高中数学必修二 第一章:空间几何体

合集下载

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

(人教版)高中数学必修二_知识点、考点及典型例题解析

(人教版)高中数学必修二_知识点、考点及典型例题解析

必修二第一章 空间几何体知识点:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=3、球的体积公式:334 R V π=,球的表面积公式:24 R S π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =5、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面典型例题:★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 21倍 B 42倍 C 2倍 D 2倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱★★例4积是A .28cm πB 212cm π. C 216cm π. D .220cmπ二、填空题★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的_________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

高中数学必修2第1、2章知识点+习题

高中数学必修2第1、2章知识点+习题

第一章 空间几何体1.1柱、锥、台、球的结构特征1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).222r rl S ππ+=主视图 左视图 俯视图 (第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+ C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ). A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ). A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29π B .27π C .25π D .23π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5C .6D .215 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

精品 高中数学 必修二 第01章 空间几何体 题典

精品 高中数学 必修二 第01章 空间几何体 题典

1 Sh ,其中 S 是锥体的底面积,h 是锥体的高. 3 1 ③ V台体 h( S SS S ) ,其中 S' ,S 分别是台体的上、下底面的面积,h 为台体的高. 3 4 3 ④ V球 πR ,其中 R 是球的半径. 3
② V锥体
第 2 页 共 60 页
高中数学 必修二
3 3 2 6
(3)解:过点 P 作 PO⊥平面 ABC 于点 O,则点 O 是正△ABC 的中心,∴ OD 1 AD 1 3a 3a , 在 Rt△POD 中, PO PD 2 OD 2 3 3b 2 a 2 ,
正棱锥

第 1 页 共 60 页
高中数学 必修二
3.简单几何体的三视图与直观图: (1)平行投影: ①概念:如图,已知图形 F,直线 l 与平面相交,过 F 上任意一点 M 作直线 MM1 平行于 l,交平 面于点 M1,则点 M1 叫做点 M 在平面内关于直线 l 的平行投影.如果图形 F 上的所有点在平面内 关于直线 l 的平行投影构成图形 F1,则 F1 叫图形 F 在内关于直线 l 的平行投影.平面叫投射面,直 线 l 叫投射线.
②平行投影的性质: 性质 1.直线或线段的平行投影仍是直线或线段; 性质 2.平行直线的平行投影是平行或重合的直线; 性质 3.平行于投射面的线段,它的投影与这条线段平行且等长; 性质 4.与投射面平行的平面图形,它的投影与这个图形全等; 性质 5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比. (2)直观图:斜二侧画法画简单空间图形的直观图. (3)三视图: ①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影. ②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这 个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做 主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视 图. 将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构 成的图形叫空间图形的三视图. ③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽” . 4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积: ①S 直棱柱侧面积=ch,其中 c 为底面多边形的周长,h 为直棱柱的高. ② S正棱锥形面积 ③ S正棱台侧面积

人教A高中数学必修2_第一章总复习

人教A高中数学必修2_第一章总复习

1、空间几何体的类型
(1)棱柱的定义: 一个多面体有两个面 互相,平其行余
每相邻两个面的交线 互相平,行这样的多 面体叫
做棱柱。
棱柱的每个侧面都是 平行四边形吗?
是的
1、空间几何体的类型
问题:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗?
答:不一定是。 如右图所示,不是棱柱。
问题:有两个面互相平行, 其余各面都是平行四边形的几何 体是棱柱吗?
由三棱锥、四棱锥、 五棱锥…截得的棱 台,分别叫做三棱 台,四棱台,五棱 台…
1、空间几何体的类型
2、旋转体定义:由一个平面图形绕一条 定直线旋转所形成的封闭几何体。
轴:绕之旋转的定直线 轴
1、空间几何体的类型 母线
母线
圆柱
1、空间几何体的类型 母线
母线
圆锥
1、空间几何体的类型
圆台
母线
母线
S rO
正方体
Байду номын сангаас
长方体
圆柱 一般柱体
2、空间几何体的表面积和体积
锥体的体积 P
V锥
1 3
Sh
A
O
C
B
D
2、空间几何体的表面积和体积
柱体、锥体与台体的体积
V柱体 Sh(S是底面积 , h是高)
V锥体
1 3
Sh(S是底面积, h是高)
1 V台体 3 (S ' S ' S S )h
(S ', S分别是上下底面面积 , h是台体高 )
圆柱表面积 S 2r 2 2rl
2、空间几何体的表面积和体积
圆与扇形相关的公式
一、圆的周长公式 =2πr
二、圆的面积公式 S=πr2

