水轮机调节

合集下载

水轮机控制工程第一章水轮机调节的基本概念

水轮机控制工程第一章水轮机调节的基本概念

y
– 永态差值装置
转速调
nc 整机构
1
bp
缓冲装置 btTdS 1+TdS
图 1-2 机械液压调速器结构方块图 1
② 中间接力器反馈、取速度信号、有暂态反馈的 PI(比例-积分)调速器(图 1-3)。
机组 ng 转速
飞摆 1
转速调
nc 整机构
1
引导阀 辅助接力器

1
+–
TyS
– 永态差值装置
bp
缓冲装置 btTdS 1+TdS
Mt——水轮机转矩(N·m);
Mg——发电机负荷阻力矩(负载转矩)(N·m)。
式(1-1)清楚地表明,机组转速(频率)保持恒值的条件是 d dt
0 ,即要求 M t
ห้องสมุดไป่ตู้
Mg

否则就会导致机组转速(频率)相对于额定值升高或降低,从而出现转速(频率)偏差。
水轮机转矩
Mt
QH t
(1-2)
式中:
Q——通过水轮机的流量(m3/s);
水轮机调速器是水电站水轮发电机组的重要辅助设备,它与电站二次回路或计算机监 控系统相配合,完成水轮发电机组的开机、停机、增减负荷、紧急停机等任务。水轮机调 速器还可以与其他装置一起完成自动发电控制(AGC)、成组控制、按水位调节等任务。
第二节 水轮机调节系统
一、水轮机调节系统的结构
水轮机调节系统是由水轮机控制设备(系统)和被控制系统组成的闭环系统。水轮机、 引水和泄水系统、装有电压调节器的发电机及其所并入的电网称为水轮机调节系统中的被 控制系统;用来检测被控参量(转速、功率、水位、流量等)与给定量的偏差,并将其按 一定特性转换成主接力器行程偏差的一些装置组合,称为水轮机控制设备(系统)。水轮机 调速器则是由实现水轮机调节及相应控制的机构和指示仪表等组成的一个或几个装置的总 称。

水轮机调节

水轮机调节
1. Mt=Mg ,水轮机的动力矩等于发电机的阻力矩,dω/dt=0,ω为一常数,机组以恒定转速 运行。
2.Mt>Mg,水轮机的动力矩大于发电机的阻力矩,当发电机的负荷减小时会出现这种情况 ,此时dω/dt>0,机组转速上升,在这种情况下,应对水轮机进行调节,减小流量Q,从 而减小Mt,以达到新的平衡状态。
谢谢
根据偏差的情况通过放大器向执行元件发出指令,执行元件根据指令改变导水机构的 开度,反馈元件则将导叶开度的变化情况反回给计算器,以检查开度变化是否符合要求, 如变化过头,则发出指令进行修正。
在图中,测量、计算、放大、执行和反馈元件总称为自动调速器。导水机构包括机组 在内,统称为调节对象。调速器和调节对象构成水轮机自动调节系统。
反馈元件
水轮机调节系统方框图 13
图中的方块表示水轮机调节系统的元件: 箭头表示元件间信号的传递关系: 箭头朝向方块表示信号的输入, 箭头离开方块表示信号的输出,前一个元件的输出是后一个元件的输入。 从图中可以看出,由导水机构输人的水能经机组转换成电能输送给系统。
电能的频率f(亦即机组的转速n)信号输入调速器的测量元件,测量元件将频率f信号转化 成位移(或电压)信号输送给计算器(图中的⊕)并与给定的f值作比较,判定频率是否有偏差 和偏差的方向,
水轮机调节系统以频率 f (亦即机组转速)为被调节参数,根据实测 f 与给定值间的偏差 调节导水机构的开度,从而改变机组的出力和转速(频率),但要使改变后的频率符合给定 值需要一个调节过程,这个过程又称为调节系统的过渡过程,在这个过程中,频率、开度 等参数随时间不断变化。
各参数随时间的变化情况,及在经过一段时间以后是否能达到新的平衡状态(即稳定工 况),与调节系统的特性有关,这种特性称调节系统的动特性。

