=-=-=AE AB EB ……………5分300==BE DFDFFC CDF =∠tan ……………………6分310033300=⨯=FC ……………………7分380031003700=+=+=+=∴FC DE FC BF BC (米) ……………8分(2018·新疆建设兵团)(2018·兰州)(2018·巴中)(2018·黄冈)(2018·通辽)(2018·德州)(2018·达州)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A 处测得雕塑顶端点C `的仰角为030,再往雕塑方向前进4米至B 处,测得仰角为045.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)(2018·菏泽)18.2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30,B处的俯角为45,如果此时直升机镜头C处的高度CD 为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)(2018·海南)(2018·乌鲁木齐)(2018·凉山)(2018·天津)(2018·安徽)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置个平面镜E ,使得B,E,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AEB =∠FED ).在F 处测得旗杆顶A 的仰角为39.3°,平面镜E 的俯角为45°,FD =1.8米,问旗杆AB 的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)解:∵∠DEF=∠BEA=45° ∴∠FEA=45°在Rt △FEA 中,EF=2FD ,AE=2AB∴tan ∠AFE=EF AE =FD AB∴AB=FD ×tan ∠AFE=1.8×10.02≈18 答:旗杆AB 高约18米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-
2018学年中考数学专题题型复习05:解直角
三角形的实际应用
一、解答题
1.
(2017?株洲)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500
米,桥的长度为1255米.
①求点H到桥左端点P的距离;
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机
的长度AB.
+
2.
(2017?张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5° ,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
+
3.
(2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加
固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
+
4.
(2017?乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处
,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的
距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)
+
5.
(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶中D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教
学楼之间的距离AB=30m.
(结果精确到0.1m。
参考数据:tan20°≈0.36,tan18°≈0.32)
(1)、求∠BCD的度数.
(2)、求教学楼的高BD
+
6.
(2016?随州)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰
角为60°,求雕像AB的高度.
+
7.
如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°.求飞机A与指挥台B的距离(结果取整数).
【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】
+
8.
某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)
+
9.
(2016?宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3
米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)
+
10.(2016?荆门)如图,天星山山脚下西端A处与东端B处相距800(1+
)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为
米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
+
11.
(2016?内江)禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).
+
12.(2016?泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60
米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:
的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈
,计算结果用根号表示,不取近似值).
+
13.
(2016?昆明)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角
为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)
+
二、综合题
14.
(2017?通辽)如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比
点B高7cm.求:
(1)、单摆的长度(≈1.7);
(2)、从点A摆动到点B经过的路径长(π≈3.1).
+
15.
(2016?江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.
已知OA=OB=10cm.
(1)、当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)、保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,
作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)
+
16.
(2016?黄石)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB
和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)、求AB段山坡的高度EF;
(2)、求山峰的高度CF.( 1.414,CF结果精确到米)
+
17.
(2016?义乌)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.
(1)、求∠CBA的度数.
(2)、求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).
+
18.如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6
米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)、求斜坡CD的高度DE;
(2)、求大楼AB的高度(结果保留根号).
+。