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

人教版高中数学必修2第一章1.1空间几何体的结构 1.1.1 柱、锥、台、球的结构特征

人教版高中数学必修2第一章1.1空间几何体的结构 1.1.1 柱、锥、台、球的结构特征

归纳小结
空间几何体的定义: 如果只考虑物体的形状和大小,而不考虑
其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体。
空间几何体的分类:
1.多面体:由若干平面多边形围成的几何体。 2.旋转体:由一个平面图形绕它所在的平面 内的一条定直线旋转所成的封闭几何体。
2、5、7、9到底有哪些特征?
棱锥的顶点 棱锥的侧棱
棱锥的侧面
棱锥的底面
3. 棱锥的分类 底面是三角形、四边形、五边形
……的棱锥分别叫做三棱锥、四棱锥、 五棱锥……其中三棱锥又叫做四面体.
4. 棱锥的表示
用顶点和底面各顶点的字母来表示
如:棱锥S-ABCD
S
D
C
A
B
问题:有一个面是多边形,其余各面都是 三角形的几何体是棱锥吗?.
2. 棱台的有关概念
上底面 下底面
顶点 侧面 侧棱
3.棱台的分类
由三棱锥、四棱锥、五棱锥……截得的 棱台分别叫做三棱台、四棱台、五棱台……
4.棱台的表示
D1 A1
用表示上、下底面
D
顶点的字母来表示 A
如:棱台ABCD-A1B1C1D1
C1 B1
C
B
练习:下列几何体是不是棱台,为什么?
(1)
(2)
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截棱
锥,底面与截面之间的部分叫做棱台
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间的部分叫做棱台
特征1:由棱锥截得(侧面是梯形,侧棱的延长 线相交于一点)
特征2:截面和底面平行 (两底面是对应边互相
平行的相似多边形)

1.1空间几何体

1.1空间几何体

<2>圆锥
S
顶点

母 线
侧 面 A O B
<3>圆台
用一个平行于圆锥底面的平面去截圆锥,底面与 截面之间的部分是圆台.
O’ O
<4>球
半径 O 球心
经典例题 1、(04天津)下列命题正确的是 ( C)
A、平行于圆锥的一条母线的截面是等腰三角形
B、平行于圆台的一条母线的截面是等腰梯形
C、过圆锥顶点的截面是等腰三角形 D、过圆台的一个底面中心的截面是等腰梯形
D
高中数学必修二
芜湖启东—王玉国
1、空间几何体
单 元 结 构
2、点、线、面之间的 位置关系
空间几何
3、直线与方程
4、圆与方程 解析几何
第一章
暑假.gsp
空间几何体
知识结构(1)
(2)
柱、锥、台、球的结构特征 空间几何体的结构
空 间 几 何 体
简单几何体的结构特征 柱、锥、台、球的三视图 简单几何体的三视图 平面图形 直观图 斜二测画法 平行投影 中心投影

顶 点
对角线
<2>多面体的分类
1. 凸多面体 把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的 同侧,这样的多面体叫做凸多面体。
V

D C
A E
B
2、按面分类 按多面体面数分为四面体、五面体、六面体等
2、旋转体
<1>定义: 我们把一个平面图形 绕它所在平面内的一条定直线旋 转所形成的封闭几何体加做旋转体。这条直线叫做旋转体的 轴。
4、一个正方体内接于一个球,过球心做一个截面,则下列图形中不可 能为截面的是 ( )