第四章 水轮机调节

第四章  水轮机调节

调速设备的组成:调速柜、接力器、油压装置
1.调速柜:
控制水轮机的主要 设备,能感受指令并加 以放大,操作执行机构, 使转速保持在额定范围 内。
调速柜还可进行水 轮机开机、停机操作, 并进行调速器参数的整 定。
2.接力器
调速器的执行机构,接力器控制水轮机调速环(控制 环)调节导叶开度,以改变进入水轮机的流量。
大型、电气液压、双调节调速器;主配阀直径 100mm, 额定油压40Mpa,A是第一次改型后产品 A、B、C为改型次数。
七、调速器油压装置
油压装置是供给调速器压力能源设备,是调速系统 设备之一。
组成:压力油箱(储存压力油)、集油箱(收集调速 器回油和漏油)、油泵(向压力油箱送油)。
油压装置型号由三部分组成,中间用横线隔 开,形式为:
HYZ—4
表示组合式油压装置,压力油箱容积为4m3,一个 油箱,额定油压为2.5MPa。
无第三部分表示压力油罐数为一个,额定油压小 于2.5MPa。
八、水轮机调速设备的选择
包括:调速柜、接力器、油压装置。
中小型调速器的选择 大型调速器的选择
中小型调速器的选择
中小型调速器是根据计算水轮机所需的调速功 查调速器系列型谱表来选择的。中小型反击式水轮 机调速功的经验公式:
电能
执行元件
放大元件
综合环节
稳定元件
敏感元件
六、调速器的类型与系列
(一) 类型
1、按调速器元件结构分: 机械液压(机调)、电气液压(电调)和微机电液(微调) 电气液压:用电气回路代替机调中的机械元件。调节性
能优良,灵敏度和精确度高,成本低,便于安装调整。 微机电液:采用计算机控制器,可靠性、调节功能和品
A (200 ~ 250)Q HmaxD1

第一章 水轮机调节的基本原理

第一章        水轮机调节的基本原理

随着电力系统容量扩大、自动化水平提高,对水轮机调速器稳 定性、速动性、准确性提出了越来越高的要求,调速器的操作功能、 自动控制不断完善,已成为水电站综合自动化必不可少的自动装置。 四、调速器的发展 最早调速器是蒸汽机调速器。20世纪30年代出现了完善的机械液 压调速器。20世纪40年代中期出现了电气液压型调速器。20世纪 80年代初,出现在了常规油压和高油压微机调速器。
式 中
负反馈—— 反馈信号的作用方向与原输入信号的方向相反的反馈; 负反馈 正反馈—— 反馈信号的作用方向与原输入信号的方向相同的反馈; 正反馈 调速器中一般采用负反馈 负反馈。 负反馈 在机械液压调速器中常见的反馈有两种:一种是硬反馈;另一种是软反馈。 (一)硬反馈 硬反馈 局部反馈是一种硬反馈。
节流孔是上、下腔唯一的通道,调整节流孔大小可以调节油流阻力。 主接力器活塞杆通过杠杆、拉杆等作用于主动活塞,从动活塞通过拉杆、杠杆作用于 引导阀针塞。 1)主动活塞没有受到接力器反馈锥体反馈作用时,主、从动活塞都处于相对中间位 置,从动活塞的上端没有位移输出; 2)主动活塞受到接力器反馈锥体反馈作用而向下移动时,由于油是不可压缩液体, 且活塞下腔的油不能马上由节流孔进入上腔,因此下腔油压升高,迫使从动活塞上移,输 出一个位移信号,并作用于引导阀针塞,同时压缩弹簧。下腔压力油经节流孔进入活塞上 腔,在弹簧恢复力作用下,经过一段时间,上、下腔压力平衡,从动活塞逐渐回复到中间 位置,使输出位移消失。反之,当主动活塞受力上移时,主动活塞下部产生真空,由于上 腔油来不及通过节流孔到下腔,从动活塞被向下吸引,产生一个向下的位移,并作用于针 塞向下移动。随后在弹簧恢复力作用下,上腔的油通过节流孔流入下腔,从动活塞回复中 间位置,输出位移信号消失。 缓冲装置输出位移只在调节过程中存在,调节过程结束后,反馈位移自动消失,因此 这种反馈称为软反馈或暂态反馈。

水轮机调节的基本概念

水轮机调节的基本概念

水轮机调节系统的新技术和新应用
智能控制技术:实现水轮机调节的自动化和智能化 远程监控技术:实现水轮机调节的远程监控和故障诊断 节能技术:提高水轮机调节的效率和节能效果 环保技术:减少水轮机调节对环境的影响实现绿色环保
水轮机调节系统的挑战和机遇
挑战:技术难度大需要不断研发和创新 挑战:市场竞争激烈需要不断提高产品质量和性能 机遇:绿色能源需求增长水轮机调节系统市场前景广阔 机遇:政策支持有利于水轮机调节系统的推广和应用
03 水轮机调节的种类
机械调节
机械调节原理:通过改变水轮机叶 片角度或导叶开度来调节流量
机械调节特点:响应速度快、调节 精度高、稳定性好
添加标题
添加标题
添加标题
添加标题
机械调节方式:叶片角度调节、导 叶开度调节、桨叶调节等
机械调节应用:广泛应用于水电站、 泵站等水轮机调节系统中
电气调节
原理:通过改变发电机的励磁电流来调节水轮机的转速 优点:响应速度快调节精度高 缺点:需要额外的励磁设备成本较高 应用:适用于大中型水轮机特别是调频调峰场合
感谢您的观看
汇报人:
调速器:控制水轮机转速的 装置
水轮机:将水流的动能转化 为机械能的设备
控制系统:实现水轮机调节 的自动化控制
传感器:监测水轮机运行状 态的设备
执行器:根据控制信号调整 水轮机运行状态的设备
水轮机调节的基本原理
水轮机调节的目的是控制水流量以保持稳定的发电量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量
水力发电站:调节水轮机转速控制发 电量
水力发电站:调节水轮机转速控制发 电量