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。

高中数学必修二全册课件ppt人教版

高中数学必修二全册课件ppt人教版

解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱

平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……

人教版高中数学必修二全册教案

人教版高中数学必修二全册教案

第一章:空间几何体一、教学目标1.知识与技能1通过实物操作,增强学生的直观感知;2能根据几何结构特征对空间物体进行分类;3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;4会表示有关于几何体以及柱、锥、台的分类;2.过程与方法1让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征;2让学生观察、讨论、归纳、概括所学的知识;3.情感态度与价值观1使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力;2培养学生的空间想象能力和抽象括能力;二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征;难点:柱、锥、台、球的结构特征的概括;三、教学用具1学法:观察、思考、交流、讨论、概括;2实物模型、投影仪四、教学思路一创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗这些建筑的几何结构特征如何引导学生回忆,举例和相互交流;教师对学生的活动及时给予评价;2.所举的建筑物基本上都是由这些几何体组合而成的,展示具有柱、锥、台、球结构特征的空间物体,你能通过观察;根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容;二、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥;2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么它们的共同特点是什么3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果;在此基础上得出棱柱的主要结构特征;1有两个面互相平行;2其余各面都是平行四边形;3每相邻两上四边形的公共边互相平行;概括出棱柱的概念;4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示;5.提出问题:各种这样的棱柱,主要有什么不同可不可以根据不同对棱柱分类请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示;7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示;8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括;9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体;10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成;请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的三质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考;1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱举反例说明,如图2.棱柱的何两个平面都可以作为棱柱的底面吗3.课本P8,习题组第1题;4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到如何旋转5.棱台与棱柱、棱锥有什么关系圆台与圆柱、圆锥呢四、巩固深化练习:课本P7练习1、212课本P8习题第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8练习题组第1题课外练习课本P8习题组第2题空间几何体的三视图1课时一、教学目标1.知识与技能1掌握画三视图的基本技能2丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用;3.情感态度与价值观1提高学生空间想象力2体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路一创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图;在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图正视图、侧视图、俯视图,你能画出空间几何体的三视图吗二实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图1画出球放在长方体上的三视图2画出矿泉水瓶实物放在桌面上的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得;作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图;3.三视图与几何体之间的相互转化;1投影出示图片课本P10,图请同学们思考图中的三视图表示的几何体是什么2你能画出圆台的三视图吗3三视图对于认识空间几何体有何作用你有何体会教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法;4.请同学们画出中其他物体表示的空间几何体的三视图,并与其他同学交流;三巩固练习课本P12练习1、2P18习题组1四归纳整理请学生回顾发表如何作好空间几何体的三视图五课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图;2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图;空间几何体的直观图1课时一、教学目标1.知识与技能1掌握斜二测画法画水平设置的平面图形的直观图;2采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点;2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图;3.情感态度与价值观1提高空间想象力与直观感受;2体会对比在学习中的作用;3感受几何作图在生产活动中的应用;二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图;三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程;2.教学用具:三角板、圆规四、教学思路一创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画;2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢这是我们这节主要学习的内容;二研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评;画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法;强调斜二测画法的步骤;练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查;2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点;教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法;3.探求空间几何体的直观图的画法1例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图;教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事;2投影出示几何体的三视图、课本P15图,请说出三视图表示的几何体并用斜二测画法画出它的直观图;教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系;4.平行投影与中心投影投影出示课本P17图,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点;5.巩固练习,课本P16练习11,2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17练习第5题2.课外思考课本P16,探究12一、教学目标1、知识与技能1通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系;3培养学生空间想象能力和思维能力;2、过程与方法1让学生经历几何全的侧面展一过程,感知几何体的形状;2让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系;3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响;从而增强学习的积极性;二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标;2、教学用具:实物几何体,投影仪四、教学设想1、创设情境1教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积引导学生回忆,互相交流,教师归类;2教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的你能否计算引入本节内容;2、探究新知1利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图2组织学生分组讨论:这三个图形的表面由哪些平面图形构成表面积如何求3教师对学生讨论归纳的结果进行点评;3、质疑答辩、排难解惑、发展思维1教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径r为下底半径l为母线长2组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系;3教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解;如图:4教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系;s’,s分别我上下底面面积,h为台柱高4、例题分析讲解课本例1、例2、例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为;答案:m a ππ3322、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积;答案:2325cm 36、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式;用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握;7、评价设计 习题组§球的体积和表面积一. 教学目标1. 知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识; ⑵能运用球的面积和体积公式灵活解决实际问题; ⑶培养学生的空间思维能力和空间想象能力; 2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想;3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心; 二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法; 难点:推导体积和面积公式中空间想象能力的形成; 三. 学法和教学用具1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤; 2. 教学用具:投影仪四. 教学设计(一) 创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢 引导学生进行思考;⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积 激发学生推导球的体积和面积公式;(二) 探究新知 1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行; 步骤: 第一步:分割如图:把半球的垂直于底面的半径OA作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为nR,底面是“小圆片”的底面; 如图:得)1(])1(1[232n i ni n R n R r V i i ⋯⋯=--=⋅⋅≈、2 ππ 第二步:求和 第三步:化为准确的和当n →∞时,n 1→0同学们讨论得出所以3332)6211(R R ππ=⨯-=V半球 得到定理:半径是R的球的体积334R π=球V 练习:一种空心钢球的质量是142g,外径是5cm,求它的内径钢的密度是cm 32.球的表面积:球的表面积是球的表面大小的度量,它也是球半径R 的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导;思考:推导过程是以什么量作为等量变换的 半径为R 的球的表面积为S=4πR 2练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是;答案50元 (三) 典例分析 课本P 47例4和P 29例5 (四) 巩固深化、反馈矫正⑴正方形的内切球和外接球的体积的比为,表面积比为; 答案:1:33; 3:1⑵在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积;答案:2500πcm 2分析:可画出球的轴截面,利用球的截面性质求球的半径(五)课堂小结本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法;(六)评价设计作业P30练习1、3,B1第二章直线与平面的位置关系§平面一、教学目标:1、知识与技能1利用生活中的实物对平面进行描述;2掌握平面的表示法及水平放置的直观图;3掌握平面的基本性质及作用;4培养学生的空间想象能力;2、过程与方法1通过师生的共同讨论,使学生对平面有了感性认识;2让学生归纳整理本节所学知识;3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣;二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言;难点:平面基本性质的掌握与运用;三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、正长方形模型、三角板四、教学思想一实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗引导学生观察、思考、举例和互相交流;与此同时,教师对学生的活动给予评价; 师:那么,平面的含义是什么呢这就是我们这节课所要学习的内容;二研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的;2、平面的画法及表示师:在平面几何中,怎样画直线一学生上黑板画之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长如图平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等; 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画打出投影片课本P41图说明平面内有无数个点,平面可以看成点的集合; 点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α3、平面的基本性质教师引导学生思考教材P41的思考题,让学生充分发表自己的见解;师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 教师引导学生阅读教材P42前几行相关内容,并加以解析 符号表示为A ∈LB ∈L=>L α A ∈α B ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面; 符号表示为:A 、B 、C 三点不共线=>有且只有一个平面α, 使A ∈α、B ∈α、C ∈α;公理2作用:确定一个平面的依据;教师用正长方形模型,让学生理解两个平面的交线的含义; 引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线; 符号表示为:P ∈α∩β=>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 4、教材P43例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用;5、课堂练习:课本P44练习1、2、3、46、课时小结:师生互动,共同归纳1本节课我们学习了哪些知识内容2三个公理的内容及作用是什么7、作业布置 1复习本节课内容;2预习:同一平面内的两条直线有几种位置关系D C B A αα βαβ·B·AαLA·α C ·B·A· α P ·αLβ·B§空间中直线与直线之间的位置关系一、教学目标:1、知识与技能1了解空间中两条直线的位置关系;2理解异面直线的概念、画法,培养学生的空间想象能力;3理解并掌握公理4;4理解并掌握等角定理;5异面直线所成角的定义、范围及应用;2、过程与方法1师生的共同讨论与讲授法相结合;2让学生在学习过程不断归纳整理所学知识;3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣;二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理;难点:异面直线所成角的计算;三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想一创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线;2、师:那么,空间两条直线有多少种位置关系板书课题二讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点;教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、1师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行;在空间中,是否有类似的规律组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行;符号表示为:设a、b、c是三条直线a∥b c∥b =>a∥c共面直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用; 公理4作用:判断空间两条直线平行的依据; 2例2投影片例2的讲解让学生掌握了公理4的运用 3教材P47探究让学生在思考和交流中提升了对公理4的运用能力; 3、组织学生思考教材P47的思考题 投影让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补; 教师强调:并非所有关于平面图形的结论都可以推广到空间中来; 4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念;1师:如图,已知异面直线a 、b,经过空间中任一点O 作直线a'∥a 、b'∥b,我们把a'与b'所成的锐角或直角叫异面直线a 与b 所成的角夹角; 2强调:①a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;②两条异面直线所成的角θ∈0,;③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角; 3例3投影例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识; 三课堂练习 教材P49练习1、2充分调动学生动手的积极性,教师适时给予肯定; 四课堂小结在师生互动中让学生了解: 1本节课学习了哪些知识内容 2计算异面直线所成的角应注意什么 五课后作业 1、判断题: 1a ∥bc ⊥a=>c ⊥b 1a ⊥cb ⊥c=>a ⊥b 2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条;§—空间中直线与平面、 平面与平面之间的位置关系一、教学目标:2。