水轮机调节

水轮机调节

1、反应电能质量指标:电压和频率。

2、水轮机调节:在电力系统中,为了使水轮发电机组的供电频率稳定在某一规定的范围内而进行的调节。

3、水轮机调节系统由调节对象和调速器组成。

调节对象有引水系统、水轮机、发电机和电力系统。

4、Kf 越大,或者δf 越小,或者转速死区越小,离心摆的灵敏度越高。

5、系统越稳定:TW 越小、TA 越大、en 越大、TD 越大、bp 越大6、Tw 大则应增加bt 以减小水击。

,Ta 小则应增加bt 以减小转速变化值。

7、水轮机调节的途径:改变导叶开度或喷针行程,方法是利用调速器按负荷变化引起的机组转速或频率的偏差调整水轮机导叶或喷针开度使水轮机动力距和发电机阻力距及时回复平衡从而使转速和频率保持在规定范围内。

8、水轮机调节的特点:自动调节系统、一个复杂非线性控制系统、有较长引水管道开启或关闭导叶时压水管道产生水击、随电力系统容量的扩大和自动化水平的提高对水轮机调速器的稳定性,速度性,准确性要求高。

9、调速系统的组成:被控对象,测量元件,液压放大元件,反馈控制元件。

10、引导阀的作用:把转动套的位移量的变化变转变为压力油的流量的变化,去控制辅助接力器活塞的运动。

11、硬反馈又称调差机构或永态转差机构,输出信号与输入信号成比例的反馈称为硬反馈或比例反馈。

用于实现机组有差调节,以保证并网运行的机组合理地分配负荷。

12、软反馈又称缓冲装置或暂态转差机构或校正元件,只在调节过程中存在,调节过程结束后,反馈位移自动消失,这种反馈称为软反馈或暂态反馈。

作用是提高调节系统的稳定性和改善调节系统的品质。

13、硬反馈的作用:实现机组有差调节保证并网运行的机组合理非配负荷。

14、硬反馈的组成:反馈椎体、反馈框架、螺母、螺杆、转轴、传动杆件。

15、软反馈的作用:提高调节系统的稳定性,改善调节系统的品质。

16、缓冲装置的组成:壳体,主动活塞组件,从动活塞组件,针塞组件,弹簧盒组件。

17、18、调差机构的作用:用于改变机组静特性斜率,确定并列运行机组之间负荷的分配,防止负荷在并列运行机组之间来回窜动。

水电站教程课件 第四章 水轮机调节

水电站教程课件 第四章 水轮机调节

第四章 水轮机调节学习提示内容:介绍水轮机调节的任务,水轮机调节系统特性,水轮机调速器的工作原理,调速器的类型,调速系统的油压装置。

重点:水轮机调节的途径,调速器和油压装置的选择。

要求:了解水轮机调节系统特性,水轮机调速器的工作原理;掌握水轮机调节的概念和调节途径,调速器的种类和适用情况、油压装置的选择。

第一节 水轮机调节的任务一、问题提出水电站作为电力系统的供电电源,不仅要保证供电的安全可靠,而且要保证供电电压和频率的稳定。

在电力系统中,由于电压和频率的过大变化会严重影响供电质量,使电力用户的产品质量和正常生产遭受破坏。

因此,我国电力系统规定:电力系统的频率应保持为50Hz ,当电力系统容量小于50万kW 时,频率偏差值不超过±0.5Hz ;当电力系统容量大于等于50万kW (大电力系统),频率偏差值不超过±0.2Hz 。

用户端电压变动幅度的允许范围是:35kV 及其以上的用户为额定电压的±5%,10kV 及其以下的用户为额定电压的±7%,低压照明用户为额定电压的+5% ~-10%。