人教版高中数学必修二全册教学课件ppt

人教版高中数学必修二全册教学课件ppt



答 旋转轴叫做圆台的轴,垂直于轴的边
旋转而成的圆面叫做圆台的底面,斜边旋
转而成的曲面叫做圆台的侧面,斜边在旋
转中的任何位置叫做圆台侧面的母线.
圆台用表示它的轴的字母表示,如上图的圆台表示为圆台 O′O.
研一研·问题探究、课堂更高效
填一填 研一研 练一练
问题 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
答案
返回
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
答案
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆

高中数学必修2课后习题答案

高中数学必修2课后习题答案

高中数学必修高中数学必修 2 课后习题答案课后习题答案第一章第一章 空间几何体空间几何体1.1 空间几何体的结构空间几何体的结构练习练习((第 7 页)1.(1)圆锥; (2)长方体; (3)圆柱与圆锥组合而成的组合体; (4)由一个六棱柱挖去一个圆柱体而得到的组合体。

2.(1)五棱柱; (2)圆锥 3.略习题 1.1 A 组1.(1) C; (2)C; (3)D; (4) C 2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。

(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面的平面截得的几何体。

3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成的简单组合体。

4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。

5.制作过程略。

制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。

B 组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。

2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。

1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图练习练习((第 15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略); (3)四棱柱与球组成的简单组合体(图略); (4)两台圆台组合而成的简单组合体(图略)。

3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略); 4.三棱柱练习练习((第 19 页)1.略。

2.(1)√ (2)× (3)× (4)√ 3.A 4.略 5.略习题 1.2 A 组1.略 2.(1)三棱柱 (2)圆台 (3)四棱柱 (4)四棱柱与圆柱组合而成的简单组合体 3~5.略B 组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。

高中数学必修2第一章第三节《空间几何体的表面积与体积》全套教案

高中数学必修2第一章第三节《空间几何体的表面积与体积》全套教案

空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【教学目标】(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

【教学重点难点】【教学重点】:柱体、锥体、台体的表面积和体积计算【教学难点】:台体体积公式的推导【学前准备】:多媒体,预习例题(3)初中时,我们已经学习了计算特殊的柱体——正方体、长方体以及圆柱的体积公式:如图,把正方体截去四个角,得到一个体比2a和积此圆柱的底面在圆锥的底面上,圆柱的高等于圆锥底面半径,且圆柱的全面积:圆锥的底面积3:2=.)求圆锥母线与底面多成的角的正切值;(2)圆锥的侧面积参考答案:1. B 2. C 3. 1 , 3 4. A 5. B 6. B 7. 1:3 3a π或32aπ9.已知圆锥有一个内接圆柱此圆柱的底面在圆锥的底面上,圆柱. 三棱锥的外接球问题【教学目标】⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

⑵能运用球的面积和体积公式灵活解决实际问题。

⑶培养学生的空间思维能力和空间想象能力。

【教学重难点】【教学重点】:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

【教学难点】:推导体积和面积公式中空间想象能力的形成。

【学前准备】:多媒体,预习例题4:如图是一个空间几何体的三视图,则该几何体的外接球的表面积为.类型四:一条测棱垂直底面,底面为非直角三角形的四面体的外接球问题5已知点A,B,C,D,四点在同一个球面上,DA⊥平面ABC,DA=AB=AC=3,∠ABC=60,则球半径是类型五:正三棱锥的外接球问题6:已知正三棱锥底面边长为1,侧棱长为2,求外接球半径。

人教A版高中数学必修2《一章 空间几何体 1.2.1 中心投影与平行投影》优质课教案_17

人教A版高中数学必修2《一章 空间几何体 1.2.1 中心投影与平行投影》优质课教案_17

1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”.教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.二、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

人教版高中数学章节目录

人教版高中数学章节目录
人教版高中数学必修一目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理

新人教版高中数学必修二全册课件ppt

新人教版高中数学必修二全册课件ppt

(1)三棱柱有 6 个顶点,三棱锥有 4 个顶点;
(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的
母线;
本 课
(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几
时 栏
何体是圆台;

(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角
开 关
做圆柱侧面的母线.圆柱用表示它的轴的字母表示,如下图中的圆
柱表示为圆柱 O′O.
研一研·问题探究、课堂更高效
问题 2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截 面分别是什么图形?



栏 目
答 分别是圆面、矩形.


研一研·问题探究、课堂更高效
探究点二 圆锥的结构特征 问题 1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?
5.简单组合体
(1)概念:由 简单几何体 组合而成的几何体叫做简单组
合体.常见的简单组合体大多是由具有柱、锥、台、球等


几何结构特征的物体组成的.


(2)基本形式:一种是由简单几何体 拼接 而成,另一种是


由简单几何体 截去 或 挖去 一部分而成.

研一研·问题探究、课堂更高效
[问题情境]

举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形
课 时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我

们就来学习旋转体与简单组合体的结构特征.

研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二第一章:空间几何体
第一章:空间几何体
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。

空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。

本章将在义务教育数学课程“空间与图形”的基础上,从对空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解一些简单几何体的表面积与体积的计算方法。

一、内容与课程学习目标
本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。

了解球、棱柱、棱锥、台的表面积和体积的计算公式,从度量的角度加深对空间几何体的整体认识。

通过本章的学习,要使学生达到下列目标:
1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

4.完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

5.了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

二、内容安排
本章包括3节,约需8课时,具体分配如下(仅供参考):
1.1 空间几何体的结
构约2课时1.2 空间几何体的三视图和直观
图约2课时
1.3 空间几何体的表面积与体
积约2课时
实习作

约1课时
小结
约1课时
1.“空间几何体的结构”首先让学生观察现实世界中实物的图片,引导学生对观察到实物进行分类,归纳、抽象、概括出柱体、锥体、台体和球体的结构特征,同时给出由它们组合而成的简单几何体的结构特征。

然后要求学生例举生活中的几何体,并掌握它们的结构特征。

2.“空间几何体的三视图和直观图”主要包括在平面上表示立体图形,用三视图和直观图表示空间几何体,实现空间几何体与三视图、直观图之间的相互转化,利用三视图或直观图制作立体模型;通过空间几何体在平行投影和中心投影下的影象,使学生认识立体图形在平面上的不同表示形式。

3.“阅读材料画法几何与蒙日”主要介绍画法几何的内容,以及法国数学家蒙日在画法几何方面的贡献,使学生了解画法几何的历史背景及发展。

4.“空间几何体的表面积与体积”主要包括空间几何体的表面积、体积,简单几何体的表面积与体积。

5.实习作业的内容是画出建筑物的三视图和直观图,体会几何学在建筑方面的应用。

三、编写过程中考虑的几个问题
1.从生活中来,到生活中去,理论联系实际,培养学生的应用意识和应用能力
三维空间是人类生存的现实空间,它为我们的学习提供了大量现实的素材。

在本章内容的呈现方式上,正文充分利用现实生活中的素材,使学生在观察的基础上,抽象出空间图形,然后归纳出它们的结构特征,把握图形的特点。

例题、习题中部分题目也注意与生产生活的联系。

另外,教师还要在此基础上,充分借助幻灯、计算机软件等工具向学生展示更多的实物、图片,增强学生的直观感受,提高学生的学习兴趣,更好地认识空间几何体,提高几何直观能力。

实习作业要求画出建筑物的三视图和直观图,这为学生综合应用本章知识进行实践提供了机会,对学生的应用意识和应用能力的培养有极大的帮助。

2.强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活动中认识空间几何体,提高空间想象能力
学习方式的转变是课程改革的重要目标之一。

教科书中设置了“观察”、“思考”、“探究”等栏目,例如:
1.1.2简单组合体的结构特征中的“探究”栏目:“请列举身边具有已学过的几何结构特征的物体,你能说出组成这些物体的几何结构特征吗?它们是由哪些基本几何体组成的?”
1.1.2空间几何体的直观图中的“探究”栏目:(2)空间几何体的三视图和直观图能够帮助我们从不同侧面、不同角度认识几何体的结构,它们各有哪些特点?二者有何关系?”
1.3.1柱体、锥体、台体的表面积与体积中的“探究”栏目:如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”等等。

通过这些活动,鼓励学生思考、动手、交流,参与课堂教学,养成良好的学习习惯。

3.重视实物与图形、空间图形与平面图形的互相转化
无论是空间几何体的结构,还是它们的三视图、直观图,表面积、体积,都涉及到大量的空间图形、平面图形,以及它们之间的互相转化。