一些发达国家,对频率和电压的稳定要求更加严格。

电力系统的负荷是随时不断变化的,由于负荷的变化而引起系统电压和频率变化势必会影响供电质量。

这要求系统中承担调频任务的机组,在系统负荷变化时,能迅速改变其功率使之适应于外界负荷的变化,并同时使电力系统的电压和频率恢复和保持在允许变化范围以内。

在水电站中,电压调整由发电机的电压自动调整系统(励磁装置)实现,频率调整由水轮机的调速器来完成。

二、水轮机调节任务与途径发电机输出电流的频率f 与其磁极对数p 和转速n 的关系为/60f pn =。

对一定的发电机来说,其磁极对数p 是固定不变的,要调节发电机电流频率f 只能调节水轮机的转速n ,所以水轮机调节的实质就是转速调节。

因此,水轮机调节的基本任务就是根据外界负荷的变化,通过调节机组出力使之与外界负荷相适应并保证机组的转速变化在规定范围之内。

水轮机调节的基本要求

水轮机调节的基本要求

水轮机调节的基本要求发电机是给电力系统提供足够可靠的“信赖”,功率调节范围宽,调节精度高以及其调节性能良好,因此调节是液力发电设备运行中重要的调节工作。

发电机液力调节有很多技术要求,有三种常用的调节方式,即水力泵、气流泵和电力机组。

其中,水轮机发电调节是运电量调控最重要的水轮机调速系统,涉及调节要求因而响应更加复杂多变。

水轮机的调节要求一般包括如下内容:1. 发电机的运行范围要宽:水轮机发电调节一般要求能实现从最大出力调节到最小出力,出力范围一般为95%-105%,高级调节要求可达90%-110%。

2. 调节精度高:液力发电机的调节精度是一个重要的技术指标,比如现代液调机组的调整精度由1%或0.5%调节至0.1%,调节范围从原来的手动调节,到现在的PLC调节,使液力发电机的调节精度不断提高,来满足发电机最优发电要求。

3. 调节速度快:液力发电机调节要求调节速度快,要适应各种变化的负荷,在发电过程当中实现调节速度,根据机组的调节曲线的设定,要求调节速度快,可调节时间1min 以内,以保证机组的平稳、可靠运行。

4. 功率调节平稳:发电机调节要求功率调整平稳,不宜瞬间大特别又频繁的调节,以保证机组的安全运行,提高机组的利用效率,节省机组运行成本。

5. 稳定性要强:发电机的调节要求稳定性较高,尤其是在不断变化的环境下,要保证机组调节的准确性、稳定性和条件参数的完备性,良好的调节才能保证机组的安全运行。

总的来说,水轮机调节的基本要求就是要协调负荷变动和发电量的变化,以保证机组的安全运行。

发电机液力调节要求运行范围宽,调节精度高,调节速度快,功率调节平稳,稳定性要强等。

发电调节是发电机运行中的关键技术指标,因此,发电厂要综合考虑有关的技术指标,选定最合适的调节设备及系统以满足发电厂运行的要求和效率。

第一章水轮机调节的基本原理

第一章水轮机调节的基本原理

转速不变
转速上升
转速下降
1:上支持块 ; 2:钢带 ;3:限位块 ; 4:重块 ;5:限位螺杆 ;6:弹簧; 7:下支持块; 8:转动套
在忽略惯性力、液摩阻力时,离心摆的输入信号与输出信号之间成正比关系:
式 中
上式表明:若把下支持块位移量△L看成离心摆的输出量,把转速变化量的相对值x看成输 入量,则离心摆的输出量与输入量成正比。
水轮机调节的途径:改变导叶开度或喷针行程。 具体做法:利用调速器按负荷变化引起的机组转速或频率的偏差, 调整水轮机导叶或喷针开度,使水轮机动力矩和发电机阻力矩及时 恢复平衡,从而使转速和频率保持在规定的范围内。 三、水轮机调节的特点
▲机组以水为工作介质,谁能开发受到自然条件限制,且单位工 作介质小,发出同样的电能需要通过较大的流量,配备的导水机构 也较大,需要配置较大液压操作机构,但液压元件非线性和时间滞 后性会影响水轮机调节系统的动态品质;
第一章 水轮机调节的基本原理
第四节 调节系统静态与动态特性
前言: 1.调速器是机组最重要控制设备之一,其担负着机组转 速(f)调整、机组开机、停机、并网及有功负荷调整等 任务。 2.调速器性能的好坏直接关系到机组运行的稳定和可靠 性,甚至关系到电网的稳定。 3.调速器性能品质指标衡量指标: 调速器静态特性/动态特性,及其相关参数 一、调节系统的静态特性及品质指标
通过引导阀的油流量与针塞阀盘和转动套相对位移量关系:
Q vS vbh
式中 v:转动套窗口油流速度; △S:引导阀窗口开度; b:转动套窗口宽度; △h:针塞阀盘与转动套窗口的相对位移。
(二)辅助接力器与主配压阀 组成:阀体、辅助接力器活塞、主配压阀活塞等。 辅助接力器活塞是差动活塞,上盘上部通压力油,下部通排油; 主配压阀活塞2个阀盘,上盘面积大、下盘面积小;