在研究这些图形时,我们始终注意与实物的联系,使抽象与具体结合起来。

要求学生能够从实物抽象出空间图形,从空间图形想象实物的形状;能够画出实物的三视图和直观图,能够从空间几何体的直观图画出它的三视图,从三视图画出它的直观图等等。

这些数学活动是使学生掌握图形,提高识图能力的有效途径。

四、对教学的几个建议
1.注意与义务教育阶段课程“空间与图形”部分的衔接
本章知识内容与义务教育阶段“空间与图形”部分联系密切,许多内容,如空间几何体、三视图、投影等都在义务教育阶段有所接触。

从《全日制义务教育数学课程标准(实验稿)》来看,学生对正方体、长方体、圆柱、圆锥、球等份都有了直观认识;会画直棱柱、圆柱、圆锥与球的三视图,会判断简单物体的三视图,能根据展开图描述基本几何体或实物原型;了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;能够求解正方体、长方体、圆柱、圆锥的表面积与体积;能够利用基本几何体与其三视图、展开图之间的关系解决现实生活中的简单问题。

本章的教学内容中的空间几何体的结构、三视图、表面积、体积等都与义务教育阶段的学习内容相关,区别在于学习的深度和概括程度上。

前面是对具体的棱柱(如正方体、长方体等)进行研究,对圆柱、圆锥和球的认识比较具体。

本章对它们的研究更加深入,给出了它们的结构特征。

同时,还学习了台体的有关知识,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。

另外,本章还要求学生如何在平面上画出空间几何体的直观图、空间几何体的直观图和三视图之间的关系以及通过空间几何体在平行投影和中心投影下的影象使学生认识在平面上可以用多种方法来表示空间几何体。

了解本章内容,要求与义务教育阶段数学课程“空间与图形”部分的内容、要求的联系与区别。

教学时便可以在学习过的知识基础上,加深一步。

2.严谨适度,把握教学要求
在《普通高中数学课程标准(实验)》中,立体几何内容的体系结构有重大改革。

过去常从研究点、直线和平面开始,再研究由它们组成的几何体,遵循部分到整体的原则;现在先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。

这种安排有助于培养学生的空间想象能力、几何直观能力,降低立体几何学习入门难的门槛,提高学生学习立体几何学习的兴趣。

对于空间几何体的认识,教科书从空间几何体的结构特征、表示方法与度量三个方面展开。

由于没有点、直线与平面的有关知识,本章的学习不能建立在严格的逻辑推理的基础上,这与以往教科书有相当大的区别,教师在实际教学中要充分注意到这一点。

本章教学重视从实际出发,从具体到抽象,提供丰富的实物模型或计算机软件呈现的几何体,在此基础上引导学生观察、归纳、抽象、概括出它们的结构特征,并能运用这些特征描述现实生活中简单物体的结构;巩固和提高义务教育阶段有关三视图的学习和理解,掌握斜二侧法画平面图形和立体图形的方法和技能,能够使用材料(如纸板)制作立体模型;通过平行投影和中心投影,使学生了解空间图形的不同表示形式;了解空间几何体的表面积和体积的计算公式(不要求记忆公式),能够计算基本几何体及它们的简单组合体的表面积和体积。

本章在球的表面积和体积公式的推导过程中利用了极限的思想,但不作为教学要求。

有兴趣的同学和学有余力的同学可以了解整个推导过程,了解极限的思想方法在处理这方面问题的作用。

总之,教学要求定位在直观感知、操作确认、度量计算的层面。

3.重视现代信息技术的应用
现代信息技术的广泛应用正在对数学课程的编写、数学教学的实施产生深刻影响。

信息技术应用于数学教学,对课堂信息容量的增加、对提高学生学习数学的兴趣、为学生创设一个良好的学习环境等方面都有重要意义。

在本章,利用信息技术工具,可以给我们展现丰富多彩的图形世界,帮助学生从中抽象出空间图形。

动态演示空间几何体的三视图和直观图,认识立体图形与平面图形的关系,帮助学生建立空间观念,提高空间想象能力和几何直观能力。

学好立体几何需要学生能够多动手画一画、做一做。

.从不同的角度观察空间图形,体会空间几何体在不同的视角下的结构特征。

因此,有条件的地方应尽可能使用信息技术,帮助学生更好地学习,达到较好的教学效果。

相关文档
最新文档