水轮机调节的基本要求

水轮机调节的基本要求

水轮机调节的基本要求
1水轮机调节
水轮机调节是一种利用水力发电的机器,它根据池塘的水位的变化,调节水轮机的转速,使电力系统的峰谷差更有效地发挥作用,更好地满足电力系统的发电要求。

1.1水轮机的调节方式
水轮机的调节主要有两种方式,一是固定式,一是变动式。

固定式水轮机在水压不变的情况下,其流量调节由改变转速来实现,从而调节电力发电量;变动式水轮机则是通过水轮机本身的涡轮叶片来更改检测口的水流量,从而调节转速以及电力发电量。

1.2水轮机的基本要求
在水轮机的调节过程中,必须考虑一定的安全控制问题,因此水轮机的调节过程中需要考虑两个基本要求:
1)水位控制要求:在调节水轮机过程中,要保证水轮机不会超负荷运转以及供水不足,以保证水位持续处于允许调节范围内;
2)调节变化率控制要求:为了避免电力系统中峰谷差的过大变化,在调节水轮机时,应该限制水轮机的调节变化率,确保电力系统的峰谷差的变化满足要求。

总之,调节水轮机是一项艰巨的任务,必须考虑到水位控制要求和调节变化率控制要求,才能有效调整水轮机,达到理想的发电效果。

水轮机调节的基本概念讲解

水轮机调节的基本概念讲解
1.水轮机调节系统
水轮机控制系统 hydraulic turbine control systems:
用来检测被控参量(转速、功率、水位、流量等)与给定参量的偏差, 并将它们按一定特性转换成主接力器行程偏差的一些设备所组成的系统。
被控制系统 controlled system:
由水轮机控制系统控制的系统,它包括水轮机、引水和泄水系统、装有 电压调节器的发电机及其所并入的电网。
所以,在一定的机组工况下,只有调节流量Q和效率 η ,才能调节水 轮机转矩,达到调节目的。从最终效果来看,水轮机调节的任务是维持 水轮发电机组转速(频率)在额定值附近的允许范围内。然而,从实质 上讲,只有当水轮机调节器相应地调节水轮机导水机构开度(从而调节 水轮机流量Q)和水轮机轮叶的角度(从而调节水轮机效率),使,才 能使机组在一个允许的稳定转速(频率)下运行。从这个意义上讲,水 轮机调节的实质就是:根据偏离额定值的转速(频率)差信号,调节水 轮机的导水机构和轮叶机构,维持水轮发电机组功率与负荷功率的平衡。
水轮机调节的基本概念 和
数字式(微机)电液调速器
一、水轮机调节的基本概念
1.水轮机调节系统 2.水轮机调节的任务 3.水轮机微机调速器的原理 4.静态特性 5.动态特性
二、数字式(微机)电液调速器
1.微机调速器的结构 2.静态特性 3.动态特性 4.控制功能
一、水轮机调节的基本概念
器的主要作用是根据偏离机组频率(转速)额定值的偏差,调 节水轮机导叶和轮叶机构,维持机组水力功率与电力功率平 衡,使机组频率(转速)保持在额定频率(转速)附近的允许范 围之内。这时的水轮机调速器主要是一个机组频率(转速)调 节器。 现代水电厂和电力系统,对水轮机调速器的性能及功能提出 了新的和更严格的要求。

水轮机调节系统(普通高等教育“十三五”规划教材)

水轮机调节系统(普通高等教育“十三五”规划教材)

水轮机调节系统(普通高等教育“十三五”规划教材)一、引言水轮机是一种将水能转化为机械能的设备,广泛应用于水力发电和水资源利用领域。

水轮机调节系统是水轮机运行和控制的关键部件,其稳定性和可靠性对水轮机的运行效率和安全性起着重要作用。

本文将对水轮机调节系统的构成、工作原理、性能指标和未来发展方向进行介绍和分析。

二、水轮机调节系统构成水轮机调节系统由传感器、控制器、执行器和监测系统等组成。

传感器负责感知水轮机的状态和环境参数,包括水位、流量、压力等,将这些信息传递给控制器。

控制器通过对传感器信号的处理和分析,制定相应的控制策略,并将调节信号发送给执行器。

执行器则根据控制信号控制水轮机,完成对水轮机的调节。

监测系统则对水轮机的运行状态进行实时监测和分析,以确保水轮机调节系统的安全稳定运行。

三、水轮机调节系统工作原理水轮机调节系统的工作原理是通过控制水轮机的进水量来实现对水轮机转速的调节,从而控制水轮机的输出功率。

当负荷发生变化时,控制器接收到传感器的信号,根据预设的控制策略计算出相应的调节信号,并发送给执行器。

执行器根据控制信号的大小和方向,对水轮机的进水阀门进行调节,改变进水量,从而使水轮机的转速稳定在预设值附近。

四、水轮机调节系统性能指标水轮机调节系统的性能指标包括响应时间、稳定性和控制精度。

响应时间是指系统从接收到负荷变化信号到完成调节的所需时间,影响到系统的动态特性。

稳定性是指系统在负荷变化过程中的稳定性能,包括系统的抗干扰能力和抗过载能力。

控制精度是指系统调节水轮机转速的精确程度,反映了系统的控制能力和调节精度。

五、水轮机调节系统的发展方向随着科技的进步和需求的变化,水轮机调节系统也在不断发展和改进。

未来的水轮机调节系统将更加注重系统的智能化和自动化程度。

例如,利用先进的传感技术和自适应控制算法,提高系统对复杂环境的适应能力和控制精度。

同时,加强对水轮机运行状态的监测和分析,预测和预防潜在的故障和风险,提高系统的可靠性和安全性。

水轮机调节的基本知识(可用)

水轮机调节的基本知识(可用)

A'
E"
E
E'
机组出力E
16
水轮机调节基本知识

当电网频率发生变化时,如频率从 f 下降到 f ' 时,则工作点 沿静特性由A移至A',机组出力由E增加到E'
电网 频率f
f f' A A'
E
E'
机组出力E
17
水轮机调节基本知识

机组静态转差率 bp 值愈大(即调速器的转差率 bp 值整定愈大,但 ep 不完全取决于 bp ,它还与水头,机组特性等有关),则在电网频率发生 变化时,机组所承担的变动负荷愈小,如图 6 所示,反之则愈大,当 b p 整定为零时(即 eP 也为零),该机组即为单机调频机组,电网频率的 微小变化,将引起机组出力的大幅变化。
水轮机调节基本知识
1
水轮机调节基本知识
一、水轮机的调节系统组成
组成:调节器、调节对象、反馈测量
2
水轮机调节基本知识
1.
调节器
即调速器,由电气、机械液压两部分组成
2.
调节对象
由水轮机、引水系统、发电机及负载等组成
3.
反馈测量
包括机组转速测量和机组出力测量两部分
4.
给定
有功率给定和频率给定两种
5.
扰动
8
水轮机调节基本知识

五、水轮机调节系统的基本原理
M1 F P2 + + f R T P1 G
一次调频及及二次调频回路示意
C1
+

M3
E
C2
+ M2

W
9
水轮机调节基本知识

水轮机调节

水轮机调节

(5)阀组(安全阀、逆止阀、减载阀)
安全阀的作用是保证压力油罐内油 压不超过允许值,防止油泵与压力油罐 过载。
减载阀的作用是保证油泵电动机在 低负载下启动,缩短启动时间,减少启 动电流。
逆止阀用来防止压力油罐内的压力 油在油泵停止运行时倒流
6、调速器的类型与系列
(1)按调速器元件结构分
• 机械液压(机调):信号测量、信号综合、信号反馈 均由机械环节完成。现在很少使用。
二 调节系统的特性
1、调节系统的静态特性
(1)无差调节:调节前后 机组转速不变,如图5-1a。 (2)有差调节:调节前后 机组转速有一小的偏差, 如图5-1b。
对单机运行的机组,才有可能采取无差调节的方式; 多台机组并列运行时,各台机组反应时间和动作快慢 不同,需采用有差调节的运行方式。
(2)有差调节
(3)电液转换器(步进电机)结构原 理及作用
电液转换器的作用是将电气部分信号 输出的综合信号,转换成具有一定操作 力的机械位移信号或具有一定压力的流 量信号。
电液转换器有电气位移转换信号和液 压放大两部分组成。
工作线圈:实现控制操作 线圈
振荡线圈:防止卡阻,提高工作可靠性
电液转换器中一般有两个线圈,一个工作 线圈,一个振荡线圈。工作线圈通的是工作电 流,振荡线圈通入振荡电流。通入工作电流后 ,使控制套产生位移,使下一级随动。振荡电 流使线圈和控制套产生微小振动,以提高控制 套的灵敏度,防止卡阻。
成一个整体,称为组合式,运行方便。
(1)调速柜主要有以下几个部分组成:
• 测量机构:测量机组转速偏差,并把偏差信 号转变为位移信号,然后输出。
• 放大机构:(引导阀+辅助接力器、主配阀+主 接力器,二级放大):位移变化→油压变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.油压装置安其布置方式可以分为分离式和组合式
两种.
2.调速器的油压装置是由:压力油罐、回油箱、中间油罐、螺杆油泵、补气
阀、
安全阀等组成。

3.齿盘测频回路具有输出频率信号电压的漂移量小,测频精度高的特点。

4.引入测频微分回路可以改善过渡过程的调节品质,提高速度性、缩短调节时
间、减少超调量。

5.位电转换器就是将机械位移信号转换成电信号的位电转换元件。

6.电液转换器室友电气-位移转换和液压放大两部分组成。

7.微机调速器由两部分组成,即微机调节器和液压随动系统。

8.微机型调速器按照输入信号种类的不同,分为模拟量和开关量信号等。

9.电液随动系统由电液转换元件、液压控制元件和执行元件等组成。

10.PLC微机调速器的频率测量采用残压测频时,信号取自母线电压互感器(TV)
或者发电机出口电压互感器;采用齿盘测频时,信号引自安装在水轮机大轴或
发电机大轴上的齿盘脉冲转速探测器。

12.微机调速器在不同运行工况下采用不同的调节规律、控制结构、调节参数
和调节模式。

13.微机型调速器的调节模式有频率调节模式、功率调节模式、开度调节模式。

14.频率调节模式是一种适用于机组空载运行、并入小电网或孤立电网运行和在大电网以调频方式运行的自动调节模式。

15.若机组并入电网运行,微机调速器一般采用开度调节模式或功率调节模式进行控制,其调节规律PI运算。

16.在模拟型电气液压调速器中,一般采用电液转换器将电气信号转换成机械液压信号。

17.微机调速器的电液伺服系统中所采用的电机转换装置有电液伺服阀、步进电机或伺服电机式电液转换器。

电液伺服阀、电液比例阀、伺服电机、步进电机、数字阀。

18.调速器整机静态特性实验母的:通过对调速器静特性曲线y=f(n)的测定,确定调速器的转速死区i
,校验永态转差系数bp值,以鉴别调速器的制造和安
x
装质量。

19.调速器的动态实验主要指空载实验、突变负荷实验和甩负荷实验等。

20.空载扰动实验的目的:实在空载工况下以人为的方法向调节系统输入一个阶跃的转速扰动量,在此阶跃输入下,测出不同调节参数时的动态品质,从而确定空载运行时的最佳调节参数,并为带负荷运行确定参数参数提供初步依据。

21.突变负
载实验的目的:是观测与分析调节系统在负荷突变时的动态特性,选择带负荷工况下的最佳调节参数值,确保调节系统既有良好的响应特性,又有较好的稳定性。

22.甩负荷实验目的是校验调速器动态特性的一个重要项目。

其实验目的是: (1)在已选定的调节参数下,考核调节系统过渡过程的动态品质指标,鉴定调速器的工作性能和调节质量。

(2)检查机组甩负荷后的最大转速上升率和蜗壳压力上升值,验证调节保证计算的正确性,为机组的安全运行提供数据。

(3)最后整定导叶关闭时间和关闭规律
(4)测量调节系统静特性曲线
23.甩100%额定负荷实验的目的是:检验机组在选定的参数下调节过程的速动性和稳定性,检查能否满足调节保证计算的要求。

24.用户除了要求供电安全、可靠和经济外,还要求电能的频率、电压保持在额定值上、下的某一范围内。

25. 调节保证计算的任务是:根据水电站压力引水系统和水轮发电机组特性,选择合理的导叶调节时间和调节规律,进行最大水击压强变化值和最大转速上升值
计算,使水击压强变化和转速上升都在允许范围内。

26. 水轮机调节的任务:根据电力系统负荷的变化不断的调节水轮发电机组的有功功率输出,并维持机组转速在规定的范围内。

27转速调整机构的作用:当机组单运行时,用于改变机组转速,当机组并列于无穷大电网运行时,用于改变机组所带的负荷。

简答
1.水轮机调节系统与其他原动机调节系统相比有什么特点?
(1)水轮机调速器设置较大的液压操作机构。

2.因开发方式的不同,一些水轮机需要采用双重调节。

3.受自然条件的限制,有些水电站具有较长的引水管道。

4.随着电力系统容量的扩大和自动化水平的不断提高,对水轮机调速器的稳定性、速动性、准确性提出了越来越高的要求,调速器的操作功能、自动控制功能不断完善,已经成为水电站综合自动化必不可少的自动装置。

1.与电气液压调速器相比,微机调速器具有哪些特点?
1.采用了性能优越、可靠性高的计算机硬件,运用了先进的调节规律,是调速器具有更加优良的静态和动态特性。

2.采用了新型的电液转换元件,解决了电液转换器因油污而发卡的问题,提高了抗油质污染的能力,机组运行的可靠性得到了很大提高。

3.控制功能日益完善,具有灵活性大、控制功能强等特点。

除了常规的频率跟踪、功率跟踪、无扰动手动自动切换功能外,还有按水位设定启动开度、空载开度功能,容错控制功能、故障诊断功能等。

4.电液随动系统取消机械杠杆机构,消除了死行程,定位精度高、响应速度快、结构紧凑简单和维护方便。

5.易于实现与厂站级计算机的通信接口和远方控制,为提高水电厂综合自动化水平奠定了基础。

2.频率调节模式的特点是:
1.人工频率死区(E
=0)、人工开度死区(Ey=0)和人工功率死区(Ep=0)等
f
环节均被切除。

2.采用PID调节规律,即微分作用参数Tn≠0或者Kd≠0
3.调差反馈信号取自PID调节输出,并构成静态特性
4.在频率调节模式下,微机调节器的功率给定Pg实时跟踪机组实际功率Pj,其本身不参加闭环调节。

3.开度调节模式的主要特点
1.开度调节模式主要适用于机组并网运行和带基荷的工况
2.人工失灵区,即频率死区(Ef≠0)、开度死区(Ey≠0)和功率死区(Ep≠0)均投入。

3.采用PI调节规律,即微分作用参数Tn=0或Kd=0
4.调差反馈信号取自PID调节输出,并构成静态特性
5.微机调节器通过给定开度Yg改变机组负荷,在这种模式下,功率给定Pg 不参与闭环自动调节,而是实际跟踪机组实际功率Pj,实现从开度调节模式到功率调节模式的无扰动切换。

4.功率模式的主要特点
1.功率调节模式是机组并入大电网带基荷所优先采用的一种运行模式。

2.人工失灵区,即频率死区、开度死区和功率死区均投入。

3.采用PI调节规律,即微分作用参数Tn=0或Kd=0
4.调差反馈信号取自机组功率Pj,并构成调速器静态特性。

5.在这种模式下,微机调节器给定开度Yg,实时跟踪实际导叶开度,实现从功
率调节模式到开度调节模式的无扰动切换。

5.微机调速器的测频方式有哪几种?水轮机调节系统采用那种并叙述其原理?
频率测量一般有两种方法,一种是直接测量法(测频法),一种是间接测量法(测周法)水轮发电机组的额定频率为50Hz,属于低频信号,一般采用测量周期法。

侧周法是输入信号的周期作为门时△t=T,在信号周期T期间将计数器时钟端打开计数,计数脉冲信号选择很高的频率f0(=1MHz),若计数值为Nt,则信
号频率为N
T =f
△t=f
T F=1/T=f
/N
T
6.调节对象特性对调节过程的影响。

1.水流惯性时间常数Tw的影响:Tw是使调节过程动态品质恶化的主要因素, Tw越大,转速偏差加大、波动次数增多,调节时间加长,甚至超出稳定区域。

其原因
是引水系统的水击造成水轮机动力矩变化滞后,当Tw较大时,应加大调速器各反馈参数。

当Tw很大时,有可能使调节系统无法稳定下来。

2.机组惯性实践常数Ta的影响:此数值增加将使机组惯性加大,增加调节系统的稳定性和延缓转速的变化,但Ta过大也可能使调节过程加长,总之,Ta加大对改善动态品质是有显著好处的。

3.机组自调节系数en的影响:en越大,越有助于稳定和改善动态调节品质。

9. 调速器参数对调节过程的影响?
1. 暂态转差系数bt的影响:bt值的大小表示软反馈的强弱,对于不同调节对象的调器而言均具有最佳的bt值。

一般情况下Tw大时,应增加bt以减小水击作用,Ta小时,应增加bt,以减小转速变化。

2. 缓冲时间常数Td:Td值表示缓冲器从动活塞回复时间的长短,Td越大,软反馈衰减越慢,接力器关机速度越慢。

Td越大,震荡次数减小,可提高调节过程的稳定性,但Td值过大,则使调节器速度减慢,调节时间增长。

因而,对一定调节对象的调速器有一最佳Td值。

3. 局部反馈系数a:局部反馈系数a增大,使主配压阀开启的窗口开度减小,接力器动作速度变慢,将有利于稳定,也有利于减小最大转速偏差。

4. 永态转差系数bp:调速器的永态反馈系数属于负反馈,因而增大bp可增加调节的稳定性,但由于bp的可调范围有限,故bp对系统的动态品质影响并不显著。

相关文档
最新文档